sha2.c revision 1.10 1 1.10 joerg /* $NetBSD: sha2.c,v 1.10 2009/06/11 19:02:04 joerg Exp $ */
2 1.1 christos /* $KAME: sha2.c,v 1.9 2003/07/20 00:28:38 itojun Exp $ */
3 1.1 christos
4 1.1 christos /*
5 1.1 christos * sha2.c
6 1.1 christos *
7 1.1 christos * Version 1.0.0beta1
8 1.1 christos *
9 1.1 christos * Written by Aaron D. Gifford <me (at) aarongifford.com>
10 1.1 christos *
11 1.1 christos * Copyright 2000 Aaron D. Gifford. All rights reserved.
12 1.1 christos *
13 1.1 christos * Redistribution and use in source and binary forms, with or without
14 1.1 christos * modification, are permitted provided that the following conditions
15 1.1 christos * are met:
16 1.1 christos * 1. Redistributions of source code must retain the above copyright
17 1.1 christos * notice, this list of conditions and the following disclaimer.
18 1.1 christos * 2. Redistributions in binary form must reproduce the above copyright
19 1.1 christos * notice, this list of conditions and the following disclaimer in the
20 1.1 christos * documentation and/or other materials provided with the distribution.
21 1.1 christos * 3. Neither the name of the copyright holder nor the names of contributors
22 1.1 christos * may be used to endorse or promote products derived from this software
23 1.1 christos * without specific prior written permission.
24 1.1 christos *
25 1.1 christos * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
26 1.1 christos * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 1.1 christos * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 1.1 christos * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE
29 1.1 christos * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 1.1 christos * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 1.1 christos * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 1.1 christos * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 1.1 christos * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 1.1 christos * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 1.1 christos * SUCH DAMAGE.
36 1.1 christos *
37 1.1 christos */
38 1.1 christos
39 1.1 christos #include <sys/cdefs.h>
40 1.1 christos
41 1.1 christos #if defined(_KERNEL) || defined(_STANDALONE)
42 1.10 joerg __KERNEL_RCSID(0, "$NetBSD: sha2.c,v 1.10 2009/06/11 19:02:04 joerg Exp $");
43 1.1 christos
44 1.1 christos #include <lib/libkern/libkern.h>
45 1.1 christos
46 1.1 christos #else
47 1.1 christos
48 1.1 christos #if defined(LIBC_SCCS) && !defined(lint)
49 1.10 joerg __RCSID("$NetBSD: sha2.c,v 1.10 2009/06/11 19:02:04 joerg Exp $");
50 1.1 christos #endif /* LIBC_SCCS and not lint */
51 1.1 christos
52 1.1 christos #include "namespace.h"
53 1.1 christos #include <string.h>
54 1.1 christos
55 1.1 christos #endif
56 1.1 christos
57 1.1 christos #include <sys/types.h>
58 1.1 christos #include <sys/sha2.h>
59 1.9 joerg #include <sys/endian.h>
60 1.1 christos
61 1.1 christos /*** SHA-256/384/512 Various Length Definitions ***********************/
62 1.1 christos /* NOTE: Most of these are in sha2.h */
63 1.1 christos #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
64 1.1 christos #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
65 1.1 christos #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
66 1.1 christos
67 1.1 christos /*
68 1.1 christos * Macro for incrementally adding the unsigned 64-bit integer n to the
69 1.1 christos * unsigned 128-bit integer (represented using a two-element array of
70 1.1 christos * 64-bit words):
71 1.1 christos */
72 1.1 christos #define ADDINC128(w,n) { \
73 1.10 joerg (w)[0] += (uint64_t)(n); \
74 1.1 christos if ((w)[0] < (n)) { \
75 1.1 christos (w)[1]++; \
76 1.1 christos } \
77 1.1 christos }
78 1.1 christos
79 1.1 christos /*** THE SIX LOGICAL FUNCTIONS ****************************************/
80 1.1 christos /*
81 1.1 christos * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
82 1.1 christos *
83 1.1 christos * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
84 1.1 christos * S is a ROTATION) because the SHA-256/384/512 description document
85 1.1 christos * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
86 1.1 christos * same "backwards" definition.
87 1.1 christos */
88 1.1 christos /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
89 1.1 christos #define R(b,x) ((x) >> (b))
90 1.1 christos /* 32-bit Rotate-right (used in SHA-256): */
91 1.1 christos #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
92 1.1 christos /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
93 1.1 christos #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
94 1.1 christos
95 1.1 christos /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
96 1.1 christos #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
97 1.1 christos #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
98 1.1 christos
99 1.1 christos /* Four of six logical functions used in SHA-256: */
100 1.1 christos #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
101 1.1 christos #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
102 1.1 christos #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
103 1.1 christos #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
104 1.1 christos
105 1.1 christos /* Four of six logical functions used in SHA-384 and SHA-512: */
106 1.1 christos #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
107 1.1 christos #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
108 1.1 christos #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
109 1.1 christos #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
110 1.1 christos
111 1.1 christos /*** INTERNAL FUNCTION PROTOTYPES *************************************/
112 1.1 christos /* NOTE: These should not be accessed directly from outside this
113 1.1 christos * library -- they are intended for private internal visibility/use
114 1.1 christos * only.
