sha2.c revision 1.6 1 /* $NetBSD: sha2.c,v 1.6 2007/07/18 16:58:14 drochner Exp $ */
2 /* $KAME: sha2.c,v 1.9 2003/07/20 00:28:38 itojun Exp $ */
3
4 /*
5 * sha2.c
6 *
7 * Version 1.0.0beta1
8 *
9 * Written by Aaron D. Gifford <me (at) aarongifford.com>
10 *
11 * Copyright 2000 Aaron D. Gifford. All rights reserved.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the copyright holder nor the names of contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 */
38
39 #include <sys/cdefs.h>
40
41 #if defined(_KERNEL) || defined(_STANDALONE)
42 __KERNEL_RCSID(0, "$NetBSD: sha2.c,v 1.6 2007/07/18 16:58:14 drochner Exp $");
43
44 #include <lib/libkern/libkern.h>
45
46 #else
47
48 #if defined(LIBC_SCCS) && !defined(lint)
49 __RCSID("$NetBSD: sha2.c,v 1.6 2007/07/18 16:58:14 drochner Exp $");
50 #endif /* LIBC_SCCS and not lint */
51
52 #include "namespace.h"
53 #include <assert.h>
54 #include <string.h>
55
56 #endif
57
58 #include <sys/types.h>
59 #include <sys/param.h>
60 #include <sys/sha2.h>
61
62 /*
63 * ASSERT NOTE:
64 * Some sanity checking code is included using assert(). On my FreeBSD
65 * system, this additional code can be removed by compiling with NDEBUG
66 * defined. Check your own systems manpage on assert() to see how to
67 * compile WITHOUT the sanity checking code on your system.
68 *
69 * UNROLLED TRANSFORM LOOP NOTE:
70 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
71 * loop version for the hash transform rounds (defined using macros
72 * later in this file). Either define on the command line, for example:
73 *
74 * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
75 *
76 * or define below:
77 *
78 * #define SHA2_UNROLL_TRANSFORM
79 *
80 */
81
82 #if defined(__bsdi__) || defined(__FreeBSD__)
83 #define assert(x)
84 #endif
85
86
87 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
88 /*
89 * BYTE_ORDER NOTE:
90 *
91 * Please make sure that your system defines BYTE_ORDER. If your
92 * architecture is little-endian, make sure it also defines
93 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
94 * equivilent.
95 *
96 * If your system does not define the above, then you can do so by
97 * hand like this:
98 *
99 * #define LITTLE_ENDIAN 1234
100 * #define BIG_ENDIAN 4321
101 *
102 * And for little-endian machines, add:
103 *
104 * #define BYTE_ORDER LITTLE_ENDIAN
105 *
106 * Or for big-endian machines:
107 *
108 * #define BYTE_ORDER BIG_ENDIAN
109 *
110 * The FreeBSD machine this was written on defines BYTE_ORDER
111 * appropriately by including <sys/types.h> (which in turn includes
112 * <machine/endian.h> where the appropriate definitions are actually
113 * made).
114 */
115 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
116 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
117 #endif
118
119 /*
120 * Define the followingsha2_* types to types of the correct length on
121 * the native archtecture. Most BSD systems and Linux define u_intXX_t
122 * types. Machines with very recent ANSI C headers, can use the
123 * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
124 * during compile or in the sha.h header file.
125 *
126 * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
127 * will need to define these three typedefs below (and the appropriate
128 * ones in sha.h too) by hand according to their system architecture.
