Home | History | Annotate | Line # | Download | only in sha2
sha2.c revision 1.23
      1  1.23  christos /* $NetBSD: sha2.c,v 1.23 2013/06/09 02:58:58 christos Exp $ */
      2   1.1  christos /*	$KAME: sha2.c,v 1.9 2003/07/20 00:28:38 itojun Exp $	*/
      3   1.1  christos 
      4   1.1  christos /*
      5   1.1  christos  * sha2.c
      6   1.1  christos  *
      7   1.1  christos  * Version 1.0.0beta1
      8   1.1  christos  *
      9   1.1  christos  * Written by Aaron D. Gifford <me (at) aarongifford.com>
     10   1.1  christos  *
     11   1.1  christos  * Copyright 2000 Aaron D. Gifford.  All rights reserved.
     12   1.1  christos  *
     13   1.1  christos  * Redistribution and use in source and binary forms, with or without
     14   1.1  christos  * modification, are permitted provided that the following conditions
     15   1.1  christos  * are met:
     16   1.1  christos  * 1. Redistributions of source code must retain the above copyright
     17   1.1  christos  *    notice, this list of conditions and the following disclaimer.
     18   1.1  christos  * 2. Redistributions in binary form must reproduce the above copyright
     19   1.1  christos  *    notice, this list of conditions and the following disclaimer in the
     20   1.1  christos  *    documentation and/or other materials provided with the distribution.
     21   1.1  christos  * 3. Neither the name of the copyright holder nor the names of contributors
     22   1.1  christos  *    may be used to endorse or promote products derived from this software
     23   1.1  christos  *    without specific prior written permission.
     24   1.1  christos  *
     25   1.1  christos  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
     26   1.1  christos  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     27   1.1  christos  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     28   1.1  christos  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE
     29   1.1  christos  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     30   1.1  christos  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     31   1.1  christos  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     32   1.1  christos  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     33   1.1  christos  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     34   1.1  christos  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     35   1.1  christos  * SUCH DAMAGE.
     36   1.1  christos  *
     37   1.1  christos  */
     38   1.1  christos 
     39  1.14     joerg #if HAVE_NBTOOL_CONFIG_H
     40  1.14     joerg #include "nbtool_config.h"
     41  1.14     joerg #endif
     42  1.14     joerg 
     43   1.1  christos #include <sys/cdefs.h>
     44   1.1  christos 
     45   1.1  christos #if defined(_KERNEL) || defined(_STANDALONE)
     46  1.23  christos __KERNEL_RCSID(0, "$NetBSD: sha2.c,v 1.23 2013/06/09 02:58:58 christos Exp $");
     47   1.1  christos 
     48  1.17   tsutsui #include <sys/param.h>	/* XXX: to pull <machine/macros.h> for vax memset(9) */
     49   1.1  christos #include <lib/libkern/libkern.h>
     50   1.1  christos 
     51   1.1  christos #else
     52   1.1  christos 
     53   1.1  christos #if defined(LIBC_SCCS) && !defined(lint)
     54  1.23  christos __RCSID("$NetBSD: sha2.c,v 1.23 2013/06/09 02:58:58 christos Exp $");
     55   1.1  christos #endif /* LIBC_SCCS and not lint */
     56   1.1  christos 
     57   1.1  christos #include "namespace.h"
     58   1.1  christos #include <string.h>
     59   1.1  christos 
     60   1.1  christos #endif
     61   1.1  christos 
     62   1.1  christos #include <sys/types.h>
     63   1.1  christos #include <sys/sha2.h>
     64  1.14     joerg 
     65  1.14     joerg #if HAVE_NBTOOL_CONFIG_H
     66  1.22  christos # if HAVE_SYS_ENDIAN_H
     67  1.22  christos #  include <sys/endian.h>
     68  1.22  christos # else
     69  1.23  christos #  undef be32dec
     70  1.23  christos #  undef be64dec
     71  1.14     joerg 
     72  1.23  christos static __inline uint32_t __unused
     73  1.23  christos be32dec(const void *buf)
     74  1.14     joerg {
     75  1.23  christos 	const uint8_t *p = __CAST(const uint8_t *, buf);
     76  1.14     joerg 
     77  1.14     joerg 	return ((p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3]);
     78  1.14     joerg }
     79  1.14     joerg 
     80  1.23  christos static __inline uint64_t __unused
     81  1.23  christos be64dec(const void *buf)
     82  1.14     joerg {
     83  1.23  christos 	const uint8_t *p = (const uint8_t *)buf;
     84  1.14     joerg 
     85  1.23  christos 	return ((__CAST(uint64_t, be32dec(p)) << 32) | be32dec(p + 4));
     86  1.14     joerg }
     87  1.22  christos # endif
     88  1.22  christos #endif
     89  1.22  christos 
     90   1.1  christos /*** SHA-256/384/512 Various Length Definitions ***********************/
     91   1.1  christos /* NOTE: Most of these are in sha2.h */
     92   1.1  christos #define SHA256_SHORT_BLOCK_LENGTH	(SHA256_BLOCK_LENGTH - 8)
     93   1.1  christos #define SHA384_SHORT_BLOCK_LENGTH	(SHA384_BLOCK_LENGTH - 16)
     94   1.1  christos #define SHA512_SHORT_BLOCK_LENGTH	(SHA512_BLOCK_LENGTH - 16)
     95   1.1  christos 
     96   1.1  christos /*
     97   1.1  christos  * Macro for incrementally adding the unsigned 64-bit integer n to the
     98   1.1  christos  * unsigned 128-bit integer (represented using a two-element array of
     99   1.1  christos  * 64-bit words):
    100   1.1  christos  */
    101   1.1  christos #define ADDINC128(w,n)	{ \
    102  1.10     joerg 	(w)[0] += (uint64_t)(n); \
    103   1.1  christos 	if ((w)[0] < (n)) { \
    104   1.1  christos 		(w)[1]++; \
    105   1.1  christos 	} \
    106   1.1  christos }
    107   1.1  christos 
    108   1.1  christos /*** THE SIX LOGICAL FUNCTIONS ****************************************/
    109   1.1  christos /*
    110   1.1  christos  * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
    111   1.1  christos  *
    112   1.1  christos  *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
    113   1.1  christos  *   S is a ROTATION) because the SHA-256/384/512 description document
    114   1.1  christos  *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
    115   1.1  christos  *   same "backwards" definition.