115 1.1 christos */
116 1.4 christos static void SHA512_Last(SHA512_CTX*);
117 1.10 joerg void SHA224_Transform(SHA224_CTX*, const uint64_t*);
118 1.10 joerg void SHA256_Transform(SHA256_CTX*, const uint32_t*);
119 1.10 joerg void SHA384_Transform(SHA384_CTX*, const uint64_t*);
120 1.10 joerg void SHA512_Transform(SHA512_CTX*, const uint64_t*);
121 1.1 christos
122 1.1 christos
123 1.1 christos /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
124 1.1 christos /* Hash constant words K for SHA-256: */
125 1.10 joerg static const uint32_t K256[64] = {
126 1.1 christos 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
127 1.1 christos 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
128 1.1 christos 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
129 1.1 christos 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
130 1.1 christos 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
131 1.1 christos 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
132 1.1 christos 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
133 1.1 christos 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
134 1.1 christos 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
135 1.1 christos 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
136 1.1 christos 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
137 1.1 christos 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
138 1.1 christos 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
139 1.1 christos 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
140 1.1 christos 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
141 1.1 christos 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
142 1.1 christos };
143 1.1 christos
144 1.8 joerg /* Initial hash value H for SHA-224: */
145 1.10 joerg static const uint32_t sha224_initial_hash_value[8] = {
146 1.8 joerg 0xc1059ed8UL,
147 1.8 joerg 0x367cd507UL,
148 1.8 joerg 0x3070dd17UL,
149 1.8 joerg 0xf70e5939UL,
150 1.8 joerg 0xffc00b31UL,
151 1.8 joerg 0x68581511UL,
152 1.8 joerg 0x64f98fa7UL,
153 1.8 joerg 0xbefa4fa4UL
154 1.8 joerg };
155 1.8 joerg
156 1.1 christos /* Initial hash value H for SHA-256: */
157 1.10 joerg static const uint32_t sha256_initial_hash_value[8] = {
158 1.1 christos 0x6a09e667UL,
159 1.1 christos 0xbb67ae85UL,
160 1.1 christos 0x3c6ef372UL,
161 1.1 christos 0xa54ff53aUL,
162 1.1 christos 0x510e527fUL,
163 1.1 christos 0x9b05688cUL,
164 1.1 christos 0x1f83d9abUL,
165 1.1 christos 0x5be0cd19UL
166 1.1 christos };
167 1.1 christos
168 1.1 christos /* Hash constant words K for SHA-384 and SHA-512: */
169 1.10 joerg static const uint64_t K512[80] = {
170 1.1 christos 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
171 1.1 christos 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
172 1.1 christos 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
173 1.1 christos 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
174 1.1 christos 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
175 1.1 christos 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
176 1.1 christos 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
177 1.1 christos 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
178 1.1 christos 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
179 1.1 christos 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
180 1.1 christos 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
181 1.1 christos 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
182 1.1 christos 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
183 1.1 christos 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
184 1.1 christos 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
185 1.1 christos 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
186 1.1 christos 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
187 1.1 christos 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
188 1.1 christos 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
189 1.1 christos 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
190 1.1 christos 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
191 1.1 christos 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
192 1.1 christos 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
193 1.1 christos 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
194 1.1 christos 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
195 1.1 christos 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
196 1.1 christos 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
197 1.1 christos 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
198 1.1 christos 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
199 1.1 christos 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
200 1.1 christos 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
201 1.1 christos 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
202 1.1 christos 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
203 1.1 christos 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
204 1.1 christos 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
205 1.1 christos 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
206 1.1 christos 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
207 1.1 christos 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
208 1.1 christos 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
209 1.1 christos 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
210 1.1 christos };
211 1.1 christos
212 1.1 christos /* Initial hash value H for SHA-384 */
