Home | History | Annotate | Line # | Download | only in sha2
sha2.c revision 1.2
      1 /* $NetBSD: sha2.c,v 1.2 2006/11/01 11:29:08 he Exp $ */
      2 /*	$KAME: sha2.c,v 1.9 2003/07/20 00:28:38 itojun Exp $	*/
      3 
      4 /*
      5  * sha2.c
      6  *
      7  * Version 1.0.0beta1
      8  *
      9  * Written by Aaron D. Gifford <me (at) aarongifford.com>
     10  *
     11  * Copyright 2000 Aaron D. Gifford.  All rights reserved.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  * 3. Neither the name of the copyright holder nor the names of contributors
     22  *    may be used to endorse or promote products derived from this software
     23  *    without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE
     29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     35  * SUCH DAMAGE.
     36  *
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 
     41 #if defined(_KERNEL) || defined(_STANDALONE)
     42 __KERNEL_RCSID(0, "$NetBSD: sha2.c,v 1.2 2006/11/01 11:29:08 he Exp $");
     43 
     44 #include <lib/libkern/libkern.h>
     45 
     46 #else
     47 
     48 #if defined(LIBC_SCCS) && !defined(lint)
     49 __RCSID("$NetBSD: sha2.c,v 1.2 2006/11/01 11:29:08 he Exp $");
     50 #endif /* LIBC_SCCS and not lint */
     51 
     52 #include "namespace.h"
     53 #include <assert.h>
     54 #include <string.h>
     55 
     56 #endif
     57 
     58 #include <sys/types.h>
     59 #include <sys/param.h>
     60 #include <sys/sha2.h>
     61 
     62 /*
     63  * ASSERT NOTE:
     64  * Some sanity checking code is included using assert().  On my FreeBSD
     65  * system, this additional code can be removed by compiling with NDEBUG
     66  * defined.  Check your own systems manpage on assert() to see how to
     67  * compile WITHOUT the sanity checking code on your system.
     68  *
     69  * UNROLLED TRANSFORM LOOP NOTE:
     70  * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
     71  * loop version for the hash transform rounds (defined using macros
     72  * later in this file).  Either define on the command line, for example:
     73  *
     74  *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
     75  *
     76  * or define below:
     77  *
     78  *   #define SHA2_UNROLL_TRANSFORM
     79  *
     80  */
     81 
     82 #if defined(__bsdi__) || defined(__FreeBSD__)
     83 #define assert(x)
     84 #endif
     85 
     86 
     87 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
     88 /*
     89  * BYTE_ORDER NOTE:
     90  *
     91  * Please make sure that your system defines BYTE_ORDER.  If your
     92  * architecture is little-endian, make sure it also defines
     93  * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
     94  * equivilent.
     95  *
     96  * If your system does not define the above, then you can do so by
     97  * hand like this:
     98  *
     99  *   #define LITTLE_ENDIAN 1234
    100  *   #define BIG_ENDIAN    4321
    101  *
    102  * And for little-endian machines, add:
    103  *
    104  *   #define BYTE_ORDER LITTLE_ENDIAN
    105  *
    106  * Or for big-endian machines:
    107  *
    108  *   #define BYTE_ORDER BIG_ENDIAN
    109  *
    110  * The FreeBSD machine this was written on defines BYTE_ORDER
    111  * appropriately by including <sys/types.h> (which in turn includes
    112  * <machine/endian.h> where the appropriate definitions are actually
    113  * made).
    114  */
    115 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
    116 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
    117 #endif
    118 
    119 /*
    120  * Define the followingsha2_* types to types of the correct length on
    121  * the native archtecture.   Most BSD systems and Linux define u_intXX_t
    122  * types.  Machines with very recent ANSI C headers, can use the
    123  * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
    124  * during compile or in the sha.h header file.
    125  *
    126  * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
    127  * will need to define these three typedefs below (and the appropriate
    128  * ones in sha.h too) by hand according to their system architecture.
