Home | History | Annotate | Line # | Download | only in sha2
sha2.c revision 1.1
      1 /* $NetBSD: sha2.c,v 1.1 2006/10/27 21:23:16 christos Exp $ */
      2 /*	$KAME: sha2.c,v 1.9 2003/07/20 00:28:38 itojun Exp $	*/
      3 
      4 /*
      5  * sha2.c
      6  *
      7  * Version 1.0.0beta1
      8  *
      9  * Written by Aaron D. Gifford <me (at) aarongifford.com>
     10  *
     11  * Copyright 2000 Aaron D. Gifford.  All rights reserved.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  * 3. Neither the name of the copyright holder nor the names of contributors
     22  *    may be used to endorse or promote products derived from this software
     23  *    without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE
     29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     35  * SUCH DAMAGE.
     36  *
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 
     41 #if defined(_KERNEL) || defined(_STANDALONE)
     42 __KERNEL_RCSID(0, "$NetBSD: sha2.c,v 1.1 2006/10/27 21:23:16 christos Exp $");
     43 
     44 #include <lib/libkern/libkern.h>
     45 
     46 #else
     47 
     48 #if defined(LIBC_SCCS) && !defined(lint)
     49 __RCSID("$NetBSD: sha2.c,v 1.1 2006/10/27 21:23:16 christos Exp $");
     50 #endif /* LIBC_SCCS and not lint */
     51 
     52 #include "namespace.h"
     53 #include <assert.h>
     54 #include <string.h>
     55 
     56 #endif
     57 
     58 #include <sys/types.h>
     59 #include <sys/sha2.h>
     60 
     61 /*
     62  * ASSERT NOTE:
     63  * Some sanity checking code is included using assert().  On my FreeBSD
     64  * system, this additional code can be removed by compiling with NDEBUG
     65  * defined.  Check your own systems manpage on assert() to see how to
     66  * compile WITHOUT the sanity checking code on your system.
     67  *
     68  * UNROLLED TRANSFORM LOOP NOTE:
     69  * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
     70  * loop version for the hash transform rounds (defined using macros
     71  * later in this file).  Either define on the command line, for example:
     72  *
     73  *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
     74  *
     75  * or define below:
     76  *
     77  *   #define SHA2_UNROLL_TRANSFORM
     78  *
     79  */
     80 
     81 #if defined(__bsdi__) || defined(__FreeBSD__)
     82 #define assert(x)
     83 #endif
     84 
     85 
     86 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
     87 /*
     88  * BYTE_ORDER NOTE:
     89  *
     90  * Please make sure that your system defines BYTE_ORDER.  If your
     91  * architecture is little-endian, make sure it also defines
     92  * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
     93  * equivilent.
     94  *
     95  * If your system does not define the above, then you can do so by
     96  * hand like this:
     97  *
     98  *   #define LITTLE_ENDIAN 1234
     99  *   #define BIG_ENDIAN    4321
    100  *
    101  * And for little-endian machines, add:
    102  *
    103  *   #define BYTE_ORDER LITTLE_ENDIAN
    104  *
    105  * Or for big-endian machines:
    106  *
    107  *   #define BYTE_ORDER BIG_ENDIAN
    108  *
    109  * The FreeBSD machine this was written on defines BYTE_ORDER
    110  * appropriately by including <sys/types.h> (which in turn includes
    111  * <machine/endian.h> where the appropriate definitions are actually
    112  * made).
    113  */
    114 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
    115 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
    116 #endif
    117 
    118 /*
    119  * Define the followingsha2_* types to types of the correct length on
    120  * the native archtecture.   Most BSD systems and Linux define u_intXX_t
    121  * types.  Machines with very recent ANSI C headers, can use the
    122  * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
    123  * during compile or in the sha.h header file.
    124  *
    125  * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
    126  * will need to define these three typedefs below (and the appropriate
    127  * ones in sha.h too) by hand according to their system architecture.
