Home | History | Annotate | Line # | Download | only in sha2
sha2.c revision 1.10
      1  1.10     joerg /* $NetBSD: sha2.c,v 1.10 2009/06/11 19:02:04 joerg Exp $ */
      2   1.1  christos /*	$KAME: sha2.c,v 1.9 2003/07/20 00:28:38 itojun Exp $	*/
      3   1.1  christos 
      4   1.1  christos /*
      5   1.1  christos  * sha2.c
      6   1.1  christos  *
      7   1.1  christos  * Version 1.0.0beta1
      8   1.1  christos  *
      9   1.1  christos  * Written by Aaron D. Gifford <me (at) aarongifford.com>
     10   1.1  christos  *
     11   1.1  christos  * Copyright 2000 Aaron D. Gifford.  All rights reserved.
     12   1.1  christos  *
     13   1.1  christos  * Redistribution and use in source and binary forms, with or without
     14   1.1  christos  * modification, are permitted provided that the following conditions
     15   1.1  christos  * are met:
     16   1.1  christos  * 1. Redistributions of source code must retain the above copyright
     17   1.1  christos  *    notice, this list of conditions and the following disclaimer.
     18   1.1  christos  * 2. Redistributions in binary form must reproduce the above copyright
     19   1.1  christos  *    notice, this list of conditions and the following disclaimer in the
     20   1.1  christos  *    documentation and/or other materials provided with the distribution.
     21   1.1  christos  * 3. Neither the name of the copyright holder nor the names of contributors
     22   1.1  christos  *    may be used to endorse or promote products derived from this software
     23   1.1  christos  *    without specific prior written permission.
     24   1.1  christos  *
     25   1.1  christos  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
     26   1.1  christos  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     27   1.1  christos  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     28   1.1  christos  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE
     29   1.1  christos  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     30   1.1  christos  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     31   1.1  christos  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     32   1.1  christos  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     33   1.1  christos  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     34   1.1  christos  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     35   1.1  christos  * SUCH DAMAGE.
     36   1.1  christos  *
     37   1.1  christos  */
     38   1.1  christos 
     39   1.1  christos #include <sys/cdefs.h>
     40   1.1  christos 
     41   1.1  christos #if defined(_KERNEL) || defined(_STANDALONE)
     42  1.10     joerg __KERNEL_RCSID(0, "$NetBSD: sha2.c,v 1.10 2009/06/11 19:02:04 joerg Exp $");
     43   1.1  christos 
     44   1.1  christos #include <lib/libkern/libkern.h>
     45   1.1  christos 
     46   1.1  christos #else
     47   1.1  christos 
     48   1.1  christos #if defined(LIBC_SCCS) && !defined(lint)
     49  1.10     joerg __RCSID("$NetBSD: sha2.c,v 1.10 2009/06/11 19:02:04 joerg Exp $");
     50   1.1  christos #endif /* LIBC_SCCS and not lint */
     51   1.1  christos 
     52   1.1  christos #include "namespace.h"
     53   1.1  christos #include <string.h>
     54   1.1  christos 
     55   1.1  christos #endif
     56   1.1  christos 
     57   1.1  christos #include <sys/types.h>
     58   1.1  christos #include <sys/sha2.h>
     59   1.9     joerg #include <sys/endian.h>
     60   1.1  christos 
     61   1.1  christos /*** SHA-256/384/512 Various Length Definitions ***********************/
     62   1.1  christos /* NOTE: Most of these are in sha2.h */
     63   1.1  christos #define SHA256_SHORT_BLOCK_LENGTH	(SHA256_BLOCK_LENGTH - 8)
     64   1.1  christos #define SHA384_SHORT_BLOCK_LENGTH	(SHA384_BLOCK_LENGTH - 16)
     65   1.1  christos #define SHA512_SHORT_BLOCK_LENGTH	(SHA512_BLOCK_LENGTH - 16)
     66   1.1  christos 
     67   1.1  christos /*
     68   1.1  christos  * Macro for incrementally adding the unsigned 64-bit integer n to the
     69   1.1  christos  * unsigned 128-bit integer (represented using a two-element array of
     70   1.1  christos  * 64-bit words):
     71   1.1  christos  */
     72   1.1  christos #define ADDINC128(w,n)	{ \
     73  1.10     joerg 	(w)[0] += (uint64_t)(n); \
     74   1.1  christos 	if ((w)[0] < (n)) { \
     75   1.1  christos 		(w)[1]++; \
     76   1.1  christos 	} \
     77   1.1  christos }
     78   1.1  christos 
     79   1.1  christos /*** THE SIX LOGICAL FUNCTIONS ****************************************/
     80   1.1  christos /*
     81   1.1  christos  * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
     82   1.1  christos  *
     83   1.1  christos  *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
     84   1.1  christos  *   S is a ROTATION) because the SHA-256/384/512 description document
     85   1.1  christos  *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
     86   1.1  christos  *   same "backwards" definition.
     87   1.1  christos  */
     88   1.1  christos /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
     89   1.1  christos #define R(b,x) 		((x) >> (b))
     90   1.1  christos /* 32-bit Rotate-right (used in SHA-256): */
     91   1.1  christos #define S32(b,x)	(((x) >> (b)) | ((x) << (32 - (b))))
     92   1.1  christos /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
     93   1.1  christos #define S64(b,x)	(((x) >> (b)) | ((x) << (64 - (b))))
     94   1.1  christos 
     95   1.1  christos /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
     96   1.1  christos #define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
     97   1.1  christos #define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
     98   1.1  christos 
     99   1.1  christos /* Four of six logical functions used in SHA-256: */
    100   1.1  christos #define Sigma0_256(x)	(S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
    101   1.1  christos #define Sigma1_256(x)	(S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
    102   1.1  christos #define sigma0_256(x)	(S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
    103   1.1  christos #define sigma1_256(x)	(S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
    104   1.1  christos 
    105   1.1  christos /* Four of six logical functions used in SHA-384 and SHA-512: */
    106   1.1  christos #define Sigma0_512(x)	(S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
    107   1.1  christos #define Sigma1_512(x)	(S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
    108   1.1  christos #define sigma0_512(x)	(S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
    109   1.1  christos #define sigma1_512(x)	(S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
    110   1.1  christos 
    111   1.1  christos /*** INTERNAL FUNCTION PROTOTYPES *************************************/
    112   1.1  christos /* NOTE: These should not be accessed directly from outside this
    113   1.1  christos  * library -- they are intended for private internal visibility/use
    114   1.1  christos  * only.