    129  *
    130  * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
    131  * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
    132  */
    133 #if 0 /*def SHA2_USE_INTTYPES_H*/
    134 
    135 typedef uint8_t  sha2_byte;	/* Exactly 1 byte */
    136 typedef uint32_t sha2_word32;	/* Exactly 4 bytes */
    137 typedef uint64_t sha2_word64;	/* Exactly 8 bytes */
    138 
    139 #else /* SHA2_USE_INTTYPES_H */
    140 
    141 typedef u_int8_t  sha2_byte;	/* Exactly 1 byte */
    142 typedef u_int32_t sha2_word32;	/* Exactly 4 bytes */
    143 typedef u_int64_t sha2_word64;	/* Exactly 8 bytes */
    144 
    145 #endif /* SHA2_USE_INTTYPES_H */
    146 
    147 
    148 /*** SHA-256/384/512 Various Length Definitions ***********************/
    149 /* NOTE: Most of these are in sha2.h */
    150 #define SHA256_SHORT_BLOCK_LENGTH	(SHA256_BLOCK_LENGTH - 8)
    151 #define SHA384_SHORT_BLOCK_LENGTH	(SHA384_BLOCK_LENGTH - 16)
    152 #define SHA512_SHORT_BLOCK_LENGTH	(SHA512_BLOCK_LENGTH - 16)
    153 
    154 
    155 /*** ENDIAN REVERSAL MACROS *******************************************/
    156 #if BYTE_ORDER == LITTLE_ENDIAN
    157 #define REVERSE32(w,x)	{ \
    158 	sha2_word32 tmp = (w); \
    159 	tmp = (tmp >> 16) | (tmp << 16); \
    160 	(x) = (sha2_word32)(((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8)); \
    161 }
    162 #define REVERSE64(w,x)	{ \
    163 	sha2_word64 tmp = (w); \
    164 	tmp = (tmp >> 32) | (tmp << 32); \
    165 	tmp = (sha2_word64)(((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
    166 	      ((tmp & 0x00ff00ff00ff00ffULL) << 8)); \
    167 	(x) = (sha2_word64)(((tmp & 0xffff0000ffff0000ULL) >> 16) | \
    168 	      ((tmp & 0x0000ffff0000ffffULL) << 16)); \
    169 }
    170 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
    171 
    172 /*
    173  * Macro for incrementally adding the unsigned 64-bit integer n to the
    174  * unsigned 128-bit integer (represented using a two-element array of
    175  * 64-bit words):
    176  */
    177 #define ADDINC128(w,n)	{ \
    178 	(w)[0] += (sha2_word64)(n); \
    179 	if ((w)[0] < (n)) { \
    180 		(w)[1]++; \
    181 	} \
    182 }
    183 
    184 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
    185 /*
    186  * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
    187  *
    188  *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
    189  *   S is a ROTATION) because the SHA-256/384/512 description document
    190  *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
    191  *   same "backwards" definition.
    192  */
    193 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
    194 #define R(b,x) 		((x) >> (b))
    195 /* 32-bit Rotate-right (used in SHA-256): */
    196 #define S32(b,x)	(((x) >> (b)) | ((x) << (32 - (b))))
    197 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
    198 #define S64(b,x)	(((x) >> (b)) | ((x) << (64 - (b))))
    199 
    200 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
    201 #define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
    202 #define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
    203 
    204 /* Four of six logical functions used in SHA-256: */
    205 #define Sigma0_256(x)	(S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
    206 #define Sigma1_256(x)	(S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
    207 #define sigma0_256(x)	(S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
    208 #define sigma1_256(x)	(S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
    209 
    210 /* Four of six logical functions used in SHA-384 and SHA-512: */
    211 #define Sigma0_512(x)	(S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
    212 #define Sigma1_512(x)	(S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
    213 #define sigma0_512(x)	(S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
    214 #define sigma1_512(x)	(S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
    215 
    216 /*** INTERNAL FUNCTION PROTOTYPES *************************************/
    217 /* NOTE: These should not be accessed directly from outside this
    218  * library -- they are intended for private internal visibility/use
    219  * only.