    128  *
    129  * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
    130  * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
    131  */
    132 #if 0 /*def SHA2_USE_INTTYPES_H*/
    133 
    134 typedef uint8_t  sha2_byte;	/* Exactly 1 byte */
    135 typedef uint32_t sha2_word32;	/* Exactly 4 bytes */
    136 typedef uint64_t sha2_word64;	/* Exactly 8 bytes */
    137 
    138 #else /* SHA2_USE_INTTYPES_H */
    139 
    140 typedef u_int8_t  sha2_byte;	/* Exactly 1 byte */
    141 typedef u_int32_t sha2_word32;	/* Exactly 4 bytes */
    142 typedef u_int64_t sha2_word64;	/* Exactly 8 bytes */
    143 
    144 #endif /* SHA2_USE_INTTYPES_H */
    145 
    146 
    147 /*** SHA-256/384/512 Various Length Definitions ***********************/
    148 /* NOTE: Most of these are in sha2.h */
    149 #define SHA256_SHORT_BLOCK_LENGTH	(SHA256_BLOCK_LENGTH - 8)
    150 #define SHA384_SHORT_BLOCK_LENGTH	(SHA384_BLOCK_LENGTH - 16)
    151 #define SHA512_SHORT_BLOCK_LENGTH	(SHA512_BLOCK_LENGTH - 16)
    152 
    153 
    154 /*** ENDIAN REVERSAL MACROS *******************************************/
    155 #if BYTE_ORDER == LITTLE_ENDIAN
    156 #define REVERSE32(w,x)	{ \
    157 	sha2_word32 tmp = (w); \
    158 	tmp = (tmp >> 16) | (tmp << 16); \
    159 	(x) = (sha2_word32)(((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8)); \
    160 }
    161 #define REVERSE64(w,x)	{ \
    162 	sha2_word64 tmp = (w); \
    163 	tmp = (tmp >> 32) | (tmp << 32); \
    164 	tmp = (sha2_word64)(((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
    165 	      ((tmp & 0x00ff00ff00ff00ffULL) << 8)); \
    166 	(x) = (sha2_word64)(((tmp & 0xffff0000ffff0000ULL) >> 16) | \
    167 	      ((tmp & 0x0000ffff0000ffffULL) << 16)); \
    168 }
    169 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
    170 
    171 /*
    172  * Macro for incrementally adding the unsigned 64-bit integer n to the
    173  * unsigned 128-bit integer (represented using a two-element array of
    174  * 64-bit words):
    175  */
    176 #define ADDINC128(w,n)	{ \
    177 	(w)[0] += (sha2_word64)(n); \
    178 	if ((w)[0] < (n)) { \
    179 		(w)[1]++; \
    180 	} \
    181 }
    182 
    183 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
    184 /*
    185  * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
    186  *
    187  *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
    188  *   S is a ROTATION) because the SHA-256/384/512 description document
    189  *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
    190  *   same "backwards" definition.
    191  */
    192 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
    193 #define R(b,x) 		((x) >> (b))
    194 /* 32-bit Rotate-right (used in SHA-256): */
    195 #define S32(b,x)	(((x) >> (b)) | ((x) << (32 - (b))))
    196 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
    197 #define S64(b,x)	(((x) >> (b)) | ((x) << (64 - (b))))
    198 
    199 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
    200 #define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
    201 #define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
    202 
    203 /* Four of six logical functions used in SHA-256: */
    204 #define Sigma0_256(x)	(S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
    205 #define Sigma1_256(x)	(S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
    206 #define sigma0_256(x)	(S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
    207 #define sigma1_256(x)	(S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
    208 
    209 /* Four of six logical functions used in SHA-384 and SHA-512: */
    210 #define Sigma0_512(x)	(S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
    211 #define Sigma1_512(x)	(S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
    212 #define sigma0_512(x)	(S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
    213 #define sigma1_512(x)	(S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
    214 
    215 /*** INTERNAL FUNCTION PROTOTYPES *************************************/
    216 /* NOTE: These should not be accessed directly from outside this
    217  * library -- they are intended for private internal visibility/use
    218  * only.