129 *
130 * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
131 * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
132 */
133 #if 0 /*def SHA2_USE_INTTYPES_H*/
134
135 typedef uint8_t sha2_byte; /* Exactly 1 byte */
136 typedef uint32_t sha2_word32; /* Exactly 4 bytes */
137 typedef uint64_t sha2_word64; /* Exactly 8 bytes */
138
139 #else /* SHA2_USE_INTTYPES_H */
140
141 typedef u_int8_t sha2_byte; /* Exactly 1 byte */
142 typedef u_int32_t sha2_word32; /* Exactly 4 bytes */
143 typedef u_int64_t sha2_word64; /* Exactly 8 bytes */
144
145 #endif /* SHA2_USE_INTTYPES_H */
146
147
148 /*** SHA-256/384/512 Various Length Definitions ***********************/
149 /* NOTE: Most of these are in sha2.h */
150 #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
151 #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
152 #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
153
154
155 /*** ENDIAN REVERSAL MACROS *******************************************/
156 #if BYTE_ORDER == LITTLE_ENDIAN
157 #define REVERSE32(w,x) { \
158 sha2_word32 tmp = (w); \
159 tmp = (tmp >> 16) | (tmp << 16); \
160 (x) = (sha2_word32)(((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8)); \
161 }
162 #define REVERSE64(w,x) { \
163 sha2_word64 tmp = (w); \
164 tmp = (tmp >> 32) | (tmp << 32); \
165 tmp = (sha2_word64)(((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
166 ((tmp & 0x00ff00ff00ff00ffULL) << 8)); \
167 (x) = (sha2_word64)(((tmp & 0xffff0000ffff0000ULL) >> 16) | \
168 ((tmp & 0x0000ffff0000ffffULL) << 16)); \
169 }
170 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
171
172 /*
173 * Macro for incrementally adding the unsigned 64-bit integer n to the
174 * unsigned 128-bit integer (represented using a two-element array of
175 * 64-bit words):
176 */
177 #define ADDINC128(w,n) { \
178 (w)[0] += (sha2_word64)(n); \
179 if ((w)[0] < (n)) { \
180 (w)[1]++; \
181 } \
182 }
183
184 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
185 /*
186 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
187 *
188 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
189 * S is a ROTATION) because the SHA-256/384/512 description document
190 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
191 * same "backwards" definition.
192 */
193 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
194 #define R(b,x) ((x) >> (b))
195 /* 32-bit Rotate-right (used in SHA-256): */
196 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
197 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
198 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
199
200 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
201 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
202 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
203
204 /* Four of six logical functions used in SHA-256: */
205 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
206 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
207 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
208 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
209
210 /* Four of six logical functions used in SHA-384 and SHA-512: */
211 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
212 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
213 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
214 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
215
216 /*** INTERNAL FUNCTION PROTOTYPES *************************************/
217 /* NOTE: These should not be accessed directly from outside this
218 * library -- they are intended for private internal visibility/use
219 * only.
220 */
221 static void SHA512_Last(SHA512_CTX*);
222 void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
223 void SHA384_Transform(SHA384_CTX*, const sha2_word64*);
224 void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
225
226
227 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
228 /* Hash constant words K for SHA-256: */
229 static const sha2_word32 K256[64] = {
230 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
231 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
232 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
233 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
234 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
235 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
236 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
237 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
238 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
239 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
240 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
241 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
242 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
243 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
244 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
245 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
246 };
247
248 /* Initial hash value H for SHA-256: */
249 static const sha2_word32 sha256_initial_hash_value[8] = {
250 0x6a09e667UL,
251 0xbb67ae85UL,
252 0x3c6ef372UL,
253 0xa54ff53aUL,
254 0x510e527fUL,
