sha2.c revision 1.7 1 1.7 apb /* $NetBSD: sha2.c,v 1.7 2008/02/16 17:15:32 apb Exp $ */
2 1.1 christos /* $KAME: sha2.c,v 1.9 2003/07/20 00:28:38 itojun Exp $ */
3 1.1 christos
4 1.1 christos /*
5 1.1 christos * sha2.c
6 1.1 christos *
7 1.1 christos * Version 1.0.0beta1
8 1.1 christos *
9 1.1 christos * Written by Aaron D. Gifford <me (at) aarongifford.com>
10 1.1 christos *
11 1.1 christos * Copyright 2000 Aaron D. Gifford. All rights reserved.
12 1.1 christos *
13 1.1 christos * Redistribution and use in source and binary forms, with or without
14 1.1 christos * modification, are permitted provided that the following conditions
15 1.1 christos * are met:
16 1.1 christos * 1. Redistributions of source code must retain the above copyright
17 1.1 christos * notice, this list of conditions and the following disclaimer.
18 1.1 christos * 2. Redistributions in binary form must reproduce the above copyright
19 1.1 christos * notice, this list of conditions and the following disclaimer in the
20 1.1 christos * documentation and/or other materials provided with the distribution.
21 1.1 christos * 3. Neither the name of the copyright holder nor the names of contributors
22 1.1 christos * may be used to endorse or promote products derived from this software
23 1.1 christos * without specific prior written permission.
24 1.1 christos *
25 1.1 christos * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
26 1.1 christos * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 1.1 christos * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 1.1 christos * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE
29 1.1 christos * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 1.1 christos * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 1.1 christos * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 1.1 christos * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 1.1 christos * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 1.1 christos * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 1.1 christos * SUCH DAMAGE.
36 1.1 christos *
37 1.1 christos */
38 1.1 christos
39 1.1 christos #include <sys/cdefs.h>
40 1.1 christos
41 1.1 christos #if defined(_KERNEL) || defined(_STANDALONE)
42 1.7 apb __KERNEL_RCSID(0, "$NetBSD: sha2.c,v 1.7 2008/02/16 17:15:32 apb Exp $");
43 1.1 christos
44 1.1 christos #include <lib/libkern/libkern.h>
45 1.1 christos
46 1.1 christos #else
47 1.1 christos
48 1.1 christos #if defined(LIBC_SCCS) && !defined(lint)
49 1.7 apb __RCSID("$NetBSD: sha2.c,v 1.7 2008/02/16 17:15:32 apb Exp $");
50 1.1 christos #endif /* LIBC_SCCS and not lint */
51 1.1 christos
52 1.1 christos #include "namespace.h"
53 1.1 christos #include <assert.h>
54 1.1 christos #include <string.h>
55 1.1 christos
56 1.1 christos #endif
57 1.1 christos
58 1.1 christos #include <sys/types.h>
59 1.2 he #include <sys/param.h>
60 1.1 christos #include <sys/sha2.h>
61 1.1 christos
62 1.1 christos /*
63 1.1 christos * ASSERT NOTE:
64 1.1 christos * Some sanity checking code is included using assert(). On my FreeBSD
65 1.1 christos * system, this additional code can be removed by compiling with NDEBUG
66 1.1 christos * defined. Check your own systems manpage on assert() to see how to
67 1.1 christos * compile WITHOUT the sanity checking code on your system.
68 1.1 christos *
69 1.1 christos * UNROLLED TRANSFORM LOOP NOTE:
70 1.1 christos * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
71 1.1 christos * loop version for the hash transform rounds (defined using macros
72 1.1 christos * later in this file). Either define on the command line, for example:
73 1.1 christos *
74 1.1 christos * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
75 1.1 christos *
76 1.1 christos * or define below:
77 1.1 christos *
78 1.1 christos * #define SHA2_UNROLL_TRANSFORM
79 1.1 christos *
80 1.1 christos */
81 1.1 christos
82 1.1 christos #if defined(__bsdi__) || defined(__FreeBSD__)
83 1.1 christos #define assert(x)
84 1.1 christos #endif
85 1.1 christos
86 1.1 christos
87 1.1 christos /*** SHA-256/384/512 Machine Architecture Definitions *****************/
88 1.1 christos /*
89 1.1 christos * BYTE_ORDER NOTE:
90 1.1 christos *
91 1.1 christos * Please make sure that your system defines BYTE_ORDER. If your
92 1.1 christos * architecture is little-endian, make sure it also defines
93 1.1 christos * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
94 1.1 christos * equivilent.
95 1.1 christos *
96 1.1 christos * If your system does not define the above, then you can do so by
97 1.1 christos * hand like this:
98 1.1 christos *
99 1.1 christos * #define LITTLE_ENDIAN 1234
100 1.1 christos * #define BIG_ENDIAN 4321
101 1.1 christos *
102 1.1 christos * And for little-endian machines, add:
103 1.1 christos *
104 1.1 christos * #define BYTE_ORDER LITTLE_ENDIAN
105 1.1 christos *
106 1.1 christos * Or for big-endian machines:
107 1.1 christos *
108 1.1 christos * #define BYTE_ORDER BIG_ENDIAN
109 1.1 christos *
110 1.1 christos * The FreeBSD machine this was written on defines BYTE_ORDER
111 1.1 christos * appropriately by including <sys/types.h> (which in turn includes
112 1.1 christos * <machine/endian.h> where the appropriate definitions are actually
113 1.1 christos * made).
114 1.1 christos */
115 1.1 christos #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
116 1.1 christos #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
117 1.1 christos #endif
118 1.1 christos
119 1.1 christos /*
120 1.1 christos * Define the followingsha2_* types to types of the correct length on
121 1.1 christos * the native archtecture. Most BSD systems and Linux define u_intXX_t
122 1.7 apb * types. Machines with recent ANSI C headers, can use the standard C99
123 1.1 christos * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
124 1.1 christos * during compile or in the sha.h header file.
125 1.1 christos *
126 1.1 christos * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
127 1.1 christos * will need to define these three typedefs below (and the appropriate
128 1.1 christos * ones in sha.h too) by hand according to their system architecture.
