sha2.c revision 1.4 1 /* $NetBSD: sha2.c,v 1.4 2007/02/18 18:13:38 christos Exp $ */
2 /* $KAME: sha2.c,v 1.9 2003/07/20 00:28:38 itojun Exp $ */
3
4 /*
5 * sha2.c
6 *
7 * Version 1.0.0beta1
8 *
9 * Written by Aaron D. Gifford <me (at) aarongifford.com>
10 *
11 * Copyright 2000 Aaron D. Gifford. All rights reserved.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the copyright holder nor the names of contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 */
38
39 #include <sys/cdefs.h>
40
41 #if defined(_KERNEL) || defined(_STANDALONE)
42 __KERNEL_RCSID(0, "$NetBSD: sha2.c,v 1.4 2007/02/18 18:13:38 christos Exp $");
43
44 #include <lib/libkern/libkern.h>
45
46 #else
47
48 #if defined(LIBC_SCCS) && !defined(lint)
49 __RCSID("$NetBSD: sha2.c,v 1.4 2007/02/18 18:13:38 christos Exp $");
50 #endif /* LIBC_SCCS and not lint */
51
52 #include "namespace.h"
53 #include <assert.h>
54 #include <string.h>
55
56 #endif
57
58 #include <sys/types.h>
59 #include <sys/param.h>
60 #include <sys/sha2.h>
61
62 /*
63 * ASSERT NOTE:
64 * Some sanity checking code is included using assert(). On my FreeBSD
65 * system, this additional code can be removed by compiling with NDEBUG
66 * defined. Check your own systems manpage on assert() to see how to
67 * compile WITHOUT the sanity checking code on your system.
68 *
69 * UNROLLED TRANSFORM LOOP NOTE:
70 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
71 * loop version for the hash transform rounds (defined using macros
72 * later in this file). Either define on the command line, for example:
73 *
74 * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
75 *
76 * or define below:
77 *
78 * #define SHA2_UNROLL_TRANSFORM
79 *
80 */
81
82 #if defined(__bsdi__) || defined(__FreeBSD__)
83 #define assert(x)
84 #endif
85
86
87 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
88 /*
89 * BYTE_ORDER NOTE:
90 *
91 * Please make sure that your system defines BYTE_ORDER. If your
92 * architecture is little-endian, make sure it also defines
93 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
94 * equivilent.
95 *
96 * If your system does not define the above, then you can do so by
97 * hand like this:
98 *
99 * #define LITTLE_ENDIAN 1234
100 * #define BIG_ENDIAN 4321
101 *
102 * And for little-endian machines, add:
103 *
104 * #define BYTE_ORDER LITTLE_ENDIAN
105 *
106 * Or for big-endian machines:
107 *
108 * #define BYTE_ORDER BIG_ENDIAN
109 *
110 * The FreeBSD machine this was written on defines BYTE_ORDER
111 * appropriately by including <sys/types.h> (which in turn includes
112 * <machine/endian.h> where the appropriate definitions are actually
113 * made).
114 */
115 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
116 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
117 #endif
118
119 /*
120 * Define the followingsha2_* types to types of the correct length on
121 * the native archtecture. Most BSD systems and Linux define u_intXX_t
122 * types. Machines with very recent ANSI C headers, can use the
123 * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
124 * during compile or in the sha.h header file.
125 *
126 * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
127 * will need to define these three typedefs below (and the appropriate
128 * ones in sha.h too) by hand according to their system architecture.