255 0x9b05688cUL,
256 0x1f83d9abUL,
257 0x5be0cd19UL
258 };
259
260 /* Hash constant words K for SHA-384 and SHA-512: */
261 static const sha2_word64 K512[80] = {
262 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
263 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
264 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
265 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
266 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
267 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
268 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
269 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
270 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
271 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
272 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
273 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
274 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
275 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
276 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
277 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
278 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
279 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
280 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
281 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
282 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
283 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
284 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
285 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
286 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
287 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
288 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
289 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
290 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
291 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
292 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
293 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
294 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
295 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
296 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
297 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
298 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
299 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
300 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
301 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
302 };
303
304 /* Initial hash value H for SHA-384 */
305 static const sha2_word64 sha384_initial_hash_value[8] = {
306 0xcbbb9d5dc1059ed8ULL,
307 0x629a292a367cd507ULL,
308 0x9159015a3070dd17ULL,
309 0x152fecd8f70e5939ULL,
310 0x67332667ffc00b31ULL,
311 0x8eb44a8768581511ULL,
312 0xdb0c2e0d64f98fa7ULL,
313 0x47b5481dbefa4fa4ULL
314 };
315
316 /* Initial hash value H for SHA-512 */
317 static const sha2_word64 sha512_initial_hash_value[8] = {
318 0x6a09e667f3bcc908ULL,
319 0xbb67ae8584caa73bULL,
320 0x3c6ef372fe94f82bULL,
321 0xa54ff53a5f1d36f1ULL,
322 0x510e527fade682d1ULL,
323 0x9b05688c2b3e6c1fULL,
324 0x1f83d9abfb41bd6bULL,
325 0x5be0cd19137e2179ULL
326 };
327
328 #if !defined(_KERNEL) && defined(__weak_alias)
329 __weak_alias(SHA256_Init,_SHA256_Init)
330 __weak_alias(SHA256_Update,_SHA256_Update)
331 __weak_alias(SHA256_Final,_SHA256_Final)
332 __weak_alias(SHA256_Transform,_SHA256_Transform)
333
334 __weak_alias(SHA384_Init,_SHA384_Init)
335 __weak_alias(SHA384_Update,_SHA384_Update)
336 __weak_alias(SHA384_Final,_SHA384_Final)
337 __weak_alias(SHA384_Transform,_SHA384_Transform)
338
339 __weak_alias(SHA512_Init,_SHA512_Init)
340 __weak_alias(SHA512_Update,_SHA512_Update)
341 __weak_alias(SHA512_Final,_SHA512_Final)
342 __weak_alias(SHA512_Transform,_SHA512_Transform)
343 #endif
344
345 /*** SHA-256: *********************************************************/
346 void SHA256_Init(SHA256_CTX* context) {
347 if (context == (SHA256_CTX*)0) {
348 return;
349 }
350 memcpy(context->state, sha256_initial_hash_value, (size_t)(SHA256_DIGEST_LENGTH));
351 memset(context->buffer, 0, (size_t)(SHA256_BLOCK_LENGTH));
352 context->bitcount = 0;
353 }
354
355 #ifdef SHA2_UNROLL_TRANSFORM
356
357 /* Unrolled SHA-256 round macros: */
358
359 #if BYTE_ORDER == LITTLE_ENDIAN
360
361 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
362 REVERSE32(*data++, W256[j]); \
363 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
364 K256[j] + W256[j]; \
365 (d) += T1; \
366 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
367 j++
368
369
370 #else /* BYTE_ORDER == LITTLE_ENDIAN */
371
372 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
373 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
374 K256[j] + (W256[j] = *data++); \
375 (d) += T1; \
376 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
377 j++
378
379 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
380
381 #define ROUND256(a,b,c,d,e,f,g,h) \
382 s0 = W256[(j+1)&0x0f]; \
383 s0 = sigma0_256(s0); \
384 s1 = W256[(j+14)&0x0f]; \
385 s1 = sigma1_256(s1); \
386 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