129 1.1 christos *
130 1.1 christos * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
131 1.1 christos * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
132 1.1 christos */
133 1.7 apb #if 1 /*def SHA2_USE_INTTYPES_H*/
134 1.1 christos
135 1.1 christos typedef uint8_t sha2_byte; /* Exactly 1 byte */
136 1.1 christos typedef uint32_t sha2_word32; /* Exactly 4 bytes */
137 1.1 christos typedef uint64_t sha2_word64; /* Exactly 8 bytes */
138 1.1 christos
139 1.1 christos #else /* SHA2_USE_INTTYPES_H */
140 1.1 christos
141 1.1 christos typedef u_int8_t sha2_byte; /* Exactly 1 byte */
142 1.1 christos typedef u_int32_t sha2_word32; /* Exactly 4 bytes */
143 1.1 christos typedef u_int64_t sha2_word64; /* Exactly 8 bytes */
144 1.1 christos
145 1.1 christos #endif /* SHA2_USE_INTTYPES_H */
146 1.1 christos
147 1.1 christos
148 1.1 christos /*** SHA-256/384/512 Various Length Definitions ***********************/
149 1.1 christos /* NOTE: Most of these are in sha2.h */
150 1.1 christos #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
151 1.1 christos #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
152 1.1 christos #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
153 1.1 christos
154 1.1 christos
155 1.1 christos /*** ENDIAN REVERSAL MACROS *******************************************/
156 1.1 christos #if BYTE_ORDER == LITTLE_ENDIAN
157 1.1 christos #define REVERSE32(w,x) { \
158 1.1 christos sha2_word32 tmp = (w); \
159 1.1 christos tmp = (tmp >> 16) | (tmp << 16); \
160 1.1 christos (x) = (sha2_word32)(((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8)); \
161 1.1 christos }
162 1.1 christos #define REVERSE64(w,x) { \
163 1.1 christos sha2_word64 tmp = (w); \
164 1.1 christos tmp = (tmp >> 32) | (tmp << 32); \
165 1.1 christos tmp = (sha2_word64)(((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
166 1.1 christos ((tmp & 0x00ff00ff00ff00ffULL) << 8)); \
167 1.1 christos (x) = (sha2_word64)(((tmp & 0xffff0000ffff0000ULL) >> 16) | \
168 1.1 christos ((tmp & 0x0000ffff0000ffffULL) << 16)); \
169 1.1 christos }
170 1.1 christos #endif /* BYTE_ORDER == LITTLE_ENDIAN */
171 1.1 christos
172 1.1 christos /*
173 1.1 christos * Macro for incrementally adding the unsigned 64-bit integer n to the
174 1.1 christos * unsigned 128-bit integer (represented using a two-element array of
175 1.1 christos * 64-bit words):
176 1.1 christos */
177 1.1 christos #define ADDINC128(w,n) { \
178 1.1 christos (w)[0] += (sha2_word64)(n); \
179 1.1 christos if ((w)[0] < (n)) { \
180 1.1 christos (w)[1]++; \
181 1.1 christos } \
182 1.1 christos }
183 1.1 christos
184 1.1 christos /*** THE SIX LOGICAL FUNCTIONS ****************************************/
185 1.1 christos /*
186 1.1 christos * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
187 1.1 christos *
188 1.1 christos * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
189 1.1 christos * S is a ROTATION) because the SHA-256/384/512 description document
190 1.1 christos * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
191 1.1 christos * same "backwards" definition.
192 1.1 christos */
193 1.1 christos /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
194 1.1 christos #define R(b,x) ((x) >> (b))
195 1.1 christos /* 32-bit Rotate-right (used in SHA-256): */
196 1.1 christos #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
197 1.1 christos /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
198 1.1 christos #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
199 1.1 christos
200 1.1 christos /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
201 1.1 christos #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
202 1.1 christos #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
203 1.1 christos
204 1.1 christos /* Four of six logical functions used in SHA-256: */
205 1.1 christos #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
206 1.1 christos #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
207 1.1 christos #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
208 1.1 christos #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
209 1.1 christos
210 1.1 christos /* Four of six logical functions used in SHA-384 and SHA-512: */
211 1.1 christos #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
212 1.1 christos #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
213 1.1 christos #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
214 1.1 christos #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
215 1.1 christos
216 1.1 christos /*** INTERNAL FUNCTION PROTOTYPES *************************************/
217 1.1 christos /* NOTE: These should not be accessed directly from outside this
218 1.1 christos * library -- they are intended for private internal visibility/use
219 1.1 christos * only.
