Home | History | Annotate | Line # | Download | only in sha2
sha2.c revision 1.17
      1 /* $NetBSD: sha2.c,v 1.17 2009/06/19 05:09:09 tsutsui Exp $ */
      2 /*	$KAME: sha2.c,v 1.9 2003/07/20 00:28:38 itojun Exp $	*/
      3 
      4 /*
      5  * sha2.c
      6  *
      7  * Version 1.0.0beta1
      8  *
      9  * Written by Aaron D. Gifford <me (at) aarongifford.com>
     10  *
     11  * Copyright 2000 Aaron D. Gifford.  All rights reserved.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  * 3. Neither the name of the copyright holder nor the names of contributors
     22  *    may be used to endorse or promote products derived from this software
     23  *    without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE
     29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     35  * SUCH DAMAGE.
     36  *
     37  */
     38 
     39 #if HAVE_NBTOOL_CONFIG_H
     40 #include "nbtool_config.h"
     41 #endif
     42 
     43 #include <sys/cdefs.h>
     44 
     45 #if defined(_KERNEL) || defined(_STANDALONE)
     46 __KERNEL_RCSID(0, "$NetBSD: sha2.c,v 1.17 2009/06/19 05:09:09 tsutsui Exp $");
     47 
     48 #include <sys/param.h>	/* XXX: to pull <machine/macros.h> for vax memset(9) */
     49 #include <lib/libkern/libkern.h>
     50 
     51 #else
     52 
     53 #if defined(LIBC_SCCS) && !defined(lint)
     54 __RCSID("$NetBSD: sha2.c,v 1.17 2009/06/19 05:09:09 tsutsui Exp $");
     55 #endif /* LIBC_SCCS and not lint */
     56 
     57 #include "namespace.h"
     58 #include <string.h>
     59 
     60 #endif
     61 
     62 #include <sys/types.h>
     63 #include <sys/sha2.h>
     64 
     65 #if HAVE_NBTOOL_CONFIG_H
     66 #  if HAVE_SYS_ENDIAN_H
     67 #    include <sys/endian.h>
     68 #  else
     69 #   undef htobe32
     70 #   undef htobe64
     71 #   undef be32toh
     72 #   undef be64toh
     73 
     74 static uint32_t
     75 htobe32(uint32_t x)
     76 {
     77 	uint8_t p[4];
     78 	memcpy(p, &x, 4);
     79 
     80 	return ((p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3]);
     81 }
     82 
     83 static uint64_t
     84 htobe64(uint64_t x)
     85 {
     86 	uint8_t p[8];
     87 	uint32_t u, v;
     88 	memcpy(p, &x, 8);
     89 
     90 	u = ((p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3]);
     91 	v = ((p[4] << 24) | (p[5] << 16) | (p[6] << 8) | p[7]);
     92 
     93 	return ((((uint64_t)u) << 32) | v);
     94 }
     95 
     96 static uint32_t
     97 be32toh(uint32_t x)
     98 {
     99 	return htobe32(x);
    100 }
    101 
    102 static uint64_t
    103 be64toh(uint64_t x)
    104 {
    105 	return htobe64(x);
    106 }
    107 #  endif
    108 #endif
    109 
    110 /*** SHA-256/384/512 Various Length Definitions ***********************/
    111 /* NOTE: Most of these are in sha2.h */
    112 #define SHA256_SHORT_BLOCK_LENGTH	(SHA256_BLOCK_LENGTH - 8)
    113 #define SHA384_SHORT_BLOCK_LENGTH	(SHA384_BLOCK_LENGTH - 16)
    114 #define SHA512_SHORT_BLOCK_LENGTH	(SHA512_BLOCK_LENGTH - 16)
    115 
    116 /*
    117  * Macro for incrementally adding the unsigned 64-bit integer n to the
    118  * unsigned 128-bit integer (represented using a two-element array of
    119  * 64-bit words):
    120  */
    121 #define ADDINC128(w,n)	{ \
    122 	(w)[0] += (uint64_t)(n); \
    123 	if ((w)[0] < (n)) { \
    124 		(w)[1]++; \
    125 	} \
    126 }
    127 
    128 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
    129 /*
    130  * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
    131  *
    132  *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
    133  *   S is a ROTATION) because the SHA-256/384/512 description document
    134  *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
    135  *   same "backwards" definition.