387 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
388 (d) += T1; \
389 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
390 j++
391
392 void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
393 sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
394 sha2_word32 T1, *W256;
395 int j;
396
397 W256 = (sha2_word32*)context->buffer;
398
399 /* Initialize registers with the prev. intermediate value */
400 a = context->state[0];
401 b = context->state[1];
402 c = context->state[2];
403 d = context->state[3];
404 e = context->state[4];
405 f = context->state[5];
406 g = context->state[6];
407 h = context->state[7];
408
409 j = 0;
410 do {
411 /* Rounds 0 to 15 (unrolled): */
412 ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
413 ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
414 ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
415 ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
416 ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
417 ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
418 ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
419 ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
420 } while (j < 16);
421
422 /* Now for the remaining rounds to 64: */
423 do {
424 ROUND256(a,b,c,d,e,f,g,h);
425 ROUND256(h,a,b,c,d,e,f,g);
426 ROUND256(g,h,a,b,c,d,e,f);
427 ROUND256(f,g,h,a,b,c,d,e);
428 ROUND256(e,f,g,h,a,b,c,d);
429 ROUND256(d,e,f,g,h,a,b,c);
430 ROUND256(c,d,e,f,g,h,a,b);
431 ROUND256(b,c,d,e,f,g,h,a);
432 } while (j < 64);
433
434 /* Compute the current intermediate hash value */
435 context->state[0] += a;
436 context->state[1] += b;
437 context->state[2] += c;
438 context->state[3] += d;
439 context->state[4] += e;
440 context->state[5] += f;
441 context->state[6] += g;
442 context->state[7] += h;
443
444 /* Clean up */
445 a = b = c = d = e = f = g = h = T1 = 0;
446 }
447
448 #else /* SHA2_UNROLL_TRANSFORM */
449
450 void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
451 sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
452 sha2_word32 T1, T2, *W256;
453 int j;
454
455 W256 = (sha2_word32*)(void *)context->buffer;
456
457 /* Initialize registers with the prev. intermediate value */
458 a = context->state[0];
459 b = context->state[1];
460 c = context->state[2];
461 d = context->state[3];
462 e = context->state[4];
463 f = context->state[5];
464 g = context->state[6];
465 h = context->state[7];
466
467 j = 0;
468 do {
469 #if BYTE_ORDER == LITTLE_ENDIAN
470 /* Copy data while converting to host byte order */
471 REVERSE32(*data++,W256[j]);
472 /* Apply the SHA-256 compression function to update a..h */
473 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
474 #else /* BYTE_ORDER == LITTLE_ENDIAN */
475 /* Apply the SHA-256 compression function to update a..h with copy */
476 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
477 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
478 T2 = Sigma0_256(a) + Maj(a, b, c);
479 h = g;
480 g = f;
481 f = e;
482 e = d + T1;
483 d = c;
484 c = b;
485 b = a;
486 a = T1 + T2;
487
488 j++;
489 } while (j < 16);
490
491 do {
492 /* Part of the message block expansion: */
493 s0 = W256[(j+1)&0x0f];
494 s0 = sigma0_256(s0);
495 s1 = W256[(j+14)&0x0f];
496 s1 = sigma1_256(s1);
497
498 /* Apply the SHA-256 compression function to update a..h */
499 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
500 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
501 T2 = Sigma0_256(a) + Maj(a, b, c);
502 h = g;
503 g = f;
504 f = e;
505 e = d + T1;
506 d = c;
507 c = b;
508 b = a;
509 a = T1 + T2;
510
511 j++;
512 } while (j < 64);
513
514 /* Compute the current intermediate hash value */
515 context->state[0] += a;
516 context->state[1] += b;
517 context->state[2] += c;
518 context->state[3] += d;
519 context->state[4] += e;
520 context->state[5] += f;
521 context->state[6] += g;
522 context->state[7] += h;
523
524 /* Clean up */
525 a = b = c = d = e = f = g = h = T1 = T2 = 0;
526 }
527
528 #endif /* SHA2_UNROLL_TRANSFORM */
529
530 void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
531 unsigned int freespace, usedspace;
532
533 if (len == 0) {
534 /* Calling with no data is valid - we do nothing */
535 return;
536 }
537
538 /* Sanity check: */
539 assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
540
541 usedspace = (unsigned int)((context->bitcount >> 3) %
542 SHA256_BLOCK_LENGTH);
543 if (usedspace > 0) {
544 /* Calculate how much free space is available in the buffer */
545 freespace = SHA256_BLOCK_LENGTH - usedspace;
546
547 if (len >= freespace) {
548 /* Fill the buffer completely and process it */
549 memcpy(&context->buffer[usedspace], data, (size_t)(freespace));
550 context->bitcount += freespace << 3;
551 len -= freespace;
552 data += freespace;
553 SHA256_Transform(context, (sha2_word32*)(void *)context->buffer);
554 } else {
555 /* The buffer is not yet full */
556 memcpy(&context->buffer[usedspace], data, len);
557 context->bitcount += len << 3;
558 /* Clean up: */
559 usedspace = freespace = 0;
560 return;
561 }
562 }
563 /*
564 * Process as many complete blocks as possible.