213 1.10 joerg static const uint64_t sha384_initial_hash_value[8] = {
214 1.1 christos 0xcbbb9d5dc1059ed8ULL,
215 1.1 christos 0x629a292a367cd507ULL,
216 1.1 christos 0x9159015a3070dd17ULL,
217 1.1 christos 0x152fecd8f70e5939ULL,
218 1.1 christos 0x67332667ffc00b31ULL,
219 1.1 christos 0x8eb44a8768581511ULL,
220 1.1 christos 0xdb0c2e0d64f98fa7ULL,
221 1.1 christos 0x47b5481dbefa4fa4ULL
222 1.1 christos };
223 1.1 christos
224 1.1 christos /* Initial hash value H for SHA-512 */
225 1.10 joerg static const uint64_t sha512_initial_hash_value[8] = {
226 1.1 christos 0x6a09e667f3bcc908ULL,
227 1.1 christos 0xbb67ae8584caa73bULL,
228 1.1 christos 0x3c6ef372fe94f82bULL,
229 1.1 christos 0xa54ff53a5f1d36f1ULL,
230 1.1 christos 0x510e527fade682d1ULL,
231 1.1 christos 0x9b05688c2b3e6c1fULL,
232 1.1 christos 0x1f83d9abfb41bd6bULL,
233 1.1 christos 0x5be0cd19137e2179ULL
234 1.1 christos };
235 1.1 christos
236 1.1 christos #if !defined(_KERNEL) && defined(__weak_alias)
237 1.8 joerg __weak_alias(SHA224_Init,_SHA224_Init)
238 1.8 joerg __weak_alias(SHA224_Update,_SHA224_Update)
239 1.8 joerg __weak_alias(SHA224_Final,_SHA224_Final)
240 1.8 joerg __weak_alias(SHA224_Transform,_SHA224_Transform)
241 1.8 joerg
242 1.1 christos __weak_alias(SHA256_Init,_SHA256_Init)
243 1.1 christos __weak_alias(SHA256_Update,_SHA256_Update)
244 1.1 christos __weak_alias(SHA256_Final,_SHA256_Final)
245 1.1 christos __weak_alias(SHA256_Transform,_SHA256_Transform)
246 1.1 christos
247 1.1 christos __weak_alias(SHA384_Init,_SHA384_Init)
248 1.1 christos __weak_alias(SHA384_Update,_SHA384_Update)
249 1.1 christos __weak_alias(SHA384_Final,_SHA384_Final)
250 1.1 christos __weak_alias(SHA384_Transform,_SHA384_Transform)
251 1.1 christos
252 1.1 christos __weak_alias(SHA512_Init,_SHA512_Init)
253 1.1 christos __weak_alias(SHA512_Update,_SHA512_Update)
254 1.1 christos __weak_alias(SHA512_Final,_SHA512_Final)
255 1.1 christos __weak_alias(SHA512_Transform,_SHA512_Transform)
256 1.1 christos #endif
257 1.1 christos
258 1.8 joerg /*** SHA-224: *********************************************************/
259 1.8 joerg int SHA224_Init(SHA256_CTX* context) {
260 1.8 joerg if (context == (SHA256_CTX*)0) {
261 1.8 joerg return 1;
262 1.8 joerg }
263 1.8 joerg memcpy(context->state, sha224_initial_hash_value, (size_t)(SHA256_DIGEST_LENGTH));
264 1.8 joerg memset(context->buffer, 0, (size_t)(SHA256_BLOCK_LENGTH));
265 1.8 joerg context->bitcount = 0;
266 1.8 joerg
267 1.8 joerg return 1;
268 1.8 joerg }
269 1.8 joerg
270 1.1 christos /*** SHA-256: *********************************************************/
271 1.8 joerg int SHA256_Init(SHA256_CTX* context) {
272 1.1 christos if (context == (SHA256_CTX*)0) {
273 1.8 joerg return 1;
274 1.1 christos }
275 1.1 christos memcpy(context->state, sha256_initial_hash_value, (size_t)(SHA256_DIGEST_LENGTH));
276 1.1 christos memset(context->buffer, 0, (size_t)(SHA256_BLOCK_LENGTH));
277 1.1 christos context->bitcount = 0;
278 1.8 joerg
279 1.8 joerg return 1;
280 1.8 joerg }
281 1.8 joerg
282 1.10 joerg void SHA224_Transform(SHA224_CTX* context, const uint64_t* data) {
283 1.8 joerg SHA224_Transform((SHA256_CTX*)context, data);
284 1.1 christos }
285 1.1 christos
286 1.1 christos #ifdef SHA2_UNROLL_TRANSFORM
287 1.1 christos
288 1.1 christos /* Unrolled SHA-256 round macros: */
289 1.1 christos
290 1.1 christos #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
291 1.9 joerg W256[j] = be32toh(*data); \
292 1.9 joerg ++data; \
293 1.1 christos T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
294 1.1 christos K256[j] + W256[j]; \
295 1.1 christos (d) += T1; \
296 1.1 christos (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
297 1.1 christos j++
298 1.1 christos
299 1.1 christos #define ROUND256(a,b,c,d,e,f,g,h) \
300 1.1 christos s0 = W256[(j+1)&0x0f]; \
301 1.1 christos s0 = sigma0_256(s0); \
302 1.1 christos s1 = W256[(j+14)&0x0f]; \
303 1.1 christos s1 = sigma1_256(s1); \
304 1.1 christos T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
305 1.1 christos (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
306 1.1 christos (d) += T1; \
307 1.1 christos (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
308 1.1 christos j++
309 1.1 christos
310 1.10 joerg void SHA256_Transform(SHA256_CTX* context, const uint32_t* data) {
311 1.10 joerg uint32_t a, b, c, d, e, f, g, h, s0, s1;
312 1.10 joerg uint32_t T1, *W256;
313 1.1 christos int j;
314 1.1 christos
315 1.10 joerg W256 = (uint32_t *)context->buffer;
316 1.1 christos
317 1.1 christos /* Initialize registers with the prev. intermediate value */
318 1.1 christos a = context->state[0];
319 1.1 christos b = context->state[1];
320 1.1 christos c = context->state[2];
321 1.1 christos d = context->state[3];
322 1.1 christos e = context->state[4];
323 1.1 christos f = context->state[5];
324 1.1 christos g = context->state[6];
325 1.1 christos h = context->state[7];
326 1.1 christos
327 1.1 christos j = 0;
328 1.1 christos do {
329 1.1 christos /* Rounds 0 to 15 (unrolled): */
330 1.1 christos ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
331 1.1 christos ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
332 1.1 christos ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
333 1.1 christos ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
334 1.1 christos ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
335 1.1 christos ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
336 1.1 christos ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