    136  */
    137 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
    138 #define R(b,x) 		((x) >> (b))
    139 /* 32-bit Rotate-right (used in SHA-256): */
    140 #define S32(b,x)	(((x) >> (b)) | ((x) << (32 - (b))))
    141 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
    142 #define S64(b,x)	(((x) >> (b)) | ((x) << (64 - (b))))
    143 
    144 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
    145 #define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
    146 #define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
    147 
    148 /* Four of six logical functions used in SHA-256: */
    149 #define Sigma0_256(x)	(S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
    150 #define Sigma1_256(x)	(S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
    151 #define sigma0_256(x)	(S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
    152 #define sigma1_256(x)	(S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
    153 
    154 /* Four of six logical functions used in SHA-384 and SHA-512: */
    155 #define Sigma0_512(x)	(S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
    156 #define Sigma1_512(x)	(S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
    157 #define sigma0_512(x)	(S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
    158 #define sigma1_512(x)	(S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
    159 
    160 /*** INTERNAL FUNCTION PROTOTYPES *************************************/
    161 /* NOTE: These should not be accessed directly from outside this
    162  * library -- they are intended for private internal visibility/use
    163  * only.
    164  */
    165 static void SHA512_Last(SHA512_CTX *);
    166 void SHA224_Transform(SHA224_CTX *, const uint32_t*);
    167 void SHA256_Transform(SHA256_CTX *, const uint32_t*);
    168 void SHA384_Transform(SHA384_CTX *, const uint64_t*);
    169 void SHA512_Transform(SHA512_CTX *, const uint64_t*);
    170 
    171 
    172 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
    173 /* Hash constant words K for SHA-256: */
    174 static const uint32_t K256[64] = {
    175 	0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
    176 	0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
    177 	0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
    178 	0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
    179 	0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
    180 	0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
    181 	0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
    182 	0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
    183 	0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
    184 	0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
    185 	0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
    186 	0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
    187 	0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
    188 	0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
    189 	0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
    190 	0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
    191 };
    192 
    193 /* Initial hash value H for SHA-224: */
    194 static const uint32_t sha224_initial_hash_value[8] = {
    195 	0xc1059ed8UL,
    196 	0x367cd507UL,
    197 	0x3070dd17UL,
    198 	0xf70e5939UL,
    199 	0xffc00b31UL,
    200 	0x68581511UL,
    201 	0x64f98fa7UL,
    202 	0xbefa4fa4UL
    203 };
    204 
    205 /* Initial hash value H for SHA-256: */
    206 static const uint32_t sha256_initial_hash_value[8] = {
    207 	0x6a09e667UL,
    208 	0xbb67ae85UL,
    209 	0x3c6ef372UL,
    210 	0xa54ff53aUL,
    211 	0x510e527fUL,
    212 	0x9b05688cUL,
    213 	0x1f83d9abUL,
    214 	0x5be0cd19UL
    215 };
    216 
    217 /* Hash constant words K for SHA-384 and SHA-512: */
    218 static const uint64_t K512[80] = {
    219 	0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
    220 	0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
    221 	0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
    222 	0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
    223 	0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
    224 	0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
    225 	0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
    226 	0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
    227 	0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
    228 	0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
    229 	0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
    230 	0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
    231 	0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
    232 	0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
    233 	0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
    234 	0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
    235 	0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
    236 	0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
