sha2.c revision 1.14 1 1.14 joerg /* $NetBSD: sha2.c,v 1.14 2009/06/11 22:40:42 joerg Exp $ */
2 1.1 christos /* $KAME: sha2.c,v 1.9 2003/07/20 00:28:38 itojun Exp $ */
3 1.1 christos
4 1.1 christos /*
5 1.1 christos * sha2.c
6 1.1 christos *
7 1.1 christos * Version 1.0.0beta1
8 1.1 christos *
9 1.1 christos * Written by Aaron D. Gifford <me (at) aarongifford.com>
10 1.1 christos *
11 1.1 christos * Copyright 2000 Aaron D. Gifford. All rights reserved.
12 1.1 christos *
13 1.1 christos * Redistribution and use in source and binary forms, with or without
14 1.1 christos * modification, are permitted provided that the following conditions
15 1.1 christos * are met:
16 1.1 christos * 1. Redistributions of source code must retain the above copyright
17 1.1 christos * notice, this list of conditions and the following disclaimer.
18 1.1 christos * 2. Redistributions in binary form must reproduce the above copyright
19 1.1 christos * notice, this list of conditions and the following disclaimer in the
20 1.1 christos * documentation and/or other materials provided with the distribution.
21 1.1 christos * 3. Neither the name of the copyright holder nor the names of contributors
22 1.1 christos * may be used to endorse or promote products derived from this software
23 1.1 christos * without specific prior written permission.
24 1.1 christos *
25 1.1 christos * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
26 1.1 christos * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 1.1 christos * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 1.1 christos * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE
29 1.1 christos * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 1.1 christos * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 1.1 christos * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 1.1 christos * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 1.1 christos * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 1.1 christos * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 1.1 christos * SUCH DAMAGE.
36 1.1 christos *
37 1.1 christos */
38 1.1 christos
39 1.14 joerg #if HAVE_NBTOOL_CONFIG_H
40 1.14 joerg #include "nbtool_config.h"
41 1.14 joerg #endif
42 1.14 joerg
43 1.1 christos #include <sys/cdefs.h>
44 1.1 christos
45 1.1 christos #if defined(_KERNEL) || defined(_STANDALONE)
46 1.14 joerg __KERNEL_RCSID(0, "$NetBSD: sha2.c,v 1.14 2009/06/11 22:40:42 joerg Exp $");
47 1.1 christos
48 1.1 christos #include <lib/libkern/libkern.h>
49 1.1 christos
50 1.1 christos #else
51 1.1 christos
52 1.1 christos #if defined(LIBC_SCCS) && !defined(lint)
53 1.14 joerg __RCSID("$NetBSD: sha2.c,v 1.14 2009/06/11 22:40:42 joerg Exp $");
54 1.1 christos #endif /* LIBC_SCCS and not lint */
55 1.1 christos
56 1.1 christos #include "namespace.h"
57 1.1 christos #include <string.h>
58 1.1 christos
59 1.1 christos #endif
60 1.1 christos
61 1.1 christos #include <sys/types.h>
62 1.1 christos #include <sys/sha2.h>
63 1.14 joerg
64 1.14 joerg #if HAVE_NBTOOL_CONFIG_H
65 1.14 joerg # if HAVE_SYS_ENDIAN_H
66 1.14 joerg # include <sys/endian.h>
67 1.14 joerg # else
68 1.14 joerg # undef htobe32
69 1.14 joerg # undef htobe64
70 1.14 joerg # undef be32toh
71 1.14 joerg # undef be64toh
72 1.14 joerg
73 1.14 joerg static uint32_t
74 1.14 joerg htobe32(uint32_t x)
75 1.14 joerg {
76 1.14 joerg uint8_t p[4];
77 1.14 joerg memcpy(p, &x, 4);
78 1.14 joerg
79 1.14 joerg return ((p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3]);
80 1.14 joerg }
81 1.14 joerg
82 1.14 joerg static uint64_t
83 1.14 joerg htobe64(uint64_t x)
84 1.14 joerg {
85 1.14 joerg uint8_t p[8];
86 1.14 joerg uint32_t u, v;
87 1.14 joerg memcpy(p, &x, 8);
88 1.14 joerg
89 1.14 joerg u = ((p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3]);
90 1.14 joerg v = ((p[4] << 24) | (p[5] << 16) | (p[6] << 8) | p[7]);
91 1.14 joerg
92 1.14 joerg return ((((uint64_t)u) << 32) | v);
93 1.14 joerg }
94 1.14 joerg
95 1.14 joerg static uint32_t
96 1.14 joerg be32toh(uint32_t x)
97 1.14 joerg {
98 1.14 joerg return htobe32(x);
99 1.14 joerg }
100 1.14 joerg
101 1.14 joerg static uint64_t
102 1.14 joerg be64toh(uint64_t x)
103 1.14 joerg {
104 1.14 joerg return htobe64(x);
105 1.14 joerg }
106 1.14 joerg # endif
107 1.14 joerg #endif
108 1.1 christos
109 1.1 christos /*** SHA-256/384/512 Various Length Definitions ***********************/
110 1.1 christos /* NOTE: Most of these are in sha2.h */
111 1.1 christos #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
112 1.1 christos #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
113 1.1 christos #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
114 1.1 christos
115 1.1 christos /*
116 1.1 christos * Macro for incrementally adding the unsigned 64-bit integer n to the
117 1.1 christos * unsigned 128-bit integer (represented using a two-element array of
118 1.1 christos * 64-bit words):
119 1.1 christos */
120 1.1 christos #define ADDINC128(w,n) { \
121 1.10 joerg (w)[0] += (uint64_t)(n); \
122 1.1 christos if ((w)[0] < (n)) { \
123 1.1 christos (w)[1]++; \
124 1.1 christos } \
125 1.1 christos }
126 1.1 christos
127 1.1 christos /*** THE SIX LOGICAL FUNCTIONS ****************************************/
128 1.1 christos /*
129 1.1 christos * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
130 1.1 christos *
131 1.1 christos * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
132 1.1 christos * S is a ROTATION) because the SHA-256/384/512 description document
133 1.1 christos * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
134 1.1 christos * same "backwards" definition.