    220  */
    221 void SHA512_Last(SHA512_CTX*);
    222 void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
    223 void SHA384_Transform(SHA384_CTX*, const sha2_word64*);
    224 void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
    225 
    226 
    227 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
    228 /* Hash constant words K for SHA-256: */
    229 static const sha2_word32 K256[64] = {
    230 	0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
    231 	0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
    232 	0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
    233 	0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
    234 	0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
    235 	0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
    236 	0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
    237 	0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
    238 	0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
    239 	0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
    240 	0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
    241 	0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
    242 	0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
    243 	0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
    244 	0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
    245 	0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
    246 };
    247 
    248 /* Initial hash value H for SHA-256: */
    249 static const sha2_word32 sha256_initial_hash_value[8] = {
    250 	0x6a09e667UL,
    251 	0xbb67ae85UL,
    252 	0x3c6ef372UL,
    253 	0xa54ff53aUL,
    254 	0x510e527fUL,
    255 	0x9b05688cUL,
    256 	0x1f83d9abUL,
    257 	0x5be0cd19UL
    258 };
    259 
    260 /* Hash constant words K for SHA-384 and SHA-512: */
    261 static const sha2_word64 K512[80] = {
    262 	0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
    263 	0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
    264 	0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
    265 	0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
    266 	0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
    267 	0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
    268 	0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
    269 	0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
    270 	0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
    271 	0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
    272 	0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
    273 	0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
    274 	0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
    275 	0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
    276 	0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
    277 	0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
    278 	0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
    279 	0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
    280 	0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
    281 	0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
    282 	0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
    283 	0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
    284 	0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
    285 	0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
    286 	0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
    287 	0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
    288 	0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
    289 	0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
    290 	0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
    291 	0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
    292 	0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
    293 	0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
    294 	0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
    295 	0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
    296 	0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
    297 	0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
    298 	0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
    299 	0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
    300 	0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
    301 	0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
    302 };
    303 
    304 /* Initial hash value H for SHA-384 */
    305 static const sha2_word64 sha384_initial_hash_value[8] = {
    306 	0xcbbb9d5dc1059ed8ULL,
    307 	0x629a292a367cd507ULL,
    308 	0x9159015a3070dd17ULL,
    309 	0x152fecd8f70e5939ULL,
    310 	0x67332667ffc00b31ULL,
    311 	0x8eb44a8768581511ULL,
    312 	0xdb0c2e0d64f98fa7ULL,