    237 	0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
    238 	0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
    239 	0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
    240 	0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
    241 	0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
    242 	0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
    243 	0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
    244 	0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
    245 	0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
    246 	0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
    247 	0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
    248 	0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
    249 	0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
    250 	0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
    251 	0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
    252 	0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
    253 	0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
    254 	0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
    255 	0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
    256 	0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
    257 	0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
    258 	0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
    259 };
    260 
    261 /* Initial hash value H for SHA-384 */
    262 static const uint64_t sha384_initial_hash_value[8] = {
    263 	0xcbbb9d5dc1059ed8ULL,
    264 	0x629a292a367cd507ULL,
    265 	0x9159015a3070dd17ULL,
    266 	0x152fecd8f70e5939ULL,
    267 	0x67332667ffc00b31ULL,
    268 	0x8eb44a8768581511ULL,
    269 	0xdb0c2e0d64f98fa7ULL,
    270 	0x47b5481dbefa4fa4ULL
    271 };
    272 
    273 /* Initial hash value H for SHA-512 */
    274 static const uint64_t sha512_initial_hash_value[8] = {
    275 	0x6a09e667f3bcc908ULL,
    276 	0xbb67ae8584caa73bULL,
    277 	0x3c6ef372fe94f82bULL,
    278 	0xa54ff53a5f1d36f1ULL,
    279 	0x510e527fade682d1ULL,
    280 	0x9b05688c2b3e6c1fULL,
    281 	0x1f83d9abfb41bd6bULL,
    282 	0x5be0cd19137e2179ULL
    283 };
    284 
    285 #if !defined(_KERNEL) && defined(__weak_alias)
    286 __weak_alias(SHA224_Init,_SHA224_Init)
    287 __weak_alias(SHA224_Update,_SHA224_Update)
    288 __weak_alias(SHA224_Final,_SHA224_Final)
    289 __weak_alias(SHA224_Transform,_SHA224_Transform)
    290 
    291 __weak_alias(SHA256_Init,_SHA256_Init)
    292 __weak_alias(SHA256_Update,_SHA256_Update)
    293 __weak_alias(SHA256_Final,_SHA256_Final)
    294 __weak_alias(SHA256_Transform,_SHA256_Transform)
    295 
    296 __weak_alias(SHA384_Init,_SHA384_Init)
    297 __weak_alias(SHA384_Update,_SHA384_Update)
    298 __weak_alias(SHA384_Final,_SHA384_Final)
    299 __weak_alias(SHA384_Transform,_SHA384_Transform)
    300 
    301 __weak_alias(SHA512_Init,_SHA512_Init)
    302 __weak_alias(SHA512_Update,_SHA512_Update)
    303 __weak_alias(SHA512_Final,_SHA512_Final)
    304 __weak_alias(SHA512_Transform,_SHA512_Transform)
    305 #endif
    306 
    307 /*** SHA-256: *********************************************************/
    308 int
    309 SHA256_Init(SHA256_CTX *context)
    310 {
    311 	if (context == NULL)
    312 		return 1;
    313 
    314 	memcpy(context->state, sha256_initial_hash_value,
    315 	    (size_t)(SHA256_DIGEST_LENGTH));
    316 	memset(context->buffer, 0, (size_t)(SHA256_BLOCK_LENGTH));
    317 	context->bitcount = 0;
    318 
    319 	return 1;
    320 }
    321 
    322 #ifdef SHA2_UNROLL_TRANSFORM
    323 
    324 /* Unrolled SHA-256 round macros: */
    325 
    326 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
    327 	W256[j] = be32toh(*data);		\
    328 	++data;					\
    329 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
    330              K256[j] + W256[j]; \
    331 	(d) += T1; \
    332 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
    333 	j++
    334 
    335 #define ROUND256(a,b,c,d,e,f,g,h)	\
    336 	s0 = W256[(j+1)&0x0f]; \
    337 	s0 = sigma0_256(s0); \
    338 	s1 = W256[(j+14)&0x0f]; \
    339 	s1 = sigma1_256(s1); \
    340 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
    341 	     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
    342 	(d) += T1; \
    343 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
    344 	j++
    345 
    346 void
    347 SHA256_Transform(SHA256_CTX *context, const uint32_t *data)
    348 {
    349 	uint32_t	a, b, c, d, e, f, g, h, s0, s1;
    350 	uint32_t	T1, *W256;
    351 	int		j;
    352 
    353 	W256 = (uint32_t *)context->buffer;
    354 
    355 	/* Initialize registers with the prev. intermediate value */
    356 	a = context->state[0];
    357 	b = context->state[1];
    358 	c = context->state[2];
    359 	d = context->state[3];
    360 	e = context->state[4];
    361 	f = context->state[5];
    362 	g = context->state[6];
    363 	h = context->state[7];
    364 
    365 	j = 0;
    366 	do {
    367 		/* Rounds 0 to 15 (unrolled): */
    368 		ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
