1 1.26 christos /* $NetBSD: sha2.c,v 1.26 2024/01/20 14:55:02 christos Exp $ */ 2 1.1 christos /* $KAME: sha2.c,v 1.9 2003/07/20 00:28:38 itojun Exp $ */ 3 1.1 christos 4 1.1 christos /* 5 1.1 christos * sha2.c 6 1.1 christos * 7 1.1 christos * Version 1.0.0beta1 8 1.1 christos * 9 1.1 christos * Written by Aaron D. Gifford <me (at) aarongifford.com> 10 1.1 christos * 11 1.1 christos * Copyright 2000 Aaron D. Gifford. All rights reserved. 12 1.1 christos * 13 1.1 christos * Redistribution and use in source and binary forms, with or without 14 1.1 christos * modification, are permitted provided that the following conditions 15 1.1 christos * are met: 16 1.1 christos * 1. Redistributions of source code must retain the above copyright 17 1.1 christos * notice, this list of conditions and the following disclaimer. 18 1.1 christos * 2. Redistributions in binary form must reproduce the above copyright 19 1.1 christos * notice, this list of conditions and the following disclaimer in the 20 1.1 christos * documentation and/or other materials provided with the distribution. 21 1.1 christos * 3. Neither the name of the copyright holder nor the names of contributors 22 1.1 christos * may be used to endorse or promote products derived from this software 23 1.1 christos * without specific prior written permission. 24 1.1 christos * 25 1.1 christos * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND 26 1.1 christos * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 1.1 christos * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 1.1 christos * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE 29 1.1 christos * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 1.1 christos * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 1.1 christos * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 1.1 christos * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 1.1 christos * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 1.1 christos * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 1.1 christos * SUCH DAMAGE. 36 1.1 christos * 37 1.1 christos */ 38 1.1 christos 39 1.14 joerg #if HAVE_NBTOOL_CONFIG_H 40 1.14 joerg #include "nbtool_config.h" 41 1.14 joerg #endif 42 1.14 joerg 43 1.1 christos #include <sys/cdefs.h> 44 1.1 christos 45 1.1 christos #if defined(_KERNEL) || defined(_STANDALONE) 46 1.26 christos __KERNEL_RCSID(0, "$NetBSD: sha2.c,v 1.26 2024/01/20 14:55:02 christos Exp $"); 47 1.1 christos 48 1.17 tsutsui #include <sys/param.h> /* XXX: to pull <machine/macros.h> for vax memset(9) */ 49 1.1 christos #include <lib/libkern/libkern.h> 50 1.1 christos 51 1.1 christos #else 52 1.1 christos 53 1.1 christos #if defined(LIBC_SCCS) && !defined(lint) 54 1.26 christos __RCSID("$NetBSD: sha2.c,v 1.26 2024/01/20 14:55:02 christos Exp $"); 55 1.1 christos #endif /* LIBC_SCCS and not lint */ 56 1.1 christos 57 1.1 christos #include "namespace.h" 58 1.1 christos #include <string.h> 59 1.1 christos 60 1.1 christos #endif 61 1.1 christos 62 1.26 christos #ifndef _LIBC_INTERNAL 63 1.26 christos #define _LIBC_INTERNAL 64 1.26 christos #endif 65 1.26 christos 66 1.1 christos #include <sys/types.h> 67 1.1 christos #include <sys/sha2.h> 68 1.14 joerg 69 1.24 christos #if HAVE_SYS_ENDIAN_H 70 1.24 christos # include <sys/endian.h> 71 1.22 christos #endif 72 1.22 christos 73 1.1 christos /*** SHA-256/384/512 Various Length Definitions ***********************/ 74 1.1 christos /* NOTE: Most of these are in sha2.h */ 75 1.1 christos #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8) 76 1.1 christos #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16) 77 1.1 christos #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16) 78 1.1 christos 79 1.1 christos /* 80 1.1 christos * Macro for incrementally adding the unsigned 64-bit integer n to the 81 1.1 christos * unsigned 128-bit integer (represented using a two-element array of 82 1.1 christos * 64-bit words): 83 1.1 christos */ 84 1.1 christos #define ADDINC128(w,n) { \ 85 1.10 joerg (w)[0] += (uint64_t)(n); \ 86 1.1 christos if ((w)[0] < (n)) { \ 87 1.1 christos (w)[1]++; \ 88 1.1 christos } \ 89 1.1 christos } 90 1.1 christos 91 1.1 christos /*** THE SIX LOGICAL FUNCTIONS ****************************************/ 92 1.1 christos /* 93 1.1 christos * Bit shifting and rotation (used by the six SHA-XYZ logical functions: 94 1.1 christos * 95 1.1 christos * NOTE: The naming of R and S appears backwards here (R is a SHIFT and 96 1.1 christos * S is a ROTATION) because the SHA-256/384/512 description document 97 1.1 christos * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this 98 1.1 christos * same "backwards" definition. 