    219  */
    220 void SHA512_Last(SHA512_CTX*);
    221 void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
    222 void SHA384_Transform(SHA384_CTX*, const sha2_word64*);
    223 void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
    224 
    225 
    226 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
    227 /* Hash constant words K for SHA-256: */
    228 static const sha2_word32 K256[64] = {
    229 	0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
    230 	0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
    231 	0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
    232 	0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
    233 	0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
    234 	0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
    235 	0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
    236 	0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
    237 	0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
    238 	0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
    239 	0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
    240 	0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
    241 	0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
    242 	0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
    243 	0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
    244 	0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
    245 };
    246 
    247 /* Initial hash value H for SHA-256: */
    248 static const sha2_word32 sha256_initial_hash_value[8] = {
    249 	0x6a09e667UL,
    250 	0xbb67ae85UL,
    251 	0x3c6ef372UL,
    252 	0xa54ff53aUL,
    253 	0x510e527fUL,
    254 	0x9b05688cUL,
    255 	0x1f83d9abUL,
    256 	0x5be0cd19UL
    257 };
    258 
    259 /* Hash constant words K for SHA-384 and SHA-512: */
    260 static const sha2_word64 K512[80] = {
    261 	0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
    262 	0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
    263 	0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
    264 	0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
    265 	0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
    266 	0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
    267 	0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
    268 	0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
    269 	0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
    270 	0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
    271 	0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
    272 	0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
    273 	0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
    274 	0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
    275 	0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
    276 	0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
    277 	0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
    278 	0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
    279 	0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
    280 	0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
    281 	0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
    282 	0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
    283 	0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
    284 	0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
    285 	0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
    286 	0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
    287 	0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
    288 	0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
    289 	0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
    290 	0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
    291 	0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
    292 	0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
    293 	0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
    294 	0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
    295 	0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
    296 	0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
    297 	0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
    298 	0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
    299 	0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
    300 	0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
    301 };
    302 
    303 /* Initial hash value H for SHA-384 */
    304 static const sha2_word64 sha384_initial_hash_value[8] = {
    305 	0xcbbb9d5dc1059ed8ULL,
    306 	0x629a292a367cd507ULL,
    307 	0x9159015a3070dd17ULL,
    308 	0x152fecd8f70e5939ULL,
    309 	0x67332667ffc00b31ULL,
    310 	0x8eb44a8768581511ULL,
    311 	0xdb0c2e0d64f98fa7ULL,