337 1.1 christos ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
338 1.1 christos } while (j < 16);
339 1.1 christos
340 1.1 christos /* Now for the remaining rounds to 64: */
341 1.1 christos do {
342 1.1 christos ROUND256(a,b,c,d,e,f,g,h);
343 1.1 christos ROUND256(h,a,b,c,d,e,f,g);
344 1.1 christos ROUND256(g,h,a,b,c,d,e,f);
345 1.1 christos ROUND256(f,g,h,a,b,c,d,e);
346 1.1 christos ROUND256(e,f,g,h,a,b,c,d);
347 1.1 christos ROUND256(d,e,f,g,h,a,b,c);
348 1.1 christos ROUND256(c,d,e,f,g,h,a,b);
349 1.1 christos ROUND256(b,c,d,e,f,g,h,a);
350 1.1 christos } while (j < 64);
351 1.1 christos
352 1.1 christos /* Compute the current intermediate hash value */
353 1.1 christos context->state[0] += a;
354 1.1 christos context->state[1] += b;
355 1.1 christos context->state[2] += c;
356 1.1 christos context->state[3] += d;
357 1.1 christos context->state[4] += e;
358 1.1 christos context->state[5] += f;
359 1.1 christos context->state[6] += g;
360 1.1 christos context->state[7] += h;
361 1.1 christos
362 1.1 christos /* Clean up */
363 1.1 christos a = b = c = d = e = f = g = h = T1 = 0;
364 1.1 christos }
365 1.1 christos
366 1.1 christos #else /* SHA2_UNROLL_TRANSFORM */
367 1.1 christos
368 1.10 joerg void SHA256_Transform(SHA256_CTX* context, const uint32_t* data) {
369 1.10 joerg uint32_t a, b, c, d, e, f, g, h, s0, s1;
370 1.10 joerg uint32_t T1, T2, *W256;
371 1.1 christos int j;
372 1.1 christos
373 1.10 joerg W256 = (uint32_t *)(void *)context->buffer;
374 1.1 christos
375 1.1 christos /* Initialize registers with the prev. intermediate value */
376 1.1 christos a = context->state[0];
377 1.1 christos b = context->state[1];
378 1.1 christos c = context->state[2];
379 1.1 christos d = context->state[3];
380 1.1 christos e = context->state[4];
381 1.1 christos f = context->state[5];
382 1.1 christos g = context->state[6];
383 1.1 christos h = context->state[7];
384 1.1 christos
385 1.1 christos j = 0;
386 1.1 christos do {
387 1.9 joerg W256[j] = be32toh(*data);
388 1.9 joerg ++data;
389 1.1 christos /* Apply the SHA-256 compression function to update a..h */
390 1.1 christos T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
391 1.1 christos T2 = Sigma0_256(a) + Maj(a, b, c);
392 1.1 christos h = g;
393 1.1 christos g = f;
394 1.1 christos f = e;
395 1.1 christos e = d + T1;
396 1.1 christos d = c;
397 1.1 christos c = b;
398 1.1 christos b = a;
399 1.1 christos a = T1 + T2;
400 1.1 christos
401 1.1 christos j++;
402 1.1 christos } while (j < 16);
403 1.1 christos
404 1.1 christos do {
405 1.1 christos /* Part of the message block expansion: */
406 1.1 christos s0 = W256[(j+1)&0x0f];
407 1.1 christos s0 = sigma0_256(s0);
408 1.1 christos s1 = W256[(j+14)&0x0f];
409 1.1 christos s1 = sigma1_256(s1);
410 1.1 christos
411 1.1 christos /* Apply the SHA-256 compression function to update a..h */
412 1.1 christos T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
413 1.1 christos (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
414 1.1 christos T2 = Sigma0_256(a) + Maj(a, b, c);
415 1.1 christos h = g;
416 1.1 christos g = f;
417 1.1 christos f = e;
418 1.1 christos e = d + T1;
419 1.1 christos d = c;
420 1.1 christos c = b;
421 1.1 christos b = a;
422 1.1 christos a = T1 + T2;
423 1.1 christos
424 1.1 christos j++;
425 1.1 christos } while (j < 64);
426 1.1 christos
427 1.1 christos /* Compute the current intermediate hash value */
428 1.1 christos context->state[0] += a;
429 1.1 christos context->state[1] += b;
430 1.1 christos context->state[2] += c;
431 1.1 christos context->state[3] += d;
432 1.1 christos context->state[4] += e;
433 1.1 christos context->state[5] += f;
434 1.1 christos context->state[6] += g;
435 1.1 christos context->state[7] += h;
436 1.1 christos
437 1.1 christos /* Clean up */
438 1.1 christos a = b = c = d = e = f = g = h = T1 = T2 = 0;
439 1.1 christos }
440 1.1 christos
441 1.1 christos #endif /* SHA2_UNROLL_TRANSFORM */
442 1.1 christos
443 1.10 joerg int SHA224_Update(SHA256_CTX *context, const uint8_t *data, size_t len) {
444 1.8 joerg return SHA256_Update(context, data, len);
445 1.8 joerg }
446 1.8 joerg
447 1.10 joerg int SHA256_Update(SHA256_CTX* context, const uint8_t *data, size_t len) {
448 1.1 christos unsigned int freespace, usedspace;
449 1.1 christos
450 1.1 christos if (len == 0) {
451 1.1 christos /* Calling with no data is valid - we do nothing */
452 1.8 joerg return 1;
453 1.1 christos }
454 1.1 christos
455 1.1 christos usedspace = (unsigned int)((context->bitcount >> 3) %
456 1.1 christos SHA256_BLOCK_LENGTH);
457 1.1 christos if (usedspace > 0) {
458 1.1 christos /* Calculate how much free space is available in the buffer */
459 1.1 christos freespace = SHA256_BLOCK_LENGTH - usedspace;
460 1.1 christos
461 1.1 christos if (len >= freespace) {
462 1.1 christos /* Fill the buffer completely and process it */
463 1.1 christos memcpy(&context->buffer[usedspace], data, (size_t)(freespace));
464 1.1 christos context->bitcount += freespace << 3;
465 1.1 christos len -= freespace;
466 1.1 christos data += freespace;
467 1.10 joerg SHA256_Transform(context, (uint32_t *)(void *)context->buffer);
468 1.1 christos } else {
469 1.1 christos /* The buffer is not yet full */
470 1.1 christos memcpy(&context->buffer[usedspace], data, len);
471 1.1 christos context->bitcount += len << 3;
472 1.1 christos /* Clean up: */
473 1.1 christos usedspace = freespace = 0;
474 1.8 joerg return 1;
475 1.1 christos }
476 1.1 christos }
477 1.5 joerg /*
478 1.5 joerg * Process as many complete blocks as possible.