    116   1.1  christos  */
    117   1.1  christos /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
    118   1.1  christos #define R(b,x) 		((x) >> (b))
    119   1.1  christos /* 32-bit Rotate-right (used in SHA-256): */
    120   1.1  christos #define S32(b,x)	(((x) >> (b)) | ((x) << (32 - (b))))
    121   1.1  christos /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
    122   1.1  christos #define S64(b,x)	(((x) >> (b)) | ((x) << (64 - (b))))
    123   1.1  christos 
    124   1.1  christos /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
    125   1.1  christos #define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
    126   1.1  christos #define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
    127   1.1  christos 
    128   1.1  christos /* Four of six logical functions used in SHA-256: */
    129   1.1  christos #define Sigma0_256(x)	(S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
    130   1.1  christos #define Sigma1_256(x)	(S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
    131   1.1  christos #define sigma0_256(x)	(S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
    132   1.1  christos #define sigma1_256(x)	(S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
    133   1.1  christos 
    134   1.1  christos /* Four of six logical functions used in SHA-384 and SHA-512: */
    135   1.1  christos #define Sigma0_512(x)	(S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
    136   1.1  christos #define Sigma1_512(x)	(S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
    137   1.1  christos #define sigma0_512(x)	(S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
    138   1.1  christos #define sigma1_512(x)	(S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
    139   1.1  christos 
    140   1.1  christos /*** INTERNAL FUNCTION PROTOTYPES *************************************/
    141   1.1  christos /* NOTE: These should not be accessed directly from outside this
    142   1.1  christos  * library -- they are intended for private internal visibility/use
    143   1.1  christos  * only.
    144   1.1  christos  */
    145  1.12  christos static void SHA512_Last(SHA512_CTX *);
    146  1.15    martin void SHA224_Transform(SHA224_CTX *, const uint32_t*);
    147  1.12  christos void SHA256_Transform(SHA256_CTX *, const uint32_t*);
    148  1.12  christos void SHA384_Transform(SHA384_CTX *, const uint64_t*);
    149  1.12  christos void SHA512_Transform(SHA512_CTX *, const uint64_t*);
    150   1.1  christos 
    151   1.1  christos 
    152   1.1  christos /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
    153   1.1  christos /* Hash constant words K for SHA-256: */
    154  1.10     joerg static const uint32_t K256[64] = {
    155   1.1  christos 	0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
    156   1.1  christos 	0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
    157   1.1  christos 	0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
    158   1.1  christos 	0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
    159   1.1  christos 	0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
    160   1.1  christos 	0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
    161   1.1  christos 	0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
    162   1.1  christos 	0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
    163   1.1  christos 	0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
    164   1.1  christos 	0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
    165   1.1  christos 	0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
    166   1.1  christos 	0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
    167   1.1  christos 	0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
    168   1.1  christos 	0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
    169   1.1  christos 	0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
    170   1.1  christos 	0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
    171   1.1  christos };
    172   1.1  christos 
    173   1.8     joerg /* Initial hash value H for SHA-224: */
    174  1.10     joerg static const uint32_t sha224_initial_hash_value[8] = {
    175   1.8     joerg 	0xc1059ed8UL,
    176   1.8     joerg 	0x367cd507UL,
    177   1.8     joerg 	0x3070dd17UL,
    178   1.8     joerg 	0xf70e5939UL,
    179   1.8     joerg 	0xffc00b31UL,
    180   1.8     joerg 	0x68581511UL,
    181   1.8     joerg 	0x64f98fa7UL,
    182   1.8     joerg 	0xbefa4fa4UL
    183   1.8     joerg };
    184   1.8     joerg 
    185   1.1  christos /* Initial hash value H for SHA-256: */
    186  1.10     joerg static const uint32_t sha256_initial_hash_value[8] = {
    187   1.1  christos 	0x6a09e667UL,
    188   1.1  christos 	0xbb67ae85UL,
    189   1.1  christos 	0x3c6ef372UL,
    190   1.1  christos 	0xa54ff53aUL,
    191   1.1  christos 	0x510e527fUL,
    192   1.1  christos 	0x9b05688cUL,
    193   1.1  christos 	0x1f83d9abUL,
    194   1.1  christos 	0x5be0cd19UL
    195   1.1  christos };
    196   1.1  christos 
    197   1.1  christos /* Hash constant words K for SHA-384 and SHA-512: */
    198  1.10     joerg static const uint64_t K512[80] = {
    199   1.1  christos 	0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
    200   1.1  christos 	0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
    201   1.1  christos 	0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
    202   1.1  christos 	0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
    203   1.1  christos 	0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
    204   1.1  christos 	0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
    205   1.1  christos 	0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
    206   1.1  christos 	0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
    207   1.1  christos 	0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
    208   1.1  christos 	0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
    209   1.1  christos 	0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
    210   1.1  christos 	0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
    211   1.1  christos 	0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
    212   1.1  christos 	0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
    213   1.1  christos 	0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
    214   1.1  christos 	0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
    215   1.1  christos 	0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
    216   1.1  christos 	0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
    217   1.1  christos 	0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
    218   1.1  christos 	0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
    219   1.1  christos 	0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
    220   1.1  christos 	0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
    221   1.1  christos 	0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
    222   1.1  christos 	0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