129 *
130 * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
131 * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
132 */
133 #if 0 /*def SHA2_USE_INTTYPES_H*/
134
135 typedef uint8_t sha2_byte; /* Exactly 1 byte */
136 typedef uint32_t sha2_word32; /* Exactly 4 bytes */
137 typedef uint64_t sha2_word64; /* Exactly 8 bytes */
138
139 #else /* SHA2_USE_INTTYPES_H */
140
141 typedef u_int8_t sha2_byte; /* Exactly 1 byte */
142 typedef u_int32_t sha2_word32; /* Exactly 4 bytes */
143 typedef u_int64_t sha2_word64; /* Exactly 8 bytes */
144
145 #endif /* SHA2_USE_INTTYPES_H */
146
147
148 /*** SHA-256/384/512 Various Length Definitions ***********************/
149 /* NOTE: Most of these are in sha2.h */
150 #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
151 #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
152 #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
153
154
155 /*** ENDIAN REVERSAL MACROS *******************************************/
156 #if BYTE_ORDER == LITTLE_ENDIAN
157 #define REVERSE32(w,x) { \
158 sha2_word32 tmp = (w); \
159 tmp = (tmp >> 16) | (tmp << 16); \
160 (x) = (sha2_word32)(((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8)); \
161 }
162 #define REVERSE64(w,x) { \
163 sha2_word64 tmp = (w); \
164 tmp = (tmp >> 32) | (tmp << 32); \
165 tmp = (sha2_word64)(((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
166 ((tmp & 0x00ff00ff00ff00ffULL) << 8)); \
167 (x) = (sha2_word64)(((tmp & 0xffff0000ffff0000ULL) >> 16) | \
168 ((tmp & 0x0000ffff0000ffffULL) << 16)); \
169 }
170 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
171
172 /*
173 * Macro for incrementally adding the unsigned 64-bit integer n to the
174 * unsigned 128-bit integer (represented using a two-element array of
175 * 64-bit words):
176 */
177 #define ADDINC128(w,n) { \
178 (w)[0] += (sha2_word64)(n); \
179 if ((w)[0] < (n)) { \
180 (w)[1]++; \
181 } \
182 }
183
184 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
185 /*
186 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
187 *
188 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
189 * S is a ROTATION) because the SHA-256/384/512 description document
190 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
191 * same "backwards" definition.
192 */
193 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
194 #define R(b,x) ((x) >> (b))
195 /* 32-bit Rotate-right (used in SHA-256): */
196 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
197 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
198 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
199
200 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
201 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
202 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
203
204 /* Four of six logical functions used in SHA-256: */
205 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
206 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
207 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
208 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
209
210 /* Four of six logical functions used in SHA-384 and SHA-512: */
211 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
212 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
213 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
214 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
215
216 /*** INTERNAL FUNCTION PROTOTYPES *************************************/
217 /* NOTE: These should not be accessed directly from outside this
218 * library -- they are intended for private internal visibility/use
219 * only.
220 */
221 static void SHA512_Last(SHA512_CTX*);
222 void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
223 void SHA384_Transform(SHA384_CTX*, const sha2_word64*);
224 void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
225
226
227 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
228 /* Hash constant words K for SHA-256: */
229 static const sha2_word32 K256[64] = {
230 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
231 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
232 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
233 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
234 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
235 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
236 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
237 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
238 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
239 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
240 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
241 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
242 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