    115   1.1  christos  */
    116   1.4  christos static void SHA512_Last(SHA512_CTX*);
    117  1.10     joerg void SHA224_Transform(SHA224_CTX*, const uint64_t*);
    118  1.10     joerg void SHA256_Transform(SHA256_CTX*, const uint32_t*);
    119  1.10     joerg void SHA384_Transform(SHA384_CTX*, const uint64_t*);
    120  1.10     joerg void SHA512_Transform(SHA512_CTX*, const uint64_t*);
    121   1.1  christos 
    122   1.1  christos 
    123   1.1  christos /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
    124   1.1  christos /* Hash constant words K for SHA-256: */
    125  1.10     joerg static const uint32_t K256[64] = {
    126   1.1  christos 	0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
    127   1.1  christos 	0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
    128   1.1  christos 	0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
    129   1.1  christos 	0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
    130   1.1  christos 	0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
    131   1.1  christos 	0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
    132   1.1  christos 	0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
    133   1.1  christos 	0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
    134   1.1  christos 	0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
    135   1.1  christos 	0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
    136   1.1  christos 	0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
    137   1.1  christos 	0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
    138   1.1  christos 	0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
    139   1.1  christos 	0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
    140   1.1  christos 	0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
    141   1.1  christos 	0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
    142   1.1  christos };
    143   1.1  christos 
    144   1.8     joerg /* Initial hash value H for SHA-224: */
    145  1.10     joerg static const uint32_t sha224_initial_hash_value[8] = {
    146   1.8     joerg 	0xc1059ed8UL,
    147   1.8     joerg 	0x367cd507UL,
    148   1.8     joerg 	0x3070dd17UL,
    149   1.8     joerg 	0xf70e5939UL,
    150   1.8     joerg 	0xffc00b31UL,
    151   1.8     joerg 	0x68581511UL,
    152   1.8     joerg 	0x64f98fa7UL,
    153   1.8     joerg 	0xbefa4fa4UL
    154   1.8     joerg };
    155   1.8     joerg 
    156   1.1  christos /* Initial hash value H for SHA-256: */
    157  1.10     joerg static const uint32_t sha256_initial_hash_value[8] = {
    158   1.1  christos 	0x6a09e667UL,
    159   1.1  christos 	0xbb67ae85UL,
    160   1.1  christos 	0x3c6ef372UL,
    161   1.1  christos 	0xa54ff53aUL,
    162   1.1  christos 	0x510e527fUL,
    163   1.1  christos 	0x9b05688cUL,
    164   1.1  christos 	0x1f83d9abUL,
    165   1.1  christos 	0x5be0cd19UL
    166   1.1  christos };
    167   1.1  christos 
    168   1.1  christos /* Hash constant words K for SHA-384 and SHA-512: */
    169  1.10     joerg static const uint64_t K512[80] = {
    170   1.1  christos 	0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
    171   1.1  christos 	0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
    172   1.1  christos 	0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
    173   1.1  christos 	0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
    174   1.1  christos 	0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
    175   1.1  christos 	0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
    176   1.1  christos 	0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
    177   1.1  christos 	0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
    178   1.1  christos 	0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
    179   1.1  christos 	0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
    180   1.1  christos 	0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
    181   1.1  christos 	0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
    182   1.1  christos 	0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
    183   1.1  christos 	0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
    184   1.1  christos 	0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
    185   1.1  christos 	0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
    186   1.1  christos 	0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
    187   1.1  christos 	0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
    188   1.1  christos 	0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
    189   1.1  christos 	0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
    190   1.1  christos 	0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
    191   1.1  christos 	0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
    192   1.1  christos 	0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
    193   1.1  christos 	0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
    194   1.1  christos 	0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
    195   1.1  christos 	0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
    196   1.1  christos 	0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
    197   1.1  christos 	0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
    198   1.1  christos 	0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
    199   1.1  christos 	0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
    200   1.1  christos 	0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
    201   1.1  christos 	0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
    202   1.1  christos 	0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
    203   1.1  christos 	0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
    204   1.1  christos 	0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
    205   1.1  christos 	0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
    206   1.1  christos 	0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
    207   1.1  christos 	0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
    208   1.1  christos 	0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
    209   1.1  christos 	0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
    210   1.1  christos };
    211   1.1  christos 
    212   1.1  christos /* Initial hash value H for SHA-384 */
    213  1.10     joerg static const uint64_t sha384_initial_hash_value[8] = {
    214   1.1  christos 	0xcbbb9d5dc1059ed8ULL,
    215   1.1  christos 	0x629a292a367cd507ULL,