    223   1.1  christos 	0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
    224   1.1  christos 	0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
    225   1.1  christos 	0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
    226   1.1  christos 	0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
    227   1.1  christos 	0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
    228   1.1  christos 	0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
    229   1.1  christos 	0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
    230   1.1  christos 	0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
    231   1.1  christos 	0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
    232   1.1  christos 	0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
    233   1.1  christos 	0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
    234   1.1  christos 	0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
    235   1.1  christos 	0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
    236   1.1  christos 	0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
    237   1.1  christos 	0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
    238   1.1  christos 	0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
    239   1.1  christos };
    240   1.1  christos 
    241   1.1  christos /* Initial hash value H for SHA-384 */
    242  1.10     joerg static const uint64_t sha384_initial_hash_value[8] = {
    243   1.1  christos 	0xcbbb9d5dc1059ed8ULL,
    244   1.1  christos 	0x629a292a367cd507ULL,
    245   1.1  christos 	0x9159015a3070dd17ULL,
    246   1.1  christos 	0x152fecd8f70e5939ULL,
    247   1.1  christos 	0x67332667ffc00b31ULL,
    248   1.1  christos 	0x8eb44a8768581511ULL,
    249   1.1  christos 	0xdb0c2e0d64f98fa7ULL,
    250   1.1  christos 	0x47b5481dbefa4fa4ULL
    251   1.1  christos };
    252   1.1  christos 
    253   1.1  christos /* Initial hash value H for SHA-512 */
    254  1.10     joerg static const uint64_t sha512_initial_hash_value[8] = {
    255   1.1  christos 	0x6a09e667f3bcc908ULL,
    256   1.1  christos 	0xbb67ae8584caa73bULL,
    257   1.1  christos 	0x3c6ef372fe94f82bULL,
    258   1.1  christos 	0xa54ff53a5f1d36f1ULL,
    259   1.1  christos 	0x510e527fade682d1ULL,
    260   1.1  christos 	0x9b05688c2b3e6c1fULL,
    261   1.1  christos 	0x1f83d9abfb41bd6bULL,
    262   1.1  christos 	0x5be0cd19137e2179ULL
    263   1.1  christos };
    264   1.1  christos 
    265  1.19     skrll #if !defined(_KERNEL) && !defined(_STANDALONE)
    266  1.19     skrll #if defined(__weak_alias)
    267   1.8     joerg __weak_alias(SHA224_Init,_SHA224_Init)
    268   1.8     joerg __weak_alias(SHA224_Update,_SHA224_Update)
    269   1.8     joerg __weak_alias(SHA224_Final,_SHA224_Final)
    270   1.8     joerg __weak_alias(SHA224_Transform,_SHA224_Transform)
    271   1.8     joerg 
    272   1.1  christos __weak_alias(SHA256_Init,_SHA256_Init)
    273   1.1  christos __weak_alias(SHA256_Update,_SHA256_Update)
    274   1.1  christos __weak_alias(SHA256_Final,_SHA256_Final)
    275   1.1  christos __weak_alias(SHA256_Transform,_SHA256_Transform)
    276   1.1  christos 
    277   1.1  christos __weak_alias(SHA384_Init,_SHA384_Init)
    278   1.1  christos __weak_alias(SHA384_Update,_SHA384_Update)
    279   1.1  christos __weak_alias(SHA384_Final,_SHA384_Final)
    280   1.1  christos __weak_alias(SHA384_Transform,_SHA384_Transform)
    281   1.1  christos 
    282   1.1  christos __weak_alias(SHA512_Init,_SHA512_Init)
    283   1.1  christos __weak_alias(SHA512_Update,_SHA512_Update)
    284   1.1  christos __weak_alias(SHA512_Final,_SHA512_Final)
    285   1.1  christos __weak_alias(SHA512_Transform,_SHA512_Transform)
    286   1.1  christos #endif
    287  1.19     skrll #endif
    288   1.1  christos 
    289   1.1  christos /*** SHA-256: *********************************************************/
    290  1.11     joerg int
    291  1.12  christos SHA256_Init(SHA256_CTX *context)
    292  1.11     joerg {
    293  1.12  christos 	if (context == NULL)
    294   1.8     joerg 		return 1;
    295  1.12  christos 
    296  1.12  christos 	memcpy(context->state, sha256_initial_hash_value,
    297  1.12  christos 	    (size_t)(SHA256_DIGEST_LENGTH));
    298   1.1  christos 	memset(context->buffer, 0, (size_t)(SHA256_BLOCK_LENGTH));
    299   1.1  christos 	context->bitcount = 0;
    300   1.8     joerg 
    301   1.8     joerg 	return 1;
    302   1.8     joerg }
    303   1.8     joerg 
    304   1.1  christos #ifdef SHA2_UNROLL_TRANSFORM
    305   1.1  christos 
    306   1.1  christos /* Unrolled SHA-256 round macros: */
    307   1.1  christos 
    308   1.1  christos #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
    309  1.23  christos 	W256[j] = be32dec(data);		\
    310   1.9     joerg 	++data;					\
    311   1.1  christos 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
    312   1.1  christos              K256[j] + W256[j]; \
    313   1.1  christos 	(d) += T1; \
    314   1.1  christos 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
    315   1.1  christos 	j++
    316   1.1  christos 
    317   1.1  christos #define ROUND256(a,b,c,d,e,f,g,h)	\
    318   1.1  christos 	s0 = W256[(j+1)&0x0f]; \
    319   1.1  christos 	s0 = sigma0_256(s0); \
    320   1.1  christos 	s1 = W256[(j+14)&0x0f]; \
    321   1.1  christos 	s1 = sigma1_256(s1); \
    322   1.1  christos 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
    323   1.1  christos 	     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
    324   1.1  christos 	(d) += T1; \
    325   1.1  christos 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
    326   1.1  christos 	j++
    327   1.1  christos 
    328  1.11     joerg void
    329  1.12  christos SHA256_Transform(SHA256_CTX *context, const uint32_t *data)
    330  1.11     joerg {
    331  1.10     joerg 	uint32_t	a, b, c, d, e, f, g, h, s0, s1;
    332  1.10     joerg 	uint32_t	T1, *W256;
    333   1.1  christos 	int		j;
    334   1.1  christos 
    335  1.10     joerg 	W256 = (uint32_t *)context->buffer;
    336   1.1  christos 
    337   1.1  christos 	/* Initialize registers with the prev. intermediate value */
    338   1.1  christos 	a = context->state[0];
    339   1.1  christos 	b = context->state[1];
    340   1.1  christos 	c = context->state[2];
    341   1.1  christos 	d = context->state[3];
    342   1.1  christos 	e = context->state[4];
    343   1.1  christos 	f = context->state[5];
    344   1.1  christos 	g = context->state[6];
    345   1.1  christos 	h = context->state[7];
    346   1.1  christos 
    347   1.1  christos 	j = 0;
    348   1.1  christos 	do {
    349   1.1  christos 		/* Rounds 0 to 15 (unrolled): */
    350   1.1  christos 		ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
    351   1.1  christos 		ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
    352   1.1  christos 		ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
    353   1.1  christos 		ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
    354   1.1  christos 		ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