479 1.5 joerg *
480 1.5 joerg * Check alignment of the data pointer. If it is 32bit aligned,
481 1.5 joerg * SHA256_Transform can be called directly on the data stream,
482 1.5 joerg * otherwise enforce the alignment by copy into the buffer.
483 1.5 joerg */
484 1.5 joerg if ((uintptr_t)data % 4 == 0) {
485 1.5 joerg while (len >= SHA256_BLOCK_LENGTH) {
486 1.5 joerg SHA256_Transform(context,
487 1.10 joerg (const uint32_t *)(const void *)data);
488 1.5 joerg context->bitcount += SHA256_BLOCK_LENGTH << 3;
489 1.5 joerg len -= SHA256_BLOCK_LENGTH;
490 1.5 joerg data += SHA256_BLOCK_LENGTH;
491 1.5 joerg }
492 1.5 joerg } else {
493 1.5 joerg while (len >= SHA256_BLOCK_LENGTH) {
494 1.5 joerg memcpy(context->buffer, data, SHA256_BLOCK_LENGTH);
495 1.5 joerg SHA256_Transform(context,
496 1.10 joerg (const uint32_t *)(const void *)context->buffer);
497 1.5 joerg context->bitcount += SHA256_BLOCK_LENGTH << 3;
498 1.5 joerg len -= SHA256_BLOCK_LENGTH;
499 1.5 joerg data += SHA256_BLOCK_LENGTH;
500 1.5 joerg }
501 1.1 christos }
502 1.1 christos if (len > 0) {
503 1.1 christos /* There's left-overs, so save 'em */
504 1.1 christos memcpy(context->buffer, data, len);
505 1.1 christos context->bitcount += len << 3;
506 1.1 christos }
507 1.1 christos /* Clean up: */
508 1.1 christos usedspace = freespace = 0;
509 1.8 joerg
510 1.8 joerg return 1;
511 1.1 christos }
512 1.1 christos
513 1.10 joerg static int SHA224_256_Final(uint8_t digest[], SHA256_CTX* context, size_t len) {
514 1.10 joerg uint32_t *d = (void *)digest;
515 1.1 christos unsigned int usedspace;
516 1.9 joerg size_t i;
517 1.1 christos
518 1.1 christos /* If no digest buffer is passed, we don't bother doing this: */
519 1.10 joerg if (digest != NULL) {
520 1.1 christos usedspace = (unsigned int)((context->bitcount >> 3) % SHA256_BLOCK_LENGTH);
521 1.9 joerg context->bitcount = htobe64(context->bitcount);
522 1.1 christos if (usedspace > 0) {
523 1.1 christos /* Begin padding with a 1 bit: */
524 1.1 christos context->buffer[usedspace++] = 0x80;
525 1.1 christos
526 1.1 christos if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
527 1.1 christos /* Set-up for the last transform: */
528 1.1 christos memset(&context->buffer[usedspace], 0, (size_t)(SHA256_SHORT_BLOCK_LENGTH - usedspace));
529 1.1 christos } else {
530 1.1 christos if (usedspace < SHA256_BLOCK_LENGTH) {
531 1.1 christos memset(&context->buffer[usedspace], 0, (size_t)(SHA256_BLOCK_LENGTH - usedspace));
532 1.1 christos }
533 1.1 christos /* Do second-to-last transform: */
534 1.10 joerg SHA256_Transform(context, (uint32_t *)(void *)context->buffer);
535 1.1 christos
536 1.1 christos /* And set-up for the last transform: */
537 1.1 christos memset(context->buffer, 0, (size_t)(SHA256_SHORT_BLOCK_LENGTH));
538 1.1 christos }
539 1.1 christos } else {
540 1.1 christos /* Set-up for the last transform: */
541 1.1 christos memset(context->buffer, 0, (size_t)(SHA256_SHORT_BLOCK_LENGTH));
542 1.1 christos
543 1.1 christos /* Begin padding with a 1 bit: */
544 1.1 christos *context->buffer = 0x80;
545 1.1 christos }
546 1.1 christos /* Set the bit count: */
547 1.10 joerg *(uint64_t *)(void *)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
548 1.1 christos
549 1.1 christos /* Final transform: */
550 1.10 joerg SHA256_Transform(context, (uint32_t *)(void *)context->buffer);
551 1.1 christos
552 1.9 joerg for (i = 0; i < len / 4; i++)
553 1.9 joerg d[i] = htobe32(context->state[i]);
554 1.1 christos }
555 1.1 christos
556 1.1 christos /* Clean up state data: */
557 1.1 christos memset(context, 0, sizeof(*context));
558 1.1 christos usedspace = 0;
559 1.8 joerg
560 1.8 joerg return 1;
561 1.8 joerg }
562 1.8 joerg
563 1.10 joerg int SHA224_Final(uint8_t digest[], SHA256_CTX* context) {
564 1.8 joerg return SHA224_256_Final(digest, context, SHA224_DIGEST_LENGTH);
565 1.8 joerg }
566 1.8 joerg
567 1.10 joerg int SHA256_Final(uint8_t digest[], SHA256_CTX* context) {
568 1.8 joerg return SHA224_256_Final(digest, context, SHA256_DIGEST_LENGTH);
569 1.1 christos }
570 1.1 christos
571 1.1 christos /*** SHA-512: *********************************************************/
