Home | History | Annotate | Line # | Download | only in sha2
sha2.c revision 1.9
      1  1.9     joerg /* $NetBSD: sha2.c,v 1.9 2009/06/11 18:46:37 joerg Exp $ */
      2  1.1  christos /*	$KAME: sha2.c,v 1.9 2003/07/20 00:28:38 itojun Exp $	*/
      3  1.1  christos 
      4  1.1  christos /*
      5  1.1  christos  * sha2.c
      6  1.1  christos  *
      7  1.1  christos  * Version 1.0.0beta1
      8  1.1  christos  *
      9  1.1  christos  * Written by Aaron D. Gifford <me (at) aarongifford.com>
     10  1.1  christos  *
     11  1.1  christos  * Copyright 2000 Aaron D. Gifford.  All rights reserved.
     12  1.1  christos  *
     13  1.1  christos  * Redistribution and use in source and binary forms, with or without
     14  1.1  christos  * modification, are permitted provided that the following conditions
     15  1.1  christos  * are met:
     16  1.1  christos  * 1. Redistributions of source code must retain the above copyright
     17  1.1  christos  *    notice, this list of conditions and the following disclaimer.
     18  1.1  christos  * 2. Redistributions in binary form must reproduce the above copyright
     19  1.1  christos  *    notice, this list of conditions and the following disclaimer in the
     20  1.1  christos  *    documentation and/or other materials provided with the distribution.
     21  1.1  christos  * 3. Neither the name of the copyright holder nor the names of contributors
     22  1.1  christos  *    may be used to endorse or promote products derived from this software
     23  1.1  christos  *    without specific prior written permission.
     24  1.1  christos  *
     25  1.1  christos  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
     26  1.1  christos  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     27  1.1  christos  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     28  1.1  christos  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE
     29  1.1  christos  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     30  1.1  christos  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     31  1.1  christos  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     32  1.1  christos  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     33  1.1  christos  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     34  1.1  christos  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     35  1.1  christos  * SUCH DAMAGE.
     36  1.1  christos  *
     37  1.1  christos  */
     38  1.1  christos 
     39  1.1  christos #include <sys/cdefs.h>
     40  1.1  christos 
     41  1.1  christos #if defined(_KERNEL) || defined(_STANDALONE)
     42  1.9     joerg __KERNEL_RCSID(0, "$NetBSD: sha2.c,v 1.9 2009/06/11 18:46:37 joerg Exp $");
     43  1.1  christos 
     44  1.1  christos #include <lib/libkern/libkern.h>
     45  1.1  christos 
     46  1.1  christos #else
     47  1.1  christos 
     48  1.1  christos #if defined(LIBC_SCCS) && !defined(lint)
     49  1.9     joerg __RCSID("$NetBSD: sha2.c,v 1.9 2009/06/11 18:46:37 joerg Exp $");
     50  1.1  christos #endif /* LIBC_SCCS and not lint */
     51  1.1  christos 
     52  1.1  christos #include "namespace.h"
     53  1.1  christos #include <assert.h>
     54  1.1  christos #include <string.h>
     55  1.1  christos 
     56  1.1  christos #endif
     57  1.1  christos 
     58  1.1  christos #include <sys/types.h>
     59  1.2        he #include <sys/param.h>
     60  1.1  christos #include <sys/sha2.h>
     61  1.9     joerg #include <sys/endian.h>
     62  1.1  christos 
     63  1.1  christos /*
     64  1.1  christos  * ASSERT NOTE:
     65  1.1  christos  * Some sanity checking code is included using assert().  On my FreeBSD
     66  1.1  christos  * system, this additional code can be removed by compiling with NDEBUG
     67  1.1  christos  * defined.  Check your own systems manpage on assert() to see how to
     68  1.1  christos  * compile WITHOUT the sanity checking code on your system.
     69  1.1  christos  *
     70  1.1  christos  * UNROLLED TRANSFORM LOOP NOTE:
     71  1.1  christos  * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
     72  1.1  christos  * loop version for the hash transform rounds (defined using macros
     73  1.1  christos  * later in this file).  Either define on the command line, for example:
     74  1.1  christos  *
     75  1.1  christos  *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
     76  1.1  christos  *
     77  1.1  christos  * or define below:
     78  1.1  christos  *
     79  1.1  christos  *   #define SHA2_UNROLL_TRANSFORM
     80  1.1  christos  *
     81  1.1  christos  */
     82  1.1  christos 
     83  1.1  christos #if defined(__bsdi__) || defined(__FreeBSD__)
     84  1.1  christos #define assert(x)
     85  1.1  christos #endif
     86  1.1  christos 
     87  1.1  christos 
     88  1.1  christos /*** SHA-256/384/512 Machine Architecture Definitions *****************/
     89  1.1  christos /*
     90  1.1  christos  * BYTE_ORDER NOTE:
     91  1.1  christos  *
     92  1.1  christos  * Please make sure that your system defines BYTE_ORDER.  If your
     93  1.1  christos  * architecture is little-endian, make sure it also defines
     94  1.1  christos  * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
     95  1.1  christos  * equivilent.
     96  1.1  christos  *
     97  1.1  christos  * If your system does not define the above, then you can do so by
     98  1.1  christos  * hand like this:
     99  1.1  christos  *
    100  1.1  christos  *   #define LITTLE_ENDIAN 1234
    101  1.1  christos  *   #define BIG_ENDIAN    4321
    102  1.1  christos  *
    103  1.1  christos  * And for little-endian machines, add:
    104  1.1  christos  *
    105  1.1  christos  *   #define BYTE_ORDER LITTLE_ENDIAN
    106  1.1  christos  *
    107  1.1  christos  * Or for big-endian machines:
    108  1.1  christos  *
    109  1.1  christos  *   #define BYTE_ORDER BIG_ENDIAN
    110  1.1  christos  *
    111  1.1  christos  * The FreeBSD machine this was written on defines BYTE_ORDER
    112  1.1  christos  * appropriately by including <sys/types.h> (which in turn includes
    113  1.1  christos  * <machine/endian.h> where the appropriate definitions are actually
    114  1.1  christos  * made).
    115  1.1  christos  */
    116  1.1  christos #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
    117  1.1  christos #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
    118  1.1  christos #endif
    119  1.1  christos 
    120  1.1  christos /*
    121  1.1  christos  * Define the followingsha2_* types to types of the correct length on
    122  1.1  christos  * the native archtecture.   Most BSD systems and Linux define u_intXX_t
    123  1.7       apb  * types.  Machines with recent ANSI C headers, can use the standard C99
    124  1.1  christos  * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
    125  1.1  christos  * during compile or in the sha.h header file.
    126  1.1  christos  *
    127  1.1  christos  * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
    128  1.1  christos  * will need to define these three typedefs below (and the appropriate
    129  1.1  christos  * ones in sha.h too) by hand according to their system architecture.