    369 		ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
    370 		ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
    371 		ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
    372 		ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
    373 		ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
    374 		ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
    375 		ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
    376 	} while (j < 16);
    377 
    378 	/* Now for the remaining rounds to 64: */
    379 	do {
    380 		ROUND256(a,b,c,d,e,f,g,h);
    381 		ROUND256(h,a,b,c,d,e,f,g);
    382 		ROUND256(g,h,a,b,c,d,e,f);
    383 		ROUND256(f,g,h,a,b,c,d,e);
    384 		ROUND256(e,f,g,h,a,b,c,d);
    385 		ROUND256(d,e,f,g,h,a,b,c);
    386 		ROUND256(c,d,e,f,g,h,a,b);
    387 		ROUND256(b,c,d,e,f,g,h,a);
    388 	} while (j < 64);
    389 
    390 	/* Compute the current intermediate hash value */
    391 	context->state[0] += a;
    392 	context->state[1] += b;
    393 	context->state[2] += c;
    394 	context->state[3] += d;
    395 	context->state[4] += e;
    396 	context->state[5] += f;
    397 	context->state[6] += g;
    398 	context->state[7] += h;
    399 
    400 	/* Clean up */
    401 	a = b = c = d = e = f = g = h = T1 = 0;
    402 }
    403 
    404 #else /* SHA2_UNROLL_TRANSFORM */
    405 
    406 void
    407 SHA256_Transform(SHA256_CTX *context, const uint32_t *data)
    408 {
    409 	uint32_t	a, b, c, d, e, f, g, h, s0, s1;
    410 	uint32_t	T1, T2, *W256;
    411 	int		j;
    412 
    413 	W256 = (uint32_t *)(void *)context->buffer;
    414 
    415 	/* Initialize registers with the prev. intermediate value */
    416 	a = context->state[0];
    417 	b = context->state[1];
    418 	c = context->state[2];
    419 	d = context->state[3];
    420 	e = context->state[4];
    421 	f = context->state[5];
    422 	g = context->state[6];
    423 	h = context->state[7];
    424 
    425 	j = 0;
    426 	do {
    427 		W256[j] = be32toh(*data);
    428 		++data;
    429 		/* Apply the SHA-256 compression function to update a..h */
    430 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
    431 		T2 = Sigma0_256(a) + Maj(a, b, c);
    432 		h = g;
    433 		g = f;
    434 		f = e;
    435 		e = d + T1;
    436 		d = c;
    437 		c = b;
    438 		b = a;
    439 		a = T1 + T2;
    440 
    441 		j++;
    442 	} while (j < 16);
    443 
    444 	do {
    445 		/* Part of the message block expansion: */
    446 		s0 = W256[(j+1)&0x0f];
    447 		s0 = sigma0_256(s0);
    448 		s1 = W256[(j+14)&0x0f];
    449 		s1 = sigma1_256(s1);
    450 
    451 		/* Apply the SHA-256 compression function to update a..h */
    452 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
    453 		     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
    454 		T2 = Sigma0_256(a) + Maj(a, b, c);
    455 		h = g;
    456 		g = f;
    457 		f = e;
    458 		e = d + T1;
    459 		d = c;
    460 		c = b;
    461 		b = a;
    462 		a = T1 + T2;
    463 
    464 		j++;
    465 	} while (j < 64);
    466 
    467 	/* Compute the current intermediate hash value */
    468 	context->state[0] += a;
    469 	context->state[1] += b;
    470 	context->state[2] += c;
    471 	context->state[3] += d;
    472 	context->state[4] += e;
    473 	context->state[5] += f;
    474 	context->state[6] += g;
    475 	context->state[7] += h;
    476 
    477 	/* Clean up */
    478 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
    479 }
    480 
    481 #endif /* SHA2_UNROLL_TRANSFORM */
    482 
    483 int
    484 SHA256_Update(SHA256_CTX *context, const uint8_t *data, size_t len)
    485 {
    486 	unsigned int	freespace, usedspace;
    487 
    488 	if (len == 0) {
    489 		/* Calling with no data is valid - we do nothing */
    490 		return 1;
    491 	}
    492 
    493 	usedspace = (unsigned int)((context->bitcount >> 3) %
    494 				    SHA256_BLOCK_LENGTH);
    495 	if (usedspace > 0) {
    496 		/* Calculate how much free space is available in the buffer */
    497 		freespace = SHA256_BLOCK_LENGTH - usedspace;
    498 
    499 		if (len >= freespace) {
    500 			/* Fill the buffer completely and process it */
    501 			memcpy(&context->buffer[usedspace], data,
    502 			    (size_t)(freespace));
    503 			context->bitcount += freespace << 3;
    504 			len -= freespace;
    505 			data += freespace;
    506 			SHA256_Transform(context,
    507 			    (uint32_t *)(void *)context->buffer);
    508 		} else {
    509 			/* The buffer is not yet full */
    510 			memcpy(&context->buffer[usedspace], data, len);
    511 			context->bitcount += len << 3;
    512 			/* Clean up: */
    513 			usedspace = freespace = 0;
    514 			return 1;
    515 		}
    516 	}
    517 	/*
    518 	 * Process as many complete blocks as possible.
    519 	 *
    520 	 * Check alignment of the data pointer. If it is 32bit aligned,
    521 	 * SHA256_Transform can be called directly on the data stream,
    522 	 * otherwise enforce the alignment by copy into the buffer.