    216   1.1  christos 	0x9159015a3070dd17ULL,
    217   1.1  christos 	0x152fecd8f70e5939ULL,
    218   1.1  christos 	0x67332667ffc00b31ULL,
    219   1.1  christos 	0x8eb44a8768581511ULL,
    220   1.1  christos 	0xdb0c2e0d64f98fa7ULL,
    221   1.1  christos 	0x47b5481dbefa4fa4ULL
    222   1.1  christos };
    223   1.1  christos 
    224   1.1  christos /* Initial hash value H for SHA-512 */
    225  1.10     joerg static const uint64_t sha512_initial_hash_value[8] = {
    226   1.1  christos 	0x6a09e667f3bcc908ULL,
    227   1.1  christos 	0xbb67ae8584caa73bULL,
    228   1.1  christos 	0x3c6ef372fe94f82bULL,
    229   1.1  christos 	0xa54ff53a5f1d36f1ULL,
    230   1.1  christos 	0x510e527fade682d1ULL,
    231   1.1  christos 	0x9b05688c2b3e6c1fULL,
    232   1.1  christos 	0x1f83d9abfb41bd6bULL,
    233   1.1  christos 	0x5be0cd19137e2179ULL
    234   1.1  christos };
    235   1.1  christos 
    236   1.1  christos #if !defined(_KERNEL) && defined(__weak_alias)
    237   1.8     joerg __weak_alias(SHA224_Init,_SHA224_Init)
    238   1.8     joerg __weak_alias(SHA224_Update,_SHA224_Update)
    239   1.8     joerg __weak_alias(SHA224_Final,_SHA224_Final)
    240   1.8     joerg __weak_alias(SHA224_Transform,_SHA224_Transform)
    241   1.8     joerg 
    242   1.1  christos __weak_alias(SHA256_Init,_SHA256_Init)
    243   1.1  christos __weak_alias(SHA256_Update,_SHA256_Update)
    244   1.1  christos __weak_alias(SHA256_Final,_SHA256_Final)
    245   1.1  christos __weak_alias(SHA256_Transform,_SHA256_Transform)
    246   1.1  christos 
    247   1.1  christos __weak_alias(SHA384_Init,_SHA384_Init)
    248   1.1  christos __weak_alias(SHA384_Update,_SHA384_Update)
    249   1.1  christos __weak_alias(SHA384_Final,_SHA384_Final)
    250   1.1  christos __weak_alias(SHA384_Transform,_SHA384_Transform)
    251   1.1  christos 
    252   1.1  christos __weak_alias(SHA512_Init,_SHA512_Init)
    253   1.1  christos __weak_alias(SHA512_Update,_SHA512_Update)
    254   1.1  christos __weak_alias(SHA512_Final,_SHA512_Final)
    255   1.1  christos __weak_alias(SHA512_Transform,_SHA512_Transform)
    256   1.1  christos #endif
    257   1.1  christos 
    258   1.8     joerg /*** SHA-224: *********************************************************/
    259   1.8     joerg int SHA224_Init(SHA256_CTX* context) {
    260   1.8     joerg 	if (context == (SHA256_CTX*)0) {
    261   1.8     joerg 		return 1;
    262   1.8     joerg 	}
    263   1.8     joerg 	memcpy(context->state, sha224_initial_hash_value, (size_t)(SHA256_DIGEST_LENGTH));
    264   1.8     joerg 	memset(context->buffer, 0, (size_t)(SHA256_BLOCK_LENGTH));
    265   1.8     joerg 	context->bitcount = 0;
    266   1.8     joerg 
    267   1.8     joerg 	return 1;
    268   1.8     joerg }
    269   1.8     joerg 
    270   1.1  christos /*** SHA-256: *********************************************************/
    271   1.8     joerg int SHA256_Init(SHA256_CTX* context) {
    272   1.1  christos 	if (context == (SHA256_CTX*)0) {
    273   1.8     joerg 		return 1;
    274   1.1  christos 	}
    275   1.1  christos 	memcpy(context->state, sha256_initial_hash_value, (size_t)(SHA256_DIGEST_LENGTH));
    276   1.1  christos 	memset(context->buffer, 0, (size_t)(SHA256_BLOCK_LENGTH));
    277   1.1  christos 	context->bitcount = 0;
    278   1.8     joerg 
    279   1.8     joerg 	return 1;
    280   1.8     joerg }
    281   1.8     joerg 
    282  1.10     joerg void SHA224_Transform(SHA224_CTX* context, const uint64_t* data) {
    283   1.8     joerg 	SHA224_Transform((SHA256_CTX*)context, data);
    284   1.1  christos }
    285   1.1  christos 
    286   1.1  christos #ifdef SHA2_UNROLL_TRANSFORM
    287   1.1  christos 
    288   1.1  christos /* Unrolled SHA-256 round macros: */
    289   1.1  christos 
    290   1.1  christos #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
    291   1.9     joerg 	W256[j] = be32toh(*data);		\
    292   1.9     joerg 	++data;					\
    293   1.1  christos 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
    294   1.1  christos              K256[j] + W256[j]; \
    295   1.1  christos 	(d) += T1; \
    296   1.1  christos 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
    297   1.1  christos 	j++
    298   1.1  christos 
    299   1.1  christos #define ROUND256(a,b,c,d,e,f,g,h)	\
    300   1.1  christos 	s0 = W256[(j+1)&0x0f]; \
    301   1.1  christos 	s0 = sigma0_256(s0); \
    302   1.1  christos 	s1 = W256[(j+14)&0x0f]; \
    303   1.1  christos 	s1 = sigma1_256(s1); \
    304   1.1  christos 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
    305   1.1  christos 	     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
    306   1.1  christos 	(d) += T1; \
    307   1.1  christos 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
    308   1.1  christos 	j++
    309   1.1  christos 
    310  1.10     joerg void SHA256_Transform(SHA256_CTX* context, const uint32_t* data) {
    311  1.10     joerg 	uint32_t	a, b, c, d, e, f, g, h, s0, s1;
    312  1.10     joerg 	uint32_t	T1, *W256;
    313   1.1  christos 	int		j;
    314   1.1  christos 
    315  1.10     joerg 	W256 = (uint32_t *)context->buffer;
    316   1.1  christos 
    317   1.1  christos 	/* Initialize registers with the prev. intermediate value */
    318   1.1  christos 	a = context->state[0];
    319   1.1  christos 	b = context->state[1];
    320   1.1  christos 	c = context->state[2];
    321   1.1  christos 	d = context->state[3];
    322   1.1  christos 	e = context->state[4];
    323   1.1  christos 	f = context->state[5];
    324   1.1  christos 	g = context->state[6];
    325   1.1  christos 	h = context->state[7];
    326   1.1  christos 
    327   1.1  christos 	j = 0;
    328   1.1  christos 	do {
    329   1.1  christos 		/* Rounds 0 to 15 (unrolled): */
    330   1.1  christos 		ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
    331   1.1  christos 		ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
    332   1.1  christos 		ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
    333   1.1  christos 		ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
    334   1.1  christos 		ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
    335   1.1  christos 		ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
    336   1.1  christos 		ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
    337   1.1  christos 		ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
    338   1.1  christos 	} while (j < 16);
    339   1.1  christos 
    340   1.1  christos 	/* Now for the remaining rounds to 64: */