    312 	0x47b5481dbefa4fa4ULL
    313 };
    314 
    315 /* Initial hash value H for SHA-512 */
    316 static const sha2_word64 sha512_initial_hash_value[8] = {
    317 	0x6a09e667f3bcc908ULL,
    318 	0xbb67ae8584caa73bULL,
    319 	0x3c6ef372fe94f82bULL,
    320 	0xa54ff53a5f1d36f1ULL,
    321 	0x510e527fade682d1ULL,
    322 	0x9b05688c2b3e6c1fULL,
    323 	0x1f83d9abfb41bd6bULL,
    324 	0x5be0cd19137e2179ULL
    325 };
    326 
    327 #if !defined(_KERNEL) && defined(__weak_alias)
    328 __weak_alias(SHA256_Init,_SHA256_Init)
    329 __weak_alias(SHA256_Update,_SHA256_Update)
    330 __weak_alias(SHA256_Final,_SHA256_Final)
    331 __weak_alias(SHA256_Transform,_SHA256_Transform)
    332 
    333 __weak_alias(SHA384_Init,_SHA384_Init)
    334 __weak_alias(SHA384_Update,_SHA384_Update)
    335 __weak_alias(SHA384_Final,_SHA384_Final)
    336 __weak_alias(SHA384_Transform,_SHA384_Transform)
    337 
    338 __weak_alias(SHA512_Init,_SHA512_Init)
    339 __weak_alias(SHA512_Update,_SHA512_Update)
    340 __weak_alias(SHA512_Final,_SHA512_Final)
    341 __weak_alias(SHA512_Transform,_SHA512_Transform)
    342 #endif
    343 
    344 /*** SHA-256: *********************************************************/
    345 void SHA256_Init(SHA256_CTX* context) {
    346 	if (context == (SHA256_CTX*)0) {
    347 		return;
    348 	}
    349 	memcpy(context->state, sha256_initial_hash_value, (size_t)(SHA256_DIGEST_LENGTH));
    350 	memset(context->buffer, 0, (size_t)(SHA256_BLOCK_LENGTH));
    351 	context->bitcount = 0;
    352 }
    353 
    354 #ifdef SHA2_UNROLL_TRANSFORM
    355 
    356 /* Unrolled SHA-256 round macros: */
    357 
    358 #if BYTE_ORDER == LITTLE_ENDIAN
    359 
    360 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
    361 	REVERSE32(*data++, W256[j]); \
    362 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
    363              K256[j] + W256[j]; \
    364 	(d) += T1; \
    365 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
    366 	j++
    367 
    368 
    369 #else /* BYTE_ORDER == LITTLE_ENDIAN */
    370 
    371 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
    372 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
    373 	     K256[j] + (W256[j] = *data++); \
    374 	(d) += T1; \
    375 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
    376 	j++
    377 
    378 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
    379 
    380 #define ROUND256(a,b,c,d,e,f,g,h)	\
    381 	s0 = W256[(j+1)&0x0f]; \
    382 	s0 = sigma0_256(s0); \
    383 	s1 = W256[(j+14)&0x0f]; \
    384 	s1 = sigma1_256(s1); \
    385 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
    386 	     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
    387 	(d) += T1; \
    388 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
    389 	j++
    390 
    391 void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
    392 	sha2_word32	a, b, c, d, e, f, g, h, s0, s1;
    393 	sha2_word32	T1, *W256;
    394 	int		j;
    395 
    396 	W256 = (sha2_word32*)context->buffer;
    397 
    398 	/* Initialize registers with the prev. intermediate value */
    399 	a = context->state[0];
    400 	b = context->state[1];
    401 	c = context->state[2];
    402 	d = context->state[3];
    403 	e = context->state[4];
    404 	f = context->state[5];
    405 	g = context->state[6];
    406 	h = context->state[7];
    407 
    408 	j = 0;
    409 	do {
    410 		/* Rounds 0 to 15 (unrolled): */
    411 		ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
    412 		ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
    413 		ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
    414 		ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
    415 		ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
    416 		ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
    417 		ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
    418 		ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
    419 	} while (j < 16);
    420 
    421 	/* Now for the remaining rounds to 64: */
    422 	do {
    423 		ROUND256(a,b,c,d,e,f,g,h);
    424 		ROUND256(h,a,b,c,d,e,f,g);
    425 		ROUND256(g,h,a,b,c,d,e,f);
    426 		ROUND256(f,g,h,a,b,c,d,e);
    427 		ROUND256(e,f,g,h,a,b,c,d);
    428 		ROUND256(d,e,f,g,h,a,b,c);
    429 		ROUND256(c,d,e,f,g,h,a,b);
    430 		ROUND256(b,c,d,e,f,g,h,a);
    431 	} while (j < 64);
    432 
    433 	/* Compute the current intermediate hash value */
    434 	context->state[0] += a;
    435 	context->state[1] += b;
    436 	context->state[2] += c;
    437 	context->state[3] += d;
    438 	context->state[4] += e;
    439 	context->state[5] += f;
    440 	context->state[6] += g;
    441 	context->state[7] += h;
    442 
    443 	/* Clean up */