    523 	 */
    524 	if ((uintptr_t)data % 4 == 0) {
    525 		while (len >= SHA256_BLOCK_LENGTH) {
    526 			SHA256_Transform(context,
    527 			    (const uint32_t *)(const void *)data);
    528 			context->bitcount += SHA256_BLOCK_LENGTH << 3;
    529 			len -= SHA256_BLOCK_LENGTH;
    530 			data += SHA256_BLOCK_LENGTH;
    531 		}
    532 	} else {
    533 		while (len >= SHA256_BLOCK_LENGTH) {
    534 			memcpy(context->buffer, data, SHA256_BLOCK_LENGTH);
    535 			SHA256_Transform(context,
    536 			    (const uint32_t *)(const void *)context->buffer);
    537 			context->bitcount += SHA256_BLOCK_LENGTH << 3;
    538 			len -= SHA256_BLOCK_LENGTH;
    539 			data += SHA256_BLOCK_LENGTH;
    540 		}
    541 	}
    542 	if (len > 0) {
    543 		/* There's left-overs, so save 'em */
    544 		memcpy(context->buffer, data, len);
    545 		context->bitcount += len << 3;
    546 	}
    547 	/* Clean up: */
    548 	usedspace = freespace = 0;
    549 
    550 	return 1;
    551 }
    552 
    553 static int
    554 SHA224_256_Final(uint8_t digest[], SHA256_CTX *context, size_t len)
    555 {
    556 	uint32_t	*d = (void *)digest;
    557 	unsigned int	usedspace;
    558 	size_t i;
    559 
    560 	/* If no digest buffer is passed, we don't bother doing this: */
    561 	if (digest != NULL) {
    562 		usedspace = (unsigned int)((context->bitcount >> 3) %
    563 		    SHA256_BLOCK_LENGTH);
    564 		context->bitcount = htobe64(context->bitcount);
    565 		if (usedspace > 0) {
    566 			/* Begin padding with a 1 bit: */
    567 			context->buffer[usedspace++] = 0x80;
    568 
    569 			if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
    570 				/* Set-up for the last transform: */
    571 				memset(&context->buffer[usedspace], 0,
    572 				    (size_t)(SHA256_SHORT_BLOCK_LENGTH -
    573 				    usedspace));
    574 			} else {
    575 				if (usedspace < SHA256_BLOCK_LENGTH) {
    576 					memset(&context->buffer[usedspace], 0,
    577 					    (size_t)(SHA256_BLOCK_LENGTH -
    578 					    usedspace));
    579 				}
    580 				/* Do second-to-last transform: */
    581 				SHA256_Transform(context,
    582 				    (uint32_t *)(void *)context->buffer);
    583 
    584 				/* And set-up for the last transform: */
    585 				memset(context->buffer, 0,
    586 				    (size_t)(SHA256_SHORT_BLOCK_LENGTH));
    587 			}
    588 		} else {
    589 			/* Set-up for the last transform: */
    590 			memset(context->buffer, 0,
    591 			    (size_t)(SHA256_SHORT_BLOCK_LENGTH));
    592 
    593 			/* Begin padding with a 1 bit: */
    594 			*context->buffer = 0x80;
    595 		}
    596 		/* Set the bit count: */
    597 		memcpy(&context->buffer[SHA256_SHORT_BLOCK_LENGTH],
    598 		    &context->bitcount, sizeof(context->bitcount));
    599 
    600 		/* Final transform: */
    601 		SHA256_Transform(context, (uint32_t *)(void *)context->buffer);
    602 
    603 		for (i = 0; i < len / 4; i++)
    604 			d[i] = htobe32(context->state[i]);
    605 	}
    606 
    607 	/* Clean up state data: */
    608 	memset(context, 0, sizeof(*context));
    609 	usedspace = 0;
    610 
    611 	return 1;
    612 }
    613 
    614 int
    615 SHA256_Final(uint8_t digest[], SHA256_CTX *context)
    616 {
    617 	return SHA224_256_Final(digest, context, SHA256_DIGEST_LENGTH);
    618 }
    619 
    620 /*** SHA-224: *********************************************************/
    621 int
    622 SHA224_Init(SHA224_CTX *context)
    623 {
    624 	if (context == NULL)
    625 		return 1;
    626 
    627 	memcpy(context->state, sha224_initial_hash_value,
    628 	    (size_t)(SHA224_DIGEST_LENGTH));
    629 	memset(context->buffer, 0, (size_t)(SHA224_BLOCK_LENGTH));
    630 	context->bitcount = 0;
    631 
    632 	return 1;