    341   1.1  christos 	do {
    342   1.1  christos 		ROUND256(a,b,c,d,e,f,g,h);
    343   1.1  christos 		ROUND256(h,a,b,c,d,e,f,g);
    344   1.1  christos 		ROUND256(g,h,a,b,c,d,e,f);
    345   1.1  christos 		ROUND256(f,g,h,a,b,c,d,e);
    346   1.1  christos 		ROUND256(e,f,g,h,a,b,c,d);
    347   1.1  christos 		ROUND256(d,e,f,g,h,a,b,c);
    348   1.1  christos 		ROUND256(c,d,e,f,g,h,a,b);
    349   1.1  christos 		ROUND256(b,c,d,e,f,g,h,a);
    350   1.1  christos 	} while (j < 64);
    351   1.1  christos 
    352   1.1  christos 	/* Compute the current intermediate hash value */
    353   1.1  christos 	context->state[0] += a;
    354   1.1  christos 	context->state[1] += b;
    355   1.1  christos 	context->state[2] += c;
    356   1.1  christos 	context->state[3] += d;
    357   1.1  christos 	context->state[4] += e;
    358   1.1  christos 	context->state[5] += f;
    359   1.1  christos 	context->state[6] += g;
    360   1.1  christos 	context->state[7] += h;
    361   1.1  christos 
    362   1.1  christos 	/* Clean up */
    363   1.1  christos 	a = b = c = d = e = f = g = h = T1 = 0;
    364   1.1  christos }
    365   1.1  christos 
    366   1.1  christos #else /* SHA2_UNROLL_TRANSFORM */
    367   1.1  christos 
    368  1.10     joerg void SHA256_Transform(SHA256_CTX* context, const uint32_t* data) {
    369  1.10     joerg 	uint32_t	a, b, c, d, e, f, g, h, s0, s1;
    370  1.10     joerg 	uint32_t	T1, T2, *W256;
    371   1.1  christos 	int		j;
    372   1.1  christos 
    373  1.10     joerg 	W256 = (uint32_t *)(void *)context->buffer;
    374   1.1  christos 
    375   1.1  christos 	/* Initialize registers with the prev. intermediate value */
    376   1.1  christos 	a = context->state[0];
    377   1.1  christos 	b = context->state[1];
    378   1.1  christos 	c = context->state[2];
    379   1.1  christos 	d = context->state[3];
    380   1.1  christos 	e = context->state[4];
    381   1.1  christos 	f = context->state[5];
    382   1.1  christos 	g = context->state[6];
    383   1.1  christos 	h = context->state[7];
    384   1.1  christos 
    385   1.1  christos 	j = 0;
    386   1.1  christos 	do {
    387   1.9     joerg 		W256[j] = be32toh(*data);
    388   1.9     joerg 		++data;
    389   1.1  christos 		/* Apply the SHA-256 compression function to update a..h */
    390   1.1  christos 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
    391   1.1  christos 		T2 = Sigma0_256(a) + Maj(a, b, c);
    392   1.1  christos 		h = g;
    393   1.1  christos 		g = f;
    394   1.1  christos 		f = e;
    395   1.1  christos 		e = d + T1;
    396   1.1  christos 		d = c;
    397   1.1  christos 		c = b;
    398   1.1  christos 		b = a;
    399   1.1  christos 		a = T1 + T2;
    400   1.1  christos 
    401   1.1  christos 		j++;
    402   1.1  christos 	} while (j < 16);
    403   1.1  christos 
    404   1.1  christos 	do {
    405   1.1  christos 		/* Part of the message block expansion: */
    406   1.1  christos 		s0 = W256[(j+1)&0x0f];
    407   1.1  christos 		s0 = sigma0_256(s0);
    408   1.1  christos 		s1 = W256[(j+14)&0x0f];
    409   1.1  christos 		s1 = sigma1_256(s1);
    410   1.1  christos 
    411   1.1  christos 		/* Apply the SHA-256 compression function to update a..h */
    412   1.1  christos 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
    413   1.1  christos 		     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
    414   1.1  christos 		T2 = Sigma0_256(a) + Maj(a, b, c);
    415   1.1  christos 		h = g;
    416   1.1  christos 		g = f;
    417   1.1  christos 		f = e;
    418   1.1  christos 		e = d + T1;
    419   1.1  christos 		d = c;
    420   1.1  christos 		c = b;
    421   1.1  christos 		b = a;
    422   1.1  christos 		a = T1 + T2;
    423   1.1  christos 
    424   1.1  christos 		j++;
    425   1.1  christos 	} while (j < 64);
    426   1.1  christos 
    427   1.1  christos 	/* Compute the current intermediate hash value */
    428   1.1  christos 	context->state[0] += a;
    429   1.1  christos 	context->state[1] += b;
    430   1.1  christos 	context->state[2] += c;
    431   1.1  christos 	context->state[3] += d;
    432   1.1  christos 	context->state[4] += e;
    433   1.1  christos 	context->state[5] += f;
    434   1.1  christos 	context->state[6] += g;
    435   1.1  christos 	context->state[7] += h;
    436   1.1  christos 
    437   1.1  christos 	/* Clean up */
    438   1.1  christos 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
    439   1.1  christos }
    440   1.1  christos 
    441   1.1  christos #endif /* SHA2_UNROLL_TRANSFORM */
    442   1.1  christos 
    443  1.10     joerg int SHA224_Update(SHA256_CTX *context, const uint8_t *data, size_t len) {
    444   1.8     joerg 	return SHA256_Update(context, data, len);
    445   1.8     joerg }
    446   1.8     joerg 
    447  1.10     joerg int SHA256_Update(SHA256_CTX* context, const uint8_t *data, size_t len) {
    448   1.1  christos 	unsigned int	freespace, usedspace;
    449   1.1  christos 
    450   1.1  christos 	if (len == 0) {
    451   1.1  christos 		/* Calling with no data is valid - we do nothing */
    452   1.8     joerg 		return 1;
    453   1.1  christos 	}
    454   1.1  christos 
    455   1.1  christos 	usedspace = (unsigned int)((context->bitcount >> 3) %
    456   1.1  christos 				    SHA256_BLOCK_LENGTH);
    457   1.1  christos 	if (usedspace > 0) {
    458   1.1  christos 		/* Calculate how much free space is available in the buffer */
    459   1.1  christos 		freespace = SHA256_BLOCK_LENGTH - usedspace;
    460   1.1  christos 
    461   1.1  christos 		if (len >= freespace) {
    462   1.1  christos 			/* Fill the buffer completely and process it */
    463   1.1  christos 			memcpy(&context->buffer[usedspace], data, (size_t)(freespace));
    464   1.1  christos 			context->bitcount += freespace << 3;
    465   1.1  christos 			len -= freespace;
    466   1.1  christos 			data += freespace;
    467  1.10     joerg 			SHA256_Transform(context, (uint32_t *)(void *)context->buffer);
    468   1.1  christos 		} else {
    469   1.1  christos 			/* The buffer is not yet full */
    470   1.1  christos 			memcpy(&context->buffer[usedspace], data, len);
    471   1.1  christos 			context->bitcount += len << 3;
    472   1.1  christos 			/* Clean up: */
    473   1.1  christos 			usedspace = freespace = 0;
    474   1.8     joerg 			return 1;
    475   1.1  christos 		}
    476   1.1  christos 	}
    477   1.5     joerg 	/*
    478   1.5     joerg 	 * Process as many complete blocks as possible.
