Home | History | Annotate | Line # | Download | only in gen
rb.c revision 1.9
      1 /*	$NetBSD: rb.c,v 1.9 2010/11/17 13:19:32 tron Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Matt Thomas <matt (at) 3am-software.com>.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #if !defined(_KERNEL) && !defined(_STANDALONE)
     33 #include <sys/types.h>
     34 #include <stddef.h>
     35 #include <assert.h>
     36 #include <stdbool.h>
     37 #ifdef RBDEBUG
     38 #define	KASSERT(s)	assert(s)
     39 #else
     40 #define KASSERT(s)	do { } while (/*CONSTCOND*/ 0)
     41 #endif
     42 #else
     43 #include <lib/libkern/libkern.h>
     44 #endif
     45 
     46 #ifdef _LIBC
     47 __weak_alias(rb_tree_init, _rb_tree_init)
     48 __weak_alias(rb_tree_find_node, _rb_tree_find_node)
     49 __weak_alias(rb_tree_find_node_geq, _rb_tree_find_node_geq)
     50 __weak_alias(rb_tree_find_node_leq, _rb_tree_find_node_leq)
     51 __weak_alias(rb_tree_insert_node, _rb_tree_insert_node)
     52 __weak_alias(rb_tree_remove_node, _rb_tree_remove_node)
     53 __weak_alias(rb_tree_iterate, _rb_tree_iterate)
     54 #ifdef RBDEBUG
     55 __weak_alias(rb_tree_check, _rb_tree_check)
     56 __weak_alias(rb_tree_depths, _rb_tree_depths)
     57 #endif
     58 
     59 #include "namespace.h"
     60 #endif
     61 
     62 #ifdef RBTEST
     63 #include "rbtree.h"
     64 #else
     65 #include <sys/rbtree.h>
     66 #endif
     67 
     68 static void rb_tree_insert_rebalance(struct rb_tree *, struct rb_node *);
     69 static void rb_tree_removal_rebalance(struct rb_tree *, struct rb_node *,
     70 	unsigned int);
     71 #ifdef RBDEBUG
     72 static const struct rb_node *rb_tree_iterate_const(const struct rb_tree *,
     73 	const struct rb_node *, const unsigned int);
     74 static bool rb_tree_check_node(const struct rb_tree *, const struct rb_node *,
     75 	const struct rb_node *, bool);
     76 #else
     77 #define	rb_tree_check_node(a, b, c, d)	true
     78 #endif
     79 
     80 #define	RB_NODETOITEM(rbto, rbn)	\
     81     ((void *)((uintptr_t)(rbn) - (rbto)->rbto_node_offset))
     82 #define	RB_ITEMTONODE(rbto, rbn)	\
     83     ((rb_node_t *)((uintptr_t)(rbn) + (rbto)->rbto_node_offset))
     84 
     85 #define	RB_SENTINEL_NODE	NULL
     86 
     87 void
     88 rb_tree_init(struct rb_tree *rbt, const rb_tree_ops_t *ops)
     89 {
     90 
     91 	rbt->rbt_ops = ops;
     92 	*((const struct rb_node **)&rbt->rbt_root) = RB_SENTINEL_NODE;
     93 	RB_TAILQ_INIT(&rbt->rbt_nodes);
     94 #ifndef RBSMALL
     95 	rbt->rbt_minmax[RB_DIR_LEFT] = rbt->rbt_root;	/* minimum node */
     96 	rbt->rbt_minmax[RB_DIR_RIGHT] = rbt->rbt_root;	/* maximum node */
     97 #endif
     98 #ifdef RBSTATS
     99 	rbt->rbt_count = 0;
    100 	rbt->rbt_insertions = 0;
    101 	rbt->rbt_removals = 0;
    102 	rbt->rbt_insertion_rebalance_calls = 0;
    103 	rbt->rbt_insertion_rebalance_passes = 0;
    104 	rbt->rbt_removal_rebalance_calls = 0;
    105 	rbt->rbt_removal_rebalance_passes = 0;
    106 #endif
    107 }
    108 
    109 void *
    110 rb_tree_find_node(struct rb_tree *rbt, const void *key)
    111 {
    112 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
    113 	rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
    114 	struct rb_node *parent = rbt->rbt_root;
    115 
    116 	while (!RB_SENTINEL_P(parent)) {
    117 		void *pobj = RB_NODETOITEM(rbto, parent);
    118 		const signed int diff = (*compare_key)(rbto->rbto_context,
    119 		    pobj, key);
    120 		if (diff == 0)
    121 			return pobj;
    122 		parent = parent->rb_nodes[diff < 0];
    123 	}
    124 
    125 	return NULL;
    126 }
    127 
    128 void *
    129 rb_tree_find_node_geq(struct rb_tree *rbt, const void *key)
    130 {
    131 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
    132 	rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
    133 	struct rb_node *parent = rbt->rbt_root, *last = NULL;
    134 
    135 	while (!RB_SENTINEL_P(parent)) {
    136 		void *pobj = RB_NODETOITEM(rbto, parent);
    137 		const signed int diff = (*compare_key)(rbto->rbto_context,
    138 		    pobj, key);
    139 		if (diff == 0)
    140 			return pobj;
    141 		if (diff > 0)
    142 			last = parent;
    143 		parent = parent->rb_nodes[diff < 0];
    144 	}
    145 
    146 	return RB_NODETOITEM(rbto, last);
    147 }
    148 
    149 void *
    150 rb_tree_find_node_leq(struct rb_tree *rbt, const void *key)
    151 {
    152 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
    153 	rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
    154 	struct rb_node *parent = rbt->rbt_root, *last = NULL;
    155 
    156 	while (!RB_SENTINEL_P(parent)) {
    157 		void *pobj = RB_NODETOITEM(rbto, parent);
    158 		const signed int diff = (*compare_key)(rbto->rbto_context,
    159 		    pobj, key);
    160 		if (diff == 0)
    161 			return pobj;
    162 		if (diff < 0)
    163 			last = parent;
    164 		parent = parent->rb_nodes[diff < 0];
    165 	}
    166 
    167 	return RB_NODETOITEM(rbto, last);
    168 }
    169 
    170 void *
    171 rb_tree_insert_node(struct rb_tree *rbt, void *object)
    172 {
    173 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
    174 	rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes;
    175 	struct rb_node *parent, *tmp, *self = RB_ITEMTONODE(rbto, object);
    176 	unsigned int position;
    177 	bool rebalance;
    178 
    179 	RBSTAT_INC(rbt->rbt_insertions);
    180 
    181 	tmp = rbt->rbt_root;
    182 	/*
    183 	 * This is a hack.  Because rbt->rbt_root is just a struct rb_node *,
    184 	 * just like rb_node->rb_nodes[RB_DIR_LEFT], we can use this fact to
    185 	 * avoid a lot of tests for root and know that even at root,
    186 	 * updating RB_FATHER(rb_node)->rb_nodes[RB_POSITION(rb_node)] will
    187 	 * update rbt->rbt_root.
    188 	 */
    189 	parent = (struct rb_node *)(void *)&rbt->rbt_root;
    190 	position = RB_DIR_LEFT;
    191 
    192 	/*
    193 	 * Find out where to place this new leaf.