220 1.1 christos */
221 1.4 christos static void SHA512_Last(SHA512_CTX*);
222 1.1 christos void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
223 1.1 christos void SHA384_Transform(SHA384_CTX*, const sha2_word64*);
224 1.1 christos void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
225 1.1 christos
226 1.1 christos
227 1.1 christos /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
228 1.1 christos /* Hash constant words K for SHA-256: */
229 1.1 christos static const sha2_word32 K256[64] = {
230 1.1 christos 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
231 1.1 christos 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
232 1.1 christos 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
233 1.1 christos 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
234 1.1 christos 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
235 1.1 christos 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
236 1.1 christos 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
237 1.1 christos 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
238 1.1 christos 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
239 1.1 christos 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
240 1.1 christos 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
241 1.1 christos 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
242 1.1 christos 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
243 1.1 christos 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
244 1.1 christos 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
245 1.1 christos 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
246 1.1 christos };
247 1.1 christos
248 1.1 christos /* Initial hash value H for SHA-256: */
249 1.1 christos static const sha2_word32 sha256_initial_hash_value[8] = {
250 1.1 christos 0x6a09e667UL,
251 1.1 christos 0xbb67ae85UL,
252 1.1 christos 0x3c6ef372UL,
253 1.1 christos 0xa54ff53aUL,
254 1.1 christos 0x510e527fUL,
255 1.1 christos 0x9b05688cUL,
256 1.1 christos 0x1f83d9abUL,
257 1.1 christos 0x5be0cd19UL
258 1.1 christos };
259 1.1 christos
260 1.1 christos /* Hash constant words K for SHA-384 and SHA-512: */
261 1.1 christos static const sha2_word64 K512[80] = {
262 1.1 christos 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
263 1.1 christos 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
264 1.1 christos 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
265 1.1 christos 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
266 1.1 christos 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
267 1.1 christos 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
268 1.1 christos 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
269 1.1 christos 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
270 1.1 christos 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
271 1.1 christos 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
272 1.1 christos 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
273 1.1 christos 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
274 1.1 christos 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
275 1.1 christos 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
276 1.1 christos 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
277 1.1 christos 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
278 1.1 christos 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
279 1.1 christos 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
280 1.1 christos 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
281 1.1 christos 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
282 1.1 christos 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
283 1.1 christos 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
284 1.1 christos 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
285 1.1 christos 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
286 1.1 christos 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
287 1.1 christos 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
288 1.1 christos 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
289 1.1 christos 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
290 1.1 christos 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
291 1.1 christos 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
292 1.1 christos 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
293 1.1 christos 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
294 1.1 christos 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
295 1.1 christos 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
296 1.1 christos 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
297 1.1 christos 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
298 1.1 christos 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
299 1.1 christos 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
300 1.1 christos 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
301 1.1 christos 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
302 1.1 christos };
303 1.1 christos
304 1.1 christos /* Initial hash value H for SHA-384 */
305 1.1 christos static const sha2_word64 sha384_initial_hash_value[8] = {
306 1.1 christos 0xcbbb9d5dc1059ed8ULL,
307 1.1 christos 0x629a292a367cd507ULL,
308 1.1 christos 0x9159015a3070dd17ULL,
309 1.1 christos 0x152fecd8f70e5939ULL,