99 1.1 christos */ 100 1.1 christos /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ 101 1.1 christos #define R(b,x) ((x) >> (b)) 102 1.1 christos /* 32-bit Rotate-right (used in SHA-256): */ 103 1.1 christos #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) 104 1.1 christos /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ 105 1.1 christos #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) 106 1.1 christos 107 1.1 christos /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */ 108 1.1 christos #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) 109 1.1 christos #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) 110 1.1 christos 111 1.1 christos /* Four of six logical functions used in SHA-256: */ 112 1.1 christos #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) 113 1.1 christos #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) 114 1.1 christos #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) 115 1.1 christos #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) 116 1.1 christos 117 1.1 christos /* Four of six logical functions used in SHA-384 and SHA-512: */ 118 1.1 christos #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) 119 1.1 christos #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) 120 1.1 christos #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x))) 121 1.1 christos #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x))) 122 1.1 christos 123 1.1 christos /*** INTERNAL FUNCTION PROTOTYPES *************************************/ 124 1.1 christos /* NOTE: These should not be accessed directly from outside this 125 1.1 christos * library -- they are intended for private internal visibility/use 126 1.1 christos * only. 127 1.1 christos */ 128 1.12 christos static void SHA512_Last(SHA512_CTX *); 129 1.1 christos 130 1.1 christos 131 1.1 christos /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ 132 1.1 christos /* Hash constant words K for SHA-256: */ 133 1.10 joerg static const uint32_t K256[64] = { 134 1.1 christos 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 135 1.1 christos 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 136 1.1 christos 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, 137 1.1 christos 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, 138 1.1 christos 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, 139 1.1 christos 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 140 1.1 christos 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 141 1.1 christos 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, 142 1.1 christos 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, 143 1.1 christos 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, 144 1.1 christos 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 145 1.1 christos 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 146 1.1 christos 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, 147 1.1 christos 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, 148 1.1 christos 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, 149 1.1 christos 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL 150 1.1 christos }; 151 1.1 christos 152 1.8 joerg /* Initial hash value H for SHA-224: */ 153 1.10 joerg static const uint32_t sha224_initial_hash_value[8] = { 154 1.8 joerg 0xc1059ed8UL, 155 1.8 joerg 0x367cd507UL, 156 1.8 joerg 0x3070dd17UL, 157 1.8 joerg 0xf70e5939UL, 158 1.8 joerg 0xffc00b31UL, 159 1.8 joerg 0x68581511UL, 160 1.8 joerg 0x64f98fa7UL, 161 1.8 joerg 0xbefa4fa4UL 162 1.8 joerg }; 163 1.8 joerg 164 1.1 christos /* Initial hash value H for SHA-256: */ 165 1.10 joerg static const uint32_t sha256_initial_hash_value[8] = { 166 1.1 christos 0x6a09e667UL, 167 1.1 christos 0xbb67ae85UL, 168 1.1 christos 0x3c6ef372UL, 169 1.1 christos 0xa54ff53aUL, 170 1.1 christos 0x510e527fUL, 171 1.1 christos 0x9b05688cUL, 172 1.1 christos 0x1f83d9abUL, 173 1.1 christos 0x5be0cd19UL 174 1.1 christos }; 175 1.1 christos 176 1.1 christos /* Hash constant words K for SHA-384 and SHA-512: */ 177 1.10 joerg static const uint64_t K512[80] = { 178 1.1 christos 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 179 1.1 christos 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, 180 1.1 christos 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 181 1.1 christos 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 182 1.1 christos 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, 183 1.1 christos 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 184 1.1 christos 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 185 1.1 christos 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, 186 1.1 christos 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 187 1.1 christos 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 188 1.1 christos 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, 189 1.1 christos 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, 190 1.1 christos 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 191 1.1 christos 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, 192 1.1 christos 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 193 1.1 christos 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 194 1.1 christos 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, 195 1.1 christos 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 196 1.1 christos 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 197 1.1 christos 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, 198 1.1 christos 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 199 1.1 christos 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 200 1.1 christos 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, 201 1.1 christos 