    355   1.1  christos 		ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
    356   1.1  christos 		ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
    357   1.1  christos 		ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
    358   1.1  christos 	} while (j < 16);
    359   1.1  christos 
    360   1.1  christos 	/* Now for the remaining rounds to 64: */
    361   1.1  christos 	do {
    362   1.1  christos 		ROUND256(a,b,c,d,e,f,g,h);
    363   1.1  christos 		ROUND256(h,a,b,c,d,e,f,g);
    364   1.1  christos 		ROUND256(g,h,a,b,c,d,e,f);
    365   1.1  christos 		ROUND256(f,g,h,a,b,c,d,e);
    366   1.1  christos 		ROUND256(e,f,g,h,a,b,c,d);
    367   1.1  christos 		ROUND256(d,e,f,g,h,a,b,c);
    368   1.1  christos 		ROUND256(c,d,e,f,g,h,a,b);
    369   1.1  christos 		ROUND256(b,c,d,e,f,g,h,a);
    370   1.1  christos 	} while (j < 64);
    371   1.1  christos 
    372   1.1  christos 	/* Compute the current intermediate hash value */
    373   1.1  christos 	context->state[0] += a;
    374   1.1  christos 	context->state[1] += b;
    375   1.1  christos 	context->state[2] += c;
    376   1.1  christos 	context->state[3] += d;
    377   1.1  christos 	context->state[4] += e;
    378   1.1  christos 	context->state[5] += f;
    379   1.1  christos 	context->state[6] += g;
    380   1.1  christos 	context->state[7] += h;
    381   1.1  christos 
    382   1.1  christos 	/* Clean up */
    383   1.1  christos 	a = b = c = d = e = f = g = h = T1 = 0;
    384   1.1  christos }
    385   1.1  christos 
    386   1.1  christos #else /* SHA2_UNROLL_TRANSFORM */
    387   1.1  christos 
    388  1.11     joerg void
    389  1.12  christos SHA256_Transform(SHA256_CTX *context, const uint32_t *data)
    390  1.11     joerg {
    391  1.10     joerg 	uint32_t	a, b, c, d, e, f, g, h, s0, s1;
    392  1.10     joerg 	uint32_t	T1, T2, *W256;
    393   1.1  christos 	int		j;
    394   1.1  christos 
    395  1.10     joerg 	W256 = (uint32_t *)(void *)context->buffer;
    396   1.1  christos 
    397   1.1  christos 	/* Initialize registers with the prev. intermediate value */
    398   1.1  christos 	a = context->state[0];
    399   1.1  christos 	b = context->state[1];
    400   1.1  christos 	c = context->state[2];
    401   1.1  christos 	d = context->state[3];
    402   1.1  christos 	e = context->state[4];
    403   1.1  christos 	f = context->state[5];
    404   1.1  christos 	g = context->state[6];
    405   1.1  christos 	h = context->state[7];
    406   1.1  christos 
    407   1.1  christos 	j = 0;
    408   1.1  christos 	do {
    409  1.23  christos 		W256[j] = be32dec(data);
    410   1.9     joerg 		++data;
    411   1.1  christos 		/* Apply the SHA-256 compression function to update a..h */
    412   1.1  christos 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
    413   1.1  christos 		T2 = Sigma0_256(a) + Maj(a, b, c);
    414   1.1  christos 		h = g;
    415   1.1  christos 		g = f;
    416   1.1  christos 		f = e;
    417   1.1  christos 		e = d + T1;
    418   1.1  christos 		d = c;
    419   1.1  christos 		c = b;
    420   1.1  christos 		b = a;
    421   1.1  christos 		a = T1 + T2;
    422   1.1  christos 
    423   1.1  christos 		j++;
    424   1.1  christos 	} while (j < 16);
    425   1.1  christos 
    426   1.1  christos 	do {
    427   1.1  christos 		/* Part of the message block expansion: */
    428   1.1  christos 		s0 = W256[(j+1)&0x0f];
    429   1.1  christos 		s0 = sigma0_256(s0);
    430   1.1  christos 		s1 = W256[(j+14)&0x0f];
    431   1.1  christos 		s1 = sigma1_256(s1);
    432   1.1  christos 
    433   1.1  christos 		/* Apply the SHA-256 compression function to update a..h */
    434   1.1  christos 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
    435   1.1  christos 		     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
    436   1.1  christos 		T2 = Sigma0_256(a) + Maj(a, b, c);
    437   1.1  christos 		h = g;
    438   1.1  christos 		g = f;
    439   1.1  christos 		f = e;
    440   1.1  christos 		e = d + T1;
    441   1.1  christos 		d = c;
    442   1.1  christos 		c = b;
    443   1.1  christos 		b = a;
    444   1.1  christos 		a = T1 + T2;
    445   1.1  christos 
    446   1.1  christos 		j++;
    447   1.1  christos 	} while (j < 64);
    448   1.1  christos 
    449   1.1  christos 	/* Compute the current intermediate hash value */
    450   1.1  christos 	context->state[0] += a;
    451   1.1  christos 	context->state[1] += b;
    452   1.1  christos 	context->state[2] += c;
    453   1.1  christos 	context->state[3] += d;
    454   1.1  christos 	context->state[4] += e;
    455   1.1  christos 	context->state[5] += f;
    456   1.1  christos 	context->state[6] += g;
    457   1.1  christos 	context->state[7] += h;
    458   1.1  christos 
    459   1.1  christos 	/* Clean up */
    460   1.1  christos 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
    461   1.1  christos }
    462   1.1  christos 
    463   1.1  christos #endif /* SHA2_UNROLL_TRANSFORM */
    464   1.1  christos 
    465  1.11     joerg int
    466  1.12  christos SHA256_Update(SHA256_CTX *context, const uint8_t *data, size_t len)
    467  1.11     joerg {
    468   1.1  christos 	unsigned int	freespace, usedspace;
    469   1.1  christos 
    470   1.1  christos 	if (len == 0) {
    471   1.1  christos 		/* Calling with no data is valid - we do nothing */
    472   1.8     joerg 		return 1;
    473   1.1  christos 	}
    474   1.1  christos 
    475   1.1  christos 	usedspace = (unsigned int)((context->bitcount >> 3) %
    476   1.1  christos 				    SHA256_BLOCK_LENGTH);
    477   1.1  christos 	if (usedspace > 0) {
    478   1.1  christos 		/* Calculate how much free space is available in the buffer */
    479   1.1  christos 		freespace = SHA256_BLOCK_LENGTH - usedspace;
    480   1.1  christos 
    481   1.1  christos 		if (len >= freespace) {
    482   1.1  christos 			/* Fill the buffer completely and process it */
    483  1.12  christos 			memcpy(&context->buffer[usedspace], data,
    484  1.12  christos 			    (size_t)(freespace));
    485   1.1  christos 			context->bitcount += freespace << 3;
    486   1.1  christos 			len -= freespace;
    487   1.1  christos 			data += freespace;
    488  1.12  christos 			SHA256_Transform(context,
    489  1.12  christos 			    (uint32_t *)(void *)context->buffer);
    490   1.1  christos 		} else {
    491   1.1  christos 			/* The buffer is not yet full */
    492   1.1  christos 			memcpy(&context->buffer[usedspace], data, len);
    493   1.1  christos 			context->bitcount += len << 3;
    494   1.1  christos 			/* Clean up: */
    495   1.1  christos 			usedspace = freespace = 0;
    496   1.8     joerg 			return 1;
    497   1.1  christos 		}
    498   1.1  christos 	}
    499   1.5     joerg 	/*
    500   1.5     joerg 	 * Process as many complete blocks as possible.
    501   1.5     joerg 	 *
    502   1.5     joerg 	 * Check alignment of the data pointer. If it is 32bit aligned,
    503   1.5     joerg 	 * SHA256_Transform can be called directly on the data stream,
    504   1.5     joerg 	 * otherwise enforce the alignment by copy into the buffer.