135 1.1 christos */
136 1.1 christos /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
137 1.1 christos #define R(b,x) ((x) >> (b))
138 1.1 christos /* 32-bit Rotate-right (used in SHA-256): */
139 1.1 christos #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
140 1.1 christos /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
141 1.1 christos #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
142 1.1 christos
143 1.1 christos /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
144 1.1 christos #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
145 1.1 christos #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
146 1.1 christos
147 1.1 christos /* Four of six logical functions used in SHA-256: */
148 1.1 christos #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
149 1.1 christos #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
150 1.1 christos #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
151 1.1 christos #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
152 1.1 christos
153 1.1 christos /* Four of six logical functions used in SHA-384 and SHA-512: */
154 1.1 christos #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
155 1.1 christos #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
156 1.1 christos #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
157 1.1 christos #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
158 1.1 christos
159 1.1 christos /*** INTERNAL FUNCTION PROTOTYPES *************************************/
160 1.1 christos /* NOTE: These should not be accessed directly from outside this
161 1.1 christos * library -- they are intended for private internal visibility/use
162 1.1 christos * only.
163 1.1 christos */
164 1.12 christos static void SHA512_Last(SHA512_CTX *);
165 1.12 christos void SHA224_Transform(SHA224_CTX *, const uint64_t*);
166 1.12 christos void SHA256_Transform(SHA256_CTX *, const uint32_t*);
167 1.12 christos void SHA384_Transform(SHA384_CTX *, const uint64_t*);
168 1.12 christos void SHA512_Transform(SHA512_CTX *, const uint64_t*);
169 1.1 christos
170 1.1 christos
171 1.1 christos /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
172 1.1 christos /* Hash constant words K for SHA-256: */
173 1.10 joerg static const uint32_t K256[64] = {
174 1.1 christos 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
175 1.1 christos 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
176 1.1 christos 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
177 1.1 christos 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
178 1.1 christos 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
179 1.1 christos 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
180 1.1 christos 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
181 1.1 christos 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
182 1.1 christos 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
183 1.1 christos 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
184 1.1 christos 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
185 1.1 christos 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
186 1.1 christos 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
187 1.1 christos 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
188 1.1 christos 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
189 1.1 christos 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
190 1.1 christos };
191 1.1 christos
192 1.8 joerg /* Initial hash value H for SHA-224: */
193 1.10 joerg static const uint32_t sha224_initial_hash_value[8] = {
194 1.8 joerg 0xc1059ed8UL,
195 1.8 joerg 0x367cd507UL,
196 1.8 joerg 0x3070dd17UL,
197 1.8 joerg 0xf70e5939UL,
198 1.8 joerg 0xffc00b31UL,
199 1.8 joerg 0x68581511UL,
200 1.8 joerg 0x64f98fa7UL,
201 1.8 joerg 0xbefa4fa4UL
202 1.8 joerg };
203 1.8 joerg
204 1.1 christos /* Initial hash value H for SHA-256: */
205 1.10 joerg static const uint32_t sha256_initial_hash_value[8] = {
206 1.1 christos 0x6a09e667UL,
207 1.1 christos 0xbb67ae85UL,
208 1.1 christos 0x3c6ef372UL,
209 1.1 christos 0xa54ff53aUL,
210 1.1 christos 0x510e527fUL,
211 1.1 christos 0x9b05688cUL,
212 1.1 christos 0x1f83d9abUL,
213 1.1 christos 0x5be0cd19UL
214 1.1 christos };
215 1.1 christos
216 1.1 christos /* Hash constant words K for SHA-384 and SHA-512: */
217 1.10 joerg static const uint64_t K512[80] = {
218 1.1 christos 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
219 1.1 christos 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
220 1.1 christos 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
221 1.1 christos 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
222 1.1 christos 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
223 1.1 christos 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
224 1.1 christos 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
225 1.1 christos 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
226 1.1 christos 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
227 1.1 christos 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
228 1.1 christos 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
229 1.1 christos 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
230 1.1 christos 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
231 1.1 christos 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
232 1.1 christos 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
233 1.1 christos 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
234 1.1 christos 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
235 1.1 christos 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
236 1.1 christos 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
237 1.1 christos 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
238 1.1 christos 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
239 1.1 christos 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
240 1.1 christos 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