572 1.8 joerg int SHA512_Init(SHA512_CTX* context) {
573 1.10 joerg if (context == NULL)
574 1.8 joerg return 1;
575 1.10 joerg
576 1.1 christos memcpy(context->state, sha512_initial_hash_value, (size_t)(SHA512_DIGEST_LENGTH));
577 1.1 christos memset(context->buffer, 0, (size_t)(SHA512_BLOCK_LENGTH));
578 1.1 christos context->bitcount[0] = context->bitcount[1] = 0;
579 1.8 joerg
580 1.8 joerg return 1;
581 1.1 christos }
582 1.1 christos
583 1.1 christos #ifdef SHA2_UNROLL_TRANSFORM
584 1.1 christos
585 1.1 christos /* Unrolled SHA-512 round macros: */
586 1.1 christos #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
587 1.9 joerg W512[j] = be64toh(*data); \
588 1.9 joerg ++data; \
589 1.1 christos T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
590 1.1 christos K512[j] + W512[j]; \
591 1.1 christos (d) += T1, \
592 1.1 christos (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
593 1.1 christos j++
594 1.1 christos
595 1.1 christos #define ROUND512(a,b,c,d,e,f,g,h) \
596 1.1 christos s0 = W512[(j+1)&0x0f]; \
597 1.1 christos s0 = sigma0_512(s0); \
598 1.1 christos s1 = W512[(j+14)&0x0f]; \
599 1.1 christos s1 = sigma1_512(s1); \
600 1.1 christos T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
601 1.1 christos (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
602 1.1 christos (d) += T1; \
603 1.1 christos (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
604 1.1 christos j++
605 1.1 christos
606 1.10 joerg void SHA512_Transform(SHA512_CTX* context, const uint64_t* data) {
607 1.10 joerg uint64_t a, b, c, d, e, f, g, h, s0, s1;
608 1.10 joerg uint64_t T1, *W512 = (uint64_t *)context->buffer;
609 1.1 christos int j;
610 1.1 christos
611 1.1 christos /* Initialize registers with the prev. intermediate value */
612 1.1 christos a = context->state[0];
613 1.1 christos b = context->state[1];
614 1.1 christos c = context->state[2];
615 1.1 christos d = context->state[3];
616 1.1 christos e = context->state[4];
617 1.1 christos f = context->state[5];
618 1.1 christos g = context->state[6];
619 1.1 christos h = context->state[7];
620 1.1 christos
621 1.1 christos j = 0;
622 1.1 christos do {
623 1.1 christos ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
624 1.1 christos ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
625 1.1 christos ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
626 1.1 christos ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
627 1.1 christos ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
628 1.1 christos ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
629 1.1 christos ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
630 1.1 christos ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
631 1.1 christos } while (j < 16);
632 1.1 christos
633 1.1 christos /* Now for the remaining rounds up to 79: */
634 1.1 christos do {
635 1.1 christos ROUND512(a,b,c,d,e,f,g,h);
636 1.1 christos ROUND512(h,a,b,c,d,e,f,g);
637 1.1 christos ROUND512(g,h,a,b,c,d,e,f);
638 1.1 christos ROUND512(f,g,h,a,b,c,d,e);
639 1.1 christos ROUND512(e,f,g,h,a,b,c,d);
640 1.1 christos ROUND512(d,e,f,g,h,a,b,c);
641 1.1 christos ROUND512(c,d,e,f,g,h,a,b);
642 1.1 christos ROUND512(b,c,d,e,f,g,h,a);
643 1.1 christos } while (j < 80);
644 1.1 christos
645 1.1 christos /* Compute the current intermediate hash value */
646 1.1 christos context->state[0] += a;
647 1.1 christos context->state[1] += b;
648 1.1 christos context->state[2] += c;
649 1.1 christos context->state[3] += d;
650 1.1 christos context->state[4] += e;
651 1.1 christos context->state[5] += f;
652 1.1 christos context->state[6] += g;
653 1.1 christos context->state[7] += h;
654 1.1 christos
655 1.1 christos /* Clean up */
656 1.1 christos a = b = c = d = e = f = g = h = T1 = 0;
657 1.1 christos }
658 1.1 christos
659 1.1 christos #else /* SHA2_UNROLL_TRANSFORM */
660 1.1 christos
661 1.10 joerg void SHA512_Transform(SHA512_CTX* context, const uint64_t* data) {
662 1.10 joerg uint64_t a, b, c, d, e, f, g, h, s0, s1;
663 1.10 joerg uint64_t T1, T2, *W512 = (void *)context->buffer;
664 1.1 christos int j;
665 1.1 christos