    505   1.5     joerg 	 */
    506   1.5     joerg 	if ((uintptr_t)data % 4 == 0) {
    507   1.5     joerg 		while (len >= SHA256_BLOCK_LENGTH) {
    508   1.5     joerg 			SHA256_Transform(context,
    509  1.10     joerg 			    (const uint32_t *)(const void *)data);
    510   1.5     joerg 			context->bitcount += SHA256_BLOCK_LENGTH << 3;
    511   1.5     joerg 			len -= SHA256_BLOCK_LENGTH;
    512   1.5     joerg 			data += SHA256_BLOCK_LENGTH;
    513   1.5     joerg 		}
    514   1.5     joerg 	} else {
    515   1.5     joerg 		while (len >= SHA256_BLOCK_LENGTH) {
    516   1.5     joerg 			memcpy(context->buffer, data, SHA256_BLOCK_LENGTH);
    517   1.5     joerg 			SHA256_Transform(context,
    518  1.10     joerg 			    (const uint32_t *)(const void *)context->buffer);
    519   1.5     joerg 			context->bitcount += SHA256_BLOCK_LENGTH << 3;
    520   1.5     joerg 			len -= SHA256_BLOCK_LENGTH;
    521   1.5     joerg 			data += SHA256_BLOCK_LENGTH;
    522   1.5     joerg 		}
    523   1.1  christos 	}
    524   1.1  christos 	if (len > 0) {
    525   1.1  christos 		/* There's left-overs, so save 'em */
    526   1.1  christos 		memcpy(context->buffer, data, len);
    527   1.1  christos 		context->bitcount += len << 3;
    528   1.1  christos 	}
    529   1.1  christos 	/* Clean up: */
    530   1.1  christos 	usedspace = freespace = 0;
    531   1.8     joerg 
    532   1.8     joerg 	return 1;
    533   1.1  christos }
    534   1.1  christos 
    535  1.11     joerg static int
    536  1.12  christos SHA224_256_Final(uint8_t digest[], SHA256_CTX *context, size_t len)
    537  1.11     joerg {
    538   1.1  christos 	unsigned int	usedspace;
    539   1.9     joerg 	size_t i;
    540   1.1  christos 
    541   1.1  christos 	/* If no digest buffer is passed, we don't bother doing this: */
    542  1.10     joerg 	if (digest != NULL) {
    543  1.12  christos 		usedspace = (unsigned int)((context->bitcount >> 3) %
    544  1.12  christos 		    SHA256_BLOCK_LENGTH);
    545   1.9     joerg 		context->bitcount = htobe64(context->bitcount);
    546   1.1  christos 		if (usedspace > 0) {
    547   1.1  christos 			/* Begin padding with a 1 bit: */
    548   1.1  christos 			context->buffer[usedspace++] = 0x80;
    549   1.1  christos 
    550   1.1  christos 			if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
    551   1.1  christos 				/* Set-up for the last transform: */
    552  1.12  christos 				memset(&context->buffer[usedspace], 0,
    553  1.12  christos 				    (size_t)(SHA256_SHORT_BLOCK_LENGTH -
    554  1.12  christos 				    usedspace));
    555   1.1  christos 			} else {
    556   1.1  christos 				if (usedspace < SHA256_BLOCK_LENGTH) {
    557  1.12  christos 					memset(&context->buffer[usedspace], 0,
    558  1.12  christos 					    (size_t)(SHA256_BLOCK_LENGTH -
    559  1.12  christos 					    usedspace));
    560   1.1  christos 				}
    561   1.1  christos 				/* Do second-to-last transform: */
    562  1.12  christos 				SHA256_Transform(context,
    563  1.12  christos 				    (uint32_t *)(void *)context->buffer);
    564   1.1  christos 
    565   1.1  christos 				/* And set-up for the last transform: */
    566  1.12  christos 				memset(context->buffer, 0,
    567  1.12  christos 				    (size_t)(SHA256_SHORT_BLOCK_LENGTH));
    568   1.1  christos 			}
    569   1.1  christos 		} else {
    570   1.1  christos 			/* Set-up for the last transform: */
    571  1.12  christos 			memset(context->buffer, 0,
    572  1.12  christos 			    (size_t)(SHA256_SHORT_BLOCK_LENGTH));
    573   1.1  christos 
    574   1.1  christos 			/* Begin padding with a 1 bit: */
    575   1.1  christos 			*context->buffer = 0x80;
    576   1.1  christos 		}
    577   1.1  christos 		/* Set the bit count: */
    578  1.13  christos 		memcpy(&context->buffer[SHA256_SHORT_BLOCK_LENGTH],
    579  1.13  christos 		    &context->bitcount, sizeof(context->bitcount));
    580   1.1  christos 
    581   1.1  christos 		/* Final transform: */
    582  1.10     joerg 		SHA256_Transform(context, (uint32_t *)(void *)context->buffer);
    583   1.1  christos 
    584   1.9     joerg 		for (i = 0; i < len / 4; i++)
    585  1.21     joerg 			be32enc(digest + 4 * i, context->state[i]);
    586   1.1  christos 	}
    587   1.1  christos 
    588   1.1  christos 	/* Clean up state data: */
    589   1.1  christos 	memset(context, 0, sizeof(*context));
    590   1.1  christos 	usedspace = 0;
    591   1.8     joerg 
    592   1.8     joerg 	return 1;
    593   1.8     joerg }
    594   1.8     joerg 
    595  1.11     joerg int
    596  1.12  christos SHA256_Final(uint8_t digest[], SHA256_CTX *context)
    597  1.12  christos {
    598  1.12  christos 	return SHA224_256_Final(digest, context, SHA256_DIGEST_LENGTH);
    599  1.12  christos }
    600  1.12  christos 
    601  1.12  christos /*** SHA-224: *********************************************************/
    602  1.12  christos int
    603  1.12  christos SHA224_Init(SHA224_CTX *context)
    604  1.12  christos {
    605  1.12  christos 	if (context == NULL)
    606  1.12  christos 		return 1;
    607  1.12  christos 
    608  1.18     joerg 	/* The state and buffer size are driven by SHA256, not by SHA224. */
    609  1.12  christos 	memcpy(context->state, sha224_initial_hash_value,
    610  1.18     joerg 	    (size_t)(SHA256_DIGEST_LENGTH));
    611  1.18     joerg 	memset(context->buffer, 0, (size_t)(SHA256_BLOCK_LENGTH));
    612  1.12  christos 	context->bitcount = 0;
    613  1.12  christos 
    614  1.12  christos 	return 1;
    615  1.12  christos }