241 1.1 christos 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
242 1.1 christos 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
243 1.1 christos 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
244 1.1 christos 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
245 1.1 christos 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
246 1.1 christos 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
247 1.1 christos 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
248 1.1 christos 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
249 1.1 christos 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
250 1.1 christos 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
251 1.1 christos 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
252 1.1 christos 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
253 1.1 christos 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
254 1.1 christos 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
255 1.1 christos 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
256 1.1 christos 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
257 1.1 christos 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
258 1.1 christos };
259 1.1 christos
260 1.1 christos /* Initial hash value H for SHA-384 */
261 1.10 joerg static const uint64_t sha384_initial_hash_value[8] = {
262 1.1 christos 0xcbbb9d5dc1059ed8ULL,
263 1.1 christos 0x629a292a367cd507ULL,
264 1.1 christos 0x9159015a3070dd17ULL,
265 1.1 christos 0x152fecd8f70e5939ULL,
266 1.1 christos 0x67332667ffc00b31ULL,
267 1.1 christos 0x8eb44a8768581511ULL,
268 1.1 christos 0xdb0c2e0d64f98fa7ULL,
269 1.1 christos 0x47b5481dbefa4fa4ULL
270 1.1 christos };
271 1.1 christos
272 1.1 christos /* Initial hash value H for SHA-512 */
273 1.10 joerg static const uint64_t sha512_initial_hash_value[8] = {
274 1.1 christos 0x6a09e667f3bcc908ULL,
275 1.1 christos 0xbb67ae8584caa73bULL,
276 1.1 christos 0x3c6ef372fe94f82bULL,
277 1.1 christos 0xa54ff53a5f1d36f1ULL,
278 1.1 christos 0x510e527fade682d1ULL,
279 1.1 christos 0x9b05688c2b3e6c1fULL,
280 1.1 christos 0x1f83d9abfb41bd6bULL,
281 1.1 christos 0x5be0cd19137e2179ULL
282 1.1 christos };
283 1.1 christos
284 1.1 christos #if !defined(_KERNEL) && defined(__weak_alias)
285 1.8 joerg __weak_alias(SHA224_Init,_SHA224_Init)
286 1.8 joerg __weak_alias(SHA224_Update,_SHA224_Update)
287 1.8 joerg __weak_alias(SHA224_Final,_SHA224_Final)
288 1.8 joerg __weak_alias(SHA224_Transform,_SHA224_Transform)
289 1.8 joerg
290 1.1 christos __weak_alias(SHA256_Init,_SHA256_Init)
291 1.1 christos __weak_alias(SHA256_Update,_SHA256_Update)
292 1.1 christos __weak_alias(SHA256_Final,_SHA256_Final)
293 1.1 christos __weak_alias(SHA256_Transform,_SHA256_Transform)
294 1.1 christos
295 1.1 christos __weak_alias(SHA384_Init,_SHA384_Init)
296 1.1 christos __weak_alias(SHA384_Update,_SHA384_Update)
297 1.1 christos __weak_alias(SHA384_Final,_SHA384_Final)
298 1.1 christos __weak_alias(SHA384_Transform,_SHA384_Transform)
299 1.1 christos
300 1.1 christos __weak_alias(SHA512_Init,_SHA512_Init)
301 1.1 christos __weak_alias(SHA512_Update,_SHA512_Update)
302 1.1 christos __weak_alias(SHA512_Final,_SHA512_Final)
303 1.1 christos __weak_alias(SHA512_Transform,_SHA512_Transform)
304 1.1 christos #endif
305 1.1 christos
306 1.1 christos /*** SHA-256: *********************************************************/
307 1.11 joerg int
308 1.12 christos SHA256_Init(SHA256_CTX *context)
309 1.11 joerg {
310 1.12 christos if (context == NULL)
311 1.8 joerg return 1;
312 1.12 christos
313 1.12 christos memcpy(context->state, sha256_initial_hash_value,
314 1.12 christos (size_t)(SHA256_DIGEST_LENGTH));
315 1.1 christos memset(context->buffer, 0, (size_t)(SHA256_BLOCK_LENGTH));
316 1.1 christos context->bitcount = 0;
317 1.8 joerg
318 1.8 joerg return 1;
319 1.8 joerg }
320 1.8 joerg
321 1.1 christos #ifdef SHA2_UNROLL_TRANSFORM
322 1.1 christos
323 1.1 christos /* Unrolled SHA-256 round macros: */
324 1.1 christos
325 1.1 christos #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
326 1.9 joerg W256[j] = be32toh(*data); \
327 1.9 joerg ++data; \
328 1.1 christos T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
329 1.1 christos K256[j] + W256[j]; \
330 1.1 christos (d) += T1; \
331 1.1 christos (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
332 1.1 christos j++
333 1.1 christos
334 1.1 christos #define ROUND256(a,b,c,d,e,f,g,h) \
335 1.1 christos s0 = W256[(j+1)&0x0f]; \
336 1.1 christos s0 = sigma0_256(s0); \
337 1.1 christos s1 = W256[(j+14)&0x0f]; \
338 1.1 christos s1 = sigma1_256(s1); \
339 1.1 christos T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
340 1.1 christos (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
341 1.1 christos (d) += T1; \
342 1.1 christos (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
343 1.1 christos j++
344 1.1 christos
345 1.11 joerg void
346 1.12 christos SHA256_Transform(SHA256_CTX *context, const uint32_t *data)
347 1.11 joerg {
348 1.10 joerg uint32_t a, b, c, d, e, f, g, h, s0, s1;
349 1.10 joerg uint32_t T1, *W256;
350 1.1 christos int j;
351 1.1 christos
352 1.10 joerg W256 = (uint32_t *)context->buffer;
353 1.1 christos
354 1.1 christos /* Initialize registers with the prev. intermediate value */
355 1.1 christos a = context->state[0];
356 1.1 christos b = context->state[1];
357 1.1 christos c = context->state[2];
358 1.1 christos d = context->state[3];
359 1.1 christos e = context->state[4];
360 1.1 christos f = context->state[5];
361 1.1 christos g = context->state[6];
362 1.1 christos h = context->state[7];
363 1.1 christos
364 1.1 christos j = 0;
365 1.1 christos do {
366 1.1 christos /* Rounds 0 to 15 (unrolled): */
367 1.1 christos ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
368 1.1 christos ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
369 1.1 christos ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