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, 202 1.1 christos 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 203 1.1 christos 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, 204 1.1 christos 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 205 1.1 christos 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 206 1.1 christos 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, 207 1.1 christos 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 208 1.1 christos 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 209 1.1 christos 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, 210 1.1 christos 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 211 1.1 christos 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 212 1.1 christos 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, 213 1.1 christos 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, 214 1.1 christos 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 215 1.1 christos 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, 216 1.1 christos 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 217 1.1 christos 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL 218 1.1 christos }; 219 1.1 christos 220 1.1 christos /* Initial hash value H for SHA-384 */ 221 1.10 joerg static const uint64_t sha384_initial_hash_value[8] = { 222 1.1 christos 0xcbbb9d5dc1059ed8ULL, 223 1.1 christos 0x629a292a367cd507ULL, 224 1.1 christos 0x9159015a3070dd17ULL, 225 1.1 christos 0x152fecd8f70e5939ULL, 226 1.1 christos 0x67332667ffc00b31ULL, 227 1.1 christos 0x8eb44a8768581511ULL, 228 1.1 christos 0xdb0c2e0d64f98fa7ULL, 229 1.1 christos 0x47b5481dbefa4fa4ULL 230 1.1 christos }; 231 1.1 christos 232 1.1 christos /* Initial hash value H for SHA-512 */ 233 1.10 joerg static const uint64_t sha512_initial_hash_value[8] = { 234 1.1 christos 0x6a09e667f3bcc908ULL, 235 1.1 christos 0xbb67ae8584caa73bULL, 236 1.1 christos 0x3c6ef372fe94f82bULL, 237 1.1 christos 0xa54ff53a5f1d36f1ULL, 238 1.1 christos 0x510e527fade682d1ULL, 239 1.1 christos 0x9b05688c2b3e6c1fULL, 240 1.1 christos 0x1f83d9abfb41bd6bULL, 241 1.1 christos 0x5be0cd19137e2179ULL 242 1.1 christos }; 243 1.1 christos 244 1.19 skrll #if !defined(_KERNEL) && !defined(_STANDALONE) 245 1.19 skrll #if defined(__weak_alias) 246 1.8 joerg __weak_alias(SHA224_Init,_SHA224_Init) 247 1.8 joerg __weak_alias(SHA224_Update,_SHA224_Update) 248 1.8 joerg __weak_alias(SHA224_Final,_SHA224_Final) 249 1.8 joerg __weak_alias(SHA224_Transform,_SHA224_Transform) 250 1.8 joerg 251 1.1 christos __weak_alias(SHA256_Init,_SHA256_Init) 252 1.1 christos __weak_alias(SHA256_Update,_SHA256_Update) 253 1.1 christos __weak_alias(SHA256_Final,_SHA256_Final) 254 1.1 christos __weak_alias(SHA256_Transform,_SHA256_Transform) 255 1.1 christos 256 1.1 christos __weak_alias(SHA384_Init,_SHA384_Init) 257 1.1 christos __weak_alias(SHA384_Update,_SHA384_Update) 258 1.1 christos __weak_alias(SHA384_Final,_SHA384_Final) 259 1.1 christos __weak_alias(SHA384_Transform,_SHA384_Transform) 260 1.1 christos 261 1.1 christos __weak_alias(SHA512_Init,_SHA512_Init) 262 1.1 christos __weak_alias(SHA512_Update,_SHA512_Update) 263 1.1 christos __weak_alias(SHA512_Final,_SHA512_Final) 264 1.1 christos __weak_alias(SHA512_Transform,_SHA512_Transform) 265 1.1 christos #endif 266 1.19 skrll #endif 267 1.1 christos 268 1.1 christos /*** SHA-256: *********************************************************/ 269 1.11 joerg int 270 1.12 christos SHA256_Init(SHA256_CTX *context) 271 1.11 joerg { 272 1.12 christos if (context == NULL) 273 1.8 joerg return 1; 274 1.12 christos 275 1.12 christos memcpy(context->state, sha256_initial_hash_value, 276 1.12 christos (size_t)(SHA256_DIGEST_LENGTH)); 277 1.1 christos memset(context->buffer, 0, (size_t)(SHA256_BLOCK_LENGTH)); 278 1.1 christos context->bitcount = 0; 279 1.8 joerg 280 1.8 joerg return 1; 281 1.8 joerg } 282 1.8 joerg 283 1.1 christos #ifdef SHA2_UNROLL_TRANSFORM 284 1.1 christos 285 1.1 christos /* Unrolled SHA-256 round macros: */ 286 1.1 christos 287 1.1 christos #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ 288 1.23 christos W256[j] = be32dec(data); \ 289 1.9 joerg ++data; \ 290 1.1 christos T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ 291 1.1 christos K256[j] + W256[j]; \ 292 1.1 christos (d) += T1; \ 293 1.1 christos (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ 294 1.1 christos j++ 295 1.1 christos 296 1.1 christos #define ROUND256(a,b,c,d,e,f,g,h) \ 297 1.1 christos s0 = W256[(j+1)&0x0f]; \ 298 1.1 christos s0 = sigma0_256(s0); \ 299 1.1 christos s1 = W256[(j+14)&0x0f]; \ 300 1.1 christos s1 = sigma1_256(s1); \ 301 1.1 christos T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \ 302 1.1 christos (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ 303 1.1 christos (d) += T1; \ 304 1.1 christos (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ 305 1.1 christos j++ 306 1.1 christos 307 1.11 joerg void 308 1.12 christos SHA256_Transform(SHA256_CTX *context, const uint32_t *data) 309 1.11 joerg { 310 1.10 joerg uint32_t a, b, c, d, e, f, g, h, s0, s1; 311 1.10 joerg uint32_t T1, *W256; 312 1.1 christos int j; 313 1.1 christos 314 1.10 joerg W256 = (uint32_t *)context->buffer; 