    194 	 */
    195 	while (!RB_SENTINEL_P(tmp)) {
    196 		void *tobj = RB_NODETOITEM(rbto, tmp);
    197 		const signed int diff = (*compare_nodes)(rbto->rbto_context,
    198 		    tobj, object);
    199 		if (__predict_false(diff == 0)) {
    200 			/*
    201 			 * Node already exists; return it.
    202 			 */
    203 			return tobj;
    204 		}
    205 		parent = tmp;
    206 		position = (diff < 0);
    207 		tmp = parent->rb_nodes[position];
    208 	}
    209 
    210 #ifdef RBDEBUG
    211 	{
    212 		struct rb_node *prev = NULL, *next = NULL;
    213 
    214 		if (position == RB_DIR_RIGHT)
    215 			prev = parent;
    216 		else if (tmp != rbt->rbt_root)
    217 			next = parent;
    218 
    219 		/*
    220 		 * Verify our sequential position
    221 		 */
    222 		KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
    223 		KASSERT(next == NULL || !RB_SENTINEL_P(next));
    224 		if (prev != NULL && next == NULL)
    225 			next = TAILQ_NEXT(prev, rb_link);
    226 		if (prev == NULL && next != NULL)
    227 			prev = TAILQ_PREV(next, rb_node_qh, rb_link);
    228 		KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
    229 		KASSERT(next == NULL || !RB_SENTINEL_P(next));
    230 		KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context,
    231 		    RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0);
    232 		KASSERT(next == NULL || (*compare_nodes)(rbto->rbto_context,
    233 		    RB_NODETOITEM(rbto, self), RB_NODETOITEM(rbto, next)) < 0);
    234 	}
    235 #endif
    236 
    237 	/*
    238 	 * Initialize the node and insert as a leaf into the tree.
    239 	 */
    240 	RB_SET_FATHER(self, parent);
    241 	RB_SET_POSITION(self, position);
    242 	if (__predict_false(parent == (struct rb_node *)(void *)&rbt->rbt_root)) {
    243 		RB_MARK_BLACK(self);		/* root is always black */
    244 #ifndef RBSMALL
    245 		rbt->rbt_minmax[RB_DIR_LEFT] = self;
    246 		rbt->rbt_minmax[RB_DIR_RIGHT] = self;
    247 #endif
    248 		rebalance = false;
    249 	} else {
    250 		KASSERT(position == RB_DIR_LEFT || position == RB_DIR_RIGHT);
    251 #ifndef RBSMALL
    252 		/*
    253 		 * Keep track of the minimum and maximum nodes.  If our
    254 		 * parent is a minmax node and we on their min/max side,
    255 		 * we must be the new min/max node.
    256 		 */
    257 		if (parent == rbt->rbt_minmax[position])
    258 			rbt->rbt_minmax[position] = self;
    259 #endif /* !RBSMALL */
    260 		/*
    261 		 * All new nodes are colored red.  We only need to rebalance
    262 		 * if our parent is also red.
    263 		 */
    264 		RB_MARK_RED(self);
    265 		rebalance = RB_RED_P(parent);
    266 	}
    267 	KASSERT(RB_SENTINEL_P(parent->rb_nodes[position]));
    268 	self->rb_left = parent->rb_nodes[position];
    269 	self->rb_right = parent->rb_nodes[position];
    270 	parent->rb_nodes[position] = self;
    271 	KASSERT(RB_CHILDLESS_P(self));
    272 
    273 	/*
    274 	 * Insert the new node into a sorted list for easy sequential access
    275 	 */
    276 	RBSTAT_INC(rbt->rbt_count);
    277 #ifdef RBDEBUG
    278 	if (RB_ROOT_P(rbt, self)) {
    279 		RB_TAILQ_INSERT_HEAD(&rbt->rbt_nodes, self, rb_link);
    280 	} else if (position == RB_DIR_LEFT) {
    281 		KASSERT((*compare_nodes)(rbto->rbto_context,
    282 		    RB_NODETOITEM(rbto, self),
    283 		    RB_NODETOITEM(rbto, RB_FATHER(self))) < 0);
    284 		RB_TAILQ_INSERT_BEFORE(RB_FATHER(self), self, rb_link);
    285 	} else {
    286 		KASSERT((*compare_nodes)(rbto->rbto_context,
    287 		    RB_NODETOITEM(rbto, RB_FATHER(self)),
    288 		    RB_NODETOITEM(rbto, self)) < 0);
    289 		RB_TAILQ_INSERT_AFTER(&rbt->rbt_nodes, RB_FATHER(self),
    290 		    self, rb_link);
    291 	}
    292 #endif
    293 	KASSERT(rb_tree_check_node(rbt, self, NULL, !rebalance));
    294 
    295 	/*
    296 	 * Rebalance tree after insertion
    297 	 */
    298 	if (rebalance) {
    299 		rb_tree_insert_rebalance(rbt, self);
    300 		KASSERT(rb_tree_check_node(rbt, self, NULL, true));
    301 	}
    302 
    303 	/* Succesfully inserted, return our node pointer. */
    304 	return object;
    305 }
    306 
    307 /*
    308  * Swap the location and colors of 'self' and its child @ which.  The child
    309  * can not be a sentinel node.  This is our rotation function.  However,
    310  * since it preserves coloring, it great simplifies both insertion and
    311  * removal since rotation almost always involves the exchanging of colors
    312  * as a separate step.
    313  */
    314 /*ARGSUSED*/
    315 static void
    316 rb_tree_reparent_nodes(struct rb_tree *rbt, struct rb_node *old_father,
    317 	const unsigned int which)
    318 {
    319 	const unsigned int other = which ^ RB_DIR_OTHER;
    320 	struct rb_node * const grandpa = RB_FATHER(old_father);
    321 	struct rb_node * const old_child = old_father->rb_nodes[which];
    322 	struct rb_node * const new_father = old_child;
    323 	struct rb_node * const new_child = old_father;
    324 
    325 	KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
    326 
    327 	KASSERT(!RB_SENTINEL_P(old_child));
    328 	KASSERT(RB_FATHER(old_child) == old_father);
    329 
    330 	KASSERT(rb_tree_check_node(rbt, old_father, NULL, false));
    331 	KASSERT(rb_tree_check_node(rbt, old_child, NULL, false));
    332 	KASSERT(RB_ROOT_P(rbt, old_father) ||
    333 	    rb_tree_check_node(rbt, grandpa, NULL, false));
    334 
    335 	/*
    336 	 * Exchange descendant linkages.
    337 	 */
    338 	grandpa->rb_nodes[RB_POSITION(old_father)] = new_father;
    339 	new_child->rb_nodes[which] = old_child->rb_nodes[other];
    340 	new_father->rb_nodes[other] = new_child;
    341 
    342 	/*
    343 	 * Update ancestor linkages
    344 	 */
    345 	RB_SET_FATHER(new_father, grandpa);
    346 	RB_SET_FATHER(new_child, new_father);
    347 
    348 	/*
    349 	 * Exchange properties between new_father and new_child.  The only
    350 	 * change is that new_child's position is now on the other side.