565 *
566 * Check alignment of the data pointer. If it is 32bit aligned,
567 * SHA256_Transform can be called directly on the data stream,
568 * otherwise enforce the alignment by copy into the buffer.
569 */
570 if ((uintptr_t)data % 4 == 0) {
571 while (len >= SHA256_BLOCK_LENGTH) {
572 SHA256_Transform(context,
573 (const sha2_word32 *)(const void *)data);
574 context->bitcount += SHA256_BLOCK_LENGTH << 3;
575 len -= SHA256_BLOCK_LENGTH;
576 data += SHA256_BLOCK_LENGTH;
577 }
578 } else {
579 while (len >= SHA256_BLOCK_LENGTH) {
580 memcpy(context->buffer, data, SHA256_BLOCK_LENGTH);
581 SHA256_Transform(context,
582 (const sha2_word32 *)(const void *)context->buffer);
583 context->bitcount += SHA256_BLOCK_LENGTH << 3;
584 len -= SHA256_BLOCK_LENGTH;
585 data += SHA256_BLOCK_LENGTH;
586 }
587 }
588 if (len > 0) {
589 /* There's left-overs, so save 'em */
590 memcpy(context->buffer, data, len);
591 context->bitcount += len << 3;
592 }
593 /* Clean up: */
594 usedspace = freespace = 0;
595 }
596
597 void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
598 sha2_word32 *d = (void *)digest;
599 unsigned int usedspace;
600
601 /* Sanity check: */
602 assert(context != (SHA256_CTX*)0);
603
604 /* If no digest buffer is passed, we don't bother doing this: */
605 if (digest != (sha2_byte*)0) {
606 usedspace = (unsigned int)((context->bitcount >> 3) % SHA256_BLOCK_LENGTH);
607 #if BYTE_ORDER == LITTLE_ENDIAN
608 /* Convert FROM host byte order */
609 REVERSE64(context->bitcount,context->bitcount);
610 #endif
611 if (usedspace > 0) {
612 /* Begin padding with a 1 bit: */
613 context->buffer[usedspace++] = 0x80;
614
615 if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
616 /* Set-up for the last transform: */
617 memset(&context->buffer[usedspace], 0, (size_t)(SHA256_SHORT_BLOCK_LENGTH - usedspace));
618 } else {
619 if (usedspace < SHA256_BLOCK_LENGTH) {
620 memset(&context->buffer[usedspace], 0, (size_t)(SHA256_BLOCK_LENGTH - usedspace));
621 }
622 /* Do second-to-last transform: */
623 SHA256_Transform(context, (sha2_word32*)(void *)context->buffer);
624
625 /* And set-up for the last transform: */
626 memset(context->buffer, 0, (size_t)(SHA256_SHORT_BLOCK_LENGTH));
627 }
628 } else {
629 /* Set-up for the last transform: */
630 memset(context->buffer, 0, (size_t)(SHA256_SHORT_BLOCK_LENGTH));
631
632 /* Begin padding with a 1 bit: */
633 *context->buffer = 0x80;
634 }
635 /* Set the bit count: */
636 *(sha2_word64*)(void *)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
637
638 /* Final transform: */
639 SHA256_Transform(context, (sha2_word32*)(void *)context->buffer);
640
641 #if BYTE_ORDER == LITTLE_ENDIAN
642 {
643 /* Convert TO host byte order */
644 int j;
645 for (j = 0; j < 8; j++) {
646 REVERSE32(context->state[j],context->state[j]);
647 *d++ = context->state[j];
648 }
649 }
650 #else
651 memcpy(d, context->state, SHA256_DIGEST_LENGTH);
652 #endif
653 }
654
655 /* Clean up state data: */
656 memset(context, 0, sizeof(*context));
657 usedspace = 0;
658 }
659
660 /*** SHA-512: *********************************************************/
661 void SHA512_Init(SHA512_CTX* context) {
662 if (context == (SHA512_CTX*)0) {
663 return;
664 }
665 memcpy(context->state, sha512_initial_hash_value, (size_t)(SHA512_DIGEST_LENGTH));
666 memset(context->buffer, 0, (size_t)(SHA512_BLOCK_LENGTH));
667 context->bitcount[0] = context->bitcount[1] = 0;
668 }
669
670 #ifdef SHA2_UNROLL_TRANSFORM
671
672 /* Unrolled SHA-512 round macros: */
673 #if BYTE_ORDER == LITTLE_ENDIAN
674