    444 	a = b = c = d = e = f = g = h = T1 = 0;
    445 }
    446 
    447 #else /* SHA2_UNROLL_TRANSFORM */
    448 
    449 void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
    450 	sha2_word32	a, b, c, d, e, f, g, h, s0, s1;
    451 	sha2_word32	T1, T2, *W256;
    452 	int		j;
    453 
    454 	W256 = (sha2_word32*)(void *)context->buffer;
    455 
    456 	/* Initialize registers with the prev. intermediate value */
    457 	a = context->state[0];
    458 	b = context->state[1];
    459 	c = context->state[2];
    460 	d = context->state[3];
    461 	e = context->state[4];
    462 	f = context->state[5];
    463 	g = context->state[6];
    464 	h = context->state[7];
    465 
    466 	j = 0;
    467 	do {
    468 #if BYTE_ORDER == LITTLE_ENDIAN
    469 		/* Copy data while converting to host byte order */
    470 		REVERSE32(*data++,W256[j]);
    471 		/* Apply the SHA-256 compression function to update a..h */
    472 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
    473 #else /* BYTE_ORDER == LITTLE_ENDIAN */
    474 		/* Apply the SHA-256 compression function to update a..h with copy */
    475 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
    476 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
    477 		T2 = Sigma0_256(a) + Maj(a, b, c);
    478 		h = g;
    479 		g = f;
    480 		f = e;
    481 		e = d + T1;
    482 		d = c;
    483 		c = b;
    484 		b = a;
    485 		a = T1 + T2;
    486 
    487 		j++;
    488 	} while (j < 16);
    489 
    490 	do {
    491 		/* Part of the message block expansion: */
    492 		s0 = W256[(j+1)&0x0f];
    493 		s0 = sigma0_256(s0);
    494 		s1 = W256[(j+14)&0x0f];
    495 		s1 = sigma1_256(s1);
    496 
    497 		/* Apply the SHA-256 compression function to update a..h */
    498 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
    499 		     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
    500 		T2 = Sigma0_256(a) + Maj(a, b, c);
    501 		h = g;
    502 		g = f;
    503 		f = e;
    504 		e = d + T1;
    505 		d = c;
    506 		c = b;
    507 		b = a;
    508 		a = T1 + T2;
    509 
    510 		j++;
    511 	} while (j < 64);
    512 
    513 	/* Compute the current intermediate hash value */
    514 	context->state[0] += a;
    515 	context->state[1] += b;
    516 	context->state[2] += c;
    517 	context->state[3] += d;
    518 	context->state[4] += e;
    519 	context->state[5] += f;
    520 	context->state[6] += g;
    521 	context->state[7] += h;
    522 
    523 	/* Clean up */
    524 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
    525 }
    526 
    527 #endif /* SHA2_UNROLL_TRANSFORM */
    528 
    529 void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
    530 	unsigned int	freespace, usedspace;
    531 
    532 	if (len == 0) {
    533 		/* Calling with no data is valid - we do nothing */
    534 		return;
    535 	}
    536 
    537 	/* Sanity check: */
    538 	assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
    539 
    540 	usedspace = (unsigned int)((context->bitcount >> 3) %
    541 				    SHA256_BLOCK_LENGTH);
    542 	if (usedspace > 0) {
    543 		/* Calculate how much free space is available in the buffer */
    544 		freespace = SHA256_BLOCK_LENGTH - usedspace;
    545 
    546 		if (len >= freespace) {
    547 			/* Fill the buffer completely and process it */
    548 			memcpy(&context->buffer[usedspace], data, (size_t)(freespace));
    549 			context->bitcount += freespace << 3;
    550 			len -= freespace;
    551 			data += freespace;
    552 			SHA256_Transform(context, (sha2_word32*)(void *)context->buffer);
    553 		} else {
    554 			/* The buffer is not yet full */
    555 			memcpy(&context->buffer[usedspace], data, len);
    556 			context->bitcount += len << 3;
    557 			/* Clean up: */
    558 			usedspace = freespace = 0;
    559 			return;
    560 		}
    561 	}
    562 	while (len >= SHA256_BLOCK_LENGTH) {
    563 		/* Process as many complete blocks as we can */
    564 		SHA256_Transform(context, (const sha2_word32*)(const void *)data);
    565 		context->bitcount += SHA256_BLOCK_LENGTH << 3;
    566 		len -= SHA256_BLOCK_LENGTH;
    567 		data += SHA256_BLOCK_LENGTH;
    568 	}
    569 	if (len > 0) {
    570 		/* There's left-overs, so save 'em */
    571 		memcpy(context->buffer, data, len);
    572 		context->bitcount += len << 3;
    573 	}
    574 	/* Clean up: */
    575 	usedspace = freespace = 0;
    576 }
    577 
    578 void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
    579 	sha2_word32	*d = (void *)digest;
    580 	unsigned int	usedspace;
    581 
    582 	/* Sanity check: */
    583 	assert(context != (SHA256_CTX*)0);
    584 
    585 	/* If no digest buffer is passed, we don't bother doing this: */
    586 	if (digest != (sha2_byte*)0) {