    313 	0x47b5481dbefa4fa4ULL
    314 };
    315 
    316 /* Initial hash value H for SHA-512 */
    317 static const sha2_word64 sha512_initial_hash_value[8] = {
    318 	0x6a09e667f3bcc908ULL,
    319 	0xbb67ae8584caa73bULL,
    320 	0x3c6ef372fe94f82bULL,
    321 	0xa54ff53a5f1d36f1ULL,
    322 	0x510e527fade682d1ULL,
    323 	0x9b05688c2b3e6c1fULL,
    324 	0x1f83d9abfb41bd6bULL,
    325 	0x5be0cd19137e2179ULL
    326 };
    327 
    328 #if !defined(_KERNEL) && defined(__weak_alias)
    329 __weak_alias(SHA256_Init,_SHA256_Init)
    330 __weak_alias(SHA256_Update,_SHA256_Update)
    331 __weak_alias(SHA256_Final,_SHA256_Final)
    332 __weak_alias(SHA256_Transform,_SHA256_Transform)
    333 
    334 __weak_alias(SHA384_Init,_SHA384_Init)
    335 __weak_alias(SHA384_Update,_SHA384_Update)
    336 __weak_alias(SHA384_Final,_SHA384_Final)
    337 __weak_alias(SHA384_Transform,_SHA384_Transform)
    338 
    339 __weak_alias(SHA512_Init,_SHA512_Init)
    340 __weak_alias(SHA512_Update,_SHA512_Update)
    341 __weak_alias(SHA512_Final,_SHA512_Final)
    342 __weak_alias(SHA512_Transform,_SHA512_Transform)
    343 #endif
    344 
    345 /*** SHA-256: *********************************************************/
    346 void SHA256_Init(SHA256_CTX* context) {
    347 	if (context == (SHA256_CTX*)0) {
    348 		return;
    349 	}
    350 	memcpy(context->state, sha256_initial_hash_value, (size_t)(SHA256_DIGEST_LENGTH));
    351 	memset(context->buffer, 0, (size_t)(SHA256_BLOCK_LENGTH));
    352 	context->bitcount = 0;
    353 }
    354 
    355 #ifdef SHA2_UNROLL_TRANSFORM
    356 
    357 /* Unrolled SHA-256 round macros: */
    358 
    359 #if BYTE_ORDER == LITTLE_ENDIAN
    360 
    361 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
    362 	REVERSE32(*data++, W256[j]); \
    363 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
    364              K256[j] + W256[j]; \
    365 	(d) += T1; \
    366 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
    367 	j++
    368 
    369 
    370 #else /* BYTE_ORDER == LITTLE_ENDIAN */
    371 
    372 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
    373 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
    374 	     K256[j] + (W256[j] = *data++); \
    375 	(d) += T1; \
    376 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
    377 	j++
    378 
    379 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
    380 
    381 #define ROUND256(a,b,c,d,e,f,g,h)	\
    382 	s0 = W256[(j+1)&0x0f]; \
    383 	s0 = sigma0_256(s0); \
    384 	s1 = W256[(j+14)&0x0f]; \
    385 	s1 = sigma1_256(s1); \
    386 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
    387 	     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
    388 	(d) += T1; \
    389 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
    390 	j++
    391 
    392 void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
    393 	sha2_word32	a, b, c, d, e, f, g, h, s0, s1;
    394 	sha2_word32	T1, *W256;
    395 	int		j;
    396 
    397 	W256 = (sha2_word32*)context->buffer;
    398 
    399 	/* Initialize registers with the prev. intermediate value */
    400 	a = context->state[0];
    401 	b = context->state[1];
    402 	c = context->state[2];
    403 	d = context->state[3];
    404 	e = context->state[4];
    405 	f = context->state[5];
    406 	g = context->state[6];
    407 	h = context->state[7];
    408 
    409 	j = 0;
    410 	do {
    411 		/* Rounds 0 to 15 (unrolled): */
    412 		ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
    413 		ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
    414 		ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
    415 		ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
    416 		ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
    417 		ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
    418 		ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
    419 		ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
    420 	} while (j < 16);
    421 
    422 	/* Now for the remaining rounds to 64: */
    423 	do {
    424 		ROUND256(a,b,c,d,e,f,g,h);
    425 		ROUND256(h,a,b,c,d,e,f,g);
    426 		ROUND256(g,h,a,b,c,d,e,f);
    427 		ROUND256(f,g,h,a,b,c,d,e);
    428 		ROUND256(e,f,g,h,a,b,c,d);
    429 		ROUND256(d,e,f,g,h,a,b,c);
    430 		ROUND256(c,d,e,f,g,h,a,b);
    431 		ROUND256(b,c,d,e,f,g,h,a);
    432 	} while (j < 64);
    433 
    434 	/* Compute the current intermediate hash value */
    435 	context->state[0] += a;
    436 	context->state[1] += b;
    437 	context->state[2] += c;
    438 	context->state[3] += d;
    439 	context->state[4] += e;
    440 	context->state[5] += f;
    441 	context->state[6] += g;
    442 	context->state[7] += h;
    443 
    444 	/* Clean up */