370 1.1 christos ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
371 1.1 christos ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
372 1.1 christos ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
373 1.1 christos ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
374 1.1 christos ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
375 1.1 christos } while (j < 16);
376 1.1 christos
377 1.1 christos /* Now for the remaining rounds to 64: */
378 1.1 christos do {
379 1.1 christos ROUND256(a,b,c,d,e,f,g,h);
380 1.1 christos ROUND256(h,a,b,c,d,e,f,g);
381 1.1 christos ROUND256(g,h,a,b,c,d,e,f);
382 1.1 christos ROUND256(f,g,h,a,b,c,d,e);
383 1.1 christos ROUND256(e,f,g,h,a,b,c,d);
384 1.1 christos ROUND256(d,e,f,g,h,a,b,c);
385 1.1 christos ROUND256(c,d,e,f,g,h,a,b);
386 1.1 christos ROUND256(b,c,d,e,f,g,h,a);
387 1.1 christos } while (j < 64);
388 1.1 christos
389 1.1 christos /* Compute the current intermediate hash value */
390 1.1 christos context->state[0] += a;
391 1.1 christos context->state[1] += b;
392 1.1 christos context->state[2] += c;
393 1.1 christos context->state[3] += d;
394 1.1 christos context->state[4] += e;
395 1.1 christos context->state[5] += f;
396 1.1 christos context->state[6] += g;
397 1.1 christos context->state[7] += h;
398 1.1 christos
399 1.1 christos /* Clean up */
400 1.1 christos a = b = c = d = e = f = g = h = T1 = 0;
401 1.1 christos }
402 1.1 christos
403 1.1 christos #else /* SHA2_UNROLL_TRANSFORM */
404 1.1 christos
405 1.11 joerg void
406 1.12 christos SHA256_Transform(SHA256_CTX *context, const uint32_t *data)
407 1.11 joerg {
408 1.10 joerg uint32_t a, b, c, d, e, f, g, h, s0, s1;
409 1.10 joerg uint32_t T1, T2, *W256;
410 1.1 christos int j;
411 1.1 christos
412 1.10 joerg W256 = (uint32_t *)(void *)context->buffer;
413 1.1 christos
414 1.1 christos /* Initialize registers with the prev. intermediate value */
415 1.1 christos a = context->state[0];
416 1.1 christos b = context->state[1];
417 1.1 christos c = context->state[2];
418 1.1 christos d = context->state[3];
419 1.1 christos e = context->state[4];
420 1.1 christos f = context->state[5];
421 1.1 christos g = context->state[6];
422 1.1 christos h = context->state[7];
423 1.1 christos
424 1.1 christos j = 0;
425 1.1 christos do {
426 1.9 joerg W256[j] = be32toh(*data);
427 1.9 joerg ++data;
428 1.1 christos /* Apply the SHA-256 compression function to update a..h */
429 1.1 christos T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
430 1.1 christos T2 = Sigma0_256(a) + Maj(a, b, c);
431 1.1 christos h = g;
432 1.1 christos g = f;
433 1.1 christos f = e;
434 1.1 christos e = d + T1;
435 1.1 christos d = c;
436 1.1 christos c = b;
437 1.1 christos b = a;
438 1.1 christos a = T1 + T2;
439 1.1 christos
440 1.1 christos j++;
441 1.1 christos } while (j < 16);
442 1.1 christos
443 1.1 christos do {
444 1.1 christos /* Part of the message block expansion: */
445 1.1 christos s0 = W256[(j+1)&0x0f];
446 1.1 christos s0 = sigma0_256(s0);
447 1.1 christos s1 = W256[(j+14)&0x0f];
448 1.1 christos s1 = sigma1_256(s1);
449 1.1 christos
450 1.1 christos /* Apply the SHA-256 compression function to update a..h */
451 1.1 christos T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
452 1.1 christos (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
453 1.1 christos T2 = Sigma0_256(a) + Maj(a, b, c);
454 1.1 christos h = g;
455 1.1 christos g = f;
456 1.1 christos f = e;
457 1.1 christos e = d + T1;
458 1.1 christos d = c;
459 1.1 christos c = b;
460 1.1 christos b = a;
461 1.1 christos a = T1 + T2;
462 1.1 christos
463 1.1 christos j++;
464 1.1 christos } while (j < 64);
465 1.1 christos
466 1.1 christos /* Compute the current intermediate hash value */
467 1.1 christos context->state[0] += a;
468 1.1 christos context->state[1] += b;
469 1.1 christos context->state[2] += c;
470 1.1 christos context->state[3] += d;
471 1.1 christos context->state[4] += e;
472 1.1 christos context->state[5] += f;
473 1.1 christos context->state[6] += g;
474 1.1 christos context->state[7] += h;
475 1.1 christos
476 1.1 christos /* Clean up */
477 1.1 christos a = b = c = d = e = f = g = h = T1 = T2 = 0;
478 1.1 christos }
479 1.1 christos
480 1.1 christos #endif /* SHA2_UNROLL_TRANSFORM */
481 1.1 christos
482 1.11 joerg int
483 1.12 christos SHA256_Update(SHA256_CTX *context, const uint8_t *data, size_t len)
484 1.11 joerg {
485 1.1 christos unsigned int freespace, usedspace;
486 1.1 christos
487 1.1 christos if (len == 0) {
488 1.1 christos /* Calling with no data is valid - we do nothing */
489 1.8 joerg return 1;
490 1.1 christos }
491 1.1 christos
492 1.1 christos usedspace = (unsigned int)((context->bitcount >> 3) %
493 1.1 christos SHA256_BLOCK_LENGTH);
494 1.1 christos if (usedspace > 0) {
495 1.1 christos /* Calculate how much free space is available in the buffer */
496 1.1 christos freespace = SHA256_BLOCK_LENGTH - usedspace;
497 1.1 christos
498 1.1 christos if (len >= freespace) {
499 1.1 christos /* Fill the buffer completely and process it */
500 1.12 christos memcpy(&context->buffer[usedspace], data,
501 1.12 christos (size_t)(freespace));
502 1.1 christos context->bitcount += freespace << 3;
503 1.1 christos len -= freespace;
504 1.1 christos data += freespace;
505 1.12 christos SHA256_Transform(context,
506 1.12 christos (uint32_t *)(void *)context->buffer);
507 1.1 christos } else {
508 1.1 christos /* The buffer is not yet full */
509 1.1 christos memcpy(&context->buffer[usedspace], data, len);
510 1.1 christos context->bitcount += len << 3;
511 1.1 christos /* Clean up: */
512 1.1 christos usedspace = freespace = 0;
513 1.8 joerg return 1;
514 1.1 christos }
515 1.1 christos }
516 1.5 joerg /*
517 1.5 joerg * Process as many complete blocks as possible.
518 1.5 joerg *
519 1.5 joerg * Check alignment of the data pointer. If it is 32bit aligned,
520 1.5 joerg * SHA256_Transform can be called directly on the data stream,
521 1.5 joerg * otherwise enforce the alignment by copy into the buffer.