    130  1.1  christos  *
    131  1.1  christos  * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
    132  1.1  christos  * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
    133  1.1  christos  */
    134  1.7       apb #if 1 /*def SHA2_USE_INTTYPES_H*/
    135  1.1  christos 
    136  1.1  christos typedef uint8_t  sha2_byte;	/* Exactly 1 byte */
    137  1.1  christos typedef uint32_t sha2_word32;	/* Exactly 4 bytes */
    138  1.1  christos typedef uint64_t sha2_word64;	/* Exactly 8 bytes */
    139  1.1  christos 
    140  1.1  christos #else /* SHA2_USE_INTTYPES_H */
    141  1.1  christos 
    142  1.1  christos typedef u_int8_t  sha2_byte;	/* Exactly 1 byte */
    143  1.1  christos typedef u_int32_t sha2_word32;	/* Exactly 4 bytes */
    144  1.1  christos typedef u_int64_t sha2_word64;	/* Exactly 8 bytes */
    145  1.1  christos 
    146  1.1  christos #endif /* SHA2_USE_INTTYPES_H */
    147  1.1  christos 
    148  1.1  christos 
    149  1.1  christos /*** SHA-256/384/512 Various Length Definitions ***********************/
    150  1.1  christos /* NOTE: Most of these are in sha2.h */
    151  1.1  christos #define SHA256_SHORT_BLOCK_LENGTH	(SHA256_BLOCK_LENGTH - 8)
    152  1.1  christos #define SHA384_SHORT_BLOCK_LENGTH	(SHA384_BLOCK_LENGTH - 16)
    153  1.1  christos #define SHA512_SHORT_BLOCK_LENGTH	(SHA512_BLOCK_LENGTH - 16)
    154  1.1  christos 
    155  1.1  christos /*
    156  1.1  christos  * Macro for incrementally adding the unsigned 64-bit integer n to the
    157  1.1  christos  * unsigned 128-bit integer (represented using a two-element array of
    158  1.1  christos  * 64-bit words):
    159  1.1  christos  */
    160  1.1  christos #define ADDINC128(w,n)	{ \
    161  1.1  christos 	(w)[0] += (sha2_word64)(n); \
    162  1.1  christos 	if ((w)[0] < (n)) { \
    163  1.1  christos 		(w)[1]++; \
    164  1.1  christos 	} \
    165  1.1  christos }
    166  1.1  christos 
    167  1.1  christos /*** THE SIX LOGICAL FUNCTIONS ****************************************/
    168  1.1  christos /*
    169  1.1  christos  * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
    170  1.1  christos  *
    171  1.1  christos  *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
    172  1.1  christos  *   S is a ROTATION) because the SHA-256/384/512 description document
    173  1.1  christos  *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
    174  1.1  christos  *   same "backwards" definition.
    175  1.1  christos  */
    176  1.1  christos /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
    177  1.1  christos #define R(b,x) 		((x) >> (b))
    178  1.1  christos /* 32-bit Rotate-right (used in SHA-256): */
    179  1.1  christos #define S32(b,x)	(((x) >> (b)) | ((x) << (32 - (b))))
    180  1.1  christos /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
    181  1.1  christos #define S64(b,x)	(((x) >> (b)) | ((x) << (64 - (b))))
    182  1.1  christos 
    183  1.1  christos /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
    184  1.1  christos #define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
    185  1.1  christos #define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
    186  1.1  christos 
    187  1.1  christos /* Four of six logical functions used in SHA-256: */
    188  1.1  christos #define Sigma0_256(x)	(S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
    189  1.1  christos #define Sigma1_256(x)	(S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
    190  1.1  christos #define sigma0_256(x)	(S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
    191  1.1  christos #define sigma1_256(x)	(S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
    192  1.1  christos 
    193  1.1  christos /* Four of six logical functions used in SHA-384 and SHA-512: */
    194  1.1  christos #define Sigma0_512(x)	(S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
    195  1.1  christos #define Sigma1_512(x)	(S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
    196  1.1  christos #define sigma0_512(x)	(S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
    197  1.1  christos #define sigma1_512(x)	(S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
    198  1.1  christos 
    199  1.1  christos /*** INTERNAL FUNCTION PROTOTYPES *************************************/
    200  1.1  christos /* NOTE: These should not be accessed directly from outside this
    201  1.1  christos  * library -- they are intended for private internal visibility/use
    202  1.1  christos  * only.
    203  1.1  christos  */
    204  1.4  christos static void SHA512_Last(SHA512_CTX*);
    205  1.8     joerg void SHA224_Transform(SHA224_CTX*, const sha2_word64*);
    206  1.1  christos void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
    207  1.1  christos void SHA384_Transform(SHA384_CTX*, const sha2_word64*);
    208  1.1  christos void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
    209  1.1  christos 
    210  1.1  christos 
    211  1.1  christos /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
    212  1.1  christos /* Hash constant words K for SHA-256: */
    213  1.1  christos static const sha2_word32 K256[64] = {
    214  1.1  christos 	0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
    215  1.1  christos 	0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
    216  1.1  christos 	0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
    217  1.1  christos 	0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
    218  1.1  christos 	0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
    219  1.1  christos 	0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
    220  1.1  christos 	0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
    221  1.1  christos 	0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
    222  1.1  christos 	0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
    223  1.1  christos 	0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
    224  1.1  christos 	0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
    225  1.1  christos 	0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
    226  1.1  christos 	0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
    227  1.1  christos 	0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
    228  1.1  christos 	0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
    229  1.1  christos 	0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
    230  1.1  christos };
    231  1.1  christos 