    479   1.5     joerg 	 *
    480   1.5     joerg 	 * Check alignment of the data pointer. If it is 32bit aligned,
    481   1.5     joerg 	 * SHA256_Transform can be called directly on the data stream,
    482   1.5     joerg 	 * otherwise enforce the alignment by copy into the buffer.
    483   1.5     joerg 	 */
    484   1.5     joerg 	if ((uintptr_t)data % 4 == 0) {
    485   1.5     joerg 		while (len >= SHA256_BLOCK_LENGTH) {
    486   1.5     joerg 			SHA256_Transform(context,
    487  1.10     joerg 			    (const uint32_t *)(const void *)data);
    488   1.5     joerg 			context->bitcount += SHA256_BLOCK_LENGTH << 3;
    489   1.5     joerg 			len -= SHA256_BLOCK_LENGTH;
    490   1.5     joerg 			data += SHA256_BLOCK_LENGTH;
    491   1.5     joerg 		}
    492   1.5     joerg 	} else {
    493   1.5     joerg 		while (len >= SHA256_BLOCK_LENGTH) {
    494   1.5     joerg 			memcpy(context->buffer, data, SHA256_BLOCK_LENGTH);
    495   1.5     joerg 			SHA256_Transform(context,
    496  1.10     joerg 			    (const uint32_t *)(const void *)context->buffer);
    497   1.5     joerg 			context->bitcount += SHA256_BLOCK_LENGTH << 3;
    498   1.5     joerg 			len -= SHA256_BLOCK_LENGTH;
    499   1.5     joerg 			data += SHA256_BLOCK_LENGTH;
    500   1.5     joerg 		}
    501   1.1  christos 	}
    502   1.1  christos 	if (len > 0) {
    503   1.1  christos 		/* There's left-overs, so save 'em */
    504   1.1  christos 		memcpy(context->buffer, data, len);
    505   1.1  christos 		context->bitcount += len << 3;
    506   1.1  christos 	}
    507   1.1  christos 	/* Clean up: */
    508   1.1  christos 	usedspace = freespace = 0;
    509   1.8     joerg 
    510   1.8     joerg 	return 1;
    511   1.1  christos }
    512   1.1  christos 
    513  1.10     joerg static int SHA224_256_Final(uint8_t digest[], SHA256_CTX* context, size_t len) {
    514  1.10     joerg 	uint32_t	*d = (void *)digest;
    515   1.1  christos 	unsigned int	usedspace;
    516   1.9     joerg 	size_t i;
    517   1.1  christos 
    518   1.1  christos 	/* If no digest buffer is passed, we don't bother doing this: */
    519  1.10     joerg 	if (digest != NULL) {
    520   1.1  christos 		usedspace = (unsigned int)((context->bitcount >> 3) % SHA256_BLOCK_LENGTH);
    521   1.9     joerg 		context->bitcount = htobe64(context->bitcount);
    522   1.1  christos 		if (usedspace > 0) {
    523   1.1  christos 			/* Begin padding with a 1 bit: */
    524   1.1  christos 			context->buffer[usedspace++] = 0x80;
    525   1.1  christos 
    526   1.1  christos 			if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
    527   1.1  christos 				/* Set-up for the last transform: */
    528   1.1  christos 				memset(&context->buffer[usedspace], 0, (size_t)(SHA256_SHORT_BLOCK_LENGTH - usedspace));
    529   1.1  christos 			} else {
    530   1.1  christos 				if (usedspace < SHA256_BLOCK_LENGTH) {
    531   1.1  christos 					memset(&context->buffer[usedspace], 0, (size_t)(SHA256_BLOCK_LENGTH - usedspace));
    532   1.1  christos 				}
    533   1.1  christos 				/* Do second-to-last transform: */
    534  1.10     joerg 				SHA256_Transform(context, (uint32_t *)(void *)context->buffer);
    535   1.1  christos 
    536   1.1  christos 				/* And set-up for the last transform: */
    537   1.1  christos 				memset(context->buffer, 0, (size_t)(SHA256_SHORT_BLOCK_LENGTH));
    538   1.1  christos 			}
    539   1.1  christos 		} else {
    540   1.1  christos 			/* Set-up for the last transform: */
    541   1.1  christos 			memset(context->buffer, 0, (size_t)(SHA256_SHORT_BLOCK_LENGTH));
    542   1.1  christos 
    543   1.1  christos 			/* Begin padding with a 1 bit: */
    544   1.1  christos 			*context->buffer = 0x80;
    545   1.1  christos 		}
    546   1.1  christos 		/* Set the bit count: */
    547  1.10     joerg 		*(uint64_t *)(void *)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
    548   1.1  christos 
    549   1.1  christos 		/* Final transform: */
    550  1.10     joerg 		SHA256_Transform(context, (uint32_t *)(void *)context->buffer);
    551   1.1  christos 
    552   1.9     joerg 		for (i = 0; i < len / 4; i++)
    553   1.9     joerg 			d[i] = htobe32(context->state[i]);
    554   1.1  christos 	}
    555   1.1  christos 
    556   1.1  christos 	/* Clean up state data: */
    557   1.1  christos 	memset(context, 0, sizeof(*context));
    558   1.1  christos 	usedspace = 0;
    559   1.8     joerg 
    560   1.8     joerg 	return 1;
    561   1.8     joerg }
    562   1.8     joerg 
    563  1.10     joerg int SHA224_Final(uint8_t digest[], SHA256_CTX* context) {
    564   1.8     joerg 	return SHA224_256_Final(digest, context, SHA224_DIGEST_LENGTH);
    565   1.8     joerg }
    566   1.8     joerg 
    567  1.10     joerg int SHA256_Final(uint8_t digest[], SHA256_CTX* context) {
    568   1.8     joerg 	return SHA224_256_Final(digest, context, SHA256_DIGEST_LENGTH);
    569   1.1  christos }
    570   1.1  christos 