243 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
244 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
245 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
246 };
247
248 /* Initial hash value H for SHA-256: */
249 static const sha2_word32 sha256_initial_hash_value[8] = {
250 0x6a09e667UL,
251 0xbb67ae85UL,
252 0x3c6ef372UL,
253 0xa54ff53aUL,
254 0x510e527fUL,
255 0x9b05688cUL,
256 0x1f83d9abUL,
257 0x5be0cd19UL
258 };
259
260 /* Hash constant words K for SHA-384 and SHA-512: */
261 static const sha2_word64 K512[80] = {
262 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
263 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
264 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
265 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
266 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
267 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
268 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
269 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
270 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
271 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
272 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
273 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
274 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
275 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
276 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
277 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
278 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
279 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
280 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
281 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
282 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
283 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
284 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
285 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
286 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
287 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
288 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
289 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
290 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
291 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
292 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
293 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
294 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
295 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
296 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
297 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
298 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
299 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
300 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
301 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
302 };
303
304 /* Initial hash value H for SHA-384 */
305 static const sha2_word64 sha384_initial_hash_value[8] = {
306 0xcbbb9d5dc1059ed8ULL,
307 0x629a292a367cd507ULL,
308 0x9159015a3070dd17ULL,
309 0x152fecd8f70e5939ULL,
310 0x67332667ffc00b31ULL,
311 0x8eb44a8768581511ULL,
312 0xdb0c2e0d64f98fa7ULL,
313 0x47b5481dbefa4fa4ULL
314 };
315
316 /* Initial hash value H for SHA-512 */
317 static const sha2_word64 sha512_initial_hash_value[8] = {
318 0x6a09e667f3bcc908ULL,
319 0xbb67ae8584caa73bULL,
320 0x3c6ef372fe94f82bULL,
321 0xa54ff53a5f1d36f1ULL,
322 0x510e527fade682d1ULL,
323 0x9b05688c2b3e6c1fULL,
324 0x1f83d9abfb41bd6bULL,
325 0x5be0cd19137e2179ULL
326 };
327
328 #if !defined(_KERNEL) && defined(__weak_alias)
329 __weak_alias(SHA256_Init,_SHA256_Init)
330 __weak_alias(SHA256_Update,_SHA256_Update)
331 __weak_alias(SHA256_Final,_SHA256_Final)
332 __weak_alias(SHA256_Transform,_SHA256_Transform)
333
334 __weak_alias(SHA384_Init,_SHA384_Init)
335 __weak_alias(SHA384_Update,_SHA384_Update)
336 __weak_alias(SHA384_Final,_SHA384_Final)
337 __weak_alias(SHA384_Transform,_SHA384_Transform)
338
339 __weak_alias(SHA512_Init,_SHA512_Init)
340 __weak_alias(SHA512_Update,_SHA512_Update)
341 __weak_alias(SHA512_Final,_SHA512_Final)
342 __weak_alias(SHA512_Transform,_SHA512_Transform)
343 #endif
344
345 /*** SHA-256: *********************************************************/
346 void SHA256_Init(SHA256_CTX* context) {
347 if (context == (SHA256_CTX*)0) {
348 return;
349 }
350 memcpy(context->state, sha256_initial_hash_value, (size_t)(SHA256_DIGEST_LENGTH));
351 memset(context->buffer, 0, (size_t)(SHA256_BLOCK_LENGTH));
352 context->bitcount = 0;
353 }
354
355 #ifdef SHA2_UNROLL_TRANSFORM
356
357 /* Unrolled SHA-256 round macros: */
358
359 #if BYTE_ORDER == LITTLE_ENDIAN
360
361 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