    232  1.8     joerg /* Initial hash value H for SHA-224: */
    233  1.8     joerg static const sha2_word32 sha224_initial_hash_value[8] = {
    234  1.8     joerg 	0xc1059ed8UL,
    235  1.8     joerg 	0x367cd507UL,
    236  1.8     joerg 	0x3070dd17UL,
    237  1.8     joerg 	0xf70e5939UL,
    238  1.8     joerg 	0xffc00b31UL,
    239  1.8     joerg 	0x68581511UL,
    240  1.8     joerg 	0x64f98fa7UL,
    241  1.8     joerg 	0xbefa4fa4UL
    242  1.8     joerg };
    243  1.8     joerg 
    244  1.1  christos /* Initial hash value H for SHA-256: */
    245  1.1  christos static const sha2_word32 sha256_initial_hash_value[8] = {
    246  1.1  christos 	0x6a09e667UL,
    247  1.1  christos 	0xbb67ae85UL,
    248  1.1  christos 	0x3c6ef372UL,
    249  1.1  christos 	0xa54ff53aUL,
    250  1.1  christos 	0x510e527fUL,
    251  1.1  christos 	0x9b05688cUL,
    252  1.1  christos 	0x1f83d9abUL,
    253  1.1  christos 	0x5be0cd19UL
    254  1.1  christos };
    255  1.1  christos 
    256  1.1  christos /* Hash constant words K for SHA-384 and SHA-512: */
    257  1.1  christos static const sha2_word64 K512[80] = {
    258  1.1  christos 	0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
    259  1.1  christos 	0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
    260  1.1  christos 	0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
    261  1.1  christos 	0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
    262  1.1  christos 	0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
    263  1.1  christos 	0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
    264  1.1  christos 	0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
    265  1.1  christos 	0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
    266  1.1  christos 	0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
    267  1.1  christos 	0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
    268  1.1  christos 	0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
    269  1.1  christos 	0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
    270  1.1  christos 	0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
    271  1.1  christos 	0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
    272  1.1  christos 	0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
    273  1.1  christos 	0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
    274  1.1  christos 	0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
    275  1.1  christos 	0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
    276  1.1  christos 	0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
    277  1.1  christos 	0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
    278  1.1  christos 	0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
    279  1.1  christos 	0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
    280  1.1  christos 	0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
    281  1.1  christos 	0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
    282  1.1  christos 	0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
    283  1.1  christos 	0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
    284  1.1  christos 	0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
    285  1.1  christos 	0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
    286  1.1  christos 	0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
    287  1.1  christos 	0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
    288  1.1  christos 	0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
    289  1.1  christos 	0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
    290  1.1  christos 	0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
    291  1.1  christos 	0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
    292  1.1  christos 	0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
    293  1.1  christos 	0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
    294  1.1  christos 	0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
    295  1.1  christos 	0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
    296  1.1  christos 	0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
    297  1.1  christos 	0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
    298  1.1  christos };
    299  1.1  christos 
    300  1.1  christos /* Initial hash value H for SHA-384 */
    301  1.1  christos static const sha2_word64 sha384_initial_hash_value[8] = {
    302  1.1  christos 	0xcbbb9d5dc1059ed8ULL,
    303  1.1  christos 	0x629a292a367cd507ULL,
    304  1.1  christos 	0x9159015a3070dd17ULL,
    305  1.1  christos 	0x152fecd8f70e5939ULL,
    306  1.1  christos 	0x67332667ffc00b31ULL,
    307  1.1  christos 	0x8eb44a8768581511ULL,
    308  1.1  christos 	0xdb0c2e0d64f98fa7ULL,
    309  1.1  christos 	0x47b5481dbefa4fa4ULL
    310  1.1  christos };
    311  1.1  christos 
    312  1.1  christos /* Initial hash value H for SHA-512 */
    313  1.1  christos static const sha2_word64 sha512_initial_hash_value[8] = {
    314  1.1  christos 	0x6a09e667f3bcc908ULL,
    315  1.1  christos 	0xbb67ae8584caa73bULL,
    316  1.1  christos 	0x3c6ef372fe94f82bULL,
    317  1.1  christos 	0xa54ff53a5f1d36f1ULL,
    318  1.1  christos 	0x510e527fade682d1ULL,
    319  1.1  christos 	0x9b05688c2b3e6c1fULL,
    320  1.1  christos 	0x1f83d9abfb41bd6bULL,
    321  1.1  christos 	0x5be0cd19137e2179ULL
    322  1.1  christos };
    323  1.1  christos 
    324  1.1  christos #if !defined(_KERNEL) && defined(__weak_alias)
    325  1.8     joerg __weak_alias(SHA224_Init,_SHA224_Init)
    326  1.8     joerg __weak_alias(SHA224_Update,_SHA224_Update)
    327  1.8     joerg __weak_alias(SHA224_Final,_SHA224_Final)
    328  1.8     joerg __weak_alias(SHA224_Transform,_SHA224_Transform)
    329  1.8     joerg 
    330  1.1  christos __weak_alias(SHA256_Init,_SHA256_Init)
    331  1.1  christos __weak_alias(SHA256_Update,_SHA256_Update)
    332  1.1  christos __weak_alias(SHA256_Final,_SHA256_Final)
    333  1.1  christos __weak_alias(SHA256_Transform,_SHA256_Transform)
    334  1.1  christos 
    335  1.1  christos __weak_alias(SHA384_Init,_SHA384_Init)
    336  1.1  christos __weak_alias(SHA384_Update,_SHA384_Update)
    337  1.1  christos __weak_alias(SHA384_Final,_SHA384_Final)
    338  1.1  christos __weak_alias(SHA384_Transform,_SHA384_Transform)
    339  1.1  christos 
    340  1.1  christos __weak_alias(SHA512_Init,_SHA512_Init)
    341  1.1  christos __weak_alias(SHA512_Update,_SHA512_Update)
    342  1.1  christos __weak_alias(SHA512_Final,_SHA512_Final)