    571   1.1  christos /*** SHA-512: *********************************************************/
    572   1.8     joerg int SHA512_Init(SHA512_CTX* context) {
    573  1.10     joerg 	if (context == NULL)
    574   1.8     joerg 		return 1;
    575  1.10     joerg 
    576   1.1  christos 	memcpy(context->state, sha512_initial_hash_value, (size_t)(SHA512_DIGEST_LENGTH));
    577   1.1  christos 	memset(context->buffer, 0, (size_t)(SHA512_BLOCK_LENGTH));
    578   1.1  christos 	context->bitcount[0] = context->bitcount[1] =  0;
    579   1.8     joerg 
    580   1.8     joerg 	return 1;
    581   1.1  christos }
    582   1.1  christos 
    583   1.1  christos #ifdef SHA2_UNROLL_TRANSFORM
    584   1.1  christos 
    585   1.1  christos /* Unrolled SHA-512 round macros: */
    586   1.1  christos #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
    587   1.9     joerg 	W512[j] = be64toh(*data);		\
    588   1.9     joerg 	++data;					\
    589   1.1  christos 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
    590   1.1  christos              K512[j] + W512[j]; \
    591   1.1  christos 	(d) += T1, \
    592   1.1  christos 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
    593   1.1  christos 	j++
    594   1.1  christos 
    595   1.1  christos #define ROUND512(a,b,c,d,e,f,g,h)	\
    596   1.1  christos 	s0 = W512[(j+1)&0x0f]; \
    597   1.1  christos 	s0 = sigma0_512(s0); \
    598   1.1  christos 	s1 = W512[(j+14)&0x0f]; \
    599   1.1  christos 	s1 = sigma1_512(s1); \
    600   1.1  christos 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
    601   1.1  christos              (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
    602   1.1  christos 	(d) += T1; \
    603   1.1  christos 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
    604   1.1  christos 	j++
    605   1.1  christos 
    606  1.10     joerg void SHA512_Transform(SHA512_CTX* context, const uint64_t* data) {
    607  1.10     joerg 	uint64_t	a, b, c, d, e, f, g, h, s0, s1;
    608  1.10     joerg 	uint64_t	T1, *W512 = (uint64_t *)context->buffer;
    609   1.1  christos 	int		j;
    610   1.1  christos 
    611   1.1  christos 	/* Initialize registers with the prev. intermediate value */
    612   1.1  christos 	a = context->state[0];
    613   1.1  christos 	b = context->state[1];
    614   1.1  christos 	c = context->state[2];
    615   1.1  christos 	d = context->state[3];
    616   1.1  christos 	e = context->state[4];
    617   1.1  christos 	f = context->state[5];
    618   1.1  christos 	g = context->state[6];
    619   1.1  christos 	h = context->state[7];
    620   1.1  christos 
    621   1.1  christos 	j = 0;
    622   1.1  christos 	do {
    623   1.1  christos 		ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
    624   1.1  christos 		ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
    625   1.1  christos 		ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
    626   1.1  christos 		ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
    627   1.1  christos 		ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
    628   1.1  christos 		ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
    629   1.1  christos 		ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
    630   1.1  christos 		ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
    631   1.1  christos 	} while (j < 16);
    632   1.1  christos 
    633   1.1  christos 	/* Now for the remaining rounds up to 79: */
    634   1.1  christos 	do {
    635   1.1  christos 		ROUND512(a,b,c,d,e,f,g,h);
    636   1.1  christos 		ROUND512(h,a,b,c,d,e,f,g);
    637   1.1  christos 		ROUND512(g,h,a,b,c,d,e,f);
    638   1.1  christos 		ROUND512(f,g,h,a,b,c,d,e);
    639   1.1  christos 		ROUND512(e,f,g,h,a,b,c,d);
    640   1.1  christos 		ROUND512(d,e,f,g,h,a,b,c);
    641   1.1  christos 		ROUND512(c,d,e,f,g,h,a,b);
    642   1.1  christos 		ROUND512(b,c,d,e,f,g,h,a);
    643   1.1  christos 	} while (j < 80);
    644   1.1  christos 
    645   1.1  christos 	/* Compute the current intermediate hash value */
    646   1.1  christos 	context->state[0] += a;
    647   1.1  christos 	context->state[1] += b;
    648   1.1  christos 	context->state[2] += c;
    649   1.1  christos 	context->state[3] += d;
    650   1.1  christos 	context->state[4] += e;
    651   1.1  christos 	context->state[5] += f;
    652   1.1  christos 	context->state[6] += g;
    653   1.1  christos 	context->state[7] += h;
    654   1.1  christos 
    655   1.1  christos 	/* Clean up */
    656   1.1  christos 	a = b = c = d = e = f = g = h = T1 = 0;
    657   1.1  christos }
    658   1.1  christos 
    659   1.1  christos #else /* SHA2_UNROLL_TRANSFORM */
    660   1.1  christos 
    661  1.10     joerg void SHA512_Transform(SHA512_CTX* context, const uint64_t* data) {
    662  1.10     joerg 	uint64_t	a, b, c, d, e, f, g, h, s0, s1;
    663  1.10     joerg 	uint64_t	T1, T2, *W512 = (void *)context->buffer;
    664   1.1  christos 	int		j;
    665   1.1  christos 