315 1.1 christos 316 1.1 christos /* Initialize registers with the prev. intermediate value */ 317 1.1 christos a = context->state[0]; 318 1.1 christos b = context->state[1]; 319 1.1 christos c = context->state[2]; 320 1.1 christos d = context->state[3]; 321 1.1 christos e = context->state[4]; 322 1.1 christos f = context->state[5]; 323 1.1 christos g = context->state[6]; 324 1.1 christos h = context->state[7]; 325 1.1 christos 326 1.1 christos j = 0; 327 1.1 christos do { 328 1.1 christos /* Rounds 0 to 15 (unrolled): */ 329 1.1 christos ROUND256_0_TO_15(a,b,c,d,e,f,g,h); 330 1.1 christos ROUND256_0_TO_15(h,a,b,c,d,e,f,g); 331 1.1 christos ROUND256_0_TO_15(g,h,a,b,c,d,e,f); 332 1.1 christos ROUND256_0_TO_15(f,g,h,a,b,c,d,e); 333 1.1 christos ROUND256_0_TO_15(e,f,g,h,a,b,c,d); 334 1.1 christos ROUND256_0_TO_15(d,e,f,g,h,a,b,c); 335 1.1 christos ROUND256_0_TO_15(c,d,e,f,g,h,a,b); 336 1.1 christos ROUND256_0_TO_15(b,c,d,e,f,g,h,a); 337 1.1 christos } while (j < 16); 338 1.1 christos 339 1.1 christos /* Now for the remaining rounds to 64: */ 340 1.1 christos do { 341 1.1 christos ROUND256(a,b,c,d,e,f,g,h); 342 1.1 christos ROUND256(h,a,b,c,d,e,f,g); 343 1.1 christos ROUND256(g,h,a,b,c,d,e,f); 344 1.1 christos ROUND256(f,g,h,a,b,c,d,e); 345 1.1 christos ROUND256(e,f,g,h,a,b,c,d); 346 1.1 christos ROUND256(d,e,f,g,h,a,b,c); 347 1.1 christos ROUND256(c,d,e,f,g,h,a,b); 348 1.1 christos ROUND256(b,c,d,e,f,g,h,a); 349 1.1 christos } while (j < 64); 350 1.1 christos 351 1.1 christos /* Compute the current intermediate hash value */ 352 1.1 christos context->state[0] += a; 353 1.1 christos context->state[1] += b; 354 1.1 christos context->state[2] += c; 355 1.1 christos context->state[3] += d; 356 1.1 christos context->state[4] += e; 357 1.1 christos context->state[5] += f; 358 1.1 christos context->state[6] += g; 359 1.1 christos context->state[7] += h; 360 1.1 christos 361 1.1 christos /* Clean up */ 362 1.1 christos a = b = c = d = e = f = g = h = T1 = 0; 363 1.1 christos } 364 1.1 christos 365 1.1 christos #else /* SHA2_UNROLL_TRANSFORM */ 366 1.1 christos 367 1.11 joerg void 368 1.12 christos SHA256_Transform(SHA256_CTX *context, const uint32_t *data) 369 1.11 joerg { 370 1.10 joerg uint32_t a, b, c, d, e, f, g, h, s0, s1; 371 1.10 joerg uint32_t T1, T2, *W256; 372 1.1 christos int j; 373 1.1 christos 374 1.10 joerg W256 = (uint32_t *)(void *)context->buffer; 375 1.1 christos 376 1.1 christos /* Initialize registers with the prev. intermediate value */ 377 1.1 christos a = context->state[0]; 378 1.1 christos b = context->state[1]; 379 1.1 christos c = context->state[2]; 380 1.1 christos d = context->state[3]; 381 1.1 christos e = context->state[4]; 382 1.1 christos f = context->state[5]; 383 1.1 christos g = context->state[6]; 384 1.1 christos h = context->state[7]; 385 1.1 christos 386 1.1 christos j = 0; 387 1.1 christos do { 388 1.23 christos W256[j] = be32dec(data); 389 1.9 joerg ++data; 390 1.1 christos /* Apply the SHA-256 compression function to update a..h */ 391 1.1 christos T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; 392 1.1 christos T2 = Sigma0_256(a) + Maj(a, b, c); 393 1.1 christos h = g; 394 1.1 christos g = f; 395 1.1 christos f = e; 396 1.1 christos e = d + T1; 397 1.1 christos d = c; 398 1.1 christos c = b; 399 1.1 christos b = a; 400 1.1 christos a = T1 + T2; 401 1.1 christos 402 1.1 christos j++; 403 1.1 christos } while (j < 16); 404 1.1 christos 405 1.1 christos do { 406 1.1 christos /* Part of the message block expansion: */ 407 1.1 christos s0 = W256[(j+1)&0x0f]; 408 1.1 christos s0 = sigma0_256(s0); 409 1.1 christos s1 = W256[(j+14)&0x0f]; 410 1.1 christos s1 = sigma1_256(s1); 411 1.1 christos 412 1.1 christos /* Apply the SHA-256 compression function to update a..h */ 413 1.1 christos T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + 414 1.1 christos (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); 415 1.1 christos T2 = Sigma0_256(a) + Maj(a, b, c); 416 1.1 christos h = g; 417 1.1 christos g = f; 418 1.1 christos f = e; 419 1.1 christos e = d + T1; 420 1.1 christos d = c; 421 1.1 christos c = b; 422 1.1 christos b = a; 423 1.1 christos a = T1 + T2; 424 1.1 christos 425 1.1 christos j++; 426 1.1 christos } while (j < 64); 427 1.1 christos 428 1.1 christos /* Compute the current intermediate hash value */ 429 1.1 christos context->state[0] += a; 430 1.1 christos context->state[1] += b; 431 1.1 christos context->state[2] += c; 432 1.1 christos context->state[3] += d; 433 1.1 christos context->state[4] += e; 434 1.1 christos context->state[5] += f; 435 1.1 christos context->state[6] += g; 436 1.1 christos context->state[7] += h; 437 1.1 christos 438 1.1 christos /* Clean up */ 439 1.1 christos a = b = c = d = e = f = g = h = T1 = T2 = 0; 440 1.1 christos } 441 1.1 christos 442 1.1 christos #endif /* SHA2_UNROLL_TRANSFORM */ 443 1.1 christos 444 1.11 joerg int 445 1.12 christos SHA256_Update(SHA256_CTX *context, const uint8_t *data, size_t len) 446 1.11 joerg { 447 1.1 christos unsigned int freespace, usedspace; 448 1.1 christos 449 1.1 christos if (len == 0) { 450 1.1 christos /* Calling with no data is valid - we do nothing */ 451 1.8 joerg return 1; 452 1.1 christos } 453 1.1 