    633 }
    634 
    635 int
    636 SHA224_Update(SHA224_CTX *context, const uint8_t *data, size_t len)
    637 {
    638 	return SHA256_Update((SHA256_CTX *)context, data, len);
    639 }
    640 
    641 void
    642 SHA224_Transform(SHA224_CTX *context, const uint32_t *data)
    643 {
    644 	SHA256_Transform((SHA256_CTX *)context, data);
    645 }
    646 
    647 int
    648 SHA224_Final(uint8_t digest[], SHA224_CTX *context)
    649 {
    650 	return SHA224_256_Final(digest, (SHA256_CTX *)context,
    651 	    SHA224_DIGEST_LENGTH);
    652 }
    653 
    654 /*** SHA-512: *********************************************************/
    655 int
    656 SHA512_Init(SHA512_CTX *context)
    657 {
    658 	if (context == NULL)
    659 		return 1;
    660 
    661 	memcpy(context->state, sha512_initial_hash_value,
    662 	    (size_t)(SHA512_DIGEST_LENGTH));
    663 	memset(context->buffer, 0, (size_t)(SHA512_BLOCK_LENGTH));
    664 	context->bitcount[0] = context->bitcount[1] =  0;
    665 
    666 	return 1;
    667 }
    668 
    669 #ifdef SHA2_UNROLL_TRANSFORM
    670 
    671 /* Unrolled SHA-512 round macros: */
    672 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
    673 	W512[j] = be64toh(*data);		\
    674 	++data;					\
    675 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
    676              K512[j] + W512[j]; \
    677 	(d) += T1, \
    678 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
    679 	j++
    680 
    681 #define ROUND512(a,b,c,d,e,f,g,h)	\
    682 	s0 = W512[(j+1)&0x0f]; \
    683 	s0 = sigma0_512(s0); \
    684 	s1 = W512[(j+14)&0x0f]; \
    685 	s1 = sigma1_512(s1); \
    686 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
    687              (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
    688 	(d) += T1; \
    689 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
    690 	j++
    691 
    692 void
    693 SHA512_Transform(SHA512_CTX *context, const uint64_t *data)
    694 {
    695 	uint64_t	a, b, c, d, e, f, g, h, s0, s1;
    696 	uint64_t	T1, *W512 = (uint64_t *)context->buffer;
    697 	int		j;
    698 
    699 	/* Initialize registers with the prev. intermediate value */
    700 	a = context->state[0];
    701 	b = context->state[1];
    702 	c = context->state[2];
    703 	d = context->state[3];
    704 	e = context->state[4];
    705 	f = context->state[5];
    706 	g = context->state[6];
    707 	h = context->state[7];
    708 
    709 	j = 0;
    710 	do {
    711 		ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
    712 		ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
    713 		ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
    714 		ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
    715 		ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
    716 		ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
    717 		ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
    718 		ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
    719 	} while (j < 16);
    720 
    721 	/* Now for the remaining rounds up to 79: */
    722 	do {
    723 		ROUND512(a,b,c,d,e,f,g,h);
    724 		ROUND512(h,a,b,c,d,e,f,g);
    725 		ROUND512(g,h,a,b,c,d,e,f);
    726 		ROUND512(f,g,h,a,b,c,d,e);
    727 		ROUND512(e,f,g,h,a,b,c,d);
    728 		ROUND512(d,e,f,g,h,a,b,c);
    729 		ROUND512(c,d,e,f,g,h,a,b);
    730 		ROUND512(b,c,d,e,f,g,h,a);
    731 	} while (j < 80);
    732 
    733 	/* Compute the current intermediate hash value */
    734 	context->state[0] += a;
    735 	context->state[1] += b;
    736 	context->state[2] += c;
    737 	context->state[3] += d;
    738 	context->state[4] += e;
    739 	context->state[5] += f;
    740 	context->state[6] += g;
    741 	context->state[7] += h;
    742 
    743 	/* Clean up */