    666   1.1  christos 	/* Initialize registers with the prev. intermediate value */
    667   1.1  christos 	a = context->state[0];
    668   1.1  christos 	b = context->state[1];
    669   1.1  christos 	c = context->state[2];
    670   1.1  christos 	d = context->state[3];
    671   1.1  christos 	e = context->state[4];
    672   1.1  christos 	f = context->state[5];
    673   1.1  christos 	g = context->state[6];
    674   1.1  christos 	h = context->state[7];
    675   1.1  christos 
    676   1.1  christos 	j = 0;
    677   1.1  christos 	do {
    678   1.9     joerg 		W512[j] = be64toh(*data);
    679   1.9     joerg 		++data;
    680   1.1  christos 		/* Apply the SHA-512 compression function to update a..h */
    681   1.1  christos 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
    682   1.1  christos 		T2 = Sigma0_512(a) + Maj(a, b, c);
    683   1.1  christos 		h = g;
    684   1.1  christos 		g = f;
    685   1.1  christos 		f = e;
    686   1.1  christos 		e = d + T1;
    687   1.1  christos 		d = c;
    688   1.1  christos 		c = b;
    689   1.1  christos 		b = a;
    690   1.1  christos 		a = T1 + T2;
    691   1.1  christos 
    692   1.1  christos 		j++;
    693   1.1  christos 	} while (j < 16);
    694   1.1  christos 
    695   1.1  christos 	do {
    696   1.1  christos 		/* Part of the message block expansion: */
    697   1.1  christos 		s0 = W512[(j+1)&0x0f];
    698   1.1  christos 		s0 = sigma0_512(s0);
    699   1.1  christos 		s1 = W512[(j+14)&0x0f];
    700   1.1  christos 		s1 =  sigma1_512(s1);
    701   1.1  christos 
    702   1.1  christos 		/* Apply the SHA-512 compression function to update a..h */
    703   1.1  christos 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
    704   1.1  christos 		     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
    705   1.1  christos 		T2 = Sigma0_512(a) + Maj(a, b, c);
    706   1.1  christos 		h = g;
    707   1.1  christos 		g = f;
    708   1.1  christos 		f = e;
    709   1.1  christos 		e = d + T1;
    710   1.1  christos 		d = c;
    711   1.1  christos 		c = b;
    712   1.1  christos 		b = a;
    713   1.1  christos 		a = T1 + T2;
    714   1.1  christos 
    715   1.1  christos 		j++;
    716   1.1  christos 	} while (j < 80);
    717   1.1  christos 
    718   1.1  christos 	/* Compute the current intermediate hash value */
    719   1.1  christos 	context->state[0] += a;
    720   1.1  christos 	context->state[1] += b;
    721   1.1  christos 	context->state[2] += c;
    722   1.1  christos 	context->state[3] += d;
    723   1.1  christos 	context->state[4] += e;
    724   1.1  christos 	context->state[5] += f;
    725   1.1  christos 	context->state[6] += g;
    726   1.1  christos 	context->state[7] += h;
    727   1.1  christos 
    728   1.1  christos 	/* Clean up */
    729   1.1  christos 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
    730   1.1  christos }
    731   1.1  christos 
    732   1.1  christos #endif /* SHA2_UNROLL_TRANSFORM */
    733   1.1  christos 
    734  1.10     joerg int SHA512_Update(SHA512_CTX* context, const uint8_t *data, size_t len) {
    735   1.1  christos 	unsigned int	freespace, usedspace;
    736   1.1  christos 
    737   1.1  christos 	if (len == 0) {
    738   1.1  christos 		/* Calling with no data is valid - we do nothing */
    739   1.8     joerg 		return 1;
    740   1.1  christos 	}
    741   1.1  christos 
    742   1.1  christos 	usedspace = (unsigned int)((context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH);
    743   1.1  christos 	if (usedspace > 0) {
    744   1.1  christos 		/* Calculate how much free space is available in the buffer */
    745   1.1  christos 		freespace = SHA512_BLOCK_LENGTH - usedspace;
    746   1.1  christos 
    747   1.1  christos 		if (len >= freespace) {
    748   1.1  christos 			/* Fill the buffer completely and process it */
    749   1.1  christos 			memcpy(&context->buffer[usedspace], data, (size_t)(freespace));
    750   1.1  christos 			ADDINC128(context->bitcount, freespace << 3);
    751   1.1  christos 			len -= freespace;
    752   1.1  christos 			data += freespace;
    753  1.10     joerg 			SHA512_Transform(context, (uint64_t *)(void *)context->buffer);
    754   1.1  christos 		} else {
    755   1.1  christos 			/* The buffer is not yet full */
    756   1.1  christos 			memcpy(&context->buffer[usedspace], data, len);
    757   1.1  christos 			ADDINC128(context->bitcount, len << 3);
    758   1.1  christos 			/* Clean up: */
    759   1.1  christos 			usedspace = freespace = 0;
    760   1.8     joerg 			return 1;
    761   1.1  christos 		}
    762   1.1  christos 	}
    763   1.5     joerg 	/*
    764   1.5     joerg 	 * Process as many complete blocks as possible.
    765   1.5     joerg 	 *
    766   1.5     joerg 	 * Check alignment of the data pointer. If it is 64bit aligned,
    767   1.5     joerg 	 * SHA512_Transform can be called directly on the data stream,
    768   1.5     joerg 	 * otherwise enforce the alignment by copy into the buffer.