    445 	a = b = c = d = e = f = g = h = T1 = 0;
    446 }
    447 
    448 #else /* SHA2_UNROLL_TRANSFORM */
    449 
    450 void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
    451 	sha2_word32	a, b, c, d, e, f, g, h, s0, s1;
    452 	sha2_word32	T1, T2, *W256;
    453 	int		j;
    454 
    455 	W256 = (sha2_word32*)(void *)context->buffer;
    456 
    457 	/* Initialize registers with the prev. intermediate value */
    458 	a = context->state[0];
    459 	b = context->state[1];
    460 	c = context->state[2];
    461 	d = context->state[3];
    462 	e = context->state[4];
    463 	f = context->state[5];
    464 	g = context->state[6];
    465 	h = context->state[7];
    466 
    467 	j = 0;
    468 	do {
    469 #if BYTE_ORDER == LITTLE_ENDIAN
    470 		/* Copy data while converting to host byte order */
    471 		REVERSE32(*data++,W256[j]);
    472 		/* Apply the SHA-256 compression function to update a..h */
    473 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
    474 #else /* BYTE_ORDER == LITTLE_ENDIAN */
    475 		/* Apply the SHA-256 compression function to update a..h with copy */
    476 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
    477 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
    478 		T2 = Sigma0_256(a) + Maj(a, b, c);
    479 		h = g;
    480 		g = f;
    481 		f = e;
    482 		e = d + T1;
    483 		d = c;
    484 		c = b;
    485 		b = a;
    486 		a = T1 + T2;
    487 
    488 		j++;
    489 	} while (j < 16);
    490 
    491 	do {
    492 		/* Part of the message block expansion: */
    493 		s0 = W256[(j+1)&0x0f];
    494 		s0 = sigma0_256(s0);
    495 		s1 = W256[(j+14)&0x0f];
    496 		s1 = sigma1_256(s1);
    497 
    498 		/* Apply the SHA-256 compression function to update a..h */
    499 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
    500 		     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
    501 		T2 = Sigma0_256(a) + Maj(a, b, c);
    502 		h = g;
    503 		g = f;
    504 		f = e;
    505 		e = d + T1;
    506 		d = c;
    507 		c = b;
    508 		b = a;
    509 		a = T1 + T2;
    510 
    511 		j++;
    512 	} while (j < 64);
    513 
    514 	/* Compute the current intermediate hash value */
    515 	context->state[0] += a;
    516 	context->state[1] += b;
    517 	context->state[2] += c;
    518 	context->state[3] += d;
    519 	context->state[4] += e;
    520 	context->state[5] += f;
    521 	context->state[6] += g;
    522 	context->state[7] += h;
    523 
    524 	/* Clean up */
    525 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
    526 }
    527 
    528 #endif /* SHA2_UNROLL_TRANSFORM */
    529 
    530 void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
    531 	unsigned int	freespace, usedspace;
    532 
    533 	if (len == 0) {
    534 		/* Calling with no data is valid - we do nothing */
    535 		return;
    536 	}
    537 
    538 	/* Sanity check: */
    539 	assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
    540 
    541 	usedspace = (unsigned int)((context->bitcount >> 3) %
    542 				    SHA256_BLOCK_LENGTH);
    543 	if (usedspace > 0) {
    544 		/* Calculate how much free space is available in the buffer */
    545 		freespace = SHA256_BLOCK_LENGTH - usedspace;
    546 
    547 		if (len >= freespace) {
    548 			/* Fill the buffer completely and process it */
    549 			memcpy(&context->buffer[usedspace], data, (size_t)(freespace));
    550 			context->bitcount += freespace << 3;
    551 			len -= freespace;
    552 			data += freespace;
    553 			SHA256_Transform(context, (sha2_word32*)(void *)context->buffer);
    554 		} else {
    555 			/* The buffer is not yet full */
    556 			memcpy(&context->buffer[usedspace], data, len);
    557 			context->bitcount += len << 3;
    558 			/* Clean up: */
    559 			usedspace = freespace = 0;
    560 			return;
    561 		}
    562 	}
    563 	while (len >= SHA256_BLOCK_LENGTH) {
    564 		/* Process as many complete blocks as we can */
    565 		SHA256_Transform(context, (const sha2_word32*)(const void *)data);
    566 		context->bitcount += SHA256_BLOCK_LENGTH << 3;
    567 		len -= SHA256_BLOCK_LENGTH;
    568 		data += SHA256_BLOCK_LENGTH;
    569 	}
    570 	if (len > 0) {
    571 		/* There's left-overs, so save 'em */
    572 		memcpy(context->buffer, data, len);
    573 		context->bitcount += len << 3;
    574 	}
    575 	/* Clean up: */
    576 	usedspace = freespace = 0;
    577 }
    578 
    579 void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
    580 	sha2_word32	*d = (void *)digest;
    581 	unsigned int	usedspace;
    582 
    583 	/* Sanity check: */
    584 	assert(context != (SHA256_CTX*)0);
    585 
    586 	/* If no digest buffer is passed, we don't bother doing this: */
    587 	if (digest != (sha2_byte*)0) {