    343  1.1  christos __weak_alias(SHA512_Transform,_SHA512_Transform)
    344  1.1  christos #endif
    345  1.1  christos 
    346  1.8     joerg /*** SHA-224: *********************************************************/
    347  1.8     joerg int SHA224_Init(SHA256_CTX* context) {
    348  1.8     joerg 	if (context == (SHA256_CTX*)0) {
    349  1.8     joerg 		return 1;
    350  1.8     joerg 	}
    351  1.8     joerg 	memcpy(context->state, sha224_initial_hash_value, (size_t)(SHA256_DIGEST_LENGTH));
    352  1.8     joerg 	memset(context->buffer, 0, (size_t)(SHA256_BLOCK_LENGTH));
    353  1.8     joerg 	context->bitcount = 0;
    354  1.8     joerg 
    355  1.8     joerg 	return 1;
    356  1.8     joerg }
    357  1.8     joerg 
    358  1.1  christos /*** SHA-256: *********************************************************/
    359  1.8     joerg int SHA256_Init(SHA256_CTX* context) {
    360  1.1  christos 	if (context == (SHA256_CTX*)0) {
    361  1.8     joerg 		return 1;
    362  1.1  christos 	}
    363  1.1  christos 	memcpy(context->state, sha256_initial_hash_value, (size_t)(SHA256_DIGEST_LENGTH));
    364  1.1  christos 	memset(context->buffer, 0, (size_t)(SHA256_BLOCK_LENGTH));
    365  1.1  christos 	context->bitcount = 0;
    366  1.8     joerg 
    367  1.8     joerg 	return 1;
    368  1.8     joerg }
    369  1.8     joerg 
    370  1.8     joerg void SHA224_Transform(SHA224_CTX* context, const sha2_word64* data) {
    371  1.8     joerg 	SHA224_Transform((SHA256_CTX*)context, data);
    372  1.1  christos }
    373  1.1  christos 
    374  1.1  christos #ifdef SHA2_UNROLL_TRANSFORM
    375  1.1  christos 
    376  1.1  christos /* Unrolled SHA-256 round macros: */
    377  1.1  christos 
    378  1.1  christos #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
    379  1.9     joerg 	W256[j] = be32toh(*data);		\
    380  1.9     joerg 	++data;					\
    381  1.1  christos 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
    382  1.1  christos              K256[j] + W256[j]; \
    383  1.1  christos 	(d) += T1; \
    384  1.1  christos 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
    385  1.1  christos 	j++
    386  1.1  christos 
    387  1.1  christos #define ROUND256(a,b,c,d,e,f,g,h)	\
    388  1.1  christos 	s0 = W256[(j+1)&0x0f]; \
    389  1.1  christos 	s0 = sigma0_256(s0); \
    390  1.1  christos 	s1 = W256[(j+14)&0x0f]; \
    391  1.1  christos 	s1 = sigma1_256(s1); \
    392  1.1  christos 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
    393  1.1  christos 	     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
    394  1.1  christos 	(d) += T1; \
    395  1.1  christos 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
    396  1.1  christos 	j++
    397  1.1  christos 
    398  1.1  christos void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
    399  1.1  christos 	sha2_word32	a, b, c, d, e, f, g, h, s0, s1;
    400  1.1  christos 	sha2_word32	T1, *W256;
    401  1.1  christos 	int		j;
    402  1.1  christos 
    403  1.1  christos 	W256 = (sha2_word32*)context->buffer;
    404  1.1  christos 
    405  1.1  christos 	/* Initialize registers with the prev. intermediate value */
    406  1.1  christos 	a = context->state[0];
    407  1.1  christos 	b = context->state[1];
    408  1.1  christos 	c = context->state[2];
    409  1.1  christos 	d = context->state[3];
    410  1.1  christos 	e = context->state[4];
    411  1.1  christos 	f = context->state[5];
    412  1.1  christos 	g = context->state[6];
    413  1.1  christos 	h = context->state[7];
    414  1.1  christos 
    415  1.1  christos 	j = 0;
    416  1.1  christos 	do {
    417  1.1  christos 		/* Rounds 0 to 15 (unrolled): */
    418  1.1  christos 		ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
    419  1.1  christos 		ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
    420  1.1  christos 		ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
    421  1.1  christos 		ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
    422  1.1  christos 		ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
    423  1.1  christos 		ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
    424  1.1  christos 		ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
    425  1.1  christos 		ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
    426  1.1  christos 	} while (j < 16);
    427  1.1  christos 
    428  1.1  christos 	/* Now for the remaining rounds to 64: */
    429  1.1  christos 	do {
    430  1.1  christos 		ROUND256(a,b,c,d,e,f,g,h);
    431  1.1  christos 		ROUND256(h,a,b,c,d,e,f,g);
    432  1.1  christos 		ROUND256(g,h,a,b,c,d,e,f);
    433  1.1  christos 		ROUND256(f,g,h,a,b,c,d,e);
    434  1.1  christos 		ROUND256(e,f,g,h,a,b,c,d);
    435  1.1  christos 		ROUND256(d,e,f,g,h,a,b,c);
    436  1.1  christos 		ROUND256(c,d,e,f,g,h,a,b);
    437  1.1  christos 		ROUND256(b,c,d,e,f,g,h,a);
    438  1.1  christos 	} while (j < 64);
    439  1.1  christos 
    440  1.1  christos 	/* Compute the current intermediate hash value */
    441  1.1  christos 	context->state[0] += a;
    442  1.1  christos 	context->state[1] += b;
    443  1.1  christos 	context->state[2] += c;
    444  1.1  christos 	context->state[3] += d;
    445  1.1  christos 	context->state[4] += e;
    446  1.1  christos 	context->state[5] += f;
    447  1.1  christos 	context->state[6] += g;
    448  1.1  christos 	context->state[7] += h;
    449  1.1  christos 
    450  1.1  christos 	/* Clean up */
    451  1.1  christos 	a = b = c = d = e = f = g = h = T1 = 0;
    452  1.1  christos }
    453  1.1  christos 
    454  1.1  christos #else /* SHA2_UNROLL_TRANSFORM */
    455  1.1  christos 
    456  1.1  christos void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
    457  1.1  christos 	sha2_word32	a, b, c, d, e, f, g, h, s0, s1;
    458  1.1  christos 	sha2_word32	T1, T2, *W256;
    459  1.1  christos 	int		j;
    460  1.1  christos 
    461  1.1  christos 	W256 = (sha2_word32*)(void *)context->buffer;
    462  1.1  christos 
    463  1.1  christos 	/* Initialize registers with the prev. intermediate value */
    464  1.1  christos 	a = context->state[0];
    465  1.1  christos 	b = context->state[1];
    466  1.1  christos 	c = context->state[2];
    467  1.1  christos 	d = context->state[3];
    468  1.1  christos 	e = context->state[4];
    469  1.1  christos 	f = context->state[5];
    470  1.1  christos 	g = context->state[6];
    471  1.1  christos 	h = context->state[7];