362 REVERSE32(*data++, W256[j]); \
363 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
364 K256[j] + W256[j]; \
365 (d) += T1; \
366 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
367 j++
368
369
370 #else /* BYTE_ORDER == LITTLE_ENDIAN */
371
372 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
373 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
374 K256[j] + (W256[j] = *data++); \
375 (d) += T1; \
376 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
377 j++
378
379 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
380
381 #define ROUND256(a,b,c,d,e,f,g,h) \
382 s0 = W256[(j+1)&0x0f]; \
383 s0 = sigma0_256(s0); \
384 s1 = W256[(j+14)&0x0f]; \
385 s1 = sigma1_256(s1); \
386 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
387 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
388 (d) += T1; \
389 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
390 j++
391
392 void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
393 sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
394 sha2_word32 T1, *W256;
395 int j;
396
397 W256 = (sha2_word32*)context->buffer;
398
399 /* Initialize registers with the prev. intermediate value */
400 a = context->state[0];
401 b = context->state[1];
402 c = context->state[2];
403 d = context->state[3];
404 e = context->state[4];
405 f = context->state[5];
406 g = context->state[6];
407 h = context->state[7];
408
409 j = 0;
410 do {
411 /* Rounds 0 to 15 (unrolled): */
412 ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
413 ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
414 ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
415 ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
416 ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
417 ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
418 ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
419 ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
420 } while (j < 16);
421
422 /* Now for the remaining rounds to 64: */
423 do {
424 ROUND256(a,b,c,d,e,f,g,h);
425 ROUND256(h,a,b,c,d,e,f,g);
426 ROUND256(g,h,a,b,c,d,e,f);
427 ROUND256(f,g,h,a,b,c,d,e);
428 ROUND256(e,f,g,h,a,b,c,d);
429 ROUND256(d,e,f,g,h,a,b,c);
430 ROUND256(c,d,e,f,g,h,a,b);
431 ROUND256(b,c,d,e,f,g,h,a);
432 } while (j < 64);
433
434 /* Compute the current intermediate hash value */
435 context->state[0] += a;
436 context->state[1] += b;
437 context->state[2] += c;
438 context->state[3] += d;
439 context->state[4] += e;
440 context->state[5] += f;
441 context->state[6] += g;
442 context->state[7] += h;
443
444 /* Clean up */
445 a = b = c = d = e = f = g = h = T1 = 0;
446 }
447
448 #else /* SHA2_UNROLL_TRANSFORM */
449
450 void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
451 sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
452 sha2_word32 T1, T2, *W256;
453 int j;
454
455 W256 = (sha2_word32*)(void *)context->buffer;
456
457 /* Initialize registers with the prev. intermediate value */
458 a = context->state[0];
459 b = context->state[1];
460 c = context->state[2];
461 d = context->state[3];
462 e = context->state[4];
463 f = context->state[5];
464 g = context->state[6];
465 h = context->state[7];
466
467 j = 0;
468 do {
469 #if BYTE_ORDER == LITTLE_ENDIAN
470 /* Copy data while converting to host byte order */
471 REVERSE32(*data++,W256[j]);
472 /* Apply the SHA-256 compression function to update a..h */
473 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
474 #else /* BYTE_ORDER == LITTLE_ENDIAN */
475 /* Apply the SHA-256 compression function to update a..h with copy */
476 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
477 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
478 T2 = Sigma0_256(a) + Maj(a, b, c);
479 h = g;
480 g = f;
481 f = e;
482 e = d + T1;
483 d = c;
484 c = b;
485 b = a;
486 a = T1 + T2;
487
488 j++;
489 } while (j < 16);
490
491 do {
492 /* Part of the message block expansion: */
493 s0 = W256[(j+1)&0x0f];
494 s0 = sigma0_256(s0);
495 s1 = W256[(j+14)&0x0f];
496 s1 = sigma1_256(s1);
497
498 /* Apply the SHA-256 compression function to update a..h */
499 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
500 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
501 T2 = Sigma0_256(a) + Maj(a, b, c);
502 h = g;
503 g = f;
504 f = e;
505 e = d + T1;
506 d = c;
507 c = b;
508 b = a;
509 a = T1 + T2;
510
511 j++;
512 } while (j < 64);
513
514 /* Compute the current intermediate hash value */
515 context->state[0] += a;
516 context->state[1] += b;
517 context->state[2] += c;
518 context->state[3] += d;
519 context->state[4] += e;
520 context->state[5] += f;
521 context->state[6] += g;
522 context->state[7] += h;
523
524 /* Clean up */