666 1.1 christos /* Initialize registers with the prev. intermediate value */
667 1.1 christos a = context->state[0];
668 1.1 christos b = context->state[1];
669 1.1 christos c = context->state[2];
670 1.1 christos d = context->state[3];
671 1.1 christos e = context->state[4];
672 1.1 christos f = context->state[5];
673 1.1 christos g = context->state[6];
674 1.1 christos h = context->state[7];
675 1.1 christos
676 1.1 christos j = 0;
677 1.1 christos do {
678 1.9 joerg W512[j] = be64toh(*data);
679 1.9 joerg ++data;
680 1.1 christos /* Apply the SHA-512 compression function to update a..h */
681 1.1 christos T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
682 1.1 christos T2 = Sigma0_512(a) + Maj(a, b, c);
683 1.1 christos h = g;
684 1.1 christos g = f;
685 1.1 christos f = e;
686 1.1 christos e = d + T1;
687 1.1 christos d = c;
688 1.1 christos c = b;
689 1.1 christos b = a;
690 1.1 christos a = T1 + T2;
691 1.1 christos
692 1.1 christos j++;
693 1.1 christos } while (j < 16);
694 1.1 christos
695 1.1 christos do {
696 1.1 christos /* Part of the message block expansion: */
697 1.1 christos s0 = W512[(j+1)&0x0f];
698 1.1 christos s0 = sigma0_512(s0);
699 1.1 christos s1 = W512[(j+14)&0x0f];
700 1.1 christos s1 = sigma1_512(s1);
701 1.1 christos
702 1.1 christos /* Apply the SHA-512 compression function to update a..h */
703 1.1 christos T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
704 1.1 christos (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
705 1.1 christos T2 = Sigma0_512(a) + Maj(a, b, c);
706 1.1 christos h = g;
707 1.1 christos g = f;
708 1.1 christos f = e;
709 1.1 christos e = d + T1;
710 1.1 christos d = c;
711 1.1 christos c = b;
712 1.1 christos b = a;
713 1.1 christos a = T1 + T2;
714 1.1 christos
715 1.1 christos j++;
716 1.1 christos } while (j < 80);
717 1.1 christos
718 1.1 christos /* Compute the current intermediate hash value */
719 1.1 christos context->state[0] += a;
720 1.1 christos context->state[1] += b;
721 1.1 christos context->state[2] += c;
722 1.1 christos context->state[3] += d;
723 1.1 christos context->state[4] += e;
724 1.1 christos context->state[5] += f;
725 1.1 christos context->state[6] += g;
726 1.1 christos context->state[7] += h;
727 1.1 christos
728 1.1 christos /* Clean up */
729 1.1 christos a = b = c = d = e = f = g = h = T1 = T2 = 0;
730 1.1 christos }
731 1.1 christos
732 1.1 christos #endif /* SHA2_UNROLL_TRANSFORM */
733 1.1 christos
734 1.10 joerg int SHA512_Update(SHA512_CTX* context, const uint8_t *data, size_t len) {
735 1.1 christos unsigned int freespace, usedspace;
736 1.1 christos
737 1.1 christos if (len == 0) {
738 1.1 christos /* Calling with no data is valid - we do nothing */
739 1.8 joerg return 1;
740 1.1 christos }
741 1.1 christos
742 1.1 christos usedspace = (unsigned int)((context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH);
743 1.1 christos if (usedspace > 0) {
744 1.1 christos /* Calculate how much free space is available in the buffer */
745 1.1 christos freespace = SHA512_BLOCK_LENGTH - usedspace;
746 1.1 christos
747 1.1 christos if (len >= freespace) {
748 1.1 christos /* Fill the buffer completely and process it */
749 1.1 christos memcpy(&context->buffer[usedspace], data, (size_t)(freespace));
750 1.1 christos ADDINC128(context->bitcount, freespace << 3);
751 1.1 christos len -= freespace;
752 1.1 christos data += freespace;
753 1.10 joerg SHA512_Transform(context, (uint64_t *)(void *)context->buffer);
754 1.1 christos } else {
755 1.1 christos /* The buffer is not yet full */
756 1.1 christos memcpy(&context->buffer[usedspace], data, len);
757 1.1 christos ADDINC128(context->bitcount, len << 3);
758 1.1 christos /* Clean up: */
759 1.1 christos usedspace = freespace = 0;
760 1.8 joerg return 1;
761 1.1 christos }
762 1.1 christos }
763 1.5 joerg /*
764 1.5 joerg * Process as many complete blocks as possible.
765 1.5 joerg *
766 1.5 joerg * Check alignment of the data pointer. If it is 64bit aligned,
767 1.5 joerg * SHA512_Transform can be called directly on the data stream,
768 1.5 joerg * otherwise enforce the alignment by copy into the buffer.