675 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
676 REVERSE64(*data++, W512[j]); \
677 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
678 K512[j] + W512[j]; \
679 (d) += T1, \
680 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
681 j++
682
683
684 #else /* BYTE_ORDER == LITTLE_ENDIAN */
685
686 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
687 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
688 K512[j] + (W512[j] = *data++); \
689 (d) += T1; \
690 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
691 j++
692
693 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
694
695 #define ROUND512(a,b,c,d,e,f,g,h) \
696 s0 = W512[(j+1)&0x0f]; \
697 s0 = sigma0_512(s0); \
698 s1 = W512[(j+14)&0x0f]; \
699 s1 = sigma1_512(s1); \
700 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
701 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
702 (d) += T1; \
703 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
704 j++
705
706 void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
707 sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
708 sha2_word64 T1, *W512 = (sha2_word64*)context->buffer;
709 int j;
710
711 /* Initialize registers with the prev. intermediate value */
712 a = context->state[0];
713 b = context->state[1];
714 c = context->state[2];
715 d = context->state[3];
716 e = context->state[4];
717 f = context->state[5];
718 g = context->state[6];
719 h = context->state[7];
720
721 j = 0;
722 do {
723 ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
724 ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
725 ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
726 ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
727 ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
728 ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
729 ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
730 ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
731 } while (j < 16);
732
733 /* Now for the remaining rounds up to 79: */
734 do {
735 ROUND512(a,b,c,d,e,f,g,h);
736 ROUND512(h,a,b,c,d,e,f,g);
737 ROUND512(g,h,a,b,c,d,e,f);
738 ROUND512(f,g,h,a,b,c,d,e);
739 ROUND512(e,f,g,h,a,b,c,d);
740 ROUND512(d,e,f,g,h,a,b,c);
741 ROUND512(c,d,e,f,g,h,a,b);
742 ROUND512(b,c,d,e,f,g,h,a);
743 } while (j < 80);
744
745 /* Compute the current intermediate hash value */
746 context->state[0] += a;
747 context->state[1] += b;
748 context->state[2] += c;
749 context->state[3] += d;
750 context->state[4] += e;
751 context->state[5] += f;
752 context->state[6] += g;
753 context->state[7] += h;
754
755 /* Clean up */
756 a = b = c = d = e = f = g = h = T1 = 0;
757 }
758
759 #else /* SHA2_UNROLL_TRANSFORM */
760
761 void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
762 sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
763 sha2_word64 T1, T2, *W512 = (void *)context->buffer;
764 int j;
765
766 /* Initialize registers with the prev. intermediate value */
767 a = context->state[0];
768 b = context->state[1];
769 c = context->state[2];
770 d = context->state[3];
771 e = context->state[4];
772 f = context->state[5];
773 g = context->state[6];
774 h = context->state[7];
775
776 j = 0;
777 do {
778 #if BYTE_ORDER == LITTLE_ENDIAN
779 /* Convert TO host byte order */
780 REVERSE64(*data++, W512[j]);
781 /* Apply the SHA-512 compression function to update a..h */
782 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
783 #else /* BYTE_ORDER == LITTLE_ENDIAN */
784 /* Apply the SHA-512 compression function to update a..h with copy */