    351 	 */
    352 #if 0
    353 	{
    354 		struct rb_node tmp;
    355 		tmp.rb_info = 0;
    356 		RB_COPY_PROPERTIES(&tmp, old_child);
    357 		RB_COPY_PROPERTIES(new_father, old_father);
    358 		RB_COPY_PROPERTIES(new_child, &tmp);
    359 	}
    360 #else
    361 	RB_SWAP_PROPERTIES(new_father, new_child);
    362 #endif
    363 	RB_SET_POSITION(new_child, other);
    364 
    365 	/*
    366 	 * Make sure to reparent the new child to ourself.
    367 	 */
    368 	if (!RB_SENTINEL_P(new_child->rb_nodes[which])) {
    369 		RB_SET_FATHER(new_child->rb_nodes[which], new_child);
    370 		RB_SET_POSITION(new_child->rb_nodes[which], which);
    371 	}
    372 
    373 	KASSERT(rb_tree_check_node(rbt, new_father, NULL, false));
    374 	KASSERT(rb_tree_check_node(rbt, new_child, NULL, false));
    375 	KASSERT(RB_ROOT_P(rbt, new_father) ||
    376 	    rb_tree_check_node(rbt, grandpa, NULL, false));
    377 }
    378 
    379 static void
    380 rb_tree_insert_rebalance(struct rb_tree *rbt, struct rb_node *self)
    381 {
    382 	struct rb_node * father = RB_FATHER(self);
    383 	struct rb_node * grandpa = RB_FATHER(father);
    384 	struct rb_node * uncle;
    385 	unsigned int which;
    386 	unsigned int other;
    387 
    388 	KASSERT(!RB_ROOT_P(rbt, self));
    389 	KASSERT(RB_RED_P(self));
    390 	KASSERT(RB_RED_P(father));
    391 	RBSTAT_INC(rbt->rbt_insertion_rebalance_calls);
    392 
    393 	for (;;) {
    394 		KASSERT(!RB_SENTINEL_P(self));
    395 
    396 		KASSERT(RB_RED_P(self));
    397 		KASSERT(RB_RED_P(father));
    398 		/*
    399 		 * We are red and our parent is red, therefore we must have a
    400 		 * grandfather and he must be black.
    401 		 */
    402 		grandpa = RB_FATHER(father);
    403 		KASSERT(RB_BLACK_P(grandpa));
    404 		KASSERT(RB_DIR_RIGHT == 1 && RB_DIR_LEFT == 0);
    405 		which = (father == grandpa->rb_right);
    406 		other = which ^ RB_DIR_OTHER;
    407 		uncle = grandpa->rb_nodes[other];
    408 
    409 		if (RB_BLACK_P(uncle))
    410 			break;
    411 
    412 		RBSTAT_INC(rbt->rbt_insertion_rebalance_passes);
    413 		/*
    414 		 * Case 1: our uncle is red
    415 		 *   Simply invert the colors of our parent and
    416 		 *   uncle and make our grandparent red.  And
    417 		 *   then solve the problem up at his level.
    418 		 */
    419 		RB_MARK_BLACK(uncle);
    420 		RB_MARK_BLACK(father);
    421 		if (__predict_false(RB_ROOT_P(rbt, grandpa))) {
    422 			/*
    423 			 * If our grandpa is root, don't bother
    424 			 * setting him to red, just return.
    425 			 */
    426 			KASSERT(RB_BLACK_P(grandpa));
    427 			return;
    428 		}
    429 		RB_MARK_RED(grandpa);
    430 		self = grandpa;
    431 		father = RB_FATHER(self);
    432 		KASSERT(RB_RED_P(self));
    433 		if (RB_BLACK_P(father)) {
    434 			/*
    435 			 * If our greatgrandpa is black, we're done.
    436 			 */
    437 			KASSERT(RB_BLACK_P(rbt->rbt_root));
    438 			return;
    439 		}
    440 	}
    441 
    442 	KASSERT(!RB_ROOT_P(rbt, self));
    443 	KASSERT(RB_RED_P(self));
    444 	KASSERT(RB_RED_P(father));
    445 	KASSERT(RB_BLACK_P(uncle));
    446 	KASSERT(RB_BLACK_P(grandpa));
    447 	/*
    448 	 * Case 2&3: our uncle is black.
    449 	 */
    450 	if (self == father->rb_nodes[other]) {
    451 		/*
    452 		 * Case 2: we are on the same side as our uncle
    453 		 *   Swap ourselves with our parent so this case
    454 		 *   becomes case 3.  Basically our parent becomes our
    455 		 *   child.
    456 		 */
    457 		rb_tree_reparent_nodes(rbt, father, other);
    458 		KASSERT(RB_FATHER(father) == self);
    459 		KASSERT(self->rb_nodes[which] == father);
    460 		KASSERT(RB_FATHER(self) == grandpa);
    461 		self = father;
    462 		father = RB_FATHER(self);
    463 	}
    464 	KASSERT(RB_RED_P(self) && RB_RED_P(father));
    465 	KASSERT(grandpa->rb_nodes[which] == father);
    466 	/*
    467 	 * Case 3: we are opposite a child of a black uncle.
    468 	 *   Swap our parent and grandparent.  Since our grandfather
    469 	 *   is black, our father will become black and our new sibling
    470 	 *   (former grandparent) will become red.
    471 	 */
    472 	rb_tree_reparent_nodes(rbt, grandpa, which);
    473 	KASSERT(RB_FATHER(self) == father);
    474 	KASSERT(RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER] == grandpa);
    475 	KASSERT(RB_RED_P(self));
    476 	KASSERT(RB_BLACK_P(father));
    477 	KASSERT(RB_RED_P(grandpa));
    478 
    479 	/*
    480 	 * Final step: Set the root to black.
    481 	 */
    482 	RB_MARK_BLACK(rbt->rbt_root);
    483 }
    484 
    485 static void
    486 rb_tree_prune_node(struct rb_tree *rbt, struct rb_node *self, bool rebalance)
    487 {
    488 	const unsigned int which = RB_POSITION(self);
    489 	struct rb_node *father = RB_FATHER(self);
    490 #ifndef RBSMALL
    491 	const bool was_root = RB_ROOT_P(rbt, self);
    492 #endif
    493 
    494 	KASSERT(rebalance || (RB_ROOT_P(rbt, self) || RB_RED_P(self)));
    495 	KASSERT(!rebalance || RB_BLACK_P(self));
    496 	KASSERT(RB_CHILDLESS_P(self));
    497 	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
    498 
    499 	/*
    500 	 * Since we are childless, we know that self->rb_left is pointing
    501 	 * to the sentinel node.
    502 	 */
    503 	father->rb_nodes[which] = self->rb_left;
    504 
    505 	/*
    506 	 * Remove ourselves from the node list, decrement the count,
    507 	 * and update min/max.