769 1.5 joerg */
770 1.5 joerg if ((uintptr_t)data % 8 == 0) {
771 1.5 joerg while (len >= SHA512_BLOCK_LENGTH) {
772 1.5 joerg SHA512_Transform(context,
773 1.10 joerg (const uint64_t*)(const void *)data);
774 1.5 joerg ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
775 1.5 joerg len -= SHA512_BLOCK_LENGTH;
776 1.5 joerg data += SHA512_BLOCK_LENGTH;
777 1.5 joerg }
778 1.5 joerg } else {
779 1.5 joerg while (len >= SHA512_BLOCK_LENGTH) {
780 1.5 joerg memcpy(context->buffer, data, SHA512_BLOCK_LENGTH);
781 1.5 joerg SHA512_Transform(context,
782 1.6 drochner (const void *)context->buffer);
783 1.5 joerg ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
784 1.5 joerg len -= SHA512_BLOCK_LENGTH;
785 1.5 joerg data += SHA512_BLOCK_LENGTH;
786 1.5 joerg }
787 1.1 christos }
788 1.1 christos if (len > 0) {
789 1.1 christos /* There's left-overs, so save 'em */
790 1.1 christos memcpy(context->buffer, data, len);
791 1.1 christos ADDINC128(context->bitcount, len << 3);
792 1.1 christos }
793 1.1 christos /* Clean up: */
794 1.1 christos usedspace = freespace = 0;
795 1.8 joerg
796 1.8 joerg return 1;
797 1.1 christos }
798 1.1 christos
799 1.4 christos static void SHA512_Last(SHA512_CTX* context) {
800 1.1 christos unsigned int usedspace;
801 1.1 christos
802 1.1 christos usedspace = (unsigned int)((context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH);
803 1.9 joerg context->bitcount[0] = htobe64(context->bitcount[0]);
804 1.9 joerg context->bitcount[1] = htobe64(context->bitcount[1]);
805 1.1 christos if (usedspace > 0) {
806 1.1 christos /* Begin padding with a 1 bit: */
807 1.1 christos context->buffer[usedspace++] = 0x80;
808 1.1 christos
809 1.1 christos if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
810 1.1 christos /* Set-up for the last transform: */
811 1.1 christos memset(&context->buffer[usedspace], 0, (size_t)(SHA512_SHORT_BLOCK_LENGTH - usedspace));
812 1.1 christos } else {
813 1.1 christos if (usedspace < SHA512_BLOCK_LENGTH) {
814 1.1 christos memset(&context->buffer[usedspace], 0, (size_t)(SHA512_BLOCK_LENGTH - usedspace));
815 1.1 christos }
816 1.1 christos /* Do second-to-last transform: */
817 1.10 joerg SHA512_Transform(context, (uint64_t *)(void *)context->buffer);
818 1.1 christos
819 1.1 christos /* And set-up for the last transform: */
820 1.1 christos memset(context->buffer, 0, (size_t)(SHA512_BLOCK_LENGTH - 2));
821 1.1 christos }
822 1.1 christos } else {
823 1.1 christos /* Prepare for final transform: */
824 1.1 christos memset(context->buffer, 0, (size_t)(SHA512_SHORT_BLOCK_LENGTH));
825 1.1 christos
826 1.1 christos /* Begin padding with a 1 bit: */
827 1.1 christos *context->buffer = 0x80;
828 1.1 christos }
829 1.1 christos /* Store the length of input data (in bits): */
830 1.10 joerg *(uint64_t *)(void *)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
831 1.10 joerg *(uint64_t *)(void *)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
832 1.1 christos
833 1.1 christos /* Final transform: */
834 1.10 joerg SHA512_Transform(context, (uint64_t *)(void *)context->buffer);
835 1.1 christos }
836 1.1 christos
837 1.10 joerg int SHA512_Final(uint8_t digest[], SHA512_CTX* context) {
838 1.10 joerg uint64_t *d = (void *)digest;
839 1.9 joerg size_t i;
840 1.1 christos
841 1.1 christos /* If no digest buffer is passed, we don't bother doing this: */
842 1.10 joerg if (digest != NULL) {
843 1.1 christos SHA512_Last(context);
844 1.1 christos
845 1.1 christos /* Save the hash data for output: */
846 1.9 joerg for (i = 0; i < 8; ++i)
847 1.9 joerg d[i] = htobe64(context->state[i]);
848 1.1 christos }
849 1.1 christos
850 1.1 christos /* Zero out state data */
851 1.1 christos memset(context, 0, sizeof(*context));
852 1.8 joerg
853 1.8 joerg return 1;
854 1.1 christos }
855 1.1 christos
856 1.1 christos /*** SHA-384: *********************************************************/
857 1.8 joerg int SHA384_Init(SHA384_CTX* context) {
858 1.10 joerg if (context == NULL) {
859 1.8 joerg return 1;
860 1.1 christos }
861 1.1 christos memcpy(context->state, sha384_initial_hash_value, (size_t)(SHA512_DIGEST_LENGTH));
862 1.1 christos memset(context->buffer, 0, (size_t)(SHA384_BLOCK_LENGTH));
863 1.1 christos context->bitcount[0] = context->bitcount[1] = 0;
864 1.8 joerg
865 1.8 joerg return 1;
866 1.1 christos }
867 1.1 christos
868 1.10 joerg int SHA384_Update(SHA384_CTX* context, const uint8_t* data, size_t len) {
869 1.8 joerg return SHA512_Update((SHA512_CTX*)context, data, len);
870 1.1 christos }
871 1.1 christos
872 1.10 joerg void SHA384_Transform(SHA512_CTX* context, const uint64_t* data) {
873 1.1 christos SHA512_Transform((SHA512_CTX*)context, data);
874 1.1 christos }
875 1.1 christos
876 1.10 joerg int SHA384_Final(uint8_t digest[], SHA384_CTX* context) {
877 1.10 joerg uint64_t *d = (void *)digest;
878 1.9 joerg size_t i;
879 1.1 christos
880 1.1 christos /* If no digest buffer is passed, we don't bother doing this: */
881 1.10 joerg if (digest != NULL) {
882 1.1 christos SHA512_Last((SHA512_CTX*)context);
883 1.1 christos
884 1.1 christos /* Save the hash data for output: */
885 1.9 joerg for (i = 0; i < 6; ++i)
886 1.9 joerg d[i] = be64toh(context->state[i]);
887 1.1 christos }
888 1.1 christos
889 1.1 christos /* Zero out state data */
890 1.1 christos memset(context, 0, sizeof(*context));
891 1.8 joerg
892 1.8 joerg return 1;
893 1.1 christos }
894