310 1.1 christos 0x67332667ffc00b31ULL,
311 1.1 christos 0x8eb44a8768581511ULL,
312 1.1 christos 0xdb0c2e0d64f98fa7ULL,
313 1.1 christos 0x47b5481dbefa4fa4ULL
314 1.1 christos };
315 1.1 christos
316 1.1 christos /* Initial hash value H for SHA-512 */
317 1.1 christos static const sha2_word64 sha512_initial_hash_value[8] = {
318 1.1 christos 0x6a09e667f3bcc908ULL,
319 1.1 christos 0xbb67ae8584caa73bULL,
320 1.1 christos 0x3c6ef372fe94f82bULL,
321 1.1 christos 0xa54ff53a5f1d36f1ULL,
322 1.1 christos 0x510e527fade682d1ULL,
323 1.1 christos 0x9b05688c2b3e6c1fULL,
324 1.1 christos 0x1f83d9abfb41bd6bULL,
325 1.1 christos 0x5be0cd19137e2179ULL
326 1.1 christos };
327 1.1 christos
328 1.1 christos #if !defined(_KERNEL) && defined(__weak_alias)
329 1.1 christos __weak_alias(SHA256_Init,_SHA256_Init)
330 1.1 christos __weak_alias(SHA256_Update,_SHA256_Update)
331 1.1 christos __weak_alias(SHA256_Final,_SHA256_Final)
332 1.1 christos __weak_alias(SHA256_Transform,_SHA256_Transform)
333 1.1 christos
334 1.1 christos __weak_alias(SHA384_Init,_SHA384_Init)
335 1.1 christos __weak_alias(SHA384_Update,_SHA384_Update)
336 1.1 christos __weak_alias(SHA384_Final,_SHA384_Final)
337 1.1 christos __weak_alias(SHA384_Transform,_SHA384_Transform)
338 1.1 christos
339 1.1 christos __weak_alias(SHA512_Init,_SHA512_Init)
340 1.1 christos __weak_alias(SHA512_Update,_SHA512_Update)
341 1.1 christos __weak_alias(SHA512_Final,_SHA512_Final)
342 1.1 christos __weak_alias(SHA512_Transform,_SHA512_Transform)
343 1.1 christos #endif
344 1.1 christos
345 1.1 christos /*** SHA-256: *********************************************************/
346 1.1 christos void SHA256_Init(SHA256_CTX* context) {
347 1.1 christos if (context == (SHA256_CTX*)0) {
348 1.1 christos return;
349 1.1 christos }
350 1.1 christos memcpy(context->state, sha256_initial_hash_value, (size_t)(SHA256_DIGEST_LENGTH));
351 1.1 christos memset(context->buffer, 0, (size_t)(SHA256_BLOCK_LENGTH));
352 1.1 christos context->bitcount = 0;
353 1.1 christos }
354 1.1 christos
355 1.1 christos #ifdef SHA2_UNROLL_TRANSFORM
356 1.1 christos
357 1.1 christos /* Unrolled SHA-256 round macros: */
358 1.1 christos
359 1.1 christos #if BYTE_ORDER == LITTLE_ENDIAN
360 1.1 christos
361 1.1 christos #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
362 1.1 christos REVERSE32(*data++, W256[j]); \
363 1.1 christos T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
364 1.1 christos K256[j] + W256[j]; \
365 1.1 christos (d) += T1; \
366 1.1 christos (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
367 1.1 christos j++
368 1.1 christos
369 1.1 christos
370 1.1 christos #else /* BYTE_ORDER == LITTLE_ENDIAN */
371 1.1 christos
372 1.1 christos #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
373 1.1 christos T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
374 1.1 christos K256[j] + (W256[j] = *data++); \
375 1.1 christos (d) += T1; \
376 1.1 christos (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
377 1.1 christos j++
378 1.1 christos
379 1.1 christos #endif /* BYTE_ORDER == LITTLE_ENDIAN */
380 1.1 christos
381 1.1 christos #define ROUND256(a,b,c,d,e,f,g,h) \
382 1.1 christos s0 = W256[(j+1)&0x0f]; \
383 1.1 christos s0 = sigma0_256(s0); \
384 1.1 christos s1 = W256[(j+14)&0x0f]; \
385 1.1 christos s1 = sigma1_256(s1); \
386 1.1 christos T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
387 1.1 christos (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
388 1.1 christos (d) += T1; \
389 1.1 christos (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
390 1.1 christos j++
391 1.1 christos
392 1.1 christos void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
393 1.1 christos sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
394 1.1 christos sha2_word32 T1, *W256;
395 1.1 christos int j;
396 1.1 christos
397 1.1 christos W256 = (sha2_word32*)context->buffer;
398 1.1 christos
399 1.1 christos /* Initialize registers with the prev. intermediate value */
400 1.1 christos a = context->state[0];
401 1.1 christos b = context->state[1];
402 1.1 christos c = context->state[2];
403 1.1 christos d = context->state[3];
404 1.1 christos e = context->state[4];
405 1.1 christos f = context->state[5];
406 1.1 christos g = context->state[6];
407 1.1 christos h = context->state[7];
408 1.1 christos
409 1.1 christos j = 0;
410 1.1 christos do {
411 1.1 christos /* Rounds 0 to 15 (unrolled): */
412 1.1 christos ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
413 1.1 christos ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
414 1.1 christos ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
415 1.1 christos ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
416 1.1 christos ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
417 1.1 christos ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
418 1.1 christos ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
419 1.1 christos ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
420 1.1 christos } while (j < 16);
421 1.1 christos
422 1.1 christos /* Now for the remaining rounds to 64: */
423 1.1 christos do {
424 1.1 christos ROUND256(a,b,c,d,e,f,g,h);
425 1.1 christos ROUND256(h,a,b,c,d,e,f,g);
426 1.1 christos ROUND256(g,h,a,b,c,d,e,f);
427 1.1 christos ROUND256(f,g,h,a,b,c,d,e);
428 1.1 christos ROUND256(e,f,g,h,a,b,c,d);
429 1.1 christos ROUND256(d,e,f,g,h,a,b,c);
430 1.1 christos ROUND256(c,d,e,f,g,h,a,b);