522 1.5 joerg */
523 1.5 joerg if ((uintptr_t)data % 4 == 0) {
524 1.5 joerg while (len >= SHA256_BLOCK_LENGTH) {
525 1.5 joerg SHA256_Transform(context,
526 1.10 joerg (const uint32_t *)(const void *)data);
527 1.5 joerg context->bitcount += SHA256_BLOCK_LENGTH << 3;
528 1.5 joerg len -= SHA256_BLOCK_LENGTH;
529 1.5 joerg data += SHA256_BLOCK_LENGTH;
530 1.5 joerg }
531 1.5 joerg } else {
532 1.5 joerg while (len >= SHA256_BLOCK_LENGTH) {
533 1.5 joerg memcpy(context->buffer, data, SHA256_BLOCK_LENGTH);
534 1.5 joerg SHA256_Transform(context,
535 1.10 joerg (const uint32_t *)(const void *)context->buffer);
536 1.5 joerg context->bitcount += SHA256_BLOCK_LENGTH << 3;
537 1.5 joerg len -= SHA256_BLOCK_LENGTH;
538 1.5 joerg data += SHA256_BLOCK_LENGTH;
539 1.5 joerg }
540 1.1 christos }
541 1.1 christos if (len > 0) {
542 1.1 christos /* There's left-overs, so save 'em */
543 1.1 christos memcpy(context->buffer, data, len);
544 1.1 christos context->bitcount += len << 3;
545 1.1 christos }
546 1.1 christos /* Clean up: */
547 1.1 christos usedspace = freespace = 0;
548 1.8 joerg
549 1.8 joerg return 1;
550 1.1 christos }
551 1.1 christos
552 1.11 joerg static int
553 1.12 christos SHA224_256_Final(uint8_t digest[], SHA256_CTX *context, size_t len)
554 1.11 joerg {
555 1.10 joerg uint32_t *d = (void *)digest;
556 1.1 christos unsigned int usedspace;
557 1.9 joerg size_t i;
558 1.1 christos
559 1.1 christos /* If no digest buffer is passed, we don't bother doing this: */
560 1.10 joerg if (digest != NULL) {
561 1.12 christos usedspace = (unsigned int)((context->bitcount >> 3) %
562 1.12 christos SHA256_BLOCK_LENGTH);
563 1.9 joerg context->bitcount = htobe64(context->bitcount);
564 1.1 christos if (usedspace > 0) {
565 1.1 christos /* Begin padding with a 1 bit: */
566 1.1 christos context->buffer[usedspace++] = 0x80;
567 1.1 christos
568 1.1 christos if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
569 1.1 christos /* Set-up for the last transform: */
570 1.12 christos memset(&context->buffer[usedspace], 0,
571 1.12 christos (size_t)(SHA256_SHORT_BLOCK_LENGTH -
572 1.12 christos usedspace));
573 1.1 christos } else {
574 1.1 christos if (usedspace < SHA256_BLOCK_LENGTH) {
575 1.12 christos memset(&context->buffer[usedspace], 0,
576 1.12 christos (size_t)(SHA256_BLOCK_LENGTH -
577 1.12 christos usedspace));
578 1.1 christos }
579 1.1 christos /* Do second-to-last transform: */
580 1.12 christos SHA256_Transform(context,
581 1.12 christos (uint32_t *)(void *)context->buffer);
582 1.1 christos
583 1.1 christos /* And set-up for the last transform: */
584 1.12 christos memset(context->buffer, 0,
585 1.12 christos (size_t)(SHA256_SHORT_BLOCK_LENGTH));
586 1.1 christos }
587 1.1 christos } else {
588 1.1 christos /* Set-up for the last transform: */
589 1.12 christos memset(context->buffer, 0,
590 1.12 christos (size_t)(SHA256_SHORT_BLOCK_LENGTH));
591 1.1 christos
592 1.1 christos /* Begin padding with a 1 bit: */
593 1.1 christos *context->buffer = 0x80;
594 1.1 christos }
595 1.1 christos /* Set the bit count: */
596 1.13 christos memcpy(&context->buffer[SHA256_SHORT_BLOCK_LENGTH],
597 1.13 christos &context->bitcount, sizeof(context->bitcount));
598 1.1 christos
599 1.1 christos /* Final transform: */
600 1.10 joerg SHA256_Transform(context, (uint32_t *)(void *)context->buffer);
601 1.1 christos
602 1.9 joerg for (i = 0; i < len / 4; i++)
603 1.9 joerg d[i] = htobe32(context->state[i]);
604 1.1 christos }
605 1.1 christos
606 1.1 christos /* Clean up state data: */
607 1.1 christos memset(context, 0, sizeof(*context));
608 1.1 christos usedspace = 0;
609 1.8 joerg
610 1.8 joerg return 1;
611 1.8 joerg }
612 1.8 joerg
613 1.11 joerg int
614 1.12 christos SHA256_Final(uint8_t digest[], SHA256_CTX *context)
615 1.12 christos {
616 1.12 christos return SHA224_256_Final(digest, context, SHA256_DIGEST_LENGTH);
617 1.12 christos }
618 1.12 christos
619 1.12 christos /*** SHA-224: *********************************************************/
620 1.12 christos int
621 1.12 christos SHA224_Init(SHA224_CTX *context)
622 1.12 christos {
623 1.12 christos if (context == NULL)
624 1.12 christos return 1;
625 1.12 christos
626 1.12 christos memcpy(context->state, sha224_initial_hash_value,
627 1.12 christos (size_t)(SHA224_DIGEST_LENGTH));
628 1.12 christos memset(context->buffer, 0, (size_t)(SHA224_BLOCK_LENGTH));
629 1.12 christos context->bitcount = 0;
630 1.12 christos
631 1.12 christos return 1;
632 1.12 christos }
633 1.12 christos
634 1.12 christos int
635 1.12 christos SHA224_Update(SHA224_CTX *context, const uint8_t *data, size_t len)