    744 	a = b = c = d = e = f = g = h = T1 = 0;
    745 }
    746 
    747 #else /* SHA2_UNROLL_TRANSFORM */
    748 
    749 void
    750 SHA512_Transform(SHA512_CTX *context, const uint64_t *data)
    751 {
    752 	uint64_t	a, b, c, d, e, f, g, h, s0, s1;
    753 	uint64_t	T1, T2, *W512 = (void *)context->buffer;
    754 	int		j;
    755 
    756 	/* Initialize registers with the prev. intermediate value */
    757 	a = context->state[0];
    758 	b = context->state[1];
    759 	c = context->state[2];
    760 	d = context->state[3];
    761 	e = context->state[4];
    762 	f = context->state[5];
    763 	g = context->state[6];
    764 	h = context->state[7];
    765 
    766 	j = 0;
    767 	do {
    768 		W512[j] = be64toh(*data);
    769 		++data;
    770 		/* Apply the SHA-512 compression function to update a..h */
    771 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
    772 		T2 = Sigma0_512(a) + Maj(a, b, c);
    773 		h = g;
    774 		g = f;
    775 		f = e;
    776 		e = d + T1;
    777 		d = c;
    778 		c = b;
    779 		b = a;
    780 		a = T1 + T2;
    781 
    782 		j++;
    783 	} while (j < 16);
    784 
    785 	do {
    786 		/* Part of the message block expansion: */
    787 		s0 = W512[(j+1)&0x0f];
    788 		s0 = sigma0_512(s0);
    789 		s1 = W512[(j+14)&0x0f];
    790 		s1 =  sigma1_512(s1);
    791 
    792 		/* Apply the SHA-512 compression function to update a..h */
    793 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
    794 		     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
    795 		T2 = Sigma0_512(a) + Maj(a, b, c);
    796 		h = g;
    797 		g = f;
    798 		f = e;
    799 		e = d + T1;
    800 		d = c;
    801 		c = b;
    802 		b = a;
    803 		a = T1 + T2;
    804 
    805 		j++;
    806 	} while (j < 80);
    807 
    808 	/* Compute the current intermediate hash value */
    809 	context->state[0] += a;
    810 	context->state[1] += b;
    811 	context->state[2] += c;
    812 	context->state[3] += d;
    813 	context->state[4] += e;
    814 	context->state[5] += f;
    815 	context->state[6] += g;
    816 	context->state[7] += h;
    817 
    818 	/* Clean up */
    819 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
    820 }
    821 
    822 #endif /* SHA2_UNROLL_TRANSFORM */
    823 
    824 int
    825 SHA512_Update(SHA512_CTX *context, const uint8_t *data, size_t len)
    826 {
    827 	unsigned int	freespace, usedspace;
    828 
    829 	if (len == 0) {
    830 		/* Calling with no data is valid - we do nothing */
    831 		return 1;
    832 	}
    833 
    834 	usedspace = (unsigned int)((context->bitcount[0] >> 3) %
    835 	    SHA512_BLOCK_LENGTH);
    836 	if (usedspace > 0) {
    837 		/* Calculate how much free space is available in the buffer */
    838 		freespace = SHA512_BLOCK_LENGTH - usedspace;
    839 
    840 		if (len >= freespace) {
    841 			/* Fill the buffer completely and process it */
    842 			memcpy(&context->buffer[usedspace], data,
    843 			    (size_t)(freespace));
    844 			ADDINC128(context->bitcount, freespace << 3);
    845 			len -= freespace;
    846 			data += freespace;
    847 			SHA512_Transform(context,
    848 			    (uint64_t *)(void *)context->buffer);
    849 		} else {
    850 			/* The buffer is not yet full */
    851 			memcpy(&context->buffer[usedspace], data, len);
    852 			ADDINC128(context->bitcount, len << 3);
    853 			/* Clean up: */
    854 			usedspace = freespace = 0;
    855 			return 1;
    856 		}
    857 	}
    858 	/*
    859 	 * Process as many complete blocks as possible.
    860 	 *
    861 	 * Check alignment of the data pointer. If it is 64bit aligned,
    862 	 * SHA512_Transform can be called directly on the data stream,
    863 	 * otherwise enforce the alignment by copy into the buffer.