431 1.1 christos ROUND256(b,c,d,e,f,g,h,a);
432 1.1 christos } while (j < 64);
433 1.1 christos
434 1.1 christos /* Compute the current intermediate hash value */
435 1.1 christos context->state[0] += a;
436 1.1 christos context->state[1] += b;
437 1.1 christos context->state[2] += c;
438 1.1 christos context->state[3] += d;
439 1.1 christos context->state[4] += e;
440 1.1 christos context->state[5] += f;
441 1.1 christos context->state[6] += g;
442 1.1 christos context->state[7] += h;
443 1.1 christos
444 1.1 christos /* Clean up */
445 1.1 christos a = b = c = d = e = f = g = h = T1 = 0;
446 1.1 christos }
447 1.1 christos
448 1.1 christos #else /* SHA2_UNROLL_TRANSFORM */
449 1.1 christos
450 1.1 christos void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
451 1.1 christos sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
452 1.1 christos sha2_word32 T1, T2, *W256;
453 1.1 christos int j;
454 1.1 christos
455 1.1 christos W256 = (sha2_word32*)(void *)context->buffer;
456 1.1 christos
457 1.1 christos /* Initialize registers with the prev. intermediate value */
458 1.1 christos a = context->state[0];
459 1.1 christos b = context->state[1];
460 1.1 christos c = context->state[2];
461 1.1 christos d = context->state[3];
462 1.1 christos e = context->state[4];
463 1.1 christos f = context->state[5];
464 1.1 christos g = context->state[6];
465 1.1 christos h = context->state[7];
466 1.1 christos
467 1.1 christos j = 0;
468 1.1 christos do {
469 1.1 christos #if BYTE_ORDER == LITTLE_ENDIAN
470 1.1 christos /* Copy data while converting to host byte order */
471 1.1 christos REVERSE32(*data++,W256[j]);
472 1.1 christos /* Apply the SHA-256 compression function to update a..h */
473 1.1 christos T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
474 1.1 christos #else /* BYTE_ORDER == LITTLE_ENDIAN */
475 1.1 christos /* Apply the SHA-256 compression function to update a..h with copy */
476 1.1 christos T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
477 1.1 christos #endif /* BYTE_ORDER == LITTLE_ENDIAN */
478 1.1 christos T2 = Sigma0_256(a) + Maj(a, b, c);
479 1.1 christos h = g;
480 1.1 christos g = f;
481 1.1 christos f = e;
482 1.1 christos e = d + T1;
483 1.1 christos d = c;
484 1.1 christos c = b;
485 1.1 christos b = a;
486 1.1 christos a = T1 + T2;
487 1.1 christos
488 1.1 christos j++;
489 1.1 christos } while (j < 16);
490 1.1 christos
491 1.1 christos do {
492 1.1 christos /* Part of the message block expansion: */
493 1.1 christos s0 = W256[(j+1)&0x0f];
494 1.1 christos s0 = sigma0_256(s0);
495 1.1 christos s1 = W256[(j+14)&0x0f];
496 1.1 christos s1 = sigma1_256(s1);
497 1.1 christos
498 1.1 christos /* Apply the SHA-256 compression function to update a..h */
499 1.1 christos T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
500 1.1 christos (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
501 1.1 christos T2 = Sigma0_256(a) + Maj(a, b, c);
502 1.1 christos h = g;
503 1.1 christos g = f;
504 1.1 christos f = e;
505 1.1 christos e = d + T1;
506 1.1 christos d = c;
507 1.1 christos c = b;
508 1.1 christos b = a;
509 1.1 christos a = T1 + T2;
510 1.1 christos
511 1.1 christos j++;
512 1.1 christos } while (j < 64);
513 1.1 christos
514 1.1 christos /* Compute the current intermediate hash value */
515 1.1 christos context->state[0] += a;
516 1.1 christos context->state[1] += b;
517 1.1 christos context->state[2] += c;
518 1.1 christos context->state[3] += d;
519 1.1 christos context->state[4] += e;
520 1.1 christos context->state[5] += f;
521 1.1 christos context->state[6] += g;
522 1.1 christos context->state[7] += h;
523 1.1 christos
524 1.1 christos /* Clean up */
525 1.1 christos a = b = c = d = e = f = g = h = T1 = T2 = 0;
526 1.1 christos }
527 1.1 christos
528 1.1 christos #endif /* SHA2_UNROLL_TRANSFORM */
529 1.1 christos
530 1.1 christos void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
531 1.1 christos unsigned int freespace, usedspace;
532 1.1 christos
533 1.1 christos if (len == 0) {
534 1.1 christos /* Calling with no data is valid - we do nothing */
535 1.1 christos return;
536 1.1 christos }
537 1.1 christos
538 1.1 christos /* Sanity check: */
539 1.1 christos assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
540 1.1 christos
541 1.1 christos usedspace = (unsigned int)((context->bitcount >> 3) %
542 1.1 christos SHA256_BLOCK_LENGTH);
543 1.1 christos if (usedspace > 0) {
544 1.1 christos /* Calculate how much free space is available in the buffer */
545 1.1 christos freespace = SHA256_BLOCK_LENGTH - usedspace;
546 1.1 christos
547 1.1 christos if (len >= freespace) {
548 1.1 christos /* Fill the buffer completely and process it */
549 1.1 christos memcpy(&context->buffer[usedspace], data, (size_t)(freespace));
550 1.1 christos context->bitcount += freespace << 3;
551 1.1 christos len -= freespace;
552 1.1 christos data += freespace;
553 1.1 christos SHA256_Transform(context, (sha2_word32*)(void *)context->buffer);
554 1.1 christos } else {
555 1.1 christos /* The buffer is not yet full */
556 1.1 christos memcpy(&context->buffer[usedspace], data, len);
557 1.1 christos context->bitcount += len << 3;
558 1.1 christos /* Clean up: */
559 1.1 christos usedspace = freespace = 0;
560 1.1 christos return;
561 1.1 christos }
562 1.1 christos }
563 1.5 joerg /*
564 1.5 joerg * Process as many complete blocks as possible.