    472  1.1  christos 
    473  1.1  christos 	j = 0;
    474  1.1  christos 	do {
    475  1.9     joerg 		W256[j] = be32toh(*data);
    476  1.9     joerg 		++data;
    477  1.1  christos 		/* Apply the SHA-256 compression function to update a..h */
    478  1.1  christos 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
    479  1.1  christos 		T2 = Sigma0_256(a) + Maj(a, b, c);
    480  1.1  christos 		h = g;
    481  1.1  christos 		g = f;
    482  1.1  christos 		f = e;
    483  1.1  christos 		e = d + T1;
    484  1.1  christos 		d = c;
    485  1.1  christos 		c = b;
    486  1.1  christos 		b = a;
    487  1.1  christos 		a = T1 + T2;
    488  1.1  christos 
    489  1.1  christos 		j++;
    490  1.1  christos 	} while (j < 16);
    491  1.1  christos 
    492  1.1  christos 	do {
    493  1.1  christos 		/* Part of the message block expansion: */
    494  1.1  christos 		s0 = W256[(j+1)&0x0f];
    495  1.1  christos 		s0 = sigma0_256(s0);
    496  1.1  christos 		s1 = W256[(j+14)&0x0f];
    497  1.1  christos 		s1 = sigma1_256(s1);
    498  1.1  christos 
    499  1.1  christos 		/* Apply the SHA-256 compression function to update a..h */
    500  1.1  christos 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
    501  1.1  christos 		     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
    502  1.1  christos 		T2 = Sigma0_256(a) + Maj(a, b, c);
    503  1.1  christos 		h = g;
    504  1.1  christos 		g = f;
    505  1.1  christos 		f = e;
    506  1.1  christos 		e = d + T1;
    507  1.1  christos 		d = c;
    508  1.1  christos 		c = b;
    509  1.1  christos 		b = a;
    510  1.1  christos 		a = T1 + T2;
    511  1.1  christos 
    512  1.1  christos 		j++;
    513  1.1  christos 	} while (j < 64);
    514  1.1  christos 
    515  1.1  christos 	/* Compute the current intermediate hash value */
    516  1.1  christos 	context->state[0] += a;
    517  1.1  christos 	context->state[1] += b;
    518  1.1  christos 	context->state[2] += c;
    519  1.1  christos 	context->state[3] += d;
    520  1.1  christos 	context->state[4] += e;
    521  1.1  christos 	context->state[5] += f;
    522  1.1  christos 	context->state[6] += g;
    523  1.1  christos 	context->state[7] += h;
    524  1.1  christos 
    525  1.1  christos 	/* Clean up */
    526  1.1  christos 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
    527  1.1  christos }
    528  1.1  christos 
    529  1.1  christos #endif /* SHA2_UNROLL_TRANSFORM */
    530  1.1  christos 
    531  1.8     joerg int SHA224_Update(SHA256_CTX *context, const sha2_byte *data, size_t len) {
    532  1.8     joerg 	return SHA256_Update(context, data, len);
    533  1.8     joerg }
    534  1.8     joerg 
    535  1.8     joerg int SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
    536  1.1  christos 	unsigned int	freespace, usedspace;
    537  1.1  christos 
    538  1.1  christos 	if (len == 0) {
    539  1.1  christos 		/* Calling with no data is valid - we do nothing */
    540  1.8     joerg 		return 1;
    541  1.1  christos 	}
    542  1.1  christos 
    543  1.1  christos 	/* Sanity check: */
    544  1.1  christos 	assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
    545  1.1  christos 
    546  1.1  christos 	usedspace = (unsigned int)((context->bitcount >> 3) %
    547  1.1  christos 				    SHA256_BLOCK_LENGTH);
    548  1.1  christos 	if (usedspace > 0) {
    549  1.1  christos 		/* Calculate how much free space is available in the buffer */
    550  1.1  christos 		freespace = SHA256_BLOCK_LENGTH - usedspace;
    551  1.1  christos 
    552  1.1  christos 		if (len >= freespace) {
    553  1.1  christos 			/* Fill the buffer completely and process it */
    554  1.1  christos 			memcpy(&context->buffer[usedspace], data, (size_t)(freespace));
    555  1.1  christos 			context->bitcount += freespace << 3;
    556  1.1  christos 			len -= freespace;
    557  1.1  christos 			data += freespace;
    558  1.1  christos 			SHA256_Transform(context, (sha2_word32*)(void *)context->buffer);
    559  1.1  christos 		} else {
    560  1.1  christos 			/* The buffer is not yet full */
    561  1.1  christos 			memcpy(&context->buffer[usedspace], data, len);
    562  1.1  christos 			context->bitcount += len << 3;
    563  1.1  christos 			/* Clean up: */
    564  1.1  christos 			usedspace = freespace = 0;
    565  1.8     joerg 			return 1;
    566  1.1  christos 		}
    567  1.1  christos 	}
    568  1.5     joerg 	/*
    569  1.5     joerg 	 * Process as many complete blocks as possible.
    570  1.5     joerg 	 *
    571  1.5     joerg 	 * Check alignment of the data pointer. If it is 32bit aligned,
    572  1.5     joerg 	 * SHA256_Transform can be called directly on the data stream,
    573  1.5     joerg 	 * otherwise enforce the alignment by copy into the buffer.
    574  1.5     joerg 	 */
    575  1.5     joerg 	if ((uintptr_t)data % 4 == 0) {
    576  1.5     joerg 		while (len >= SHA256_BLOCK_LENGTH) {
    577  1.5     joerg 			SHA256_Transform(context,
    578  1.5     joerg 			    (const sha2_word32 *)(const void *)data);
    579  1.5     joerg 			context->bitcount += SHA256_BLOCK_LENGTH << 3;
    580  1.5     joerg 			len -= SHA256_BLOCK_LENGTH;
    581  1.5     joerg 			data += SHA256_BLOCK_LENGTH;
    582  1.5     joerg 		}
    583  1.5     joerg 	} else {
    584  1.5     joerg 		while (len >= SHA256_BLOCK_LENGTH) {
    585  1.5     joerg 			memcpy(context->buffer, data, SHA256_BLOCK_LENGTH);
    586  1.5     joerg 			SHA256_Transform(context,
    587  1.5     joerg 			    (const sha2_word32 *)(const void *)context->buffer);
    588  1.5     joerg 			context->bitcount += SHA256_BLOCK_LENGTH << 3;
    589  1.5     joerg 			len -= SHA256_BLOCK_LENGTH;
    590  1.5     joerg 			data += SHA256_BLOCK_LENGTH;
    591  1.5     joerg 		}
    592  1.1  christos 	}
    593  1.1  christos 	if (len > 0) {
    594  1.1  christos 		/* There's left-overs, so save 'em */
    595  1.1  christos 		memcpy(context->buffer, data, len);
    596  1.1  christos 		context->bitcount += len << 3;
    597  1.1  christos 	}
    598  1.1  christos 	/* Clean up: */
    599  1.1  christos 	usedspace = freespace = 0;
    600  1.8     joerg 
    601  1.8     joerg 	return 1;
    602  1.1  christos }
    603  1.1  christos 
    604  1.8     joerg static int SHA224_256_Final(sha2_byte digest[], SHA256_CTX* context, size_t len) {
    605  1.1  christos 	sha2_word32	*d = (void *)digest;
    606  1.1  christos 	unsigned int	usedspace;
    607  1.9     joerg 	size_t i;