    588 		usedspace = (unsigned int)((context->bitcount >> 3) % SHA256_BLOCK_LENGTH);
    589 #if BYTE_ORDER == LITTLE_ENDIAN
    590 		/* Convert FROM host byte order */
    591 		REVERSE64(context->bitcount,context->bitcount);
    592 #endif
    593 		if (usedspace > 0) {
    594 			/* Begin padding with a 1 bit: */
    595 			context->buffer[usedspace++] = 0x80;
    596 
    597 			if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
    598 				/* Set-up for the last transform: */
    599 				memset(&context->buffer[usedspace], 0, (size_t)(SHA256_SHORT_BLOCK_LENGTH - usedspace));
    600 			} else {
    601 				if (usedspace < SHA256_BLOCK_LENGTH) {
    602 					memset(&context->buffer[usedspace], 0, (size_t)(SHA256_BLOCK_LENGTH - usedspace));
    603 				}
    604 				/* Do second-to-last transform: */
    605 				SHA256_Transform(context, (sha2_word32*)(void *)context->buffer);
    606 
    607 				/* And set-up for the last transform: */
    608 				memset(context->buffer, 0, (size_t)(SHA256_SHORT_BLOCK_LENGTH));
    609 			}
    610 		} else {
    611 			/* Set-up for the last transform: */
    612 			memset(context->buffer, 0, (size_t)(SHA256_SHORT_BLOCK_LENGTH));
    613 
    614 			/* Begin padding with a 1 bit: */
    615 			*context->buffer = 0x80;
    616 		}
    617 		/* Set the bit count: */
    618 		*(sha2_word64*)(void *)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
    619 
    620 		/* Final transform: */
    621 		SHA256_Transform(context, (sha2_word32*)(void *)context->buffer);
    622 
    623 #if BYTE_ORDER == LITTLE_ENDIAN
    624 		{
    625 			/* Convert TO host byte order */
    626 			int	j;
    627 			for (j = 0; j < 8; j++) {
    628 				REVERSE32(context->state[j],context->state[j]);
    629 				*d++ = context->state[j];
    630 			}
    631 		}
    632 #else
    633 		memcpy(d, context->state, SHA256_DIGEST_LENGTH);
    634 #endif
    635 	}
    636 
    637 	/* Clean up state data: */
    638 	memset(context, 0, sizeof(*context));
    639 	usedspace = 0;
    640 }
    641 
    642 /*** SHA-512: *********************************************************/
    643 void SHA512_Init(SHA512_CTX* context) {
    644 	if (context == (SHA512_CTX*)0) {
    645 		return;
    646 	}
    647 	memcpy(context->state, sha512_initial_hash_value, (size_t)(SHA512_DIGEST_LENGTH));
    648 	memset(context->buffer, 0, (size_t)(SHA512_BLOCK_LENGTH));
    649 	context->bitcount[0] = context->bitcount[1] =  0;
    650 }
    651 
    652 #ifdef SHA2_UNROLL_TRANSFORM
    653 
    654 /* Unrolled SHA-512 round macros: */
    655 #if BYTE_ORDER == LITTLE_ENDIAN
    656 
    657 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
    658 	REVERSE64(*data++, W512[j]); \
    659 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
    660              K512[j] + W512[j]; \
    661 	(d) += T1, \
    662 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
    663 	j++
    664 
    665 
    666 #else /* BYTE_ORDER == LITTLE_ENDIAN */
    667 
    668 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
    669 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
    670              K512[j] + (W512[j] = *data++); \
    671 	(d) += T1; \
    672 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
    673 	j++
    674 
    675 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
    676 
    677 #define ROUND512(a,b,c,d,e,f,g,h)	\
    678 	s0 = W512[(j+1)&0x0f]; \
    679 	s0 = sigma0_512(s0); \
    680 	s1 = W512[(j+14)&0x0f]; \
    681 	s1 = sigma1_512(s1); \
    682 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
    683              (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
    684 	(d) += T1; \
    685 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
    686 	j++
    687 
    688 void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
    689 	sha2_word64	a, b, c, d, e, f, g, h, s0, s1;
    690 	sha2_word64	T1, *W512 = (sha2_word64*)context->buffer;
    691 	int		j;
    692 
    693 	/* Initialize registers with the prev. intermediate value */
    694 	a = context->state[0];
    695 	b = context->state[1];
    696 	c = context->state[2];
    697 	d = context->state[3];
    698 	e = context->state[4];
    699 	f = context->state[5];
    700 	g = context->state[6];
    701 	h = context->state[7];
    702 
    703 	j = 0;
    704 	do {
    705 		ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
    706 		ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
    707 		ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
    708 		ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
    709 		ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
    710 		ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
    711 		ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