565 1.5 joerg *
566 1.5 joerg * Check alignment of the data pointer. If it is 32bit aligned,
567 1.5 joerg * SHA256_Transform can be called directly on the data stream,
568 1.5 joerg * otherwise enforce the alignment by copy into the buffer.
569 1.5 joerg */
570 1.5 joerg if ((uintptr_t)data % 4 == 0) {
571 1.5 joerg while (len >= SHA256_BLOCK_LENGTH) {
572 1.5 joerg SHA256_Transform(context,
573 1.5 joerg (const sha2_word32 *)(const void *)data);
574 1.5 joerg context->bitcount += SHA256_BLOCK_LENGTH << 3;
575 1.5 joerg len -= SHA256_BLOCK_LENGTH;
576 1.5 joerg data += SHA256_BLOCK_LENGTH;
577 1.5 joerg }
578 1.5 joerg } else {
579 1.5 joerg while (len >= SHA256_BLOCK_LENGTH) {
580 1.5 joerg memcpy(context->buffer, data, SHA256_BLOCK_LENGTH);
581 1.5 joerg SHA256_Transform(context,
582 1.5 joerg (const sha2_word32 *)(const void *)context->buffer);
583 1.5 joerg context->bitcount += SHA256_BLOCK_LENGTH << 3;
584 1.5 joerg len -= SHA256_BLOCK_LENGTH;
585 1.5 joerg data += SHA256_BLOCK_LENGTH;
586 1.5 joerg }
587 1.1 christos }
588 1.1 christos if (len > 0) {
589 1.1 christos /* There's left-overs, so save 'em */
590 1.1 christos memcpy(context->buffer, data, len);
591 1.1 christos context->bitcount += len << 3;
592 1.1 christos }
593 1.1 christos /* Clean up: */
594 1.1 christos usedspace = freespace = 0;
595 1.1 christos }
596 1.1 christos
597 1.1 christos void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
598 1.1 christos sha2_word32 *d = (void *)digest;
599 1.1 christos unsigned int usedspace;
600 1.1 christos
601 1.1 christos /* Sanity check: */
602 1.1 christos assert(context != (SHA256_CTX*)0);
603 1.1 christos
604 1.1 christos /* If no digest buffer is passed, we don't bother doing this: */
605 1.1 christos if (digest != (sha2_byte*)0) {
606 1.1 christos usedspace = (unsigned int)((context->bitcount >> 3) % SHA256_BLOCK_LENGTH);
607 1.1 christos #if BYTE_ORDER == LITTLE_ENDIAN
608 1.1 christos /* Convert FROM host byte order */
609 1.1 christos REVERSE64(context->bitcount,context->bitcount);
610 1.1 christos #endif
611 1.1 christos if (usedspace > 0) {
612 1.1 christos /* Begin padding with a 1 bit: */
613 1.1 christos context->buffer[usedspace++] = 0x80;
614 1.1 christos
615 1.1 christos if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
616 1.1 christos /* Set-up for the last transform: */
617 1.1 christos memset(&context->buffer[usedspace], 0, (size_t)(SHA256_SHORT_BLOCK_LENGTH - usedspace));
618 1.1 christos } else {
619 1.1 christos if (usedspace < SHA256_BLOCK_LENGTH) {
620 1.1 christos memset(&context->buffer[usedspace], 0, (size_t)(SHA256_BLOCK_LENGTH - usedspace));
621 1.1 christos }
622 1.1 christos /* Do second-to-last transform: */
623 1.1 christos SHA256_Transform(context, (sha2_word32*)(void *)context->buffer);
624 1.1 christos
625 1.1 christos /* And set-up for the last transform: */
626 1.1 christos memset(context->buffer, 0, (size_t)(SHA256_SHORT_BLOCK_LENGTH));
627 1.1 christos }
628 1.1 christos } else {
629 1.1 christos /* Set-up for the last transform: */
630 1.1 christos memset(context->buffer, 0, (size_t)(SHA256_SHORT_BLOCK_LENGTH));
631 1.1 christos
632 1.1 christos /* Begin padding with a 1 bit: */
633 1.1 christos *context->buffer = 0x80;
634 1.1 christos }
635 1.1 christos /* Set the bit count: */
636 1.1 christos *(sha2_word64*)(void *)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
637 1.1 christos
638 1.1 christos /* Final transform: */
639 1.1 christos SHA256_Transform(context, (sha2_word32*)(void *)context->buffer);
640 1.1 christos
641 1.1 christos #if BYTE_ORDER == LITTLE_ENDIAN
642 1.1 christos {
643 1.1 christos /* Convert TO host byte order */
644 1.1 christos int j;
645 1.1 christos for (j = 0; j < 8; j++) {
646 1.1 christos REVERSE32(context->state[j],context->state[j]);
647 1.1 christos *d++ = context->state[j];
648 1.1 christos }
649 1.1 christos }
650 1.1 christos #else
651 1.1 christos memcpy(d, context->state, SHA256_DIGEST_LENGTH);
652 1.1 christos #endif
653 1.1 christos }
654 1.1 christos
655 1.1 christos /* Clean up state data: */
656 1.1 christos memset(context, 0, sizeof(*context));
657 1.1 christos usedspace = 0;
658 1.1 christos }
659 1.1 christos
660 1.1 christos /*** SHA-512: *********************************************************/
661 1.1 christos void SHA512_Init(SHA512_CTX* context) {
662 1.1 christos if (context == (SHA512_CTX*)0) {
663 1.1 christos return;
664 1.1 christos }
665 1.1 christos memcpy(context->state, sha512_initial_hash_value, (size_t)(SHA512_DIGEST_LENGTH));
666 1.1 christos memset(context->buffer, 0, (size_t)(SHA512_BLOCK_LENGTH));
667 1.1 christos context->bitcount[0] = context->bitcount[1] = 0;
668 1.1 christos }
669 1.1 christos
670 1.1 christos #ifdef SHA2_UNROLL_TRANSFORM
671 1.1 christos
672 1.1 christos /* Unrolled SHA-512 round macros: */
673 1.1 christos #if BYTE_ORDER == LITTLE_ENDIAN
674 1.1 christos
675 1.1 christos #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
676 1.1 christos REVERSE64(*data++, W512[j]); \
677 1.1 christos T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
678 1.1 christos K512[j] + W512[j]; \
679 1.1 christos (d) += T1, \
680 1.1 christos (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
681 1.1 christos j++
682 1.1 christos
683 1.1 christos
684 1.1 christos #else /* BYTE_ORDER == LITTLE_ENDIAN */
685 1.1 christos
686 1.1 christos #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
687 1.1 christos T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
688 1.1 christos K512[j] + (W512[j] = *data++); \
689 1.1 christos (d) += T1; \
690 1.1 christos (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
691 1.1 christos j++
692 1.1 christos
693 1.1 christos #endif /* BYTE_ORDER == LITTLE_ENDIAN */
694 1.1 christos
695 1.1 christos #define ROUND512(a,b,c,d,e,f,g,h) \
696 1.1 christos s0 = W512[(j+1)&0x0f]; \
697 1.1 christos s0 = sigma0_512(s0); \
698 1.1 christos s1 = W512[(j+14)&0x0f]; \
699 1.1 christos s1 = sigma1_512(s1); \
700 1.1 christos T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
701 1.1 christos (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
702 1.1 christos (d) += T1; \
703 1.1 christos (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
704 1.1 christos j++
705 1.1 christos
706 1.1 christos void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
707 1.1 christos sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
708 1.1 christos sha2_word64 T1, *W512 = (sha2_word64*)context->buffer;
709 1.1 christos int j;
710 1.1 christos
711 1.1 christos /* Initialize registers with the prev. intermediate value */
712 1.1 christos a = context->state[0];
713 1.1 christos b = context->state[1];
714 1.1 christos c = context->state[2];
715 1.1 christos d = context->state[3];