    508 	 */
    509 	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
    510 	RBSTAT_DEC(rbt->rbt_count);
    511 #ifndef RBSMALL
    512 	if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self)) {
    513 		rbt->rbt_minmax[RB_POSITION(self)] = father;
    514 		/*
    515 		 * When removing the root, rbt->rbt_minmax[RB_DIR_LEFT] is
    516 		 * updated automatically, but we also need to update
    517 		 * rbt->rbt_minmax[RB_DIR_RIGHT];
    518 		 */
    519 		if (__predict_false(was_root)) {
    520 			rbt->rbt_minmax[RB_DIR_RIGHT] = father;
    521 		}
    522 	}
    523 	RB_SET_FATHER(self, NULL);
    524 #endif
    525 
    526 	/*
    527 	 * Rebalance if requested.
    528 	 */
    529 	if (rebalance)
    530 		rb_tree_removal_rebalance(rbt, father, which);
    531 	KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
    532 }
    533 
    534 /*
    535  * When deleting an interior node
    536  */
    537 static void
    538 rb_tree_swap_prune_and_rebalance(struct rb_tree *rbt, struct rb_node *self,
    539 	struct rb_node *standin)
    540 {
    541 	const unsigned int standin_which = RB_POSITION(standin);
    542 	unsigned int standin_other = standin_which ^ RB_DIR_OTHER;
    543 	struct rb_node *standin_son;
    544 	struct rb_node *standin_father = RB_FATHER(standin);
    545 	bool rebalance = RB_BLACK_P(standin);
    546 
    547 	if (standin_father == self) {
    548 		/*
    549 		 * As a child of self, any childen would be opposite of
    550 		 * our parent.
    551 		 */
    552 		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
    553 		standin_son = standin->rb_nodes[standin_which];
    554 	} else {
    555 		/*
    556 		 * Since we aren't a child of self, any childen would be
    557 		 * on the same side as our parent.
    558 		 */
    559 		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_which]));
    560 		standin_son = standin->rb_nodes[standin_other];
    561 	}
    562 
    563 	/*
    564 	 * the node we are removing must have two children.
    565 	 */
    566 	KASSERT(RB_TWOCHILDREN_P(self));
    567 	/*
    568 	 * If standin has a child, it must be red.
    569 	 */
    570 	KASSERT(RB_SENTINEL_P(standin_son) || RB_RED_P(standin_son));
    571 
    572 	/*
    573 	 * Verify things are sane.
    574 	 */
    575 	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
    576 	KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
    577 
    578 	if (__predict_false(RB_RED_P(standin_son))) {
    579 		/*
    580 		 * We know we have a red child so if we flip it to black
    581 		 * we don't have to rebalance.
    582 		 */
    583 		KASSERT(rb_tree_check_node(rbt, standin_son, NULL, true));
    584 		RB_MARK_BLACK(standin_son);
    585 		rebalance = false;
    586 
    587 		if (standin_father == self) {
    588 			KASSERT(RB_POSITION(standin_son) == standin_which);
    589 		} else {
    590 			KASSERT(RB_POSITION(standin_son) == standin_other);
    591 			/*
    592 			 * Change the son's parentage to point to his grandpa.
    593 			 */
    594 			RB_SET_FATHER(standin_son, standin_father);
    595 			RB_SET_POSITION(standin_son, standin_which);
    596 		}
    597 	}
    598 
    599 	if (standin_father == self) {
    600 		/*
    601 		 * If we are about to delete the standin's father, then when
    602 		 * we call rebalance, we need to use ourselves as our father.
    603 		 * Otherwise remember our original father.  Also, sincef we are
    604 		 * our standin's father we only need to reparent the standin's
    605 		 * brother.
    606 		 *
    607 		 * |    R      -->     S    |
    608 		 * |  Q   S    -->   Q   T  |
    609 		 * |        t  -->          |
    610 		 */
    611 		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
    612 		KASSERT(!RB_SENTINEL_P(self->rb_nodes[standin_other]));
    613 		KASSERT(self->rb_nodes[standin_which] == standin);
    614 		/*
    615 		 * Have our son/standin adopt his brother as his new son.
    616 		 */
    617 		standin_father = standin;
    618 	} else {
    619 		/*
    620 		 * |    R          -->    S       .  |
    621 		 * |   / \  |   T  -->   / \  |  /   |
    622 		 * |  ..... | S    -->  ..... | T    |
    623 		 *
    624 		 * Sever standin's connection to his father.
    625 		 */
    626 		standin_father->rb_nodes[standin_which] = standin_son;
    627 		/*
    628 		 * Adopt the far son.
    629 		 */
    630 		standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
    631 		RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
    632 		KASSERT(RB_POSITION(self->rb_nodes[standin_other]) == standin_other);
    633 		/*
    634 		 * Use standin_other because we need to preserve standin_which
    635 		 * for the removal_rebalance.
    636 		 */
    637 		standin_other = standin_which;
    638 	}
    639 
    640 	/*
    641 	 * Move the only remaining son to our standin.  If our standin is our
    642 	 * son, this will be the only son needed to be moved.
    643 	 */
    644 	KASSERT(standin->rb_nodes[standin_other] != self->rb_nodes[standin_other]);
    645 	standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
    646 	RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
    647 
    648 	/*
    649 	 * Now copy the result of self to standin and then replace
    650 	 * self with standin in the tree.
    651 	 */
    652 	RB_COPY_PROPERTIES(standin, self);
    653 	RB_SET_FATHER(standin, RB_FATHER(self));
    654 	RB_FATHER(standin)->rb_nodes[RB_POSITION(standin)] = standin;
    655 
    656 	/*
    657 	 * Remove ourselves from the node list, decrement the count,
    658 	 * and update min/max.
    659 	 */
    660 	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
    661 	RBSTAT_DEC(rbt->rbt_count);
    662 #ifndef RBSMALL
    663 	if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self))
    664 		rbt->rbt_minmax[RB_POSITION(self)] = RB_FATHER(self);
    665 	RB_SET_FATHER(self, NULL);
    666 #endif
    667 
    668 	KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
    669 	KASSERT(RB_FATHER_SENTINEL_P(standin)
    670 		|| rb_tree_check_node(rbt, standin_father, NULL, false));
    671 	KASSERT(RB_LEFT_SENTINEL_P(standin)
    672 		|| rb_tree_check_node(rbt, standin->rb_left, NULL, false));
    673 	KASSERT(RB_RIGHT_SENTINEL_P(standin)
    674 		|| rb_tree_check_node(rbt, standin->rb_right, NULL, false));
    675 
    676 	if (!rebalance)
    677 		return;
    678 
    679 	rb_tree_removal_rebalance(rbt, standin_father, standin_which);
    680 	KASSERT(rb_tree_check_node(rbt, standin, NULL, true));
    681 }
    682 
    683 /*
    684  * We could do this by doing
    685  *	rb_tree_node_swap(rbt, self, which);
    686  *	rb_tree_prune_node(rbt, self, false);
    687  *
    688  * But it's more efficient to just evalate and recolor the child.