christos 454 1.1 christos usedspace = (unsigned int)((context->bitcount >> 3) % 455 1.1 christos SHA256_BLOCK_LENGTH); 456 1.1 christos if (usedspace > 0) { 457 1.1 christos /* Calculate how much free space is available in the buffer */ 458 1.1 christos freespace = SHA256_BLOCK_LENGTH - usedspace; 459 1.1 christos 460 1.1 christos if (len >= freespace) { 461 1.1 christos /* Fill the buffer completely and process it */ 462 1.12 christos memcpy(&context->buffer[usedspace], data, 463 1.12 christos (size_t)(freespace)); 464 1.1 christos context->bitcount += freespace << 3; 465 1.1 christos len -= freespace; 466 1.1 christos data += freespace; 467 1.12 christos SHA256_Transform(context, 468 1.12 christos (uint32_t *)(void *)context->buffer); 469 1.1 christos } else { 470 1.1 christos /* The buffer is not yet full */ 471 1.1 christos memcpy(&context->buffer[usedspace], data, len); 472 1.1 christos context->bitcount += len << 3; 473 1.1 christos /* Clean up: */ 474 1.1 christos usedspace = freespace = 0; 475 1.8 joerg return 1; 476 1.1 christos } 477 1.1 christos } 478 1.5 joerg /* 479 1.5 joerg * Process as many complete blocks as possible. 480 1.5 joerg * 481 1.5 joerg * Check alignment of the data pointer. If it is 32bit aligned, 482 1.5 joerg * SHA256_Transform can be called directly on the data stream, 483 1.5 joerg * otherwise enforce the alignment by copy into the buffer. 484 1.5 joerg */ 485 1.5 joerg if ((uintptr_t)data % 4 == 0) { 486 1.5 joerg while (len >= SHA256_BLOCK_LENGTH) { 487 1.5 joerg SHA256_Transform(context, 488 1.10 joerg (const uint32_t *)(const void *)data); 489 1.5 joerg context->bitcount += SHA256_BLOCK_LENGTH << 3; 490 1.5 joerg len -= SHA256_BLOCK_LENGTH; 491 1.5 joerg data += SHA256_BLOCK_LENGTH; 492 1.5 joerg } 493 1.5 joerg } else { 494 1.5 joerg while (len >= SHA256_BLOCK_LENGTH) { 495 1.5 joerg memcpy(context->buffer, data, SHA256_BLOCK_LENGTH); 496 1.5 joerg SHA256_Transform(context, 497 1.10 joerg (const uint32_t *)(const void *)context->buffer); 498 1.5 joerg context->bitcount += SHA256_BLOCK_LENGTH << 3; 499 1.5 joerg len -= SHA256_BLOCK_LENGTH; 500 1.5 joerg data += SHA256_BLOCK_LENGTH; 501 1.5 joerg } 502 1.1 christos } 503 1.1 christos if (len > 0) { 504 1.1 christos /* There's left-overs, so save 'em */ 505 1.1 christos memcpy(context->buffer, data, len); 506 1.1 christos context->bitcount += len << 3; 507 1.1 christos } 508 1.1 christos /* Clean up: */ 509 1.1 christos usedspace = freespace = 0; 510 1.8 joerg 511 1.8 joerg return 1; 512 1.1 christos } 513 1.1 christos 514 1.11 joerg static int 515 1.12 christos SHA224_256_Final(uint8_t digest[], SHA256_CTX *context, size_t len) 516 1.11 joerg { 517 1.1 christos unsigned int usedspace; 518 1.9 joerg size_t i; 519 1.1 christos 520 1.1 christos /* If no digest buffer is passed, we don't bother doing this: */ 521 1.10 joerg if (digest != NULL) { 522 1.12 christos usedspace = (unsigned int)((context->bitcount >> 3) % 523 1.12 christos SHA256_BLOCK_LENGTH); 524 1.9 joerg context->bitcount = htobe64(context->bitcount); 525 1.1 christos if (usedspace > 0) { 526 1.1 christos /* Begin padding with a 1 bit: */ 527 1.1 christos context->buffer[usedspace++] = 0x80; 528 1.1 christos 529 1.1 christos if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) { 530 1.1 christos /* Set-up for the last transform: */ 531 1.12 christos memset(&context->buffer[usedspace], 0, 532 1.12 christos (size_t)(SHA256_SHORT_BLOCK_LENGTH - 533 1.12 christos usedspace)); 534 1.1 christos } else { 535 1.1 christos if (usedspace < SHA256_BLOCK_LENGTH) { 536 1.12 christos memset(&context->buffer[usedspace], 0, 537 1.12 christos (size_t)(SHA256_BLOCK_LENGTH - 538 1.12 christos usedspace)); 539 1.1 christos } 540 1.1 christos /* Do second-to-last transform: */ 541 1.12 christos SHA256_Transform(context, 542 1.12 christos (uint32_t *)(void *)context->buffer); 543 1.1 christos 544 1.1 christos /* And set-up for the last transform: */ 545 1.12 christos memset(context->buffer, 0, 546 1.12 christos (size_t)(SHA256_SHORT_BLOCK_LENGTH)); 547 1.1 christos } 548 1.1 christos } else { 549 1.1 christos /* Set-up for the last transform: */ 550 1.12 christos memset(context->buffer, 0, 551 1.12 christos (size_t)(SHA256_SHORT_BLOCK_LENGTH)); 552 1.1 christos 553 1.1 christos /* Begin padding with a 1 bit: */ 554 1.1 christos *context->buffer = 0x80; 555 1.1 christos } 556 1.1 christos /* Set the bit count: */ 557 1.13 christos memcpy(&context->buffer[SHA256_SHORT_BLOCK_LENGTH], 558 1.13 christos &context->bitcount, sizeof(context->bitcount)); 559 1.1 christos 560 1.1 christos /* Final transform: */ 561 1.10 joerg SHA256_Transform(context, (uint32_t *)(void *)context->buffer); 562 1.1 christos 563 1.9 joerg for (i = 0; i < len / 4; i++) 564 1.21 joerg be32enc(digest + 4 * i, context->state[i]); 565 1.1 christos } 566 1.1 christos 567 1.1 christos /* Clean up state data: */ 568 1.1 christos memset(context, 0, sizeof(*context)); 569 1.1 christos usedspace = 0; 570 1.8 joerg 571 1.8 joerg return 1; 572 1.8 joerg } 573 1.8 joerg 574 1.11 joerg int 575 1.25 christos SHA256_Final(uint8_t digest[SHA256_DIGEST_LENGTH], SHA256_CTX *context) 576 1.12 christos { 577 1.12 christos return