    712 		ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
    713 	} while (j < 16);
    714 
    715 	/* Now for the remaining rounds up to 79: */
    716 	do {
    717 		ROUND512(a,b,c,d,e,f,g,h);
    718 		ROUND512(h,a,b,c,d,e,f,g);
    719 		ROUND512(g,h,a,b,c,d,e,f);
    720 		ROUND512(f,g,h,a,b,c,d,e);
    721 		ROUND512(e,f,g,h,a,b,c,d);
    722 		ROUND512(d,e,f,g,h,a,b,c);
    723 		ROUND512(c,d,e,f,g,h,a,b);
    724 		ROUND512(b,c,d,e,f,g,h,a);
    725 	} while (j < 80);
    726 
    727 	/* Compute the current intermediate hash value */
    728 	context->state[0] += a;
    729 	context->state[1] += b;
    730 	context->state[2] += c;
    731 	context->state[3] += d;
    732 	context->state[4] += e;
    733 	context->state[5] += f;
    734 	context->state[6] += g;
    735 	context->state[7] += h;
    736 
    737 	/* Clean up */
    738 	a = b = c = d = e = f = g = h = T1 = 0;
    739 }
    740 
    741 #else /* SHA2_UNROLL_TRANSFORM */
    742 
    743 void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
    744 	sha2_word64	a, b, c, d, e, f, g, h, s0, s1;
    745 	sha2_word64	T1, T2, *W512 = (void *)context->buffer;
    746 	int		j;
    747 
    748 	/* Initialize registers with the prev. intermediate value */
    749 	a = context->state[0];
    750 	b = context->state[1];
    751 	c = context->state[2];
    752 	d = context->state[3];
    753 	e = context->state[4];
    754 	f = context->state[5];
    755 	g = context->state[6];
    756 	h = context->state[7];
    757 
    758 	j = 0;
    759 	do {
    760 #if BYTE_ORDER == LITTLE_ENDIAN
    761 		/* Convert TO host byte order */
    762 		REVERSE64(*data++, W512[j]);
    763 		/* Apply the SHA-512 compression function to update a..h */
    764 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
    765 #else /* BYTE_ORDER == LITTLE_ENDIAN */
    766 		/* Apply the SHA-512 compression function to update a..h with copy */
    767 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
    768 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
    769 		T2 = Sigma0_512(a) + Maj(a, b, c);
    770 		h = g;
    771 		g = f;
    772 		f = e;
    773 		e = d + T1;
    774 		d = c;
    775 		c = b;
    776 		b = a;
    777 		a = T1 + T2;
    778 
    779 		j++;
    780 	} while (j < 16);
    781 
    782 	do {
    783 		/* Part of the message block expansion: */
    784 		s0 = W512[(j+1)&0x0f];
    785 		s0 = sigma0_512(s0);
    786 		s1 = W512[(j+14)&0x0f];
    787 		s1 =  sigma1_512(s1);
    788 
    789 		/* Apply the SHA-512 compression function to update a..h */
    790 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
    791 		     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
    792 		T2 = Sigma0_512(a) + Maj(a, b, c);
    793 		h = g;
    794 		g = f;
    795 		f = e;
    796 		e = d + T1;
    797 		d = c;
    798 		c = b;
    799 		b = a;
    800 		a = T1 + T2;
    801 
    802 		j++;
    803 	} while (j < 80);
    804 
    805 	/* Compute the current intermediate hash value */
    806 	context->state[0] += a;
    807 	context->state[1] += b;
    808 	context->state[2] += c;
    809 	context->state[3] += d;
    810 	context->state[4] += e;
    811 	context->state[5] += f;
    812 	context->state[6] += g;
    813 	context->state[7] += h;
    814 
    815 	/* Clean up */
    816 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
    817 }
    818 
    819 #endif /* SHA2_UNROLL_TRANSFORM */
    820 
    821 void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
    822 	unsigned int	freespace, usedspace;
    823 
    824 	if (len == 0) {
    825 		/* Calling with no data is valid - we do nothing */
    826 		return;
    827 	}
    828 
    829 	/* Sanity check: */
    830 	assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0);
    831 
    832 	usedspace = (unsigned int)((context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH);
    833 	if (usedspace > 0) {
    834 		/* Calculate how much free space is available in the buffer */
    835 		freespace = SHA512_BLOCK_LENGTH - usedspace;
    836 
    837 		if (len >= freespace) {
    838 			/* Fill the buffer completely and process it */
    839 			memcpy(&context->buffer[usedspace], data, (size_t)(freespace));
    840 			ADDINC128(context->bitcount, freespace << 3);
    841 			len -= freespace;
    842 			data += freespace;
    843 			SHA512_Transform(context, (sha2_word64*)(void *)context->buffer);
    844 		} else {
    845 			/* The buffer is not yet full */
    846 			memcpy(&context->buffer[usedspace], data, len);
    847 			ADDINC128(context->bitcount, len << 3);
    848 			/* Clean up: */
    849 			usedspace = freespace = 0;
    850 			return;
    851 		}
    852 	}
    853 	while (len >= SHA512_BLOCK_LENGTH) {
    854 		/* Process as many complete blocks as we can */