525 a = b = c = d = e = f = g = h = T1 = T2 = 0;
526 }
527
528 #endif /* SHA2_UNROLL_TRANSFORM */
529
530 void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
531 unsigned int freespace, usedspace;
532
533 if (len == 0) {
534 /* Calling with no data is valid - we do nothing */
535 return;
536 }
537
538 /* Sanity check: */
539 assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
540
541 usedspace = (unsigned int)((context->bitcount >> 3) %
542 SHA256_BLOCK_LENGTH);
543 if (usedspace > 0) {
544 /* Calculate how much free space is available in the buffer */
545 freespace = SHA256_BLOCK_LENGTH - usedspace;
546
547 if (len >= freespace) {
548 /* Fill the buffer completely and process it */
549 memcpy(&context->buffer[usedspace], data, (size_t)(freespace));
550 context->bitcount += freespace << 3;
551 len -= freespace;
552 data += freespace;
553 SHA256_Transform(context, (sha2_word32*)(void *)context->buffer);
554 } else {
555 /* The buffer is not yet full */
556 memcpy(&context->buffer[usedspace], data, len);
557 context->bitcount += len << 3;
558 /* Clean up: */
559 usedspace = freespace = 0;
560 return;
561 }
562 }
563 while (len >= SHA256_BLOCK_LENGTH) {
564 /* Process as many complete blocks as we can */
565 SHA256_Transform(context, (const sha2_word32*)(const void *)data);
566 context->bitcount += SHA256_BLOCK_LENGTH << 3;
567 len -= SHA256_BLOCK_LENGTH;
568 data += SHA256_BLOCK_LENGTH;
569 }
570 if (len > 0) {
571 /* There's left-overs, so save 'em */
572 memcpy(context->buffer, data, len);
573 context->bitcount += len << 3;
574 }
575 /* Clean up: */
576 usedspace = freespace = 0;
577 }
578
579 void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
580 sha2_word32 *d = (void *)digest;
581 unsigned int usedspace;
582
583 /* Sanity check: */
584 assert(context != (SHA256_CTX*)0);
585
586 /* If no digest buffer is passed, we don't bother doing this: */
587 if (digest != (sha2_byte*)0) {
588 usedspace = (unsigned int)((context->bitcount >> 3) % SHA256_BLOCK_LENGTH);
589 #if BYTE_ORDER == LITTLE_ENDIAN
590 /* Convert FROM host byte order */
591 REVERSE64(context->bitcount,context->bitcount);
592 #endif
593 if (usedspace > 0) {
594 /* Begin padding with a 1 bit: */
595 context->buffer[usedspace++] = 0x80;
596
597 if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
598 /* Set-up for the last transform: */
599 memset(&context->buffer[usedspace], 0, (size_t)(SHA256_SHORT_BLOCK_LENGTH - usedspace));
600 } else {
601 if (usedspace < SHA256_BLOCK_LENGTH) {
602 memset(&context->buffer[usedspace], 0, (size_t)(SHA256_BLOCK_LENGTH - usedspace));
603 }
604 /* Do second-to-last transform: */
605 SHA256_Transform(context, (sha2_word32*)(void *)context->buffer);
606
607 /* And set-up for the last transform: */
608 memset(context->buffer, 0, (size_t)(SHA256_SHORT_BLOCK_LENGTH));
609 }
610 } else {
611 /* Set-up for the last transform: */
612 memset(context->buffer, 0, (size_t)(SHA256_SHORT_BLOCK_LENGTH));
613
614 /* Begin padding with a 1 bit: */
615 *context->buffer = 0x80;
616 }
617 /* Set the bit count: */
618 *(sha2_word64*)(void *)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
619
620 /* Final transform: */
621 SHA256_Transform(context, (sha2_word32*)(void *)context->buffer);
622
623 #if BYTE_ORDER == LITTLE_ENDIAN
624 {
625 /* Convert TO host byte order */
626 int j;
627 for (j = 0; j < 8; j++) {
628 REVERSE32(context->state[j],context->state[j]);
629 *d++ = context->state[j];
630 }
631 }
632 #else
633 memcpy(d, context->state, SHA256_DIGEST_LENGTH);
634 #endif
635 }
636
637 /* Clean up state data: */
638 memset(context, 0, sizeof(*context));
639 usedspace = 0;
640 }
641
642 /*** SHA-512: *********************************************************/
643 void SHA512_Init(SHA512_CTX* context) {
644 if (context == (SHA512_CTX*)0) {
645 return;
646 }
647 memcpy(context->state, sha512_initial_hash_value, (size_t)(SHA512_DIGEST_LENGTH));
648 memset(context->buffer, 0, (size_t)(SHA512_BLOCK_LENGTH));
649 context->bitcount[0] = context->bitcount[1] = 0;
650 }
651
652 #ifdef SHA2_UNROLL_TRANSFORM
653
654 /* Unrolled SHA-512 round macros: */
655 #if BYTE_ORDER == LITTLE_ENDIAN
656
657 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
658 REVERSE64(*data++, W512[j]); \
659 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
660 K512[j] + W512[j]; \
661 (d) += T1, \
662 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
663 j++
664
665
666 #else /* BYTE_ORDER == LITTLE_ENDIAN */
667
668 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
669 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
670 K512[j] + (W512[j] = *data++); \
671 (d) += T1; \
672 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
673 j++
674
675 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