SHA224_256_Final(digest, context, SHA256_DIGEST_LENGTH); 578 1.12 christos } 579 1.12 christos 580 1.12 christos /*** SHA-224: *********************************************************/ 581 1.12 christos int 582 1.12 christos SHA224_Init(SHA224_CTX *context) 583 1.12 christos { 584 1.12 christos if (context == NULL) 585 1.12 christos return 1; 586 1.12 christos 587 1.18 joerg /* The state and buffer size are driven by SHA256, not by SHA224. */ 588 1.12 christos memcpy(context->state, sha224_initial_hash_value, 589 1.18 joerg (size_t)(SHA256_DIGEST_LENGTH)); 590 1.18 joerg memset(context->buffer, 0, (size_t)(SHA256_BLOCK_LENGTH)); 591 1.12 christos context->bitcount = 0; 592 1.12 christos 593 1.12 christos return 1; 594 1.12 christos } 595 1.12 christos 596 1.12 christos int 597 1.12 christos SHA224_Update(SHA224_CTX *context, const uint8_t *data, size_t len) 598 1.12 christos { 599 1.12 christos return SHA256_Update((SHA256_CTX *)context, data, len); 600 1.12 christos } 601 1.12 christos 602 1.12 christos void 603 1.15 martin SHA224_Transform(SHA224_CTX *context, const uint32_t *data) 604 1.11 joerg { 605 1.15 martin SHA256_Transform((SHA256_CTX *)context, data); 606 1.8 joerg } 607 1.8 joerg 608 1.11 joerg int 609 1.25 christos SHA224_Final(uint8_t digest[SHA224_DIGEST_LENGTH], SHA224_CTX *context) 610 1.11 joerg { 611 1.12 christos return SHA224_256_Final(digest, (SHA256_CTX *)context, 612 1.12 christos SHA224_DIGEST_LENGTH); 613 1.1 christos } 614 1.1 christos 615 1.1 christos /*** SHA-512: *********************************************************/ 616 1.11 joerg int 617 1.12 christos SHA512_Init(SHA512_CTX *context) 618 1.11 joerg { 619 1.10 joerg if (context == NULL) 620 1.8 joerg return 1; 621 1.10 joerg 622 1.12 christos memcpy(context->state, sha512_initial_hash_value, 623 1.12 christos (size_t)(SHA512_DIGEST_LENGTH)); 624 1.1 christos memset(context->buffer, 0, (size_t)(SHA512_BLOCK_LENGTH)); 625 1.1 christos context->bitcount[0] = context->bitcount[1] = 0; 626 1.8 joerg 627 1.8 joerg return 1; 628 1.1 christos } 629 1.1 christos 630 1.1 christos #ifdef SHA2_UNROLL_TRANSFORM 631 1.1 christos 632 1.1 christos /* Unrolled SHA-512 round macros: */ 633 1.1 christos #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ 634 1.23 christos W512[j] = be64dec(data); \ 635 1.9 joerg ++data; \ 636 1.1 christos T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \ 637 1.1 christos K512[j] + W512[j]; \ 638 1.1 christos (d) += T1, \ 639 1.1 christos (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \ 640 1.1 christos j++ 641 1.1 christos 642 1.1 christos #define ROUND512(a,b,c,d,e,f,g,h) \ 643 1.1 christos s0 = W512[(j+1)&0x0f]; \ 644 1.1 christos s0 = sigma0_512(s0); \ 645 1.1 christos s1 = W512[(j+14)&0x0f]; \ 646 1.1 christos s1 = sigma1_512(s1); \ 647 1.1 christos T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \ 648 1.1 christos (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ 649 1.1 christos (d) += T1; \ 650 1.1 christos (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \ 651 1.1 christos j++ 652 1.1 christos 653 1.11 joerg void 654 1.12 christos SHA512_Transform(SHA512_CTX *context, const uint64_t *data) 655 1.11 joerg { 656 1.10 joerg uint64_t a, b, c, d, e, f, g, h, s0, s1; 657 1.10 joerg uint64_t T1, *W512 = (uint64_t *)context->buffer; 658 1.1 christos int j; 659 1.1 christos 660 1.1 christos /* Initialize registers with the prev. intermediate value */ 661 1.1 christos a = context->state[0]; 662 1.1 christos b = context->state[1]; 663 1.1 christos c = context->state[2]; 664 1.1 christos d = context->state[3]; 665 1.1 christos e = context->state[4]; 666 1.1 christos f = context->state[5]; 667 1.1 christos g = context->state[6]; 668 1.1 christos h = context->state[7]; 669 1.1 christos 670 1.1 christos j = 0; 671 1.1 christos do { 672 1.1 christos ROUND512_0_TO_15(a,b,c,d,e,f,g,h); 673 1.1 christos ROUND512_0_TO_15(h,a,b,c,d,e,f,g); 674 1.1 christos ROUND512_0_TO_15(g,h,a,b,c,d,e,f); 675 1.1 christos ROUND512_0_TO_15(f,g,h,a,b,c,d,e); 676 1.1 christos ROUND512_0_TO_15(e,f,g,h,a,b,c,d); 677 1.1 christos ROUND512_0_TO_15(d,e,f,g,h,a,b,c); 678 1.1 christos ROUND512_0_TO_15(c,d,e,f,g,h,a,b); 679 1.1 christos ROUND512_0_TO_15(b,c,d,e,f,g,h,a); 680 1.1 christos } while (j < 16); 681 1.1 christos 682 1.1 christos /* Now for the remaining rounds up to 79: */ 683 1.1 christos do { 684 1.1 christos ROUND512(a,b,c,d,e,f,g,h); 685 1.1 christos ROUND512(h,a,b,c,d,e,f,g); 686 1.1 christos ROUND512(g,h,a,b,c,d,e,f); 687 1.1 christos ROUND512(f,g,h,a,b,c,d,e); 688 1.1 christos ROUND512(e,f,g,h,a,b,c,d); 689 1.1 christos ROUND512(d,e,f,g,h,a,b,c); 690 1.1 christos ROUND512(c,d,e,f,g,h,a,b); 691 1.1 christos ROUND512(b,c,d,e,f,g,h,a); 692 1.1 christos } while (j < 80); 693 1.1 christos 694 1.1 christos /* Compute the current intermediate hash value */ 695 1.1 christos context->state[0] += a; 696 1.1 christos context->state[1] += b; 697 1.1 christos context->state[2] += c; 698 1.1 christos context->state[3] += d; 699 1.1 christos context->state[4] += e; 700 1.1 christos context->state[5] += f; 701 1.1 christos context->state[6] += g; 702 1.1 christos context->state[7] += h; 703 1.1 christos 704 1.1 christos /* Clean up */ 705 1.1 christos a = b = c = d = e = f = g = h = T1 = 0; 706 1.1 christos } 707 1.1 christos 708 1.1 christos #else /* SHA2_UNROLL_TRANSFORM */ 709 1.1 christos 710 1.11 joerg void 711 1.12 christos SHA512_Transform(SHA512_CTX *context, const uint64_t *data) 712 1.11 joerg { 713 1.10 joerg uint64_t a, b, c, d, e, f, g, h, s0, s1; 714 1.10 joerg uint64_t T1, T2, *W512 = (void *)context->buffer; 715 1.1 christos int j; 716 1.1 christos 717 1.1 christos /* Initialize registers with the prev. intermediate value */ 718 1.1 christos a = context->state[0]; 719 1.1 christos b = context->state[1]; 720 1.1 christos c = context->state[2]; 721 1.1 christos d = context->state[3]; 722 1.1 christos e = context->state[4]; 723 1.1 christos f = context->state[5]; 724 1.1 christos g = context->state[6]; 725 1.1 christos h = context->state[7]; 726 1.1 christos 727 1.1 christos j = 0; 728 1.1 christos do { 729 1.23 christos W512[j] = be64dec(data); 730 1.9 joerg ++data; 731 1.1 christos /* Apply the SHA-512 compression function to update a..h */ 732 1.1 christos T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; 733 1.1 christos T2 = Sigma0_512(a) + Maj(a, b, c); 734 1.1 christos h = g; 735 1.1 christos g = f; 736 1.1 christos f = e; 737 1.1 christos e = d + T1; 738 1.1 christos d = c; 739 1.1 christos c = b; 740 1.1 christos b = a; 741 1.1 christos a = T1 + T2; 742 1.1 christos 743 1.1 christos j++; 744 1.1 christos } while (j < 16); 745 1.1 christos 746 1.1 christos do { 747 1.1 christos /* Part of the message block expansion: */ 748 1.1 christos s0 = W512[(j+1)&0x0f]; 749 1.1 christos s0 = sigma0_512(s0); 750 1.1 christos s1 = W512[(j+14)&0x0f]; 751 1.1 christos s1 = sigma1_512(s1); 752 1.1 christos 753 1.1 christos /* Apply the SHA-512 compression function to update a..h */ 754 1.1 christos T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + 755 1.1 christos (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); 756 1.1 christos T2 = Sigma0_512(a) + Maj(a, b, c); 757 1.1 christos h = g; 758 1.1 christos g = f; 759 1.1 christos f = e; 760 1.1 christos e = d + T1; 761 1.1 christos d = c; 762 1.1 christos c = b; 763 1.1 christos b = a; 764 1.1 christos a = T1 + T2; 765 1.1 christos 766 1.1 christos j++; 767 1.1 christos } while (j < 80); 768 1.1 christos 769 1.1 christos /* Compute the current intermediate hash value */ 770 1.1 christos context->state[0] += a; 771 1.1 christos context->state[1] += b; 772 1.1 christos context->state[2] += c; 773 1.1 christos context->state[3] += d; 774 1.1 christos context->state[4] += e; 775 1.1 christos context->state[5] += f; 776 1.1 christos context->state[6] += g; 777 1.1 christos context->state[7] += h; 778 1.1 christos 779 1.1 christos /* Clean up */ 780 1.1 christos a = b = c = d = e = f = g = h = T1 = T2 = 0; 781 1.1 christos } 782 1.1 christos 783 1.1 christos #endif /* SHA2_UNROLL_TRANSFORM */ 784 1.1 christos 785 1.11 joerg int 786 1.12 christos SHA512_Update(SHA512_CTX *context, const uint8_t *data, size_t len) 787 1.11 joerg { 788 1.1 christos unsigned int freespace, usedspace; 789 1.1 christos 790 1.1 christos if (len == 0) { 791 1.1 christos /* Calling with no data is valid - we do nothing */ 792 1.8 joerg return 1; 793 1.1 christos } 794 1.1 christos 795 1.12 christos usedspace = (unsigned int)((context->bitcount[0] >> 3) % 796 1.12 christos SHA512_BLOCK_LENGTH); 797 1.1 christos if (usedspace > 0) { 798 1.1 christos /* Calculate how much free space is available in the buffer */ 799 1.1 christos freespace = SHA512_BLOCK_LENGTH - usedspace; 800 1.1 christos 801 1.1 christos if (len >= freespace) { 802 1.1 christos /* Fill the buffer completely and process it */ 803 1.12 christos memcpy(&context->buffer[usedspace], data, 804 1.12 christos (size_t)(freespace)); 805 1.1 christos ADDINC128(context->bitcount, freespace << 3); 806 1.1 christos len -= freespace; 807 1.1 christos data += freespace; 808 1.12 christos SHA512_Transform(context, 809 1.12 christos (uint64_t *)(void *)context->buffer); 810 1.1 christos } else { 811 1.1 christos /* The buffer is not yet full */ 812 1.1 christos memcpy(&context->buffer[usedspace], data, len); 813 1.1 christos ADDINC128(context->bitcount, len << 3); 814 1.1 christos /* Clean up: */ 815 1.1 christos usedspace = freespace = 0; 816 1.8 joerg return 1; 817 1.1 christos } 818 1.1 christos } 819 1.5 joerg /* 820 1.5 joerg * Process as many complete blocks as possible. 821 1.5 joerg * 822 1.5 joerg * Check alignment of the data pointer. If it is 64bit aligned, 823 1.5 joerg * SHA512_Transform can be called directly on the data stream, 824 1.5 joerg * otherwise enforce the alignment by copy into the buffer. 