716 1.1 christos e = context->state[4];
717 1.1 christos f = context->state[5];
718 1.1 christos g = context->state[6];
719 1.1 christos h = context->state[7];
720 1.1 christos
721 1.1 christos j = 0;
722 1.1 christos do {
723 1.1 christos ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
724 1.1 christos ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
725 1.1 christos ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
726 1.1 christos ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
727 1.1 christos ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
728 1.1 christos ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
729 1.1 christos ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
730 1.1 christos ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
731 1.1 christos } while (j < 16);
732 1.1 christos
733 1.1 christos /* Now for the remaining rounds up to 79: */
734 1.1 christos do {
735 1.1 christos ROUND512(a,b,c,d,e,f,g,h);
736 1.1 christos ROUND512(h,a,b,c,d,e,f,g);
737 1.1 christos ROUND512(g,h,a,b,c,d,e,f);
738 1.1 christos ROUND512(f,g,h,a,b,c,d,e);
739 1.1 christos ROUND512(e,f,g,h,a,b,c,d);
740 1.1 christos ROUND512(d,e,f,g,h,a,b,c);
741 1.1 christos ROUND512(c,d,e,f,g,h,a,b);
742 1.1 christos ROUND512(b,c,d,e,f,g,h,a);
743 1.1 christos } while (j < 80);
744 1.1 christos
745 1.1 christos /* Compute the current intermediate hash value */
746 1.1 christos context->state[0] += a;
747 1.1 christos context->state[1] += b;
748 1.1 christos context->state[2] += c;
749 1.1 christos context->state[3] += d;
750 1.1 christos context->state[4] += e;
751 1.1 christos context->state[5] += f;
752 1.1 christos context->state[6] += g;
753 1.1 christos context->state[7] += h;
754 1.1 christos
755 1.1 christos /* Clean up */
756 1.1 christos a = b = c = d = e = f = g = h = T1 = 0;
757 1.1 christos }
758 1.1 christos
759 1.1 christos #else /* SHA2_UNROLL_TRANSFORM */
760 1.1 christos
761 1.1 christos void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
762 1.1 christos sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
763 1.1 christos sha2_word64 T1, T2, *W512 = (void *)context->buffer;
764 1.1 christos int j;
765 1.1 christos
766 1.1 christos /* Initialize registers with the prev. intermediate value */
767 1.1 christos a = context->state[0];
768 1.1 christos b = context->state[1];
769 1.1 christos c = context->state[2];
770 1.1 christos d = context->state[3];
771 1.1 christos e = context->state[4];
772 1.1 christos f = context->state[5];
773 1.1 christos g = context->state[6];
774 1.1 christos h = context->state[7];
775 1.1 christos
776 1.1 christos j = 0;
777 1.1 christos do {
778 1.1 christos #if BYTE_ORDER == LITTLE_ENDIAN
779 1.1 christos /* Convert TO host byte order */
780 1.1 christos REVERSE64(*data++, W512[j]);
781 1.1 christos /* Apply the SHA-512 compression function to update a..h */
782 1.1 christos T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
783 1.1 christos #else /* BYTE_ORDER == LITTLE_ENDIAN */
784 1.1 christos /* Apply the SHA-512 compression function to update a..h with copy */
785 1.1 christos T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
786 1.1 christos #endif /* BYTE_ORDER == LITTLE_ENDIAN */
787 1.1 christos T2 = Sigma0_512(a) + Maj(a, b, c);
788 1.1 christos h = g;
789 1.1 christos g = f;
790 1.1 christos f = e;
791 1.1 christos e = d + T1;
792 1.1 christos d = c;
793 1.1 christos c = b;
794 1.1 christos b = a;
795 1.1 christos a = T1 + T2;
796 1.1 christos
797 1.1 christos j++;
798 1.1 christos } while (j < 16);
799 1.1 christos
800 1.1 christos do {
801 1.1 christos /* Part of the message block expansion: */
802 1.1 christos s0 = W512[(j+1)&0x0f];
803 1.1 christos s0 = sigma0_512(s0);
804 1.1 christos s1 = W512[(j+14)&0x0f];
805 1.1 christos s1 = sigma1_512(s1);
806 1.1 christos
807 1.1 christos /* Apply the SHA-512 compression function to update a..h */
808 1.1 christos T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
809 1.1 christos (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
810 1.1 christos T2 = Sigma0_512(a) + Maj(a, b, c);
811 1.1 christos h = g;
812 1.1 christos g = f;
813 1.1 christos f = e;
814 1.1 christos e = d + T1;
815 1.1 christos d = c;
816 1.1 christos c = b;
817 1.1 christos b = a;
818 1.1 christos a = T1 + T2;
819 1.1 christos
820 1.1 christos j++;
821 1.1 christos } while (j < 80);
822 1.1 christos
823 1.1 christos /* Compute the current intermediate hash value */
824 1.1 christos context->state[0] += a;
825 1.1 christos context->state[1] += b;
826 1.1 christos context->state[2] += c;
827 1.1 christos context->state[3] += d;
828 1.1 christos context->state[4] += e;
829 1.1 christos context->state[5] += f;
830 1.1 christos context->state[6] += g;
831 1.1 christos context->state[7] += h;
832 1.1 christos
833 1.1 christos /* Clean up */
834 1.1 christos a = b = c = d = e = f = g = h = T1 = T2 = 0;
835 1.1 christos }
836 1.1 christos
837 1.1 christos #endif /* SHA2_UNROLL_TRANSFORM */
838 1.1 christos
839 1.1 christos void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
840 1.1 christos unsigned int freespace, usedspace;
841 1.1 christos
842 1.1 christos if (len == 0) {
843 1.1 christos /* Calling with no data is valid - we do nothing */
844 1.1 christos return;
845 1.1 christos }
846 1.1 christos
847 1.1 christos /* Sanity check: */
848 1.1 christos assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0);
849 1.1 christos
850 1.1 christos usedspace = (unsigned int)((context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH);
851 1.1 christos if (usedspace > 0) {
852 1.1 christos /* Calculate how much free space is available in the buffer */
853 1.1 christos freespace = SHA512_BLOCK_LENGTH - usedspace;
854 1.1 christos
855 1.1 christos if (len >= freespace) {
856 1.1 christos /* Fill the buffer completely and process it */
857 1.1 christos memcpy(&context->buffer[usedspace], data, (size_t)(freespace));
858 1.1 christos ADDINC128(context->bitcount, freespace << 3);
859 1.1 christos len -= freespace;
860 1.1 christos data += freespace;
861 1.1 christos SHA512_Transform(context, (sha2_word64*)(void *)context->buffer);
862 1.1 christos } else {
863 1.1 christos /* The buffer is not yet full */
864 1.1 christos memcpy(&context->buffer[usedspace], data, len);
865 1.1 christos ADDINC128(context->bitcount, len << 3);
866 1.1 christos /* Clean up: */
867 1.1 christos usedspace = freespace = 0;
868 1.1 christos return;
869 1.1 christos }
870 1.1 christos }
871 1.5 joerg /*
872 1.5 joerg * Process as many complete blocks as possible.
873 1.5 joerg *
874 1.5 joerg * Check alignment of the data pointer. If it is 64bit aligned,
875 1.5 joerg * SHA512_Transform can be called directly on the data stream,
876 1.5 joerg * otherwise enforce the alignment by copy into the buffer.