    608  1.1  christos 
    609  1.1  christos 	/* Sanity check: */
    610  1.1  christos 	assert(context != (SHA256_CTX*)0);
    611  1.1  christos 
    612  1.1  christos 	/* If no digest buffer is passed, we don't bother doing this: */
    613  1.1  christos 	if (digest != (sha2_byte*)0) {
    614  1.1  christos 		usedspace = (unsigned int)((context->bitcount >> 3) % SHA256_BLOCK_LENGTH);
    615  1.9     joerg 		context->bitcount = htobe64(context->bitcount);
    616  1.1  christos 		if (usedspace > 0) {
    617  1.1  christos 			/* Begin padding with a 1 bit: */
    618  1.1  christos 			context->buffer[usedspace++] = 0x80;
    619  1.1  christos 
    620  1.1  christos 			if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
    621  1.1  christos 				/* Set-up for the last transform: */
    622  1.1  christos 				memset(&context->buffer[usedspace], 0, (size_t)(SHA256_SHORT_BLOCK_LENGTH - usedspace));
    623  1.1  christos 			} else {
    624  1.1  christos 				if (usedspace < SHA256_BLOCK_LENGTH) {
    625  1.1  christos 					memset(&context->buffer[usedspace], 0, (size_t)(SHA256_BLOCK_LENGTH - usedspace));
    626  1.1  christos 				}
    627  1.1  christos 				/* Do second-to-last transform: */
    628  1.1  christos 				SHA256_Transform(context, (sha2_word32*)(void *)context->buffer);
    629  1.1  christos 
    630  1.1  christos 				/* And set-up for the last transform: */
    631  1.1  christos 				memset(context->buffer, 0, (size_t)(SHA256_SHORT_BLOCK_LENGTH));
    632  1.1  christos 			}
    633  1.1  christos 		} else {
    634  1.1  christos 			/* Set-up for the last transform: */
    635  1.1  christos 			memset(context->buffer, 0, (size_t)(SHA256_SHORT_BLOCK_LENGTH));
    636  1.1  christos 
    637  1.1  christos 			/* Begin padding with a 1 bit: */
    638  1.1  christos 			*context->buffer = 0x80;
    639  1.1  christos 		}
    640  1.1  christos 		/* Set the bit count: */
    641  1.1  christos 		*(sha2_word64*)(void *)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
    642  1.1  christos 
    643  1.1  christos 		/* Final transform: */
    644  1.1  christos 		SHA256_Transform(context, (sha2_word32*)(void *)context->buffer);
    645  1.1  christos 
    646  1.9     joerg 		for (i = 0; i < len / 4; i++)
    647  1.9     joerg 			d[i] = htobe32(context->state[i]);
    648  1.1  christos 	}
    649  1.1  christos 
    650  1.1  christos 	/* Clean up state data: */
    651  1.1  christos 	memset(context, 0, sizeof(*context));
    652  1.1  christos 	usedspace = 0;
    653  1.8     joerg 
    654  1.8     joerg 	return 1;
    655  1.8     joerg }
    656  1.8     joerg 
    657  1.8     joerg int SHA224_Final(sha2_byte digest[], SHA256_CTX* context) {
    658  1.8     joerg 	return SHA224_256_Final(digest, context, SHA224_DIGEST_LENGTH);
    659  1.8     joerg }
    660  1.8     joerg 
    661  1.8     joerg int SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
    662  1.8     joerg 	return SHA224_256_Final(digest, context, SHA256_DIGEST_LENGTH);
    663  1.1  christos }
    664  1.1  christos 
    665  1.1  christos /*** SHA-512: *********************************************************/
    666  1.8     joerg int SHA512_Init(SHA512_CTX* context) {
    667  1.1  christos 	if (context == (SHA512_CTX*)0) {
    668  1.8     joerg 		return 1;
    669  1.1  christos 	}
    670  1.1  christos 	memcpy(context->state, sha512_initial_hash_value, (size_t)(SHA512_DIGEST_LENGTH));
    671  1.1  christos 	memset(context->buffer, 0, (size_t)(SHA512_BLOCK_LENGTH));
    672  1.1  christos 	context->bitcount[0] = context->bitcount[1] =  0;
    673  1.8     joerg 
    674  1.8     joerg 	return 1;
    675  1.1  christos }
    676  1.1  christos 
    677  1.1  christos #ifdef SHA2_UNROLL_TRANSFORM
    678  1.1  christos 
    679  1.1  christos /* Unrolled SHA-512 round macros: */
    680  1.1  christos #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
    681  1.9     joerg 	W512[j] = be64toh(*data);		\
    682  1.9     joerg 	++data;					\
    683  1.1  christos 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
    684  1.1  christos              K512[j] + W512[j]; \
    685  1.1  christos 	(d) += T1, \
    686  1.1  christos 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
    687  1.1  christos 	j++
    688  1.1  christos 
    689  1.1  christos #define ROUND512(a,b,c,d,e,f,g,h)	\
    690  1.1  christos 	s0 = W512[(j+1)&0x0f]; \
    691  1.1  christos 	s0 = sigma0_512(s0); \
    692  1.1  christos 	s1 = W512[(j+14)&0x0f]; \
    693  1.1  christos 	s1 = sigma1_512(s1); \
    694  1.1  christos 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
    695  1.1  christos              (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
    696  1.1  christos 	(d) += T1; \
    697  1.1  christos 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
    698  1.1  christos 	j++
    699  1.1  christos 
    700  1.1  christos void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
    701  1.1  christos 	sha2_word64	a, b, c, d, e, f, g, h, s0, s1;
    702  1.1  christos 	sha2_word64	T1, *W512 = (sha2_word64*)context->buffer;
    703  1.1  christos 	int		j;
    704  1.1  christos 
    705  1.1  christos 	/* Initialize registers with the prev. intermediate value */
    706  1.1  christos 	a = context->state[0];
    707  1.1  christos 	b = context->state[1];
    708  1.1  christos 	c = context->state[2];
    709  1.1  christos 	d = context->state[3];
    710  1.1  christos 	e = context->state[4];
    711  1.1  christos 	f = context->state[5];
    712  1.1  christos 	g = context->state[6];
    713  1.1  christos 	h = context->state[7];
    714  1.1  christos 
    715  1.1  christos 	j = 0;
    716  1.1  christos 	do {
    717  1.1  christos 		ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
    718  1.1  christos 		ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
    719  1.1  christos 		ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
    720  1.1  christos 		ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
    721  1.1  christos 		ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
    722  1.1  christos 		ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
    723  1.1  christos 		ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
    724  1.1  christos 		ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
    725  1.1  christos 	} while (j < 16);
    726  1.1  christos 
    727  1.1  christos 	/* Now for the remaining rounds up to 79: */
    728  1.1  christos 	do {