636 1.12 christos {
637 1.12 christos return SHA256_Update((SHA256_CTX *)context, data, len);
638 1.12 christos }
639 1.12 christos
640 1.12 christos void
641 1.12 christos SHA224_Transform(SHA224_CTX *context, const uint64_t *data)
642 1.11 joerg {
643 1.12 christos SHA224_Transform((SHA256_CTX *)context, data);
644 1.8 joerg }
645 1.8 joerg
646 1.11 joerg int
647 1.12 christos SHA224_Final(uint8_t digest[], SHA224_CTX *context)
648 1.11 joerg {
649 1.12 christos return SHA224_256_Final(digest, (SHA256_CTX *)context,
650 1.12 christos SHA224_DIGEST_LENGTH);
651 1.1 christos }
652 1.1 christos
653 1.1 christos /*** SHA-512: *********************************************************/
654 1.11 joerg int
655 1.12 christos SHA512_Init(SHA512_CTX *context)
656 1.11 joerg {
657 1.10 joerg if (context == NULL)
658 1.8 joerg return 1;
659 1.10 joerg
660 1.12 christos memcpy(context->state, sha512_initial_hash_value,
661 1.12 christos (size_t)(SHA512_DIGEST_LENGTH));
662 1.1 christos memset(context->buffer, 0, (size_t)(SHA512_BLOCK_LENGTH));
663 1.1 christos context->bitcount[0] = context->bitcount[1] = 0;
664 1.8 joerg
665 1.8 joerg return 1;
666 1.1 christos }
667 1.1 christos
668 1.1 christos #ifdef SHA2_UNROLL_TRANSFORM
669 1.1 christos
670 1.1 christos /* Unrolled SHA-512 round macros: */
671 1.1 christos #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
672 1.9 joerg W512[j] = be64toh(*data); \
673 1.9 joerg ++data; \
674 1.1 christos T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
675 1.1 christos K512[j] + W512[j]; \
676 1.1 christos (d) += T1, \
677 1.1 christos (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
678 1.1 christos j++
679 1.1 christos
680 1.1 christos #define ROUND512(a,b,c,d,e,f,g,h) \
681 1.1 christos s0 = W512[(j+1)&0x0f]; \
682 1.1 christos s0 = sigma0_512(s0); \
683 1.1 christos s1 = W512[(j+14)&0x0f]; \
684 1.1 christos s1 = sigma1_512(s1); \
685 1.1 christos T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
686 1.1 christos (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
687 1.1 christos (d) += T1; \
688 1.1 christos (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
689 1.1 christos j++
690 1.1 christos
691 1.11 joerg void
692 1.12 christos SHA512_Transform(SHA512_CTX *context, const uint64_t *data)
693 1.11 joerg {
694 1.10 joerg uint64_t a, b, c, d, e, f, g, h, s0, s1;
695 1.10 joerg uint64_t T1, *W512 = (uint64_t *)context->buffer;
696 1.1 christos int j;
697 1.1 christos
698 1.1 christos /* Initialize registers with the prev. intermediate value */
699 1.1 christos a = context->state[0];
700 1.1 christos b = context->state[1];
701 1.1 christos c = context->state[2];
702 1.1 christos d = context->state[3];
703 1.1 christos e = context->state[4];
704 1.1 christos f = context->state[5];
705 1.1 christos g = context->state[6];
706 1.1 christos h = context->state[7];
707 1.1 christos
708 1.1 christos j = 0;
709 1.1 christos do {
710 1.1 christos ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
711 1.1 christos ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
712 1.1 christos ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
713 1.1 christos ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
714 1.1 christos ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
715 1.1 christos ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
716 1.1 christos ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
717 1.1 christos ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
718 1.1 christos } while (j < 16);
719 1.1 christos
720 1.1 christos /* Now for the remaining rounds up to 79: */
721 1.1 christos do {
722 1.1 christos ROUND512(a,b,c,d,e,f,g,h);
723 1.1 christos ROUND512(h,a,b,c,d,e,f,g);
724 1.1 christos ROUND512(g,h,a,b,c,d,e,f);
725 1.1 christos ROUND512(f,g,h,a,b,c,d,e);
726 1.1 christos ROUND512(e,f,g,h,a,b,c,d);
727 1.1 christos ROUND512(d,e,f,g,h,a,b,c);
728 1.1 christos ROUND512(c,d,e,f,g,h,a,b);
729 1.1 christos ROUND512(b,c,d,e,f,g,h,a);
730 1.1 christos } while (j < 80);
731 1.1 christos
732 1.1 christos /* Compute the current intermediate hash value */
733 1.1 christos context->state[0] += a;
734 1.1 christos context->state[1] += b;
735 1.1 christos context->state[2] += c;
736 1.1 christos context->state[3] += d;
737 1.1 christos context->state[4] += e;
738 1.1 christos context->state[5] += f;
739 1.1 christos context->state[6] += g;
740 1.1 christos context->state[7] += h;
741 1.1 christos
742 1.1 christos /* Clean up */
743 1.1 christos a = b = c = d = e = f = g = h = T1 = 0;
744 1.1 christos }