    769   1.5     joerg 	 */
    770   1.5     joerg 	if ((uintptr_t)data % 8 == 0) {
    771   1.5     joerg 		while (len >= SHA512_BLOCK_LENGTH) {
    772   1.5     joerg 			SHA512_Transform(context,
    773  1.10     joerg 			    (const uint64_t*)(const void *)data);
    774   1.5     joerg 			ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
    775   1.5     joerg 			len -= SHA512_BLOCK_LENGTH;
    776   1.5     joerg 			data += SHA512_BLOCK_LENGTH;
    777   1.5     joerg 		}
    778   1.5     joerg 	} else {
    779   1.5     joerg 		while (len >= SHA512_BLOCK_LENGTH) {
    780   1.5     joerg 			memcpy(context->buffer, data, SHA512_BLOCK_LENGTH);
    781   1.5     joerg 			SHA512_Transform(context,
    782   1.6  drochner 			    (const void *)context->buffer);
    783   1.5     joerg 			ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
    784   1.5     joerg 			len -= SHA512_BLOCK_LENGTH;
    785   1.5     joerg 			data += SHA512_BLOCK_LENGTH;
    786   1.5     joerg 		}
    787   1.1  christos 	}
    788   1.1  christos 	if (len > 0) {
    789   1.1  christos 		/* There's left-overs, so save 'em */
    790   1.1  christos 		memcpy(context->buffer, data, len);
    791   1.1  christos 		ADDINC128(context->bitcount, len << 3);
    792   1.1  christos 	}
    793   1.1  christos 	/* Clean up: */
    794   1.1  christos 	usedspace = freespace = 0;
    795   1.8     joerg 
    796   1.8     joerg 	return 1;
    797   1.1  christos }
    798   1.1  christos 
    799   1.4  christos static void SHA512_Last(SHA512_CTX* context) {
    800   1.1  christos 	unsigned int	usedspace;
    801   1.1  christos 
    802   1.1  christos 	usedspace = (unsigned int)((context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH);
    803   1.9     joerg 	context->bitcount[0] = htobe64(context->bitcount[0]);
    804   1.9     joerg 	context->bitcount[1] = htobe64(context->bitcount[1]);
    805   1.1  christos 	if (usedspace > 0) {
    806   1.1  christos 		/* Begin padding with a 1 bit: */
    807   1.1  christos 		context->buffer[usedspace++] = 0x80;
    808   1.1  christos 
    809   1.1  christos 		if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
    810   1.1  christos 			/* Set-up for the last transform: */
    811   1.1  christos 			memset(&context->buffer[usedspace], 0, (size_t)(SHA512_SHORT_BLOCK_LENGTH - usedspace));
    812   1.1  christos 		} else {
    813   1.1  christos 			if (usedspace < SHA512_BLOCK_LENGTH) {
    814   1.1  christos 				memset(&context->buffer[usedspace], 0, (size_t)(SHA512_BLOCK_LENGTH - usedspace));
    815   1.1  christos 			}
    816   1.1  christos 			/* Do second-to-last transform: */
    817  1.10     joerg 			SHA512_Transform(context, (uint64_t *)(void *)context->buffer);
    818   1.1  christos 
    819   1.1  christos 			/* And set-up for the last transform: */
    820   1.1  christos 			memset(context->buffer, 0, (size_t)(SHA512_BLOCK_LENGTH - 2));
    821   1.1  christos 		}
    822   1.1  christos 	} else {
    823   1.1  christos 		/* Prepare for final transform: */
    824   1.1  christos 		memset(context->buffer, 0, (size_t)(SHA512_SHORT_BLOCK_LENGTH));
    825   1.1  christos 
    826   1.1  christos 		/* Begin padding with a 1 bit: */
    827   1.1  christos 		*context->buffer = 0x80;
    828   1.1  christos 	}
    829   1.1  christos 	/* Store the length of input data (in bits): */
    830  1.10     joerg 	*(uint64_t *)(void *)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
    831  1.10     joerg 	*(uint64_t *)(void *)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
    832   1.1  christos 
    833   1.1  christos 	/* Final transform: */
    834  1.10     joerg 	SHA512_Transform(context, (uint64_t *)(void *)context->buffer);
    835   1.1  christos }
    836   1.1  christos 
    837  1.10     joerg int SHA512_Final(uint8_t digest[], SHA512_CTX* context) {
    838  1.10     joerg 	uint64_t	*d = (void *)digest;
    839   1.9     joerg 	size_t i;
    840   1.1  christos 
    841   1.1  christos 	/* If no digest buffer is passed, we don't bother doing this: */
    842  1.10     joerg 	if (digest != NULL) {
    843   1.1  christos 		SHA512_Last(context);
    844   1.1  christos 
    845   1.1  christos 		/* Save the hash data for output: */
    846   1.9     joerg 		for (i = 0; i < 8; ++i)
    847   1.9     joerg 			d[i] = htobe64(context->state[i]);
    848   1.1  christos 	}
    849   1.1  christos 
    850   1.1  christos 	/* Zero out state data */
    851   1.1  christos 	memset(context, 0, sizeof(*context));
    852   1.8     joerg 
    853   1.8     joerg 	return 1;
    854   1.1  christos }
    855   1.1  christos 
    856   1.1  christos /*** SHA-384: *********************************************************/
    857   1.8     joerg int SHA384_Init(SHA384_CTX* context) {
    858  1.10     joerg 	if (context == NULL) {
    859   1.8     joerg 		return 1;
    860   1.1  christos 	}
    861   1.1  christos 	memcpy(context->state, sha384_initial_hash_value, (size_t)(SHA512_DIGEST_LENGTH));
    862   1.1  christos 	memset(context->buffer, 0, (size_t)(SHA384_BLOCK_LENGTH));
    863   1.1  christos 	context->bitcount[0] = context->bitcount[1] = 0;
    864   1.8     joerg 
    865   1.8     joerg 	return 1;
    866   1.1  christos }
    867   1.1  christos 
    868  1.10     joerg int SHA384_Update(SHA384_CTX* context, const uint8_t* data, size_t len) {
    869   1.8     joerg 	return SHA512_Update((SHA512_CTX*)context, data, len);
    870   1.1  christos }
    871   1.1  christos 
    872  1.10     joerg void SHA384_Transform(SHA512_CTX* context, const uint64_t* data) {
    873   1.1  christos 	SHA512_Transform((SHA512_CTX*)context, data);
    874   1.1  christos }
    875   1.1  christos 
    876  1.10     joerg int SHA384_Final(uint8_t digest[], SHA384_CTX* context) {
    877  1.10     joerg 	uint64_t	*d = (void *)digest;
    878   1.9     joerg 	size_t i;
    879   1.1  christos 
    880   1.1  christos 	/* If no digest buffer is passed, we don't bother doing this: */
    881  1.10     joerg 	if (digest != NULL) {
    882   1.1  christos 		SHA512_Last((SHA512_CTX*)context);
    883   1.1  christos 
    884   1.1  christos 		/* Save the hash data for output: */
    885   1.9     joerg 		for (i = 0; i < 6; ++i)
    886   1.9     joerg 			d[i] = be64toh(context->state[i]);
    887   1.1  christos 	}
    888   1.1  christos 
    889   1.1  christos 	/* Zero out state data */
    890   1.1  christos 	memset(context, 0, sizeof(*context));
    891   1.8     joerg 
    892   1.8     joerg 	return 1;
    893   1.1  christos }
    894