785 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
786 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
787 T2 = Sigma0_512(a) + Maj(a, b, c);
788 h = g;
789 g = f;
790 f = e;
791 e = d + T1;
792 d = c;
793 c = b;
794 b = a;
795 a = T1 + T2;
796
797 j++;
798 } while (j < 16);
799
800 do {
801 /* Part of the message block expansion: */
802 s0 = W512[(j+1)&0x0f];
803 s0 = sigma0_512(s0);
804 s1 = W512[(j+14)&0x0f];
805 s1 = sigma1_512(s1);
806
807 /* Apply the SHA-512 compression function to update a..h */
808 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
809 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
810 T2 = Sigma0_512(a) + Maj(a, b, c);
811 h = g;
812 g = f;
813 f = e;
814 e = d + T1;
815 d = c;
816 c = b;
817 b = a;
818 a = T1 + T2;
819
820 j++;
821 } while (j < 80);
822
823 /* Compute the current intermediate hash value */
824 context->state[0] += a;
825 context->state[1] += b;
826 context->state[2] += c;
827 context->state[3] += d;
828 context->state[4] += e;
829 context->state[5] += f;
830 context->state[6] += g;
831 context->state[7] += h;
832
833 /* Clean up */
834 a = b = c = d = e = f = g = h = T1 = T2 = 0;
835 }
836
837 #endif /* SHA2_UNROLL_TRANSFORM */
838
839 void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
840 unsigned int freespace, usedspace;
841
842 if (len == 0) {
843 /* Calling with no data is valid - we do nothing */
844 return;
845 }
846
847 /* Sanity check: */
848 assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0);
849
850 usedspace = (unsigned int)((context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH);
851 if (usedspace > 0) {
852 /* Calculate how much free space is available in the buffer */
853 freespace = SHA512_BLOCK_LENGTH - usedspace;
854
855 if (len >= freespace) {
856 /* Fill the buffer completely and process it */
857 memcpy(&context->buffer[usedspace], data, (size_t)(freespace));
858 ADDINC128(context->bitcount, freespace << 3);
859 len -= freespace;
860 data += freespace;
861 SHA512_Transform(context, (sha2_word64*)(void *)context->buffer);
862 } else {
863 /* The buffer is not yet full */
864 memcpy(&context->buffer[usedspace], data, len);
865 ADDINC128(context->bitcount, len << 3);
866 /* Clean up: */
867 usedspace = freespace = 0;
868 return;
869 }
870 }
871 /*
872 * Process as many complete blocks as possible.
873 *
874 * Check alignment of the data pointer. If it is 64bit aligned,
875 * SHA512_Transform can be called directly on the data stream,
876 * otherwise enforce the alignment by copy into the buffer.
877 */
878 if ((uintptr_t)data % 8 == 0) {
879 while (len >= SHA512_BLOCK_LENGTH) {
880 SHA512_Transform(context,
881 (const sha2_word64*)(const void *)data);
882 ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
883 len -= SHA512_BLOCK_LENGTH;
884 data += SHA512_BLOCK_LENGTH;
885 }
886 } else {
887 while (len >= SHA512_BLOCK_LENGTH) {
888 memcpy(context->buffer, data, SHA512_BLOCK_LENGTH);
889 SHA512_Transform(context,
890 (const void *)context->buffer);
891 ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
892 len -= SHA512_BLOCK_LENGTH;
893 data += SHA512_BLOCK_LENGTH;
894 }
895 }
896 if (len > 0) {
897 /* There's left-overs, so save 'em */
898 memcpy(context->buffer, data, len);
899 ADDINC128(context->bitcount, len << 3);
900 }
901 /* Clean up: */
902 usedspace = freespace = 0;
903 }
904
905 static void SHA512_Last(SHA512_CTX* context) {
906 unsigned int usedspace;
907
908 usedspace = (unsigned int)((context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH);