676
677 #define ROUND512(a,b,c,d,e,f,g,h) \
678 s0 = W512[(j+1)&0x0f]; \
679 s0 = sigma0_512(s0); \
680 s1 = W512[(j+14)&0x0f]; \
681 s1 = sigma1_512(s1); \
682 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
683 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
684 (d) += T1; \
685 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
686 j++
687
688 void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
689 sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
690 sha2_word64 T1, *W512 = (sha2_word64*)context->buffer;
691 int j;
692
693 /* Initialize registers with the prev. intermediate value */
694 a = context->state[0];
695 b = context->state[1];
696 c = context->state[2];
697 d = context->state[3];
698 e = context->state[4];
699 f = context->state[5];
700 g = context->state[6];
701 h = context->state[7];
702
703 j = 0;
704 do {
705 ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
706 ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
707 ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
708 ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
709 ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
710 ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
711 ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
712 ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
713 } while (j < 16);
714
715 /* Now for the remaining rounds up to 79: */
716 do {
717 ROUND512(a,b,c,d,e,f,g,h);
718 ROUND512(h,a,b,c,d,e,f,g);
719 ROUND512(g,h,a,b,c,d,e,f);
720 ROUND512(f,g,h,a,b,c,d,e);
721 ROUND512(e,f,g,h,a,b,c,d);
722 ROUND512(d,e,f,g,h,a,b,c);
723 ROUND512(c,d,e,f,g,h,a,b);
724 ROUND512(b,c,d,e,f,g,h,a);
725 } while (j < 80);
726
727 /* Compute the current intermediate hash value */
728 context->state[0] += a;
729 context->state[1] += b;
730 context->state[2] += c;
731 context->state[3] += d;
732 context->state[4] += e;
733 context->state[5] += f;
734 context->state[6] += g;
735 context->state[7] += h;
736
737 /* Clean up */
738 a = b = c = d = e = f = g = h = T1 = 0;
739 }
740
741 #else /* SHA2_UNROLL_TRANSFORM */
742
743 void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
744 sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
745 sha2_word64 T1, T2, *W512 = (void *)context->buffer;
746 int j;
747
748 /* Initialize registers with the prev. intermediate value */
749 a = context->state[0];
750 b = context->state[1];
751 c = context->state[2];
752 d = context->state[3];
753 e = context->state[4];
754 f = context->state[5];
755 g = context->state[6];
756 h = context->state[7];
757
758 j = 0;
759 do {
760 #if BYTE_ORDER == LITTLE_ENDIAN
761 /* Convert TO host byte order */
762 REVERSE64(*data++, W512[j]);
763 /* Apply the SHA-512 compression function to update a..h */
764 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
765 #else /* BYTE_ORDER == LITTLE_ENDIAN */
766 /* Apply the SHA-512 compression function to update a..h with copy */
767 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
768 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
769 T2 = Sigma0_512(a) + Maj(a, b, c);
770 h = g;
771 g = f;
772 f = e;
773 e = d + T1;
774 d = c;
775 c = b;
776 b = a;
777 a = T1 + T2;
778
779 j++;
780 } while (j < 16);
781
782 do {
783 /* Part of the message block expansion: */
784 s0 = W512[(j+1)&0x0f];
785 s0 = sigma0_512(s0);
786 s1 = W512[(j+14)&0x0f];
787 s1 = sigma1_512(s1);
788
789 /* Apply the SHA-512 compression function to update a..h */
790 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
791 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
792 T2 = Sigma0_512(a) + Maj(a, b, c);
793 h = g;
794 g = f;
795 f = e;
796 e = d + T1;
797 d = c;
798 c = b;
799 b = a;
800 a = T1 + T2;
801
802 j++;
803 } while (j < 80);
804
805 /* Compute the current intermediate hash value */
806 context->state[0] += a;
807 context->state[1] += b;
808 context->state[2] += c;
809 context->state[3] += d;
810 context->state[4] += e;
811 context->state[5] += f;
812 context->state[6] += g;
813 context->state[7] += h;
814
815 /* Clean up */
816 a = b = c = d = e = f = g = h = T1 = T2 = 0;
817 }
818
819 #endif /* SHA2_UNROLL_TRANSFORM */
820
821 void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
822 unsigned int freespace, usedspace;
823
824 if (len == 0) {
825 /* Calling with no data is valid - we do nothing */
826 return;
827 }
828
829 /* Sanity check: */
830 assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0);
831
832 usedspace = (unsigned int)((context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH);
833 if (usedspace > 0) {
834 /* Calculate how much free space is available in the buffer */
835 freespace = SHA512_BLOCK_LENGTH - usedspace;
836
837 if (len >= freespace) {