    729  1.1  christos 		ROUND512(a,b,c,d,e,f,g,h);
    730  1.1  christos 		ROUND512(h,a,b,c,d,e,f,g);
    731  1.1  christos 		ROUND512(g,h,a,b,c,d,e,f);
    732  1.1  christos 		ROUND512(f,g,h,a,b,c,d,e);
    733  1.1  christos 		ROUND512(e,f,g,h,a,b,c,d);
    734  1.1  christos 		ROUND512(d,e,f,g,h,a,b,c);
    735  1.1  christos 		ROUND512(c,d,e,f,g,h,a,b);
    736  1.1  christos 		ROUND512(b,c,d,e,f,g,h,a);
    737  1.1  christos 	} while (j < 80);
    738  1.1  christos 
    739  1.1  christos 	/* Compute the current intermediate hash value */
    740  1.1  christos 	context->state[0] += a;
    741  1.1  christos 	context->state[1] += b;
    742  1.1  christos 	context->state[2] += c;
    743  1.1  christos 	context->state[3] += d;
    744  1.1  christos 	context->state[4] += e;
    745  1.1  christos 	context->state[5] += f;
    746  1.1  christos 	context->state[6] += g;
    747  1.1  christos 	context->state[7] += h;
    748  1.1  christos 
    749  1.1  christos 	/* Clean up */
    750  1.1  christos 	a = b = c = d = e = f = g = h = T1 = 0;
    751  1.1  christos }
    752  1.1  christos 
    753  1.1  christos #else /* SHA2_UNROLL_TRANSFORM */
    754  1.1  christos 
    755  1.1  christos void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
    756  1.1  christos 	sha2_word64	a, b, c, d, e, f, g, h, s0, s1;
    757  1.1  christos 	sha2_word64	T1, T2, *W512 = (void *)context->buffer;
    758  1.1  christos 	int		j;
    759  1.1  christos 
    760  1.1  christos 	/* Initialize registers with the prev. intermediate value */
    761  1.1  christos 	a = context->state[0];
    762  1.1  christos 	b = context->state[1];
    763  1.1  christos 	c = context->state[2];
    764  1.1  christos 	d = context->state[3];
    765  1.1  christos 	e = context->state[4];
    766  1.1  christos 	f = context->state[5];
    767  1.1  christos 	g = context->state[6];
    768  1.1  christos 	h = context->state[7];
    769  1.1  christos 
    770  1.1  christos 	j = 0;
    771  1.1  christos 	do {
    772  1.9     joerg 		W512[j] = be64toh(*data);
    773  1.9     joerg 		++data;
    774  1.1  christos 		/* Apply the SHA-512 compression function to update a..h */
    775  1.1  christos 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
    776  1.1  christos 		T2 = Sigma0_512(a) + Maj(a, b, c);
    777  1.1  christos 		h = g;
    778  1.1  christos 		g = f;
    779  1.1  christos 		f = e;
    780  1.1  christos 		e = d + T1;
    781  1.1  christos 		d = c;
    782  1.1  christos 		c = b;
    783  1.1  christos 		b = a;
    784  1.1  christos 		a = T1 + T2;
    785  1.1  christos 
    786  1.1  christos 		j++;
    787  1.1  christos 	} while (j < 16);
    788  1.1  christos 
    789  1.1  christos 	do {
    790  1.1  christos 		/* Part of the message block expansion: */
    791  1.1  christos 		s0 = W512[(j+1)&0x0f];
    792  1.1  christos 		s0 = sigma0_512(s0);
    793  1.1  christos 		s1 = W512[(j+14)&0x0f];
    794  1.1  christos 		s1 =  sigma1_512(s1);
    795  1.1  christos 
    796  1.1  christos 		/* Apply the SHA-512 compression function to update a..h */
    797  1.1  christos 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
    798  1.1  christos 		     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
    799  1.1  christos 		T2 = Sigma0_512(a) + Maj(a, b, c);
    800  1.1  christos 		h = g;
    801  1.1  christos 		g = f;
    802  1.1  christos 		f = e;
    803  1.1  christos 		e = d + T1;
    804  1.1  christos 		d = c;
    805  1.1  christos 		c = b;
    806  1.1  christos 		b = a;
    807  1.1  christos 		a = T1 + T2;
    808  1.1  christos 
    809  1.1  christos 		j++;
    810  1.1  christos 	} while (j < 80);
    811  1.1  christos 
    812  1.1  christos 	/* Compute the current intermediate hash value */
    813  1.1  christos 	context->state[0] += a;
    814  1.1  christos 	context->state[1] += b;
    815  1.1  christos 	context->state[2] += c;
    816  1.1  christos 	context->state[3] += d;
    817  1.1  christos 	context->state[4] += e;
    818  1.1  christos 	context->state[5] += f;
    819  1.1  christos 	context->state[6] += g;
    820  1.1  christos 	context->state[7] += h;
    821  1.1  christos 
    822  1.1  christos 	/* Clean up */
    823  1.1  christos 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
    824  1.1  christos }
    825  1.1  christos 
    826  1.1  christos #endif /* SHA2_UNROLL_TRANSFORM */
    827  1.1  christos 
    828  1.8     joerg int SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
    829  1.1  christos 	unsigned int	freespace, usedspace;
    830  1.1  christos 
    831  1.1  christos 	if (len == 0) {
    832  1.1  christos 		/* Calling with no data is valid - we do nothing */
    833  1.8     joerg 		return 1;
    834  1.1  christos 	}
    835  1.1  christos 
    836  1.1  christos 	/* Sanity check: */
    837  1.1  christos 	assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0);
    838  1.1  christos 
    839  1.1  christos 	usedspace = (unsigned int)((context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH);
    840  1.1  christos 	if (usedspace > 0) {
    841  1.1  christos 		/* Calculate how much free space is available in the buffer */
    842  1.1  christos 		freespace = SHA512_BLOCK_LENGTH - usedspace;
    843  1.1  christos 
    844  1.1  christos 		if (len >= freespace) {
    845  1.1  christos 			/* Fill the buffer completely and process it */
    846  1.1  christos 			memcpy(&context->buffer[usedspace], data, (size_t)(freespace));
    847  1.1  christos 			ADDINC128(context->bitcount, freespace << 3);
    848  1.1  christos 			len -= freespace;
    849  1.1  christos 			data += freespace;
    850  1.1  christos 			SHA512_Transform(context, (sha2_word64*)(void *)context->buffer);
    851  1.1  christos 		} else {
    852  1.1  christos 			/* The buffer is not yet full */
    853  1.1  christos 			memcpy(&context->buffer[usedspace], data, len);
    854  1.1  christos 			ADDINC128(context->bitcount, len << 3);
    855  1.1  christos 			/* Clean up: */
    856  1.1  christos 			usedspace = freespace = 0;
    857  1.8     joerg 			return 1;
    858  1.1  christos 		}
    859  1.1  christos 	}
    860  1.5     joerg 	/*
    861  1.5     joerg 	 * Process as many complete blocks as possible.
    862  1.5     joerg 	 *
    863  1.5     joerg 	 * Check alignment of the data pointer. If it is 64bit aligned,
    864  1.5     joerg 	 * SHA512_Transform can be called directly on the data stream,
    865  1.5     joerg 	 * otherwise enforce the alignment by copy into the buffer.