745 1.1 christos
746 1.1 christos #else /* SHA2_UNROLL_TRANSFORM */
747 1.1 christos
748 1.11 joerg void
749 1.12 christos SHA512_Transform(SHA512_CTX *context, const uint64_t *data)
750 1.11 joerg {
751 1.10 joerg uint64_t a, b, c, d, e, f, g, h, s0, s1;
752 1.10 joerg uint64_t T1, T2, *W512 = (void *)context->buffer;
753 1.1 christos int j;
754 1.1 christos
755 1.1 christos /* Initialize registers with the prev. intermediate value */
756 1.1 christos a = context->state[0];
757 1.1 christos b = context->state[1];
758 1.1 christos c = context->state[2];
759 1.1 christos d = context->state[3];
760 1.1 christos e = context->state[4];
761 1.1 christos f = context->state[5];
762 1.1 christos g = context->state[6];
763 1.1 christos h = context->state[7];
764 1.1 christos
765 1.1 christos j = 0;
766 1.1 christos do {
767 1.9 joerg W512[j] = be64toh(*data);
768 1.9 joerg ++data;
769 1.1 christos /* Apply the SHA-512 compression function to update a..h */
770 1.1 christos T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
771 1.1 christos T2 = Sigma0_512(a) + Maj(a, b, c);
772 1.1 christos h = g;
773 1.1 christos g = f;
774 1.1 christos f = e;
775 1.1 christos e = d + T1;
776 1.1 christos d = c;
777 1.1 christos c = b;
778 1.1 christos b = a;
779 1.1 christos a = T1 + T2;
780 1.1 christos
781 1.1 christos j++;
782 1.1 christos } while (j < 16);
783 1.1 christos
784 1.1 christos do {
785 1.1 christos /* Part of the message block expansion: */
786 1.1 christos s0 = W512[(j+1)&0x0f];
787 1.1 christos s0 = sigma0_512(s0);
788 1.1 christos s1 = W512[(j+14)&0x0f];
789 1.1 christos s1 = sigma1_512(s1);
790 1.1 christos
791 1.1 christos /* Apply the SHA-512 compression function to update a..h */
792 1.1 christos T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
793 1.1 christos (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
794 1.1 christos T2 = Sigma0_512(a) + Maj(a, b, c);
795 1.1 christos h = g;
796 1.1 christos g = f;
797 1.1 christos f = e;
798 1.1 christos e = d + T1;
799 1.1 christos d = c;
800 1.1 christos c = b;
801 1.1 christos b = a;
802 1.1 christos a = T1 + T2;
803 1.1 christos
804 1.1 christos j++;
805 1.1 christos } while (j < 80);
806 1.1 christos
807 1.1 christos /* Compute the current intermediate hash value */
808 1.1 christos context->state[0] += a;
809 1.1 christos context->state[1] += b;
810 1.1 christos context->state[2] += c;
811 1.1 christos context->state[3] += d;
812 1.1 christos context->state[4] += e;
813 1.1 christos context->state[5] += f;
814 1.1 christos context->state[6] += g;
815 1.1 christos context->state[7] += h;
816 1.1 christos
817 1.1 christos /* Clean up */
818 1.1 christos a = b = c = d = e = f = g = h = T1 = T2 = 0;
819 1.1 christos }
820 1.1 christos
821 1.1 christos #endif /* SHA2_UNROLL_TRANSFORM */
822 1.1 christos
823 1.11 joerg int
824 1.12 christos SHA512_Update(SHA512_CTX *context, const uint8_t *data, size_t len)
825 1.11 joerg {
826 1.1 christos unsigned int freespace, usedspace;
827 1.1 christos
828 1.1 christos if (len == 0) {
829 1.1 christos /* Calling with no data is valid - we do nothing */
830 1.8 joerg return 1;
831 1.1 christos }
832 1.1 christos
833 1.12 christos usedspace = (unsigned int)((context->bitcount[0] >> 3) %
834 1.12 christos SHA512_BLOCK_LENGTH);
835 1.1 christos if (usedspace > 0) {
836 1.1 christos /* Calculate how much free space is available in the buffer */
837 1.1 christos freespace = SHA512_BLOCK_LENGTH - usedspace;
838 1.1 christos
839 1.1 christos if (len >= freespace) {
840 1.1 christos /* Fill the buffer completely and process it */
841 1.12 christos memcpy(&context->buffer[usedspace], data,
842 1.12 christos (size_t)(freespace));
843 1.1 christos ADDINC128(context->bitcount, freespace << 3);
844 1.1 christos len -= freespace;
845 1.1 christos data += freespace;
846 1.12 christos SHA512_Transform(context,
847 1.12 christos (uint64_t *)(void *)context->buffer);
848 1.1 christos } else {
849 1.1 christos /* The buffer is not yet full */
850 1.1 christos memcpy(&context->buffer[usedspace], data, len);
851 1.1 christos ADDINC128(context->bitcount, len << 3);
852 1.1 christos /* Clean up: */
853 1.1 christos usedspace = freespace = 0;
854 1.8 joerg return 1;
855 1.1 christos }
856 1.1 christos }
857 1.5 joerg /*
858 1.5 joerg * Process as many complete blocks as possible.
859 1.5 joerg *
860 1.5 joerg * Check alignment of the data pointer. If it is 64bit aligned,
861 1.5 joerg * SHA512_Transform can be called directly on the data stream,
862 1.5 joerg * otherwise enforce the alignment by copy into the buffer.