838 /* Fill the buffer completely and process it */
839 memcpy(&context->buffer[usedspace], data, (size_t)(freespace));
840 ADDINC128(context->bitcount, freespace << 3);
841 len -= freespace;
842 data += freespace;
843 SHA512_Transform(context, (sha2_word64*)(void *)context->buffer);
844 } else {
845 /* The buffer is not yet full */
846 memcpy(&context->buffer[usedspace], data, len);
847 ADDINC128(context->bitcount, len << 3);
848 /* Clean up: */
849 usedspace = freespace = 0;
850 return;
851 }
852 }
853 while (len >= SHA512_BLOCK_LENGTH) {
854 /* Process as many complete blocks as we can */
855 SHA512_Transform(context, (const sha2_word64*)(const void *)data);
856 ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
857 len -= SHA512_BLOCK_LENGTH;
858 data += SHA512_BLOCK_LENGTH;
859 }
860 if (len > 0) {
861 /* There's left-overs, so save 'em */
862 memcpy(context->buffer, data, len);
863 ADDINC128(context->bitcount, len << 3);
864 }
865 /* Clean up: */
866 usedspace = freespace = 0;
867 }
868
869 static void SHA512_Last(SHA512_CTX* context) {
870 unsigned int usedspace;
871
872 usedspace = (unsigned int)((context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH);
873 #if BYTE_ORDER == LITTLE_ENDIAN
874 /* Convert FROM host byte order */
875 REVERSE64(context->bitcount[0],context->bitcount[0]);
876 REVERSE64(context->bitcount[1],context->bitcount[1]);
877 #endif
878 if (usedspace > 0) {
879 /* Begin padding with a 1 bit: */
880 context->buffer[usedspace++] = 0x80;
881
882 if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
883 /* Set-up for the last transform: */
884 memset(&context->buffer[usedspace], 0, (size_t)(SHA512_SHORT_BLOCK_LENGTH - usedspace));
885 } else {
886 if (usedspace < SHA512_BLOCK_LENGTH) {
887 memset(&context->buffer[usedspace], 0, (size_t)(SHA512_BLOCK_LENGTH - usedspace));
888 }
889 /* Do second-to-last transform: */
890 SHA512_Transform(context, (sha2_word64*)(void *)context->buffer);
891
892 /* And set-up for the last transform: */
893 memset(context->buffer, 0, (size_t)(SHA512_BLOCK_LENGTH - 2));
894 }
895 } else {
896 /* Prepare for final transform: */
897 memset(context->buffer, 0, (size_t)(SHA512_SHORT_BLOCK_LENGTH));
898
899 /* Begin padding with a 1 bit: */
900 *context->buffer = 0x80;
901 }
902 /* Store the length of input data (in bits): */
903 *(sha2_word64*)(void *)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
904 *(sha2_word64*)(void *)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
905
906 /* Final transform: */
907 SHA512_Transform(context, (sha2_word64*)(void *)context->buffer);
908 }
909
910 void SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
911 sha2_word64 *d = (void *)digest;
912
913 /* Sanity check: */
914 assert(context != (SHA512_CTX*)0);
915
916 /* If no digest buffer is passed, we don't bother doing this: */
917 if (digest != (sha2_byte*)0) {
918 SHA512_Last(context);
919
920 /* Save the hash data for output: */
921 #if BYTE_ORDER == LITTLE_ENDIAN
922 {
923 /* Convert TO host byte order */
924 int j;
925 for (j = 0; j < 8; j++) {
926 REVERSE64(context->state[j],context->state[j]);
927 *d++ = context->state[j];
928 }
929 }
930 #else
931 memcpy(d, context->state, SHA512_DIGEST_LENGTH);
932 #endif
933 }
934
935 /* Zero out state data */
936 memset(context, 0, sizeof(*context));
937 }
938
939 /*** SHA-384: *********************************************************/
940 void SHA384_Init(SHA384_CTX* context) {
941 if (context == (SHA384_CTX*)0) {
942 return;
943 }
944 memcpy(context->state, sha384_initial_hash_value, (size_t)(SHA512_DIGEST_LENGTH));
945 memset(context->buffer, 0, (size_t)(SHA384_BLOCK_LENGTH));
946 context->bitcount[0] = context->bitcount[1] = 0;
947 }
948
949 void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
950 SHA512_Update((SHA512_CTX*)context, data, len);
951 }
952
953 void SHA384_Transform(SHA512_CTX* context, const sha2_word64* data) {
954 SHA512_Transform((SHA512_CTX*)context, data);
955 }
956
957 void SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
958 sha2_word64 *d = (void *)digest;
959
960 /* Sanity check: */
961 assert(context != (SHA384_CTX*)0);
962
963 /* If no digest buffer is passed, we don't bother doing this: */
964 if (digest != (sha2_byte*)0) {
965 SHA512_Last((SHA512_CTX*)context);
966
967 /* Save the hash data for output: */
968 #if BYTE_ORDER == LITTLE_ENDIAN
969 {
970 /* Convert TO host byte order */
971 int j;
972 for (j = 0; j < 6; j++) {
973 REVERSE64(context->state[j],context->state[j]);
974 *d++ = context->state[j];
975 }
976 }
977 #else
978 memcpy(d, context->state, SHA384_DIGEST_LENGTH);
979 #endif
980 }
981
982 /* Zero out state data */
983 memset(context, 0, sizeof(*context));
984 }
985