    616  1.12  christos 
    617  1.12  christos int
    618  1.12  christos SHA224_Update(SHA224_CTX *context, const uint8_t *data, size_t len)
    619  1.12  christos {
    620  1.12  christos 	return SHA256_Update((SHA256_CTX *)context, data, len);
    621  1.12  christos }
    622  1.12  christos 
    623  1.12  christos void
    624  1.15    martin SHA224_Transform(SHA224_CTX *context, const uint32_t *data)
    625  1.11     joerg {
    626  1.15    martin 	SHA256_Transform((SHA256_CTX *)context, data);
    627   1.8     joerg }
    628   1.8     joerg 
    629  1.11     joerg int
    630  1.12  christos SHA224_Final(uint8_t digest[], SHA224_CTX *context)
    631  1.11     joerg {
    632  1.12  christos 	return SHA224_256_Final(digest, (SHA256_CTX *)context,
    633  1.12  christos 	    SHA224_DIGEST_LENGTH);
    634   1.1  christos }
    635   1.1  christos 
    636   1.1  christos /*** SHA-512: *********************************************************/
    637  1.11     joerg int
    638  1.12  christos SHA512_Init(SHA512_CTX *context)
    639  1.11     joerg {
    640  1.10     joerg 	if (context == NULL)
    641   1.8     joerg 		return 1;
    642  1.10     joerg 
    643  1.12  christos 	memcpy(context->state, sha512_initial_hash_value,
    644  1.12  christos 	    (size_t)(SHA512_DIGEST_LENGTH));
    645   1.1  christos 	memset(context->buffer, 0, (size_t)(SHA512_BLOCK_LENGTH));
    646   1.1  christos 	context->bitcount[0] = context->bitcount[1] =  0;
    647   1.8     joerg 
    648   1.8     joerg 	return 1;
    649   1.1  christos }
    650   1.1  christos 
    651   1.1  christos #ifdef SHA2_UNROLL_TRANSFORM
    652   1.1  christos 
    653   1.1  christos /* Unrolled SHA-512 round macros: */
    654   1.1  christos #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
    655  1.23  christos 	W512[j] = be64dec(data);		\
    656   1.9     joerg 	++data;					\
    657   1.1  christos 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
    658   1.1  christos              K512[j] + W512[j]; \
    659   1.1  christos 	(d) += T1, \
    660   1.1  christos 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
    661   1.1  christos 	j++
    662   1.1  christos 
    663   1.1  christos #define ROUND512(a,b,c,d,e,f,g,h)	\
    664   1.1  christos 	s0 = W512[(j+1)&0x0f]; \
    665   1.1  christos 	s0 = sigma0_512(s0); \
    666   1.1  christos 	s1 = W512[(j+14)&0x0f]; \
    667   1.1  christos 	s1 = sigma1_512(s1); \
    668   1.1  christos 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
    669   1.1  christos              (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
    670   1.1  christos 	(d) += T1; \
    671   1.1  christos 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
    672   1.1  christos 	j++
    673   1.1  christos 
    674  1.11     joerg void
    675  1.12  christos SHA512_Transform(SHA512_CTX *context, const uint64_t *data)
    676  1.11     joerg {
    677  1.10     joerg 	uint64_t	a, b, c, d, e, f, g, h, s0, s1;
    678  1.10     joerg 	uint64_t	T1, *W512 = (uint64_t *)context->buffer;
    679   1.1  christos 	int		j;
    680   1.1  christos 
    681   1.1  christos 	/* Initialize registers with the prev. intermediate value */
    682   1.1  christos 	a = context->state[0];
    683   1.1  christos 	b = context->state[1];
    684   1.1  christos 	c = context->state[2];
    685   1.1  christos 	d = context->state[3];
    686   1.1  christos 	e = context->state[4];
    687   1.1  christos 	f = context->state[5];
    688   1.1  christos 	g = context->state[6];
    689   1.1  christos 	h = context->state[7];
    690   1.1  christos 
    691   1.1  christos 	j = 0;
    692   1.1  christos 	do {
    693   1.1  christos 		ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
    694   1.1  christos 		ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
    695   1.1  christos 		ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
    696   1.1  christos 		ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
    697   1.1  christos 		ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
    698   1.1  christos 		ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
    699   1.1  christos 		ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
    700   1.1  christos 		ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
    701   1.1  christos 	} while (j < 16);
    702   1.1  christos 
    703   1.1  christos 	/* Now for the remaining rounds up to 79: */
    704   1.1  christos 	do {
    705   1.1  christos 		ROUND512(a,b,c,d,e,f,g,h);
    706   1.1  christos 		ROUND512(h,a,b,c,d,e,f,g);
    707   1.1  christos 		ROUND512(g,h,a,b,c,d,e,f);
    708   1.1  christos 		ROUND512(f,g,h,a,b,c,d,e);
    709   1.1  christos 		ROUND512(e,f,g,h,a,b,c,d);
    710   1.1  christos 		ROUND512(d,e,f,g,h,a,b,c);
    711   1.1  christos 		ROUND512(c,d,e,f,g,h,a,b);
    712   1.1  christos 		ROUND512(b,c,d,e,f,g,h,a);
    713   1.1  christos 	} while (j < 80);
    714   1.1  christos 
    715   1.1  christos 	/* Compute the current intermediate hash value */
    716   1.1  christos 	context->state[0] += a;
    717   1.1  christos 	context->state[1] += b;
    718   1.1  christos 	context->state[2] += c;
    719   1.1  christos 	context->state[3] += d;
    720   1.1  christos 	context->state[4] += e;
    721   1.1  christos 	context->state[5] += f;
    722   1.1  christos 	context->state[6] += g;
    723   1.1  christos 	context->state[7] += h;
    724   1.1  christos 
    725   1.1  christos 	/* Clean up */
    726   1.1  christos 	a = b = c = d = e = f = g = h = T1 = 0;
    727   1.1  christos }