863 1.5 joerg */
864 1.5 joerg if ((uintptr_t)data % 8 == 0) {
865 1.5 joerg while (len >= SHA512_BLOCK_LENGTH) {
866 1.5 joerg SHA512_Transform(context,
867 1.10 joerg (const uint64_t*)(const void *)data);
868 1.5 joerg ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
869 1.5 joerg len -= SHA512_BLOCK_LENGTH;
870 1.5 joerg data += SHA512_BLOCK_LENGTH;
871 1.5 joerg }
872 1.5 joerg } else {
873 1.5 joerg while (len >= SHA512_BLOCK_LENGTH) {
874 1.5 joerg memcpy(context->buffer, data, SHA512_BLOCK_LENGTH);
875 1.5 joerg SHA512_Transform(context,
876 1.6 drochner (const void *)context->buffer);
877 1.5 joerg ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
878 1.5 joerg len -= SHA512_BLOCK_LENGTH;
879 1.5 joerg data += SHA512_BLOCK_LENGTH;
880 1.5 joerg }
881 1.1 christos }
882 1.1 christos if (len > 0) {
883 1.1 christos /* There's left-overs, so save 'em */
884 1.1 christos memcpy(context->buffer, data, len);
885 1.1 christos ADDINC128(context->bitcount, len << 3);
886 1.1 christos }
887 1.1 christos /* Clean up: */
888 1.1 christos usedspace = freespace = 0;
889 1.8 joerg
890 1.8 joerg return 1;
891 1.1 christos }
892 1.1 christos
893 1.11 joerg static void
894 1.12 christos SHA512_Last(SHA512_CTX *context)
895 1.11 joerg {
896 1.1 christos unsigned int usedspace;
897 1.1 christos
898 1.1 christos usedspace = (unsigned int)((context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH);
899 1.9 joerg context->bitcount[0] = htobe64(context->bitcount[0]);
900 1.9 joerg context->bitcount[1] = htobe64(context->bitcount[1]);
901 1.1 christos if (usedspace > 0) {
902 1.1 christos /* Begin padding with a 1 bit: */
903 1.1 christos context->buffer[usedspace++] = 0x80;
904 1.1 christos
905 1.1 christos if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
906 1.1 christos /* Set-up for the last transform: */
907 1.12 christos memset(&context->buffer[usedspace], 0,
908 1.12 christos (size_t)(SHA512_SHORT_BLOCK_LENGTH - usedspace));
909 1.1 christos } else {
910 1.1 christos if (usedspace < SHA512_BLOCK_LENGTH) {
911 1.12 christos memset(&context->buffer[usedspace], 0,
912 1.12 christos (size_t)(SHA512_BLOCK_LENGTH - usedspace));
913 1.1 christos }
914 1.1 christos /* Do second-to-last transform: */
915 1.12 christos SHA512_Transform(context,
916 1.12 christos (uint64_t *)(void *)context->buffer);
917 1.1 christos
918 1.1 christos /* And set-up for the last transform: */
919 1.12 christos memset(context->buffer, 0,
920 1.12 christos (size_t)(SHA512_BLOCK_LENGTH - 2));
921 1.1 christos }
922 1.1 christos } else {
923 1.1 christos /* Prepare for final transform: */
924 1.1 christos memset(context->buffer, 0, (size_t)(SHA512_SHORT_BLOCK_LENGTH));
925 1.1 christos
926 1.1 christos /* Begin padding with a 1 bit: */
927 1.1 christos *context->buffer = 0x80;
928 1.1 christos }
929 1.1 christos /* Store the length of input data (in bits): */
930 1.13 christos memcpy(&context->buffer[SHA512_SHORT_BLOCK_LENGTH],
931 1.13 christos &context->bitcount[1], sizeof(context->bitcount[1]));
932 1.13 christos memcpy(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8],
933 1.13 christos &context->bitcount[0], sizeof(context->bitcount[0]));
934 1.1 christos
935 1.1 christos /* Final transform: */
936 1.10 joerg SHA512_Transform(context, (uint64_t *)(void *)context->buffer);
937 1.1 christos }
938 1.1 christos
939 1.11 joerg int
940 1.12 christos SHA512_Final(uint8_t digest[], SHA512_CTX *context)
941 1.11 joerg {
942 1.10 joerg uint64_t *d = (void *)digest;
943 1.9 joerg size_t i;
944 1.1 christos
945 1.1 christos /* If no digest buffer is passed, we don't bother doing this: */
946 1.10 joerg if (digest != NULL) {
947 1.1 christos SHA512_Last(context);
948 1.1 christos
949 1.1 christos /* Save the hash data for output: */
950 1.9 joerg for (i = 0; i < 8; ++i)
951 1.9 joerg d[i] = htobe64(context->state[i]);
952 1.1 christos }
953 1.1 christos
954 1.1 christos /* Zero out state data */
955 1.1 christos memset(context, 0, sizeof(*context));
956 1.8 joerg
957 1.8 joerg return 1;
958 1.1 christos }
959 1.1 christos
960 1.1 christos /*** SHA-384: *********************************************************/
961 1.11 joerg int
962 1.12 christos SHA384_Init(SHA384_CTX *context)
963 1.11 joerg {
964 1.12 christos if (context == NULL)
965 1.8 joerg return 1;
966 1.12 christos
967 1.12 christos memcpy(context->state, sha384_initial_hash_value,
968 1.12 christos (size_t)(SHA512_DIGEST_LENGTH));
969 1.1 christos memset(context->buffer, 0, (size_t)(SHA384_BLOCK_LENGTH));
970 1.1 christos context->bitcount[0] = context->bitcount[1] = 0;
971 1.8 joerg
972 1.8 joerg return 1;
973 1.1 christos }
974 1.1 christos
975 1.11 joerg int
976 1.12 christos SHA384_Update(SHA384_CTX *context, const uint8_t *data, size_t len)
977 1.11 joerg {
978 1.12 christos return SHA512_Update((SHA512_CTX *)context, data, len);
979 1.1 christos }
980 1.1 christos
981 1.11 joerg void
982 1.12 christos SHA384_Transform(SHA512_CTX *context, const uint64_t *data)
983 1.11 joerg {
984 1.12 christos SHA512_Transform((SHA512_CTX *)context, data);
985 1.1 christos }
986 1.1 christos
987 1.11 joerg int
988 1.12 christos SHA384_Final(uint8_t digest[], SHA384_CTX *context)
989 1.11 joerg {
990 1.10 joerg uint64_t *d = (void *)digest;
991 1.9 joerg size_t i;
992 1.1 christos
993 1.1 christos /* If no digest buffer is passed, we don't bother doing this: */
994 1.10 joerg if (digest != NULL) {
995 1.12 christos SHA512_Last((SHA512_CTX *)context);
996 1.1 christos
997 1.1 christos /* Save the hash data for output: */
998 1.9 joerg for (i = 0; i < 6; ++i)
999 1.9 joerg d[i] = be64toh(context->state[i]);
1000 1.1 christos }
1001 1.1 christos
1002 1.1 christos /* Zero out state data */
1003 1.1 christos memset(context, 0, sizeof(*context));
1004 1.8 joerg
1005 1.8 joerg return 1;
1006 1.1 christos }
1007