    587 		usedspace = (unsigned int)((context->bitcount >> 3) % SHA256_BLOCK_LENGTH);
    588 #if BYTE_ORDER == LITTLE_ENDIAN
    589 		/* Convert FROM host byte order */
    590 		REVERSE64(context->bitcount,context->bitcount);
    591 #endif
    592 		if (usedspace > 0) {
    593 			/* Begin padding with a 1 bit: */
    594 			context->buffer[usedspace++] = 0x80;
    595 
    596 			if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
    597 				/* Set-up for the last transform: */
    598 				memset(&context->buffer[usedspace], 0, (size_t)(SHA256_SHORT_BLOCK_LENGTH - usedspace));
    599 			} else {
    600 				if (usedspace < SHA256_BLOCK_LENGTH) {
    601 					memset(&context->buffer[usedspace], 0, (size_t)(SHA256_BLOCK_LENGTH - usedspace));
    602 				}
    603 				/* Do second-to-last transform: */
    604 				SHA256_Transform(context, (sha2_word32*)(void *)context->buffer);
    605 
    606 				/* And set-up for the last transform: */
    607 				memset(context->buffer, 0, (size_t)(SHA256_SHORT_BLOCK_LENGTH));
    608 			}
    609 		} else {
    610 			/* Set-up for the last transform: */
    611 			memset(context->buffer, 0, (size_t)(SHA256_SHORT_BLOCK_LENGTH));
    612 
    613 			/* Begin padding with a 1 bit: */
    614 			*context->buffer = 0x80;
    615 		}
    616 		/* Set the bit count: */
    617 		*(sha2_word64*)(void *)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
    618 
    619 		/* Final transform: */
    620 		SHA256_Transform(context, (sha2_word32*)(void *)context->buffer);
    621 
    622 #if BYTE_ORDER == LITTLE_ENDIAN
    623 		{
    624 			/* Convert TO host byte order */
    625 			int	j;
    626 			for (j = 0; j < 8; j++) {
    627 				REVERSE32(context->state[j],context->state[j]);
    628 				*d++ = context->state[j];
    629 			}
    630 		}
    631 #else
    632 		memcpy(d, context->state, SHA256_DIGEST_LENGTH);
    633 #endif
    634 	}
    635 
    636 	/* Clean up state data: */
    637 	memset(context, 0, sizeof(*context));
    638 	usedspace = 0;
    639 }
    640 
    641 /*** SHA-512: *********************************************************/
    642 void SHA512_Init(SHA512_CTX* context) {
    643 	if (context == (SHA512_CTX*)0) {
    644 		return;
    645 	}
    646 	memcpy(context->state, sha512_initial_hash_value, (size_t)(SHA512_DIGEST_LENGTH));
    647 	memset(context->buffer, 0, (size_t)(SHA512_BLOCK_LENGTH));
    648 	context->bitcount[0] = context->bitcount[1] =  0;
    649 }
    650 
    651 #ifdef SHA2_UNROLL_TRANSFORM
    652 
    653 /* Unrolled SHA-512 round macros: */
    654 #if BYTE_ORDER == LITTLE_ENDIAN
    655 
    656 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
    657 	REVERSE64(*data++, W512[j]); \
    658 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
    659              K512[j] + W512[j]; \
    660 	(d) += T1, \
    661 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
    662 	j++
    663 
    664 
    665 #else /* BYTE_ORDER == LITTLE_ENDIAN */
    666 
    667 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
    668 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
    669              K512[j] + (W512[j] = *data++); \
    670 	(d) += T1; \
    671 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
    672 	j++
    673 
    674 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
    675 
    676 #define ROUND512(a,b,c,d,e,f,g,h)	\
    677 	s0 = W512[(j+1)&0x0f]; \
    678 	s0 = sigma0_512(s0); \
    679 	s1 = W512[(j+14)&0x0f]; \
    680 	s1 = sigma1_512(s1); \
    681 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
    682              (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
    683 	(d) += T1; \
    684 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
    685 	j++
    686 
    687 void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
    688 	sha2_word64	a, b, c, d, e, f, g, h, s0, s1;
    689 	sha2_word64	T1, *W512 = (sha2_word64*)context->buffer;
    690 	int		j;
    691 
    692 	/* Initialize registers with the prev. intermediate value */
    693 	a = context->state[0];
    694 	b = context->state[1];
    695 	c = context->state[2];
    696 	d = context->state[3];
    697 	e = context->state[4];
    698 	f = context->state[5];
    699 	g = context->state[6];
    700 	h = context->state[7];
    701 
    702 	j = 0;
    703 	do {
    704 		ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
    705 		ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
    706 		ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
    707 		ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
    708 		ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
    709 		ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
    710 		ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