    728   1.1  christos 
    729   1.1  christos #else /* SHA2_UNROLL_TRANSFORM */
    730   1.1  christos 
    731  1.11     joerg void
    732  1.12  christos SHA512_Transform(SHA512_CTX *context, const uint64_t *data)
    733  1.11     joerg {
    734  1.10     joerg 	uint64_t	a, b, c, d, e, f, g, h, s0, s1;
    735  1.10     joerg 	uint64_t	T1, T2, *W512 = (void *)context->buffer;
    736   1.1  christos 	int		j;
    737   1.1  christos 
    738   1.1  christos 	/* Initialize registers with the prev. intermediate value */
    739   1.1  christos 	a = context->state[0];
    740   1.1  christos 	b = context->state[1];
    741   1.1  christos 	c = context->state[2];
    742   1.1  christos 	d = context->state[3];
    743   1.1  christos 	e = context->state[4];
    744   1.1  christos 	f = context->state[5];
    745   1.1  christos 	g = context->state[6];
    746   1.1  christos 	h = context->state[7];
    747   1.1  christos 
    748   1.1  christos 	j = 0;
    749   1.1  christos 	do {
    750  1.23  christos 		W512[j] = be64dec(data);
    751   1.9     joerg 		++data;
    752   1.1  christos 		/* Apply the SHA-512 compression function to update a..h */
    753   1.1  christos 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
    754   1.1  christos 		T2 = Sigma0_512(a) + Maj(a, b, c);
    755   1.1  christos 		h = g;
    756   1.1  christos 		g = f;
    757   1.1  christos 		f = e;
    758   1.1  christos 		e = d + T1;
    759   1.1  christos 		d = c;
    760   1.1  christos 		c = b;
    761   1.1  christos 		b = a;
    762   1.1  christos 		a = T1 + T2;
    763   1.1  christos 
    764   1.1  christos 		j++;
    765   1.1  christos 	} while (j < 16);
    766   1.1  christos 
    767   1.1  christos 	do {
    768   1.1  christos 		/* Part of the message block expansion: */
    769   1.1  christos 		s0 = W512[(j+1)&0x0f];
    770   1.1  christos 		s0 = sigma0_512(s0);
    771   1.1  christos 		s1 = W512[(j+14)&0x0f];
    772   1.1  christos 		s1 =  sigma1_512(s1);
    773   1.1  christos 
    774   1.1  christos 		/* Apply the SHA-512 compression function to update a..h */
    775   1.1  christos 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
    776   1.1  christos 		     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
    777   1.1  christos 		T2 = Sigma0_512(a) + Maj(a, b, c);
    778   1.1  christos 		h = g;
    779   1.1  christos 		g = f;
    780   1.1  christos 		f = e;
    781   1.1  christos 		e = d + T1;
    782   1.1  christos 		d = c;
    783   1.1  christos 		c = b;
    784   1.1  christos 		b = a;
    785   1.1  christos 		a = T1 + T2;
    786   1.1  christos 
    787   1.1  christos 		j++;
    788   1.1  christos 	} while (j < 80);
    789   1.1  christos 
    790   1.1  christos 	/* Compute the current intermediate hash value */
    791   1.1  christos 	context->state[0] += a;
    792   1.1  christos 	context->state[1] += b;
    793   1.1  christos 	context->state[2] += c;
    794   1.1  christos 	context->state[3] += d;
    795   1.1  christos 	context->state[4] += e;
    796   1.1  christos 	context->state[5] += f;
    797   1.1  christos 	context->state[6] += g;
    798   1.1  christos 	context->state[7] += h;
    799   1.1  christos 
    800   1.1  christos 	/* Clean up */
    801   1.1  christos 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
    802   1.1  christos }
    803   1.1  christos 
    804   1.1  christos #endif /* SHA2_UNROLL_TRANSFORM */
    805   1.1  christos 
    806  1.11     joerg int
    807  1.12  christos SHA512_Update(SHA512_CTX *context, const uint8_t *data, size_t len)
    808  1.11     joerg {
    809   1.1  christos 	unsigned int	freespace, usedspace;
    810   1.1  christos 
    811   1.1  christos 	if (len == 0) {
    812   1.1  christos 		/* Calling with no data is valid - we do nothing */
    813   1.8     joerg 		return 1;
    814   1.1  christos 	}
    815   1.1  christos 
    816  1.12  christos 	usedspace = (unsigned int)((context->bitcount[0] >> 3) %
    817  1.12  christos 	    SHA512_BLOCK_LENGTH);
    818   1.1  christos 	if (usedspace > 0) {
    819   1.1  christos 		/* Calculate how much free space is available in the buffer */
    820   1.1  christos 		freespace = SHA512_BLOCK_LENGTH - usedspace;
    821   1.1  christos 
    822   1.1  christos 		if (len >= freespace) {
    823   1.1  christos 			/* Fill the buffer completely and process it */
    824  1.12  christos 			memcpy(&context->buffer[usedspace], data,
    825  1.12  christos 			    (size_t)(freespace));
    826   1.1  christos 			ADDINC128(context->bitcount, freespace << 3);
    827   1.1  christos 			len -= freespace;
    828   1.1  christos 			data += freespace;
    829  1.12  christos 			SHA512_Transform(context,
    830  1.12  christos 			    (uint64_t *)(void *)context->buffer);
    831   1.1  christos 		} else {
    832   1.1  christos 			/* The buffer is not yet full */
    833   1.1  christos 			memcpy(&context->buffer[usedspace], data, len);
    834   1.1  christos 			ADDINC128(context->bitcount, len << 3);
    835   1.1  christos 			/* Clean up: */
    836   1.1  christos 			usedspace = freespace = 0;
    837   1.8     joerg 			return 1;
    838   1.1  christos 		}
    839   1.1  christos 	}
    840   1.5     joerg 	/*
    841   1.5     joerg 	 * Process as many complete blocks as possible.
    842   1.5     joerg 	 *
    843   1.5     joerg 	 * Check alignment of the data pointer. If it is 64bit aligned,
    844   1.5     joerg 	 * SHA512_Transform can be called directly on the data stream,
    845   1.5     joerg 	 * otherwise enforce the alignment by copy into the buffer.