    689  */
    690 static void
    691 rb_tree_prune_blackred_branch(struct rb_tree *rbt, struct rb_node *self,
    692 	unsigned int which)
    693 {
    694 	struct rb_node *father = RB_FATHER(self);
    695 	struct rb_node *son = self->rb_nodes[which];
    696 #ifndef RBSMALL
    697 	const bool was_root = RB_ROOT_P(rbt, self);
    698 #endif
    699 
    700 	KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
    701 	KASSERT(RB_BLACK_P(self) && RB_RED_P(son));
    702 	KASSERT(!RB_TWOCHILDREN_P(son));
    703 	KASSERT(RB_CHILDLESS_P(son));
    704 	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
    705 	KASSERT(rb_tree_check_node(rbt, son, NULL, false));
    706 
    707 	/*
    708 	 * Remove ourselves from the tree and give our former child our
    709 	 * properties (position, color, root).
    710 	 */
    711 	RB_COPY_PROPERTIES(son, self);
    712 	father->rb_nodes[RB_POSITION(son)] = son;
    713 	RB_SET_FATHER(son, father);
    714 
    715 	/*
    716 	 * Remove ourselves from the node list, decrement the count,
    717 	 * and update minmax.
    718 	 */
    719 	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
    720 	RBSTAT_DEC(rbt->rbt_count);
    721 #ifndef RBSMALL
    722 	if (__predict_false(was_root)) {
    723 		KASSERT(rbt->rbt_minmax[which] == son);
    724 		rbt->rbt_minmax[which ^ RB_DIR_OTHER] = son;
    725 	} else if (rbt->rbt_minmax[RB_POSITION(self)] == self) {
    726 		rbt->rbt_minmax[RB_POSITION(self)] = son;
    727 	}
    728 	RB_SET_FATHER(self, NULL);
    729 #endif
    730 
    731 	KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
    732 	KASSERT(rb_tree_check_node(rbt, son, NULL, true));
    733 }
    734 
    735 void
    736 rb_tree_remove_node(struct rb_tree *rbt, void *object)
    737 {
    738 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
    739 	struct rb_node *standin, *self = RB_ITEMTONODE(rbto, object);
    740 	unsigned int which;
    741 
    742 	KASSERT(!RB_SENTINEL_P(self));
    743 	RBSTAT_INC(rbt->rbt_removals);
    744 
    745 	/*
    746 	 * In the following diagrams, we (the node to be removed) are S.  Red
    747 	 * nodes are lowercase.  T could be either red or black.
    748 	 *
    749 	 * Remember the major axiom of the red-black tree: the number of
    750 	 * black nodes from the root to each leaf is constant across all
    751 	 * leaves, only the number of red nodes varies.
    752 	 *
    753 	 * Thus removing a red leaf doesn't require any other changes to a
    754 	 * red-black tree.  So if we must remove a node, attempt to rearrange
    755 	 * the tree so we can remove a red node.
    756 	 *
    757 	 * The simpliest case is a childless red node or a childless root node:
    758 	 *
    759 	 * |    T  -->    T  |    or    |  R  -->  *  |
    760 	 * |  s    -->  *    |
    761 	 */
    762 	if (RB_CHILDLESS_P(self)) {
    763 		const bool rebalance = RB_BLACK_P(self) && !RB_ROOT_P(rbt, self);
    764 		rb_tree_prune_node(rbt, self, rebalance);
    765 		return;
    766 	}
    767 	KASSERT(!RB_CHILDLESS_P(self));
    768 	if (!RB_TWOCHILDREN_P(self)) {
    769 		/*
    770 		 * The next simpliest case is the node we are deleting is
    771 		 * black and has one red child.
    772 		 *
    773 		 * |      T  -->      T  -->      T  |
    774 		 * |    S    -->  R      -->  R      |
    775 		 * |  r      -->    s    -->    *    |
    776 		 */
    777 		which = RB_LEFT_SENTINEL_P(self) ? RB_DIR_RIGHT : RB_DIR_LEFT;
    778 		KASSERT(RB_BLACK_P(self));
    779 		KASSERT(RB_RED_P(self->rb_nodes[which]));
    780 		KASSERT(RB_CHILDLESS_P(self->rb_nodes[which]));
    781 		rb_tree_prune_blackred_branch(rbt, self, which);
    782 		return;
    783 	}
    784 	KASSERT(RB_TWOCHILDREN_P(self));
    785 
    786 	/*
    787 	 * We invert these because we prefer to remove from the inside of
    788 	 * the tree.
    789 	 */
    790 	which = RB_POSITION(self) ^ RB_DIR_OTHER;
    791 
    792 	/*
    793 	 * Let's find the node closes to us opposite of our parent
    794 	 * Now swap it with ourself, "prune" it, and rebalance, if needed.
    795 	 */
    796 	standin = RB_ITEMTONODE(rbto, rb_tree_iterate(rbt, object, which));
    797 	rb_tree_swap_prune_and_rebalance(rbt, self, standin);
    798 }
    799 
    800 static void
    801 rb_tree_removal_rebalance(struct rb_tree *rbt, struct rb_node *parent,
    802 	unsigned int which)
    803 {
    804 	KASSERT(!RB_SENTINEL_P(parent));
    805 	KASSERT(RB_SENTINEL_P(parent->rb_nodes[which]));
    806 	KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
    807 	RBSTAT_INC(rbt->rbt_removal_rebalance_calls);
    808 
    809 	while (RB_BLACK_P(parent->rb_nodes[which])) {
    810 		unsigned int other = which ^ RB_DIR_OTHER;
    811 		struct rb_node *brother = parent->rb_nodes[other];
    812 
    813 		RBSTAT_INC(rbt->rbt_removal_rebalance_passes);
    814 
    815 		KASSERT(!RB_SENTINEL_P(brother));
    816 		/*
    817 		 * For cases 1, 2a, and 2b, our brother's children must
    818 		 * be black and our father must be black
    819 		 */
    820 		if (RB_BLACK_P(parent)
    821 		    && RB_BLACK_P(brother->rb_left)
    822 		    && RB_BLACK_P(brother->rb_right)) {
    823 			if (RB_RED_P(brother)) {
    824 				/*
    825 				 * Case 1: Our brother is red, swap its
    826 				 * position (and colors) with our parent.
    827 				 * This should now be case 2b (unless C or E
    828 				 * has a red child which is case 3; thus no
    829 				 * explicit branch to case 2b).
    830 				 *
    831 				 *    B         ->        D
    832 				 *  A     d     ->    b     E
    833 				 *      C   E   ->  A   C
    834 				 */
    835 				KASSERT(RB_BLACK_P(parent));
    836 				rb_tree_reparent_nodes(rbt, parent, other);
    837 				brother = parent->rb_nodes[other];
    838 				KASSERT(!RB_SENTINEL_P(brother));
    839 				KASSERT(RB_RED_P(parent));
    840 				KASSERT(RB_BLACK_P(brother));
    841 				KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
    842 				KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
    843 			} else {
    844 				/*
    845 				 * Both our parent and brother are black.
    846 				 * Change our brother to red, advance up rank
    847 				 * and go through the loop again.
    848 				 *
    849 				 *    B         ->   *B
    850 				 * *A     D     ->  A     d
    851 				 *      C   E   ->      C   E
    852 				 */
    853 				RB_MARK_RED(brother);
    854 				KASSERT(RB_BLACK_P(brother->rb_left));
    855 				KASSERT(RB_BLACK_P(brother->rb_right));
    856 				if (RB_ROOT_P(rbt, parent))
    857 					return;	/* root == parent == black */
    858 				KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
    859 				KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
    860 				which = RB_POSITION(parent);
    861 				parent = RB_FATHER(parent);
    862 				continue;
    863 			}
    864 		}
    865 		/*
    866 		 * Avoid an else here so that case 2a above can hit either
    867 		 * case 2b, 3, or 4.