    866  1.5     joerg 	 */
    867  1.5     joerg 	if ((uintptr_t)data % 8 == 0) {
    868  1.5     joerg 		while (len >= SHA512_BLOCK_LENGTH) {
    869  1.5     joerg 			SHA512_Transform(context,
    870  1.5     joerg 			    (const sha2_word64*)(const void *)data);
    871  1.5     joerg 			ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
    872  1.5     joerg 			len -= SHA512_BLOCK_LENGTH;
    873  1.5     joerg 			data += SHA512_BLOCK_LENGTH;
    874  1.5     joerg 		}
    875  1.5     joerg 	} else {
    876  1.5     joerg 		while (len >= SHA512_BLOCK_LENGTH) {
    877  1.5     joerg 			memcpy(context->buffer, data, SHA512_BLOCK_LENGTH);
    878  1.5     joerg 			SHA512_Transform(context,
    879  1.6  drochner 			    (const void *)context->buffer);
    880  1.5     joerg 			ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
    881  1.5     joerg 			len -= SHA512_BLOCK_LENGTH;
    882  1.5     joerg 			data += SHA512_BLOCK_LENGTH;
    883  1.5     joerg 		}
    884  1.1  christos 	}
    885  1.1  christos 	if (len > 0) {
    886  1.1  christos 		/* There's left-overs, so save 'em */
    887  1.1  christos 		memcpy(context->buffer, data, len);
    888  1.1  christos 		ADDINC128(context->bitcount, len << 3);
    889  1.1  christos 	}
    890  1.1  christos 	/* Clean up: */
    891  1.1  christos 	usedspace = freespace = 0;
    892  1.8     joerg 
    893  1.8     joerg 	return 1;
    894  1.1  christos }
    895  1.1  christos 
    896  1.4  christos static void SHA512_Last(SHA512_CTX* context) {
    897  1.1  christos 	unsigned int	usedspace;
    898  1.1  christos 
    899  1.1  christos 	usedspace = (unsigned int)((context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH);
    900  1.9     joerg 	context->bitcount[0] = htobe64(context->bitcount[0]);
    901  1.9     joerg 	context->bitcount[1] = htobe64(context->bitcount[1]);
    902  1.1  christos 	if (usedspace > 0) {
    903  1.1  christos 		/* Begin padding with a 1 bit: */
    904  1.1  christos 		context->buffer[usedspace++] = 0x80;
    905  1.1  christos 
    906  1.1  christos 		if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
    907  1.1  christos 			/* Set-up for the last transform: */
    908  1.1  christos 			memset(&context->buffer[usedspace], 0, (size_t)(SHA512_SHORT_BLOCK_LENGTH - usedspace));
    909  1.1  christos 		} else {
    910  1.1  christos 			if (usedspace < SHA512_BLOCK_LENGTH) {
    911  1.1  christos 				memset(&context->buffer[usedspace], 0, (size_t)(SHA512_BLOCK_LENGTH - usedspace));
    912  1.1  christos 			}
    913  1.1  christos 			/* Do second-to-last transform: */
    914  1.1  christos 			SHA512_Transform(context, (sha2_word64*)(void *)context->buffer);
    915  1.1  christos 
    916  1.1  christos 			/* And set-up for the last transform: */
    917  1.1  christos 			memset(context->buffer, 0, (size_t)(SHA512_BLOCK_LENGTH - 2));
    918  1.1  christos 		}
    919  1.1  christos 	} else {
    920  1.1  christos 		/* Prepare for final transform: */
    921  1.1  christos 		memset(context->buffer, 0, (size_t)(SHA512_SHORT_BLOCK_LENGTH));
    922  1.1  christos 
    923  1.1  christos 		/* Begin padding with a 1 bit: */
    924  1.1  christos 		*context->buffer = 0x80;
    925  1.1  christos 	}
    926  1.1  christos 	/* Store the length of input data (in bits): */
    927  1.1  christos 	*(sha2_word64*)(void *)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
    928  1.1  christos 	*(sha2_word64*)(void *)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
    929  1.1  christos 
    930  1.1  christos 	/* Final transform: */
    931  1.1  christos 	SHA512_Transform(context, (sha2_word64*)(void *)context->buffer);
    932  1.1  christos }
    933  1.1  christos 
    934  1.8     joerg int SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
    935  1.1  christos 	sha2_word64	*d = (void *)digest;
    936  1.9     joerg 	size_t i;
    937  1.1  christos 
    938  1.1  christos 	/* Sanity check: */
    939  1.1  christos 	assert(context != (SHA512_CTX*)0);
    940  1.1  christos 
    941  1.1  christos 	/* If no digest buffer is passed, we don't bother doing this: */
    942  1.1  christos 	if (digest != (sha2_byte*)0) {
    943  1.1  christos 		SHA512_Last(context);
    944  1.1  christos 
    945  1.1  christos 		/* Save the hash data for output: */
    946  1.9     joerg 		for (i = 0; i < 8; ++i)
    947  1.9     joerg 			d[i] = htobe64(context->state[i]);
    948  1.1  christos 	}
    949  1.1  christos 
    950  1.1  christos 	/* Zero out state data */
    951  1.1  christos 	memset(context, 0, sizeof(*context));
    952  1.8     joerg 
    953  1.8     joerg 	return 1;
    954  1.1  christos }
    955  1.1  christos 
    956  1.1  christos /*** SHA-384: *********************************************************/
    957  1.8     joerg int SHA384_Init(SHA384_CTX* context) {
    958  1.1  christos 	if (context == (SHA384_CTX*)0) {
    959  1.8     joerg 		return 1;
    960  1.1  christos 	}
    961  1.1  christos 	memcpy(context->state, sha384_initial_hash_value, (size_t)(SHA512_DIGEST_LENGTH));
    962  1.1  christos 	memset(context->buffer, 0, (size_t)(SHA384_BLOCK_LENGTH));
    963  1.1  christos 	context->bitcount[0] = context->bitcount[1] = 0;
    964  1.8     joerg 
    965  1.8     joerg 	return 1;
    966  1.1  christos }
    967  1.1  christos 
    968  1.8     joerg int SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
    969  1.8     joerg 	return SHA512_Update((SHA512_CTX*)context, data, len);
    970  1.1  christos }
    971  1.1  christos 
    972  1.1  christos void SHA384_Transform(SHA512_CTX* context, const sha2_word64* data) {
    973  1.1  christos 	SHA512_Transform((SHA512_CTX*)context, data);
    974  1.1  christos }
    975  1.1  christos 
    976  1.8     joerg int SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
    977  1.1  christos 	sha2_word64	*d = (void *)digest;
    978  1.9     joerg 	size_t i;
    979  1.1  christos 
    980  1.1  christos 	/* Sanity check: */
    981  1.1  christos 	assert(context != (SHA384_CTX*)0);
    982  1.1  christos 
    983  1.1  christos 	/* If no digest buffer is passed, we don't bother doing this: */
    984  1.1  christos 	if (digest != (sha2_byte*)0) {
    985  1.1  christos 		SHA512_Last((SHA512_CTX*)context);
    986  1.1  christos 
    987  1.1  christos 		/* Save the hash data for output: */
    988  1.9     joerg 		for (i = 0; i < 6; ++i)
    989  1.9     joerg 			d[i] = be64toh(context->state[i]);
    990  1.1  christos 	}
    991  1.1  christos 
    992  1.1  christos 	/* Zero out state data */
    993  1.1  christos 	memset(context, 0, sizeof(*context));
    994  1.8     joerg 
    995  1.8     joerg 	return 1;
    996  1.1  christos }
    997