877 1.5 joerg */
878 1.5 joerg if ((uintptr_t)data % 8 == 0) {
879 1.5 joerg while (len >= SHA512_BLOCK_LENGTH) {
880 1.5 joerg SHA512_Transform(context,
881 1.5 joerg (const sha2_word64*)(const void *)data);
882 1.5 joerg ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
883 1.5 joerg len -= SHA512_BLOCK_LENGTH;
884 1.5 joerg data += SHA512_BLOCK_LENGTH;
885 1.5 joerg }
886 1.5 joerg } else {
887 1.5 joerg while (len >= SHA512_BLOCK_LENGTH) {
888 1.5 joerg memcpy(context->buffer, data, SHA512_BLOCK_LENGTH);
889 1.5 joerg SHA512_Transform(context,
890 1.6 drochner (const void *)context->buffer);
891 1.5 joerg ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
892 1.5 joerg len -= SHA512_BLOCK_LENGTH;
893 1.5 joerg data += SHA512_BLOCK_LENGTH;
894 1.5 joerg }
895 1.1 christos }
896 1.1 christos if (len > 0) {
897 1.1 christos /* There's left-overs, so save 'em */
898 1.1 christos memcpy(context->buffer, data, len);
899 1.1 christos ADDINC128(context->bitcount, len << 3);
900 1.1 christos }
901 1.1 christos /* Clean up: */
902 1.1 christos usedspace = freespace = 0;
903 1.1 christos }
904 1.1 christos
905 1.4 christos static void SHA512_Last(SHA512_CTX* context) {
906 1.1 christos unsigned int usedspace;
907 1.1 christos
908 1.1 christos usedspace = (unsigned int)((context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH);
909 1.1 christos #if BYTE_ORDER == LITTLE_ENDIAN
910 1.1 christos /* Convert FROM host byte order */
911 1.1 christos REVERSE64(context->bitcount[0],context->bitcount[0]);
912 1.1 christos REVERSE64(context->bitcount[1],context->bitcount[1]);
913 1.1 christos #endif
914 1.1 christos if (usedspace > 0) {
915 1.1 christos /* Begin padding with a 1 bit: */
916 1.1 christos context->buffer[usedspace++] = 0x80;
917 1.1 christos
918 1.1 christos if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
919 1.1 christos /* Set-up for the last transform: */
920 1.1 christos memset(&context->buffer[usedspace], 0, (size_t)(SHA512_SHORT_BLOCK_LENGTH - usedspace));
921 1.1 christos } else {
922 1.1 christos if (usedspace < SHA512_BLOCK_LENGTH) {
923 1.1 christos memset(&context->buffer[usedspace], 0, (size_t)(SHA512_BLOCK_LENGTH - usedspace));
924 1.1 christos }
925 1.1 christos /* Do second-to-last transform: */
926 1.1 christos SHA512_Transform(context, (sha2_word64*)(void *)context->buffer);
927 1.1 christos
928 1.1 christos /* And set-up for the last transform: */
929 1.1 christos memset(context->buffer, 0, (size_t)(SHA512_BLOCK_LENGTH - 2));
930 1.1 christos }
931 1.1 christos } else {
932 1.1 christos /* Prepare for final transform: */
933 1.1 christos memset(context->buffer, 0, (size_t)(SHA512_SHORT_BLOCK_LENGTH));
934 1.1 christos
935 1.1 christos /* Begin padding with a 1 bit: */
936 1.1 christos *context->buffer = 0x80;
937 1.1 christos }
938 1.1 christos /* Store the length of input data (in bits): */
939 1.1 christos *(sha2_word64*)(void *)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
940 1.1 christos *(sha2_word64*)(void *)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
941 1.1 christos
942 1.1 christos /* Final transform: */
943 1.1 christos SHA512_Transform(context, (sha2_word64*)(void *)context->buffer);
944 1.1 christos }
945 1.1 christos
946 1.1 christos void SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
947 1.1 christos sha2_word64 *d = (void *)digest;
948 1.1 christos
949 1.1 christos /* Sanity check: */
950 1.1 christos assert(context != (SHA512_CTX*)0);
951 1.1 christos
952 1.1 christos /* If no digest buffer is passed, we don't bother doing this: */
953 1.1 christos if (digest != (sha2_byte*)0) {
954 1.1 christos SHA512_Last(context);
955 1.1 christos
956 1.1 christos /* Save the hash data for output: */
957 1.1 christos #if BYTE_ORDER == LITTLE_ENDIAN
958 1.1 christos {
959 1.1 christos /* Convert TO host byte order */
960 1.1 christos int j;
961 1.1 christos for (j = 0; j < 8; j++) {
962 1.1 christos REVERSE64(context->state[j],context->state[j]);
963 1.1 christos *d++ = context->state[j];
964 1.1 christos }
965 1.1 christos }
966 1.1 christos #else
967 1.1 christos memcpy(d, context->state, SHA512_DIGEST_LENGTH);
968 1.1 christos #endif
969 1.1 christos }
970 1.1 christos
971 1.1 christos /* Zero out state data */
972 1.1 christos memset(context, 0, sizeof(*context));
973 1.1 christos }
974 1.1 christos
975 1.1 christos /*** SHA-384: *********************************************************/
976 1.1 christos void SHA384_Init(SHA384_CTX* context) {
977 1.1 christos if (context == (SHA384_CTX*)0) {
978 1.1 christos return;
979 1.1 christos }
980 1.1 christos memcpy(context->state, sha384_initial_hash_value, (size_t)(SHA512_DIGEST_LENGTH));
981 1.1 christos memset(context->buffer, 0, (size_t)(SHA384_BLOCK_LENGTH));
982 1.1 christos context->bitcount[0] = context->bitcount[1] = 0;
983 1.1 christos }
984 1.1 christos
985 1.1 christos void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
986 1.1 christos SHA512_Update((SHA512_CTX*)context, data, len);
987 1.1 christos }
988 1.1 christos
989 1.1 christos void SHA384_Transform(SHA512_CTX* context, const sha2_word64* data) {
990 1.1 christos SHA512_Transform((SHA512_CTX*)context, data);
991 1.1 christos }
992 1.1 christos
993 1.1 christos void SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
994 1.1 christos sha2_word64 *d = (void *)digest;
995 1.1 christos
996 1.1 christos /* Sanity check: */
997 1.1 christos assert(context != (SHA384_CTX*)0);
998 1.1 christos
999 1.1 christos /* If no digest buffer is passed, we don't bother doing this: */
1000 1.1 christos if (digest != (sha2_byte*)0) {
1001 1.1 christos SHA512_Last((SHA512_CTX*)context);
1002 1.1 christos
1003 1.1 christos /* Save the hash data for output: */
1004 1.1 christos #if BYTE_ORDER == LITTLE_ENDIAN
1005 1.1 christos {
1006 1.1 christos /* Convert TO host byte order */
1007 1.1 christos int j;
1008 1.1 christos for (j = 0; j < 6; j++) {
1009 1.1 christos REVERSE64(context->state[j],context->state[j]);
1010 1.1 christos *d++ = context->state[j];
1011 1.1 christos }
1012 1.1 christos }
1013 1.1 christos #else
1014 1.1 christos memcpy(d, context->state, SHA384_DIGEST_LENGTH);
1015 1.1 christos #endif
1016 1.1 christos }
1017 1.1 christos
1018 1.1 christos /* Zero out state data */
1019 1.1 christos memset(context, 0, sizeof(*context));
1020 1.1 christos }
1021