    855 		SHA512_Transform(context, (const sha2_word64*)(const void *)data);
    856 		ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
    857 		len -= SHA512_BLOCK_LENGTH;
    858 		data += SHA512_BLOCK_LENGTH;
    859 	}
    860 	if (len > 0) {
    861 		/* There's left-overs, so save 'em */
    862 		memcpy(context->buffer, data, len);
    863 		ADDINC128(context->bitcount, len << 3);
    864 	}
    865 	/* Clean up: */
    866 	usedspace = freespace = 0;
    867 }
    868 
    869 void SHA512_Last(SHA512_CTX* context) {
    870 	unsigned int	usedspace;
    871 
    872 	usedspace = (unsigned int)((context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH);
    873 #if BYTE_ORDER == LITTLE_ENDIAN
    874 	/* Convert FROM host byte order */
    875 	REVERSE64(context->bitcount[0],context->bitcount[0]);
    876 	REVERSE64(context->bitcount[1],context->bitcount[1]);
    877 #endif
    878 	if (usedspace > 0) {
    879 		/* Begin padding with a 1 bit: */
    880 		context->buffer[usedspace++] = 0x80;
    881 
    882 		if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
    883 			/* Set-up for the last transform: */
    884 			memset(&context->buffer[usedspace], 0, (size_t)(SHA512_SHORT_BLOCK_LENGTH - usedspace));
    885 		} else {
    886 			if (usedspace < SHA512_BLOCK_LENGTH) {
    887 				memset(&context->buffer[usedspace], 0, (size_t)(SHA512_BLOCK_LENGTH - usedspace));
    888 			}
    889 			/* Do second-to-last transform: */
    890 			SHA512_Transform(context, (sha2_word64*)(void *)context->buffer);
    891 
    892 			/* And set-up for the last transform: */
    893 			memset(context->buffer, 0, (size_t)(SHA512_BLOCK_LENGTH - 2));
    894 		}
    895 	} else {
    896 		/* Prepare for final transform: */
    897 		memset(context->buffer, 0, (size_t)(SHA512_SHORT_BLOCK_LENGTH));
    898 
    899 		/* Begin padding with a 1 bit: */
    900 		*context->buffer = 0x80;
    901 	}
    902 	/* Store the length of input data (in bits): */
    903 	*(sha2_word64*)(void *)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
    904 	*(sha2_word64*)(void *)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
    905 
    906 	/* Final transform: */
    907 	SHA512_Transform(context, (sha2_word64*)(void *)context->buffer);
    908 }
    909 
    910 void SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
    911 	sha2_word64	*d = (void *)digest;
    912 
    913 	/* Sanity check: */
    914 	assert(context != (SHA512_CTX*)0);
    915 
    916 	/* If no digest buffer is passed, we don't bother doing this: */
    917 	if (digest != (sha2_byte*)0) {
    918 		SHA512_Last(context);
    919 
    920 		/* Save the hash data for output: */
    921 #if BYTE_ORDER == LITTLE_ENDIAN
    922 		{
    923 			/* Convert TO host byte order */
    924 			int	j;
    925 			for (j = 0; j < 8; j++) {
    926 				REVERSE64(context->state[j],context->state[j]);
    927 				*d++ = context->state[j];
    928 			}
    929 		}
    930 #else
    931 		memcpy(d, context->state, SHA512_DIGEST_LENGTH);
    932 #endif
    933 	}
    934 
    935 	/* Zero out state data */
    936 	memset(context, 0, sizeof(*context));
    937 }
    938 
    939 /*** SHA-384: *********************************************************/
    940 void SHA384_Init(SHA384_CTX* context) {
    941 	if (context == (SHA384_CTX*)0) {
    942 		return;
    943 	}
    944 	memcpy(context->state, sha384_initial_hash_value, (size_t)(SHA512_DIGEST_LENGTH));
    945 	memset(context->buffer, 0, (size_t)(SHA384_BLOCK_LENGTH));
    946 	context->bitcount[0] = context->bitcount[1] = 0;
    947 }
    948 
    949 void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
    950 	SHA512_Update((SHA512_CTX*)context, data, len);
    951 }
    952 
    953 void SHA384_Transform(SHA512_CTX* context, const sha2_word64* data) {
    954 	SHA512_Transform((SHA512_CTX*)context, data);
    955 }
    956 
    957 void SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
    958 	sha2_word64	*d = (void *)digest;
    959 
    960 	/* Sanity check: */
    961 	assert(context != (SHA384_CTX*)0);
    962 
    963 	/* If no digest buffer is passed, we don't bother doing this: */
    964 	if (digest != (sha2_byte*)0) {
    965 		SHA512_Last((SHA512_CTX*)context);
    966 
    967 		/* Save the hash data for output: */
    968 #if BYTE_ORDER == LITTLE_ENDIAN
    969 		{
    970 			/* Convert TO host byte order */
    971 			int	j;
    972 			for (j = 0; j < 6; j++) {
    973 				REVERSE64(context->state[j],context->state[j]);
    974 				*d++ = context->state[j];
    975 			}
    976 		}
    977 #else
    978 		memcpy(d, context->state, SHA384_DIGEST_LENGTH);
    979 #endif
    980 	}
    981 
    982 	/* Zero out state data */
    983 	memset(context, 0, sizeof(*context));
    984 }
    985