909 #if BYTE_ORDER == LITTLE_ENDIAN
910 /* Convert FROM host byte order */
911 REVERSE64(context->bitcount[0],context->bitcount[0]);
912 REVERSE64(context->bitcount[1],context->bitcount[1]);
913 #endif
914 if (usedspace > 0) {
915 /* Begin padding with a 1 bit: */
916 context->buffer[usedspace++] = 0x80;
917
918 if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
919 /* Set-up for the last transform: */
920 memset(&context->buffer[usedspace], 0, (size_t)(SHA512_SHORT_BLOCK_LENGTH - usedspace));
921 } else {
922 if (usedspace < SHA512_BLOCK_LENGTH) {
923 memset(&context->buffer[usedspace], 0, (size_t)(SHA512_BLOCK_LENGTH - usedspace));
924 }
925 /* Do second-to-last transform: */
926 SHA512_Transform(context, (sha2_word64*)(void *)context->buffer);
927
928 /* And set-up for the last transform: */
929 memset(context->buffer, 0, (size_t)(SHA512_BLOCK_LENGTH - 2));
930 }
931 } else {
932 /* Prepare for final transform: */
933 memset(context->buffer, 0, (size_t)(SHA512_SHORT_BLOCK_LENGTH));
934
935 /* Begin padding with a 1 bit: */
936 *context->buffer = 0x80;
937 }
938 /* Store the length of input data (in bits): */
939 *(sha2_word64*)(void *)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
940 *(sha2_word64*)(void *)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
941
942 /* Final transform: */
943 SHA512_Transform(context, (sha2_word64*)(void *)context->buffer);
944 }
945
946 void SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
947 sha2_word64 *d = (void *)digest;
948
949 /* Sanity check: */
950 assert(context != (SHA512_CTX*)0);
951
952 /* If no digest buffer is passed, we don't bother doing this: */
953 if (digest != (sha2_byte*)0) {
954 SHA512_Last(context);
955
956 /* Save the hash data for output: */
957 #if BYTE_ORDER == LITTLE_ENDIAN
958 {
959 /* Convert TO host byte order */
960 int j;
961 for (j = 0; j < 8; j++) {
962 REVERSE64(context->state[j],context->state[j]);
963 *d++ = context->state[j];
964 }
965 }
966 #else
967 memcpy(d, context->state, SHA512_DIGEST_LENGTH);
968 #endif
969 }
970
971 /* Zero out state data */
972 memset(context, 0, sizeof(*context));
973 }
974
975 /*** SHA-384: *********************************************************/
976 void SHA384_Init(SHA384_CTX* context) {
977 if (context == (SHA384_CTX*)0) {
978 return;
979 }
980 memcpy(context->state, sha384_initial_hash_value, (size_t)(SHA512_DIGEST_LENGTH));
981 memset(context->buffer, 0, (size_t)(SHA384_BLOCK_LENGTH));
982 context->bitcount[0] = context->bitcount[1] = 0;
983 }
984
985 void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
986 SHA512_Update((SHA512_CTX*)context, data, len);
987 }
988
989 void SHA384_Transform(SHA512_CTX* context, const sha2_word64* data) {
990 SHA512_Transform((SHA512_CTX*)context, data);
991 }
992
993 void SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
994 sha2_word64 *d = (void *)digest;
995
996 /* Sanity check: */
997 assert(context != (SHA384_CTX*)0);
998
999 /* If no digest buffer is passed, we don't bother doing this: */
1000 if (digest != (sha2_byte*)0) {
1001 SHA512_Last((SHA512_CTX*)context);
1002
1003 /* Save the hash data for output: */
1004 #if BYTE_ORDER == LITTLE_ENDIAN
1005 {
1006 /* Convert TO host byte order */
1007 int j;
1008 for (j = 0; j < 6; j++) {
1009 REVERSE64(context->state[j],context->state[j]);
1010 *d++ = context->state[j];
1011 }
1012 }
1013 #else
1014 memcpy(d, context->state, SHA384_DIGEST_LENGTH);
1015 #endif
1016 }
1017
1018 /* Zero out state data */
1019 memset(context, 0, sizeof(*context));
1020 }
1021