    868 		 */
    869 		if (RB_RED_P(parent)
    870 		    && RB_BLACK_P(brother)
    871 		    && RB_BLACK_P(brother->rb_left)
    872 		    && RB_BLACK_P(brother->rb_right)) {
    873 			KASSERT(RB_RED_P(parent));
    874 			KASSERT(RB_BLACK_P(brother));
    875 			KASSERT(RB_BLACK_P(brother->rb_left));
    876 			KASSERT(RB_BLACK_P(brother->rb_right));
    877 			/*
    878 			 * We are black, our father is red, our brother and
    879 			 * both nephews are black.  Simply invert/exchange the
    880 			 * colors of our father and brother (to black and red
    881 			 * respectively).
    882 			 *
    883 			 *	|    f        -->    F        |
    884 			 *	|  *     B    -->  *     b    |
    885 			 *	|      N   N  -->      N   N  |
    886 			 */
    887 			RB_MARK_BLACK(parent);
    888 			RB_MARK_RED(brother);
    889 			KASSERT(rb_tree_check_node(rbt, brother, NULL, true));
    890 			break;		/* We're done! */
    891 		} else {
    892 			/*
    893 			 * Our brother must be black and have at least one
    894 			 * red child (it may have two).
    895 			 */
    896 			KASSERT(RB_BLACK_P(brother));
    897 			KASSERT(RB_RED_P(brother->rb_nodes[which]) ||
    898 				RB_RED_P(brother->rb_nodes[other]));
    899 			if (RB_BLACK_P(brother->rb_nodes[other])) {
    900 				/*
    901 				 * Case 3: our brother is black, our near
    902 				 * nephew is red, and our far nephew is black.
    903 				 * Swap our brother with our near nephew.
    904 				 * This result in a tree that matches case 4.
    905 				 * (Our father could be red or black).
    906 				 *
    907 				 *	|    F      -->    F      |
    908 				 *	|  x     B  -->  x   B    |
    909 				 *	|      n    -->        n  |
    910 				 */
    911 				KASSERT(RB_RED_P(brother->rb_nodes[which]));
    912 				rb_tree_reparent_nodes(rbt, brother, which);
    913 				KASSERT(RB_FATHER(brother) == parent->rb_nodes[other]);
    914 				brother = parent->rb_nodes[other];
    915 				KASSERT(RB_RED_P(brother->rb_nodes[other]));
    916 			}
    917 			/*
    918 			 * Case 4: our brother is black and our far nephew
    919 			 * is red.  Swap our father and brother locations and
    920 			 * change our far nephew to black.  (these can be
    921 			 * done in either order so we change the color first).
    922 			 * The result is a valid red-black tree and is a
    923 			 * terminal case.  (again we don't care about the
    924 			 * father's color)
    925 			 *
    926 			 * If the father is red, we will get a red-black-black
    927 			 * tree:
    928 			 *	|  f      ->  f      -->    b    |
    929 			 *	|    B    ->    B    -->  F   N  |
    930 			 *	|      n  ->      N  -->         |
    931 			 *
    932 			 * If the father is black, we will get an all black
    933 			 * tree:
    934 			 *	|  F      ->  F      -->    B    |
    935 			 *	|    B    ->    B    -->  F   N  |
    936 			 *	|      n  ->      N  -->         |
    937 			 *
    938 			 * If we had two red nephews, then after the swap,
    939 			 * our former father would have a red grandson.
    940 			 */
    941 			KASSERT(RB_BLACK_P(brother));
    942 			KASSERT(RB_RED_P(brother->rb_nodes[other]));
    943 			RB_MARK_BLACK(brother->rb_nodes[other]);
    944 			rb_tree_reparent_nodes(rbt, parent, other);
    945 			break;		/* We're done! */
    946 		}
    947 	}
    948 	KASSERT(rb_tree_check_node(rbt, parent, NULL, true));
    949 }
    950 
    951 void *
    952 rb_tree_iterate(struct rb_tree *rbt, void *object, const unsigned int direction)
    953 {
    954 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
    955 	const unsigned int other = direction ^ RB_DIR_OTHER;
    956 	struct rb_node *self;
    957 
    958 	KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);
    959 
    960 	if (object == NULL) {
    961 #ifndef RBSMALL
    962 		if (RB_SENTINEL_P(rbt->rbt_root))
    963 			return NULL;
    964 		return RB_NODETOITEM(rbto, rbt->rbt_minmax[direction]);
    965 #else
    966 		self = rbt->rbt_root;
    967 		if (RB_SENTINEL_P(self))
    968 			return NULL;
    969 		while (!RB_SENTINEL_P(self->rb_nodes[direction]))
    970 			self = self->rb_nodes[direction];
    971 		return RB_NODETOITEM(rbto, self);
    972 #endif /* !RBSMALL */
    973 	}
    974 	self = RB_ITEMTONODE(rbto, object);
    975 	KASSERT(!RB_SENTINEL_P(self));
    976 	/*
    977 	 * We can't go any further in this direction.  We proceed up in the
    978 	 * opposite direction until our parent is in direction we want to go.
    979 	 */
    980 	if (RB_SENTINEL_P(self->rb_nodes[direction])) {
    981 		while (!RB_ROOT_P(rbt, self)) {
    982 			if (other == RB_POSITION(self))
    983 				return RB_NODETOITEM(rbto, RB_FATHER(self));
    984 			self = RB_FATHER(self);
    985 		}
    986 		return NULL;
    987 	}
    988 
    989 	/*
    990 	 * Advance down one in current direction and go down as far as possible
    991 	 * in the opposite direction.
    992 	 */
    993 	self = self->rb_nodes[direction];
    994 	KASSERT(!RB_SENTINEL_P(self));
    995 	while (!RB_SENTINEL_P(self->rb_nodes[other]))
    996 		self = self->rb_nodes[other];
    997 	return RB_NODETOITEM(rbto, self);
    998 }
    999 
   1000 #ifdef RBDEBUG
   1001 static const struct rb_node *
   1002 rb_tree_iterate_const(const struct rb_tree *rbt, const struct rb_node *self,
   1003 	const unsigned int direction)
   1004 {
   1005 	const unsigned int other = direction ^ RB_DIR_OTHER;
   1006 	KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);
   1007 
   1008 	if (self == NULL) {
   1009 #ifndef RBSMALL
   1010 		if (RB_SENTINEL_P(rbt->rbt_root))
   1011 			return NULL;
   1012 		return rbt->rbt_minmax[direction];
   1013 #else
   1014 		self = rbt->rbt_root;
   1015 		if (RB_SENTINEL_P(self))
   1016 			return NULL;
   1017 		while (!RB_SENTINEL_P(self->rb_nodes[direction]))
   1018 			self = self->rb_nodes[direction];
   1019 		return self;
   1020 #endif /* !RBSMALL */
   1021 	}
   1022 	KASSERT(!RB_SENTINEL_P(self));
   1023 	/*
   1024 	 * We can't go any further in this direction.  We proceed up in the
   1025 	 * opposite direction until our parent is in direction we want to go.