825 1.5 joerg */ 826 1.5 joerg if ((uintptr_t)data % 8 == 0) { 827 1.5 joerg while (len >= SHA512_BLOCK_LENGTH) { 828 1.5 joerg SHA512_Transform(context, 829 1.10 joerg (const uint64_t*)(const void *)data); 830 1.5 joerg ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3); 831 1.5 joerg len -= SHA512_BLOCK_LENGTH; 832 1.5 joerg data += SHA512_BLOCK_LENGTH; 833 1.5 joerg } 834 1.5 joerg } else { 835 1.5 joerg while (len >= SHA512_BLOCK_LENGTH) { 836 1.5 joerg memcpy(context->buffer, data, SHA512_BLOCK_LENGTH); 837 1.5 joerg SHA512_Transform(context, 838 1.6 drochner (const void *)context->buffer); 839 1.5 joerg ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3); 840 1.5 joerg len -= SHA512_BLOCK_LENGTH; 841 1.5 joerg data += SHA512_BLOCK_LENGTH; 842 1.5 joerg } 843 1.1 christos } 844 1.1 christos if (len > 0) { 845 1.1 christos /* There's left-overs, so save 'em */ 846 1.1 christos memcpy(context->buffer, data, len); 847 1.1 christos ADDINC128(context->bitcount, len << 3); 848 1.1 christos } 849 1.1 christos /* Clean up: */ 850 1.1 christos usedspace = freespace = 0; 851 1.8 joerg 852 1.8 joerg return 1; 853 1.1 christos } 854 1.1 christos 855 1.11 joerg static void 856 1.12 christos SHA512_Last(SHA512_CTX *context) 857 1.11 joerg { 858 1.1 christos unsigned int usedspace; 859 1.1 christos 860 1.1 christos usedspace = (unsigned int)((context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH); 861 1.9 joerg context->bitcount[0] = htobe64(context->bitcount[0]); 862 1.9 joerg context->bitcount[1] = htobe64(context->bitcount[1]); 863 1.1 christos if (usedspace > 0) { 864 1.1 christos /* Begin padding with a 1 bit: */ 865 1.1 christos context->buffer[usedspace++] = 0x80; 866 1.1 christos 867 1.1 christos if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) { 868 1.1 christos /* Set-up for the last transform: */ 869 1.12 christos memset(&context->buffer[usedspace], 0, 870 1.12 christos (size_t)(SHA512_SHORT_BLOCK_LENGTH - usedspace)); 871 1.1 christos } else { 872 1.1 christos if (usedspace < SHA512_BLOCK_LENGTH) { 873 1.12 christos memset(&context->buffer[usedspace], 0, 874 1.12 christos (size_t)(SHA512_BLOCK_LENGTH - usedspace)); 875 1.1 christos } 876 1.1 christos /* Do second-to-last transform: */ 877 1.12 christos SHA512_Transform(context, 878 1.12 christos (uint64_t *)(void *)context->buffer); 879 1.1 christos 880 1.1 christos /* And set-up for the last transform: */ 881 1.12 christos memset(context->buffer, 0, 882 1.12 christos (size_t)(SHA512_BLOCK_LENGTH - 2)); 883 1.1 christos } 884 1.1 christos } else { 885 1.1 christos /* Prepare for final transform: */ 886 1.1 christos memset(context->buffer, 0, (size_t)(SHA512_SHORT_BLOCK_LENGTH)); 887 1.1 christos 888 1.1 christos /* Begin padding with a 1 bit: */ 889 1.1 christos *context->buffer = 0x80; 890 1.1 christos } 891 1.1 christos /* Store the length of input data (in bits): */ 892 1.13 christos memcpy(&context->buffer[SHA512_SHORT_BLOCK_LENGTH], 893 1.13 christos &context->bitcount[1], sizeof(context->bitcount[1])); 894 1.13 christos memcpy(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8], 895 1.13 christos &context->bitcount[0], sizeof(context->bitcount[0])); 896 1.1 christos 897 1.1 christos /* Final transform: */ 898 1.10 joerg SHA512_Transform(context, (uint64_t *)(void *)context->buffer); 899 1.1 christos } 900 1.1 christos 901 1.11 joerg int 902 1.25 christos SHA512_Final(uint8_t digest[SHA512_DIGEST_LENGTH], SHA512_CTX *context) 903 1.11 joerg { 904 1.9 joerg size_t i; 905 1.1 christos 906 1.1 christos /* If no digest buffer is passed, we don't bother doing this: */ 907 1.10 joerg if (digest != NULL) { 908 1.1 christos SHA512_Last(context); 909 1.1 christos 910 1.1 christos /* Save the hash data for output: */ 911 1.9 joerg for (i = 0; i < 8; ++i) 912 1.20 joerg be64enc(digest + 8 * i, context->state[i]); 913 1.1 christos } 914 1.1 christos 915 1.1 christos /* Zero out state data */ 916 1.1 christos memset(context, 0, sizeof(*context)); 917 1.8 joerg 918 1.8 joerg return 1; 919 1.1 christos } 920 1.1 christos 921 1.1 christos /*** SHA-384: *********************************************************/ 922 1.11 joerg int 923 1.12 christos SHA384_Init(SHA384_CTX *context) 924 1.11 joerg { 925 1.12 christos if (context == NULL) 926 1.8 joerg return 1; 927 1.12 christos 928 1.12 christos memcpy(context->state, sha384_initial_hash_value, 929 1.12 christos (size_t)(SHA512_DIGEST_LENGTH)); 930 1.1 christos memset(context->buffer, 0, (size_t)(SHA384_BLOCK_LENGTH)); 931 1.1 christos context->bitcount[0] = context->bitcount[1] = 0; 932 1.8 joerg 933 1.8 joerg return 1; 934 1.1 christos } 935 1.1 christos 936 1.11 joerg int 937 1.12 christos SHA384_Update(SHA384_CTX *context, const uint8_t *data, size_t len) 938 1.11 joerg { 939 1.12 christos return SHA512_Update((SHA512_CTX *)context, data, len); 940 1.1 christos } 941 1.1 christos 942 1.11 joerg void 943 1.12 christos SHA384_Transform(SHA512_CTX *context, const uint64_t *data) 944 1.11 joerg { 945 1.12 christos SHA512_Transform((SHA512_CTX *)context, data); 946 1.1 christos } 947 1.1 christos 948 1.11 joerg int 949 1.25 christos SHA384_Final(uint8_t digest[SHA384_DIGEST_LENGTH], SHA384_CTX *context) 950 1.11 joerg { 951 1.9 joerg size_t i; 952 1.1 christos 953 1.1 christos /* If no digest buffer is passed, we don't bother doing this: */ 954 1.10 joerg if (digest != NULL) { 955 1.12 christos SHA512_Last((SHA512_CTX *)context); 956 1.1 christos 957 1.1 christos /* Save the hash data for output: */ 958 1.9 joerg for (i = 0; i < 6; ++i) 959 1.21 joerg be64enc(digest + 8 * i, context->state[i]); 960 1.1 christos } 961 1.1 christos 962 1.1 christos /* Zero out state data */ 963 1.1 christos memset(context, 0, sizeof(*context)); 964 1.8 joerg 965 1.8 joerg return 1; 966 1.1 christos } 967