    711 		ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
    712 	} while (j < 16);
    713 
    714 	/* Now for the remaining rounds up to 79: */
    715 	do {
    716 		ROUND512(a,b,c,d,e,f,g,h);
    717 		ROUND512(h,a,b,c,d,e,f,g);
    718 		ROUND512(g,h,a,b,c,d,e,f);
    719 		ROUND512(f,g,h,a,b,c,d,e);
    720 		ROUND512(e,f,g,h,a,b,c,d);
    721 		ROUND512(d,e,f,g,h,a,b,c);
    722 		ROUND512(c,d,e,f,g,h,a,b);
    723 		ROUND512(b,c,d,e,f,g,h,a);
    724 	} while (j < 80);
    725 
    726 	/* Compute the current intermediate hash value */
    727 	context->state[0] += a;
    728 	context->state[1] += b;
    729 	context->state[2] += c;
    730 	context->state[3] += d;
    731 	context->state[4] += e;
    732 	context->state[5] += f;
    733 	context->state[6] += g;
    734 	context->state[7] += h;
    735 
    736 	/* Clean up */
    737 	a = b = c = d = e = f = g = h = T1 = 0;
    738 }
    739 
    740 #else /* SHA2_UNROLL_TRANSFORM */
    741 
    742 void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
    743 	sha2_word64	a, b, c, d, e, f, g, h, s0, s1;
    744 	sha2_word64	T1, T2, *W512 = (void *)context->buffer;
    745 	int		j;
    746 
    747 	/* Initialize registers with the prev. intermediate value */
    748 	a = context->state[0];
    749 	b = context->state[1];
    750 	c = context->state[2];
    751 	d = context->state[3];
    752 	e = context->state[4];
    753 	f = context->state[5];
    754 	g = context->state[6];
    755 	h = context->state[7];
    756 
    757 	j = 0;
    758 	do {
    759 #if BYTE_ORDER == LITTLE_ENDIAN
    760 		/* Convert TO host byte order */
    761 		REVERSE64(*data++, W512[j]);
    762 		/* Apply the SHA-512 compression function to update a..h */
    763 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
    764 #else /* BYTE_ORDER == LITTLE_ENDIAN */
    765 		/* Apply the SHA-512 compression function to update a..h with copy */
    766 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
    767 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
    768 		T2 = Sigma0_512(a) + Maj(a, b, c);
    769 		h = g;
    770 		g = f;
    771 		f = e;
    772 		e = d + T1;
    773 		d = c;
    774 		c = b;
    775 		b = a;
    776 		a = T1 + T2;
    777 
    778 		j++;
    779 	} while (j < 16);
    780 
    781 	do {
    782 		/* Part of the message block expansion: */
    783 		s0 = W512[(j+1)&0x0f];
    784 		s0 = sigma0_512(s0);
    785 		s1 = W512[(j+14)&0x0f];
    786 		s1 =  sigma1_512(s1);
    787 
    788 		/* Apply the SHA-512 compression function to update a..h */
    789 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
    790 		     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
    791 		T2 = Sigma0_512(a) + Maj(a, b, c);
    792 		h = g;
    793 		g = f;
    794 		f = e;
    795 		e = d + T1;
    796 		d = c;
    797 		c = b;
    798 		b = a;
    799 		a = T1 + T2;
    800 
    801 		j++;
    802 	} while (j < 80);
    803 
    804 	/* Compute the current intermediate hash value */
    805 	context->state[0] += a;
    806 	context->state[1] += b;
    807 	context->state[2] += c;
    808 	context->state[3] += d;
    809 	context->state[4] += e;
    810 	context->state[5] += f;
    811 	context->state[6] += g;
    812 	context->state[7] += h;
    813 
    814 	/* Clean up */
    815 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
    816 }
    817 
    818 #endif /* SHA2_UNROLL_TRANSFORM */
    819 
    820 void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
    821 	unsigned int	freespace, usedspace;
    822 
    823 	if (len == 0) {
    824 		/* Calling with no data is valid - we do nothing */
    825 		return;
    826 	}
    827 
    828 	/* Sanity check: */
    829 	assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0);
    830 
    831 	usedspace = (unsigned int)((context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH);
    832 	if (usedspace > 0) {
    833 		/* Calculate how much free space is available in the buffer */
    834 		freespace = SHA512_BLOCK_LENGTH - usedspace;
    835 
    836 		if (len >= freespace) {
    837 			/* Fill the buffer completely and process it */
    838 			memcpy(&context->buffer[usedspace], data, (size_t)(freespace));
    839 			ADDINC128(context->bitcount, freespace << 3);
    840 			len -= freespace;
    841 			data += freespace;
    842 			SHA512_Transform(context, (sha2_word64*)(void *)context->buffer);
    843 		} else {
    844 			/* The buffer is not yet full */
    845 			memcpy(&context->buffer[usedspace], data, len);
    846 			ADDINC128(context->bitcount, len << 3);
    847 			/* Clean up: */
    848 			usedspace = freespace = 0;
    849 			return;
    850 		}
    851 	}
    852 	while (len >= SHA512_BLOCK_LENGTH) {
    853 		/* Process as many complete blocks as we can */