   1026 	 */
   1027 	if (RB_SENTINEL_P(self->rb_nodes[direction])) {
   1028 		while (!RB_ROOT_P(rbt, self)) {
   1029 			if (other == RB_POSITION(self))
   1030 				return RB_FATHER(self);
   1031 			self = RB_FATHER(self);
   1032 		}
   1033 		return NULL;
   1034 	}
   1035 
   1036 	/*
   1037 	 * Advance down one in current direction and go down as far as possible
   1038 	 * in the opposite direction.
   1039 	 */
   1040 	self = self->rb_nodes[direction];
   1041 	KASSERT(!RB_SENTINEL_P(self));
   1042 	while (!RB_SENTINEL_P(self->rb_nodes[other]))
   1043 		self = self->rb_nodes[other];
   1044 	return self;
   1045 }
   1046 
   1047 static unsigned int
   1048 rb_tree_count_black(const struct rb_node *self)
   1049 {
   1050 	unsigned int left, right;
   1051 
   1052 	if (RB_SENTINEL_P(self))
   1053 		return 0;
   1054 
   1055 	left = rb_tree_count_black(self->rb_left);
   1056 	right = rb_tree_count_black(self->rb_right);
   1057 
   1058 	KASSERT(left == right);
   1059 
   1060 	return left + RB_BLACK_P(self);
   1061 }
   1062 
   1063 static bool
   1064 rb_tree_check_node(const struct rb_tree *rbt, const struct rb_node *self,
   1065 	const struct rb_node *prev, bool red_check)
   1066 {
   1067 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
   1068 	rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes;
   1069 
   1070 	KASSERT(!RB_SENTINEL_P(self));
   1071 	KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context,
   1072 	    RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0);
   1073 
   1074 	/*
   1075 	 * Verify our relationship to our parent.
   1076 	 */
   1077 	if (RB_ROOT_P(rbt, self)) {
   1078 		KASSERT(self == rbt->rbt_root);
   1079 		KASSERT(RB_POSITION(self) == RB_DIR_LEFT);
   1080 		KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
   1081 		KASSERT(RB_FATHER(self) == (const struct rb_node *) &rbt->rbt_root);
   1082 	} else {
   1083 		int diff = (*compare_nodes)(rbto->rbto_context,
   1084 		    RB_NODETOITEM(rbto, self),
   1085 		    RB_NODETOITEM(rbto, RB_FATHER(self)));
   1086 
   1087 		KASSERT(self != rbt->rbt_root);
   1088 		KASSERT(!RB_FATHER_SENTINEL_P(self));
   1089 		if (RB_POSITION(self) == RB_DIR_LEFT) {
   1090 			KASSERT(diff < 0);
   1091 			KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
   1092 		} else {
   1093 			KASSERT(diff > 0);
   1094 			KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_RIGHT] == self);
   1095 		}
   1096 	}
   1097 
   1098 	/*
   1099 	 * Verify our position in the linked list against the tree itself.
   1100 	 */
   1101 	{
   1102 		const struct rb_node *prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
   1103 		const struct rb_node *next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
   1104 		KASSERT(prev0 == TAILQ_PREV(self, rb_node_qh, rb_link));
   1105 		KASSERT(next0 == TAILQ_NEXT(self, rb_link));
   1106 #ifndef RBSMALL
   1107 		KASSERT(prev0 != NULL || self == rbt->rbt_minmax[RB_DIR_LEFT]);
   1108 		KASSERT(next0 != NULL || self == rbt->rbt_minmax[RB_DIR_RIGHT]);
   1109 #endif
   1110 	}
   1111 
   1112 	/*
   1113 	 * The root must be black.
   1114 	 * There can never be two adjacent red nodes.
   1115 	 */
   1116 	if (red_check) {
   1117 		KASSERT(!RB_ROOT_P(rbt, self) || RB_BLACK_P(self));
   1118 		(void) rb_tree_count_black(self);
   1119 		if (RB_RED_P(self)) {
   1120 			const struct rb_node *brother;
   1121 			KASSERT(!RB_ROOT_P(rbt, self));
   1122 			brother = RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER];
   1123 			KASSERT(RB_BLACK_P(RB_FATHER(self)));
   1124 			/*
   1125 			 * I'm red and have no children, then I must either
   1126 			 * have no brother or my brother also be red and
   1127 			 * also have no children.  (black count == 0)
   1128 			 */
   1129 			KASSERT(!RB_CHILDLESS_P(self)
   1130 				|| RB_SENTINEL_P(brother)
   1131 				|| RB_RED_P(brother)
   1132 				|| RB_CHILDLESS_P(brother));
   1133 			/*
   1134 			 * If I'm not childless, I must have two children
   1135 			 * and they must be both be black.
   1136 			 */
   1137 			KASSERT(RB_CHILDLESS_P(self)
   1138 				|| (RB_TWOCHILDREN_P(self)
   1139 				    && RB_BLACK_P(self->rb_left)
   1140 				    && RB_BLACK_P(self->rb_right)));
   1141 			/*
   1142 			 * If I'm not childless, thus I have black children,
   1143 			 * then my brother must either be black or have two
   1144 			 * black children.
   1145 			 */
   1146 			KASSERT(RB_CHILDLESS_P(self)
   1147 				|| RB_BLACK_P(brother)
   1148 				|| (RB_TWOCHILDREN_P(brother)
   1149 				    && RB_BLACK_P(brother->rb_left)
   1150 				    && RB_BLACK_P(brother->rb_right)));
   1151 		} else {
   1152 			/*
   1153 			 * If I'm black and have one child, that child must
   1154 			 * be red and childless.
   1155 			 */
   1156 			KASSERT(RB_CHILDLESS_P(self)
   1157 				|| RB_TWOCHILDREN_P(self)
   1158 				|| (!RB_LEFT_SENTINEL_P(self)
   1159 				    && RB_RIGHT_SENTINEL_P(self)
   1160 				    && RB_RED_P(self->rb_left)
   1161 				    && RB_CHILDLESS_P(self->rb_left))
   1162 				|| (!RB_RIGHT_SENTINEL_P(self)
   1163 				    && RB_LEFT_SENTINEL_P(self)
   1164 				    && RB_RED_P(self->rb_right)
   1165 				    && RB_CHILDLESS_P(self->rb_right)));
   1166 
   1167 			/*
   1168 			 * If I'm a childless black node and my parent is
   1169 			 * black, my 2nd closet relative away from my parent
   1170 			 * is either red or has a red parent or red children.