    864 	 */
    865 	if ((uintptr_t)data % 8 == 0) {
    866 		while (len >= SHA512_BLOCK_LENGTH) {
    867 			SHA512_Transform(context,
    868 			    (const uint64_t*)(const void *)data);
    869 			ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
    870 			len -= SHA512_BLOCK_LENGTH;
    871 			data += SHA512_BLOCK_LENGTH;
    872 		}
    873 	} else {
    874 		while (len >= SHA512_BLOCK_LENGTH) {
    875 			memcpy(context->buffer, data, SHA512_BLOCK_LENGTH);
    876 			SHA512_Transform(context,
    877 			    (const void *)context->buffer);
    878 			ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
    879 			len -= SHA512_BLOCK_LENGTH;
    880 			data += SHA512_BLOCK_LENGTH;
    881 		}
    882 	}
    883 	if (len > 0) {
    884 		/* There's left-overs, so save 'em */
    885 		memcpy(context->buffer, data, len);
    886 		ADDINC128(context->bitcount, len << 3);
    887 	}
    888 	/* Clean up: */
    889 	usedspace = freespace = 0;
    890 
    891 	return 1;
    892 }
    893 
    894 static void
    895 SHA512_Last(SHA512_CTX *context)
    896 {
    897 	unsigned int	usedspace;
    898 
    899 	usedspace = (unsigned int)((context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH);
    900 	context->bitcount[0] = htobe64(context->bitcount[0]);
    901 	context->bitcount[1] = htobe64(context->bitcount[1]);
    902 	if (usedspace > 0) {
    903 		/* Begin padding with a 1 bit: */
    904 		context->buffer[usedspace++] = 0x80;
    905 
    906 		if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
    907 			/* Set-up for the last transform: */
    908 			memset(&context->buffer[usedspace], 0,
    909 			    (size_t)(SHA512_SHORT_BLOCK_LENGTH - usedspace));
    910 		} else {
    911 			if (usedspace < SHA512_BLOCK_LENGTH) {
    912 				memset(&context->buffer[usedspace], 0,
    913 				    (size_t)(SHA512_BLOCK_LENGTH - usedspace));
    914 			}
    915 			/* Do second-to-last transform: */
    916 			SHA512_Transform(context,
    917 			    (uint64_t *)(void *)context->buffer);
    918 
    919 			/* And set-up for the last transform: */
    920 			memset(context->buffer, 0,
    921 			    (size_t)(SHA512_BLOCK_LENGTH - 2));
    922 		}
    923 	} else {
    924 		/* Prepare for final transform: */
    925 		memset(context->buffer, 0, (size_t)(SHA512_SHORT_BLOCK_LENGTH));
    926 
    927 		/* Begin padding with a 1 bit: */
    928 		*context->buffer = 0x80;
    929 	}
    930 	/* Store the length of input data (in bits): */
    931 	memcpy(&context->buffer[SHA512_SHORT_BLOCK_LENGTH],
    932 	    &context->bitcount[1], sizeof(context->bitcount[1]));
    933 	memcpy(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8],
    934 	    &context->bitcount[0], sizeof(context->bitcount[0]));
    935 
    936 	/* Final transform: */
    937 	SHA512_Transform(context, (uint64_t *)(void *)context->buffer);
    938 }
    939 
    940 int
    941 SHA512_Final(uint8_t digest[], SHA512_CTX *context)
    942 {
    943 	uint64_t	*d = (void *)digest;
    944 	size_t i;
    945 
    946 	/* If no digest buffer is passed, we don't bother doing this: */
    947 	if (digest != NULL) {
    948 		SHA512_Last(context);
    949 
    950 		/* Save the hash data for output: */
    951 		for (i = 0; i < 8; ++i)
    952 			d[i] = htobe64(context->state[i]);
    953 	}
    954 
    955 	/* Zero out state data */
    956 	memset(context, 0, sizeof(*context));
    957 
    958 	return 1;
    959 }
    960 
    961 /*** SHA-384: *********************************************************/
    962 int
    963 SHA384_Init(SHA384_CTX *context)
    964 {
    965 	if (context == NULL)
    966 		return 1;
    967 
    968 	memcpy(context->state, sha384_initial_hash_value,
    969 	    (size_t)(SHA512_DIGEST_LENGTH));
    970 	memset(context->buffer, 0, (size_t)(SHA384_BLOCK_LENGTH));
    971 	context->bitcount[0] = context->bitcount[1] = 0;
    972 
    973 	return 1;
    974 }
    975 
    976 int
    977 SHA384_Update(SHA384_CTX *context, const uint8_t *data, size_t len)
    978 {
    979 	return SHA512_Update((SHA512_CTX *)context, data, len);
    980 }
    981 
    982 void
    983 SHA384_Transform(SHA512_CTX *context, const uint64_t *data)
    984 {
    985 	SHA512_Transform((SHA512_CTX *)context, data);
    986 }
    987 
    988 int
    989 SHA384_Final(uint8_t digest[], SHA384_CTX *context)
    990 {
    991 	uint64_t	*d = (void *)digest;
    992 	size_t i;
    993 
    994 	/* If no digest buffer is passed, we don't bother doing this: */
    995 	if (digest != NULL) {
    996 		SHA512_Last((SHA512_CTX *)context);
    997 
    998 		/* Save the hash data for output: */
    999 		for (i = 0; i < 6; ++i)
   1000 			d[i] = be64toh(context->state[i]);
   1001 	}
   1002 
   1003 	/* Zero out state data */
   1004 	memset(context, 0, sizeof(*context));
   1005 
   1006 	return 1;
   1007 }
   1008