    854 		SHA512_Transform(context, (const sha2_word64*)(const void *)data);
    855 		ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
    856 		len -= SHA512_BLOCK_LENGTH;
    857 		data += SHA512_BLOCK_LENGTH;
    858 	}
    859 	if (len > 0) {
    860 		/* There's left-overs, so save 'em */
    861 		memcpy(context->buffer, data, len);
    862 		ADDINC128(context->bitcount, len << 3);
    863 	}
    864 	/* Clean up: */
    865 	usedspace = freespace = 0;
    866 }
    867 
    868 void SHA512_Last(SHA512_CTX* context) {
    869 	unsigned int	usedspace;
    870 
    871 	usedspace = (unsigned int)((context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH);
    872 #if BYTE_ORDER == LITTLE_ENDIAN
    873 	/* Convert FROM host byte order */
    874 	REVERSE64(context->bitcount[0],context->bitcount[0]);
    875 	REVERSE64(context->bitcount[1],context->bitcount[1]);
    876 #endif
    877 	if (usedspace > 0) {
    878 		/* Begin padding with a 1 bit: */
    879 		context->buffer[usedspace++] = 0x80;
    880 
    881 		if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
    882 			/* Set-up for the last transform: */
    883 			memset(&context->buffer[usedspace], 0, (size_t)(SHA512_SHORT_BLOCK_LENGTH - usedspace));
    884 		} else {
    885 			if (usedspace < SHA512_BLOCK_LENGTH) {
    886 				memset(&context->buffer[usedspace], 0, (size_t)(SHA512_BLOCK_LENGTH - usedspace));
    887 			}
    888 			/* Do second-to-last transform: */
    889 			SHA512_Transform(context, (sha2_word64*)(void *)context->buffer);
    890 
    891 			/* And set-up for the last transform: */
    892 			memset(context->buffer, 0, (size_t)(SHA512_BLOCK_LENGTH - 2));
    893 		}
    894 	} else {
    895 		/* Prepare for final transform: */
    896 		memset(context->buffer, 0, (size_t)(SHA512_SHORT_BLOCK_LENGTH));
    897 
    898 		/* Begin padding with a 1 bit: */
    899 		*context->buffer = 0x80;
    900 	}
    901 	/* Store the length of input data (in bits): */
    902 	*(sha2_word64*)(void *)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
    903 	*(sha2_word64*)(void *)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
    904 
    905 	/* Final transform: */
    906 	SHA512_Transform(context, (sha2_word64*)(void *)context->buffer);
    907 }
    908 
    909 void SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
    910 	sha2_word64	*d = (void *)digest;
    911 
    912 	/* Sanity check: */
    913 	assert(context != (SHA512_CTX*)0);
    914 
    915 	/* If no digest buffer is passed, we don't bother doing this: */
    916 	if (digest != (sha2_byte*)0) {
    917 		SHA512_Last(context);
    918 
    919 		/* Save the hash data for output: */
    920 #if BYTE_ORDER == LITTLE_ENDIAN
    921 		{
    922 			/* Convert TO host byte order */
    923 			int	j;
    924 			for (j = 0; j < 8; j++) {
    925 				REVERSE64(context->state[j],context->state[j]);
    926 				*d++ = context->state[j];
    927 			}
    928 		}
    929 #else
    930 		memcpy(d, context->state, SHA512_DIGEST_LENGTH);
    931 #endif
    932 	}
    933 
    934 	/* Zero out state data */
    935 	memset(context, 0, sizeof(*context));
    936 }
    937 
    938 /*** SHA-384: *********************************************************/
    939 void SHA384_Init(SHA384_CTX* context) {
    940 	if (context == (SHA384_CTX*)0) {
    941 		return;
    942 	}
    943 	memcpy(context->state, sha384_initial_hash_value, (size_t)(SHA512_DIGEST_LENGTH));
    944 	memset(context->buffer, 0, (size_t)(SHA384_BLOCK_LENGTH));
    945 	context->bitcount[0] = context->bitcount[1] = 0;
    946 }
    947 
    948 void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
    949 	SHA512_Update((SHA512_CTX*)context, data, len);
    950 }
    951 
    952 void SHA384_Transform(SHA512_CTX* context, const sha2_word64* data) {
    953 	SHA512_Transform((SHA512_CTX*)context, data);
    954 }
    955 
    956 void SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
    957 	sha2_word64	*d = (void *)digest;
    958 
    959 	/* Sanity check: */
    960 	assert(context != (SHA384_CTX*)0);
    961 
    962 	/* If no digest buffer is passed, we don't bother doing this: */
    963 	if (digest != (sha2_byte*)0) {
    964 		SHA512_Last((SHA512_CTX*)context);
    965 
    966 		/* Save the hash data for output: */
    967 #if BYTE_ORDER == LITTLE_ENDIAN
    968 		{
    969 			/* Convert TO host byte order */
    970 			int	j;
    971 			for (j = 0; j < 6; j++) {
    972 				REVERSE64(context->state[j],context->state[j]);
    973 				*d++ = context->state[j];
    974 			}
    975 		}
    976 #else
    977 		memcpy(d, context->state, SHA384_DIGEST_LENGTH);
    978 #endif
    979 	}
    980 
    981 	/* Zero out state data */
    982 	memset(context, 0, sizeof(*context));
    983 }
    984