   1171 			 */
   1172 			if (!RB_ROOT_P(rbt, self)
   1173 			    && RB_CHILDLESS_P(self)
   1174 			    && RB_BLACK_P(RB_FATHER(self))) {
   1175 				const unsigned int which = RB_POSITION(self);
   1176 				const unsigned int other = which ^ RB_DIR_OTHER;
   1177 				const struct rb_node *relative0, *relative;
   1178 
   1179 				relative0 = rb_tree_iterate_const(rbt,
   1180 				    self, other);
   1181 				KASSERT(relative0 != NULL);
   1182 				relative = rb_tree_iterate_const(rbt,
   1183 				    relative0, other);
   1184 				KASSERT(relative != NULL);
   1185 				KASSERT(RB_SENTINEL_P(relative->rb_nodes[which]));
   1186 #if 0
   1187 				KASSERT(RB_RED_P(relative)
   1188 					|| RB_RED_P(relative->rb_left)
   1189 					|| RB_RED_P(relative->rb_right)
   1190 					|| RB_RED_P(RB_FATHER(relative)));
   1191 #endif
   1192 			}
   1193 		}
   1194 		/*
   1195 		 * A grandparent's children must be real nodes and not
   1196 		 * sentinels.  First check out grandparent.
   1197 		 */
   1198 		KASSERT(RB_ROOT_P(rbt, self)
   1199 			|| RB_ROOT_P(rbt, RB_FATHER(self))
   1200 			|| RB_TWOCHILDREN_P(RB_FATHER(RB_FATHER(self))));
   1201 		/*
   1202 		 * If we are have grandchildren on our left, then
   1203 		 * we must have a child on our right.
   1204 		 */
   1205 		KASSERT(RB_LEFT_SENTINEL_P(self)
   1206 			|| RB_CHILDLESS_P(self->rb_left)
   1207 			|| !RB_RIGHT_SENTINEL_P(self));
   1208 		/*
   1209 		 * If we are have grandchildren on our right, then
   1210 		 * we must have a child on our left.
   1211 		 */
   1212 		KASSERT(RB_RIGHT_SENTINEL_P(self)
   1213 			|| RB_CHILDLESS_P(self->rb_right)
   1214 			|| !RB_LEFT_SENTINEL_P(self));
   1215 
   1216 		/*
   1217 		 * If we have a child on the left and it doesn't have two
   1218 		 * children make sure we don't have great-great-grandchildren on
   1219 		 * the right.
   1220 		 */
   1221 		KASSERT(RB_TWOCHILDREN_P(self->rb_left)
   1222 			|| RB_CHILDLESS_P(self->rb_right)
   1223 			|| RB_CHILDLESS_P(self->rb_right->rb_left)
   1224 			|| RB_CHILDLESS_P(self->rb_right->rb_left->rb_left)
   1225 			|| RB_CHILDLESS_P(self->rb_right->rb_left->rb_right)
   1226 			|| RB_CHILDLESS_P(self->rb_right->rb_right)
   1227 			|| RB_CHILDLESS_P(self->rb_right->rb_right->rb_left)
   1228 			|| RB_CHILDLESS_P(self->rb_right->rb_right->rb_right));
   1229 
   1230 		/*
   1231 		 * If we have a child on the right and it doesn't have two
   1232 		 * children make sure we don't have great-great-grandchildren on
   1233 		 * the left.
   1234 		 */
   1235 		KASSERT(RB_TWOCHILDREN_P(self->rb_right)
   1236 			|| RB_CHILDLESS_P(self->rb_left)
   1237 			|| RB_CHILDLESS_P(self->rb_left->rb_left)
   1238 			|| RB_CHILDLESS_P(self->rb_left->rb_left->rb_left)
   1239 			|| RB_CHILDLESS_P(self->rb_left->rb_left->rb_right)
   1240 			|| RB_CHILDLESS_P(self->rb_left->rb_right)
   1241 			|| RB_CHILDLESS_P(self->rb_left->rb_right->rb_left)
   1242 			|| RB_CHILDLESS_P(self->rb_left->rb_right->rb_right));
   1243 
   1244 		/*
   1245 		 * If we are fully interior node, then our predecessors and
   1246 		 * successors must have no children in our direction.
   1247 		 */
   1248 		if (RB_TWOCHILDREN_P(self)) {
   1249 			const struct rb_node *prev0;
   1250 			const struct rb_node *next0;
   1251 
   1252 			prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
   1253 			KASSERT(prev0 != NULL);
   1254 			KASSERT(RB_RIGHT_SENTINEL_P(prev0));
   1255 
   1256 			next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
   1257 			KASSERT(next0 != NULL);
   1258 			KASSERT(RB_LEFT_SENTINEL_P(next0));
   1259 		}
   1260 	}
   1261 
   1262 	return true;
   1263 }
   1264 
   1265 void
   1266 rb_tree_check(const struct rb_tree *rbt, bool red_check)
   1267 {
   1268 	const struct rb_node *self;
   1269 	const struct rb_node *prev;
   1270 #ifdef RBSTATS
   1271 	unsigned int count = 0;
   1272 #endif
   1273 
   1274 	KASSERT(rbt->rbt_root != NULL);
   1275 	KASSERT(RB_LEFT_P(rbt->rbt_root));
   1276 
   1277 #if defined(RBSTATS) && !defined(RBSMALL)
   1278 	KASSERT(rbt->rbt_count > 1
   1279 	    || rbt->rbt_minmax[RB_DIR_LEFT] == rbt->rbt_minmax[RB_DIR_RIGHT]);
   1280 #endif
   1281 
   1282 	prev = NULL;
   1283 	TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
   1284 		rb_tree_check_node(rbt, self, prev, false);
   1285 #ifdef RBSTATS
   1286 		count++;
   1287 #endif
   1288 	}
   1289 #ifdef RBSTATS
   1290 	KASSERT(rbt->rbt_count == count);
   1291 #endif
   1292 	if (red_check) {
   1293 		KASSERT(RB_BLACK_P(rbt->rbt_root));
   1294 		KASSERT(RB_SENTINEL_P(rbt->rbt_root)
   1295 			|| rb_tree_count_black(rbt->rbt_root));
   1296 
   1297 		/*
   1298 		 * The root must be black.
   1299 		 * There can never be two adjacent red nodes.
   1300 		 */
   1301 		TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
   1302 			rb_tree_check_node(rbt, self, NULL, true);
   1303 		}
   1304 	}
   1305 }
   1306 #endif /* RBDEBUG */
   1307 
   1308 #ifdef RBSTATS
   1309 static void
   1310 rb_tree_mark_depth(const struct rb_tree *rbt, const struct rb_node *self,
   1311 	size_t *depths, size_t depth)
   1312 {
   1313 	if (RB_SENTINEL_P(self))
   1314 		return;
   1315 
   1316 	if (RB_TWOCHILDREN_P(self)) {
   1317 		rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
   1318 		rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
   1319 		return;
   1320 	}
   1321 	depths[depth]++;
   1322 	if (!RB_LEFT_SENTINEL_P(self)) {
   1323 		rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
   1324 	}
   1325 	if (!RB_RIGHT_SENTINEL_P(self)) {
   1326 		rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
   1327 	}
   1328 }
   1329 
   1330 void
   1331 rb_tree_depths(const struct rb_tree *rbt, size_t *depths)
   1332 {
   1333 	rb_tree_mark_depth(rbt, rbt->rbt_root, depths, 1);
   1334 }
   1335 #endif /* RBSTATS */
   1336