    846   1.5     joerg 	 */
    847   1.5     joerg 	if ((uintptr_t)data % 8 == 0) {
    848   1.5     joerg 		while (len >= SHA512_BLOCK_LENGTH) {
    849   1.5     joerg 			SHA512_Transform(context,
    850  1.10     joerg 			    (const uint64_t*)(const void *)data);
    851   1.5     joerg 			ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
    852   1.5     joerg 			len -= SHA512_BLOCK_LENGTH;
    853   1.5     joerg 			data += SHA512_BLOCK_LENGTH;
    854   1.5     joerg 		}
    855   1.5     joerg 	} else {
    856   1.5     joerg 		while (len >= SHA512_BLOCK_LENGTH) {
    857   1.5     joerg 			memcpy(context->buffer, data, SHA512_BLOCK_LENGTH);
    858   1.5     joerg 			SHA512_Transform(context,
    859   1.6  drochner 			    (const void *)context->buffer);
    860   1.5     joerg 			ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
    861   1.5     joerg 			len -= SHA512_BLOCK_LENGTH;
    862   1.5     joerg 			data += SHA512_BLOCK_LENGTH;
    863   1.5     joerg 		}
    864   1.1  christos 	}
    865   1.1  christos 	if (len > 0) {
    866   1.1  christos 		/* There's left-overs, so save 'em */
    867   1.1  christos 		memcpy(context->buffer, data, len);
    868   1.1  christos 		ADDINC128(context->bitcount, len << 3);
    869   1.1  christos 	}
    870   1.1  christos 	/* Clean up: */
    871   1.1  christos 	usedspace = freespace = 0;
    872   1.8     joerg 
    873   1.8     joerg 	return 1;
    874   1.1  christos }
    875   1.1  christos 
    876  1.11     joerg static void
    877  1.12  christos SHA512_Last(SHA512_CTX *context)
    878  1.11     joerg {
    879   1.1  christos 	unsigned int	usedspace;
    880   1.1  christos 
    881   1.1  christos 	usedspace = (unsigned int)((context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH);
    882   1.9     joerg 	context->bitcount[0] = htobe64(context->bitcount[0]);
    883   1.9     joerg 	context->bitcount[1] = htobe64(context->bitcount[1]);
    884   1.1  christos 	if (usedspace > 0) {
    885   1.1  christos 		/* Begin padding with a 1 bit: */
    886   1.1  christos 		context->buffer[usedspace++] = 0x80;
    887   1.1  christos 
    888   1.1  christos 		if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
    889   1.1  christos 			/* Set-up for the last transform: */
    890  1.12  christos 			memset(&context->buffer[usedspace], 0,
    891  1.12  christos 			    (size_t)(SHA512_SHORT_BLOCK_LENGTH - usedspace));
    892   1.1  christos 		} else {
    893   1.1  christos 			if (usedspace < SHA512_BLOCK_LENGTH) {
    894  1.12  christos 				memset(&context->buffer[usedspace], 0,
    895  1.12  christos 				    (size_t)(SHA512_BLOCK_LENGTH - usedspace));
    896   1.1  christos 			}
    897   1.1  christos 			/* Do second-to-last transform: */
    898  1.12  christos 			SHA512_Transform(context,
    899  1.12  christos 			    (uint64_t *)(void *)context->buffer);
    900   1.1  christos 
    901   1.1  christos 			/* And set-up for the last transform: */
    902  1.12  christos 			memset(context->buffer, 0,
    903  1.12  christos 			    (size_t)(SHA512_BLOCK_LENGTH - 2));
    904   1.1  christos 		}
    905   1.1  christos 	} else {
    906   1.1  christos 		/* Prepare for final transform: */
    907   1.1  christos 		memset(context->buffer, 0, (size_t)(SHA512_SHORT_BLOCK_LENGTH));
    908   1.1  christos 
    909   1.1  christos 		/* Begin padding with a 1 bit: */
    910   1.1  christos 		*context->buffer = 0x80;
    911   1.1  christos 	}
    912   1.1  christos 	/* Store the length of input data (in bits): */
    913  1.13  christos 	memcpy(&context->buffer[SHA512_SHORT_BLOCK_LENGTH],
    914  1.13  christos 	    &context->bitcount[1], sizeof(context->bitcount[1]));
    915  1.13  christos 	memcpy(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8],
    916  1.13  christos 	    &context->bitcount[0], sizeof(context->bitcount[0]));
    917   1.1  christos 
    918   1.1  christos 	/* Final transform: */
    919  1.10     joerg 	SHA512_Transform(context, (uint64_t *)(void *)context->buffer);
    920   1.1  christos }
    921   1.1  christos 
    922  1.11     joerg int
    923  1.12  christos SHA512_Final(uint8_t digest[], SHA512_CTX *context)
    924  1.11     joerg {
    925   1.9     joerg 	size_t i;
    926   1.1  christos 
    927   1.1  christos 	/* If no digest buffer is passed, we don't bother doing this: */
    928  1.10     joerg 	if (digest != NULL) {
    929   1.1  christos 		SHA512_Last(context);
    930   1.1  christos 
    931   1.1  christos 		/* Save the hash data for output: */
    932   1.9     joerg 		for (i = 0; i < 8; ++i)
    933  1.20     joerg 			be64enc(digest + 8 * i, context->state[i]);
    934   1.1  christos 	}
    935   1.1  christos 
    936   1.1  christos 	/* Zero out state data */
    937   1.1  christos 	memset(context, 0, sizeof(*context));
    938   1.8     joerg 
    939   1.8     joerg 	return 1;
    940   1.1  christos }
    941   1.1  christos 
    942   1.1  christos /*** SHA-384: *********************************************************/
    943  1.11     joerg int
    944  1.12  christos SHA384_Init(SHA384_CTX *context)
    945  1.11     joerg {
    946  1.12  christos 	if (context == NULL)
    947   1.8     joerg 		return 1;
    948  1.12  christos 
    949  1.12  christos 	memcpy(context->state, sha384_initial_hash_value,
    950  1.12  christos 	    (size_t)(SHA512_DIGEST_LENGTH));
    951   1.1  christos 	memset(context->buffer, 0, (size_t)(SHA384_BLOCK_LENGTH));
    952   1.1  christos 	context->bitcount[0] = context->bitcount[1] = 0;
    953   1.8     joerg 
    954   1.8     joerg 	return 1;
    955   1.1  christos }
    956   1.1  christos 
    957  1.11     joerg int
    958  1.12  christos SHA384_Update(SHA384_CTX *context, const uint8_t *data, size_t len)
    959  1.11     joerg {
    960  1.12  christos 	return SHA512_Update((SHA512_CTX *)context, data, len);
    961   1.1  christos }
    962   1.1  christos 
    963  1.11     joerg void
    964  1.12  christos SHA384_Transform(SHA512_CTX *context, const uint64_t *data)
    965  1.11     joerg {
    966  1.12  christos 	SHA512_Transform((SHA512_CTX *)context, data);
    967   1.1  christos }
    968   1.1  christos 
    969  1.11     joerg int
    970  1.12  christos SHA384_Final(uint8_t digest[], SHA384_CTX *context)
    971  1.11     joerg {
    972   1.9     joerg 	size_t i;
    973   1.1  christos 
    974   1.1  christos 	/* If no digest buffer is passed, we don't bother doing this: */
    975  1.10     joerg 	if (digest != NULL) {
    976  1.12  christos 		SHA512_Last((SHA512_CTX *)context);
    977   1.1  christos 
    978   1.1  christos 		/* Save the hash data for output: */
    979   1.9     joerg 		for (i = 0; i < 6; ++i)
    980  1.21     joerg 			be64enc(digest + 8 * i, context->state[i]);
    981   1.1  christos 	}
    982   1.1  christos 
    983   1.1  christos 	/* Zero out state data */
    984   1.1  christos 	memset(context, 0, sizeof(*context));
    985   1.8     joerg 
    986   1.8     joerg 	return 1;
    987   1.1  christos }
    988