Home | History | Annotate | Line # | Download | only in quad
muldi3.c revision 1.2
      1 /*	$NetBSD: muldi3.c,v 1.2 2009/03/15 22:31:12 cegger Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1992, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This software was developed by the Computer Systems Engineering group
      8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  * contributed to Berkeley.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 #if defined(LIBC_SCCS) && !defined(lint)
     38 #if 0
     39 static char sccsid[] = "@(#)muldi3.c	8.1 (Berkeley) 6/4/93";
     40 #else
     41 __RCSID("$NetBSD: muldi3.c,v 1.2 2009/03/15 22:31:12 cegger Exp $");
     42 #endif
     43 #endif /* LIBC_SCCS and not lint */
     44 
     45 #include "quad.h"
     46 
     47 /*
     48  * Multiply two quads.
     49  *
     50  * Our algorithm is based on the following.  Split incoming quad values
     51  * u and v (where u,v >= 0) into
     52  *
     53  *	u = 2^n u1  *  u0	(n = number of bits in `u_int', usu. 32)
     54  *
     55  * and
     56  *
     57  *	v = 2^n v1  *  v0
     58  *
     59  * Then
     60  *
     61  *	uv = 2^2n u1 v1  +  2^n u1 v0  +  2^n v1 u0  +  u0 v0
     62  *	   = 2^2n u1 v1  +     2^n (u1 v0 + v1 u0)   +  u0 v0
     63  *
     64  * Now add 2^n u1 v1 to the first term and subtract it from the middle,
     65  * and add 2^n u0 v0 to the last term and subtract it from the middle.
     66  * This gives:
     67  *
     68  *	uv = (2^2n + 2^n) (u1 v1)  +
     69  *	         (2^n)    (u1 v0 - u1 v1 + u0 v1 - u0 v0)  +
     70  *	       (2^n + 1)  (u0 v0)
     71  *
     72  * Factoring the middle a bit gives us:
     73  *
     74  *	uv = (2^2n + 2^n) (u1 v1)  +			[u1v1 = high]
     75  *		 (2^n)    (u1 - u0) (v0 - v1)  +	[(u1-u0)... = mid]
     76  *	       (2^n + 1)  (u0 v0)			[u0v0 = low]
     77  *
     78  * The terms (u1 v1), (u1 - u0) (v0 - v1), and (u0 v0) can all be done
     79  * in just half the precision of the original.  (Note that either or both
     80  * of (u1 - u0) or (v0 - v1) may be negative.)
     81  *
     82  * This algorithm is from Knuth vol. 2 (2nd ed), section 4.3.3, p. 278.
     83  *
     84  * Since C does not give us a `int * int = quad' operator, we split
     85  * our input quads into two ints, then split the two ints into two
     86  * shorts.  We can then calculate `short * short = int' in native
     87  * arithmetic.
     88  *
     89  * Our product should, strictly speaking, be a `long quad', with 128
     90  * bits, but we are going to discard the upper 64.  In other words,
     91  * we are not interested in uv, but rather in (uv mod 2^2n).  This
     92  * makes some of the terms above vanish, and we get:
     93  *
     94  *	(2^n)(high) + (2^n)(mid) + (2^n + 1)(low)
     95  *
     96  * or
     97  *
     98  *	(2^n)(high + mid + low) + low
     99  *
    100  * Furthermore, `high' and `mid' can be computed mod 2^n, as any factor
    101  * of 2^n in either one will also vanish.  Only `low' need be computed
    102  * mod 2^2n, and only because of the final term above.
    103  */
    104 static quad_t __lmulq(u_int, u_int);
    105 
    106 quad_t
    107 __muldi3(quad_t a, quad_t b)
    108 {
    109 	union uu u, v, low, prod;
    110 	u_int high, mid, udiff, vdiff;
    111 	int negall, negmid;
    112 #define	u1	u.ul[H]
    113 #define	u0	u.ul[L]
    114 #define	v1	v.ul[H]
    115 #define	v0	v.ul[L]
    116 
    117 	/*
    118 	 * Get u and v such that u, v >= 0.  When this is finished,
    119 	 * u1, u0, v1, and v0 will be directly accessible through the
    120 	 * int fields.
    121 	 */
    122 	if (a >= 0)
    123 		u.q = a, negall = 0;
    124 	else
    125 		u.q = -a, negall = 1;
    126 	if (b >= 0)
    127 		v.q = b;
    128 	else
    129 		v.q = -b, negall ^= 1;
    130 
    131 	if (u1 == 0 && v1 == 0) {
    132 		/*
    133 		 * An (I hope) important optimization occurs when u1 and v1
    134 		 * are both 0.  This should be common since most numbers
    135 		 * are small.  Here the product is just u0*v0.
    136 		 */
    137 		prod.q = __lmulq(u0, v0);
    138 	} else {
    139 		/*
    140 		 * Compute the three intermediate products, remembering
    141 		 * whether the middle term is negative.  We can discard
    142 		 * any upper bits in high and mid, so we can use native
    143 		 * u_int * u_int => u_int arithmetic.
    144 		 */
    145 		low.q = __lmulq(u0, v0);
    146 
    147 		if (u1 >= u0)
    148 			negmid = 0, udiff = u1 - u0;
    149 		else
    150 			negmid = 1, udiff = u0 - u1;
    151 		if (v0 >= v1)
    152 			vdiff = v0 - v1;
    153 		else
    154 			vdiff = v1 - v0, negmid ^= 1;
    155 		mid = udiff * vdiff;
    156 
    157 		high = u1 * v1;
    158 
    159 		/*
    160 		 * Assemble the final product.
    161 		 */
    162 		prod.ul[H] = high + (negmid ? -mid : mid) + low.ul[L] +
    163 		    low.ul[H];
    164 		prod.ul[L] = low.ul[L];
    165 	}
    166 	return (negall ? -prod.q : prod.q);
    167 #undef u1
    168 #undef u0
    169 #undef v1
    170 #undef v0
    171 }
    172 
    173 /*
    174  * Multiply two 2N-bit ints to produce a 4N-bit quad, where N is half
    175  * the number of bits in an int (whatever that is---the code below
    176  * does not care as long as quad.h does its part of the bargain---but
    177  * typically N==16).
    178  *
    179  * We use the same algorithm from Knuth, but this time the modulo refinement
    180  * does not apply.  On the other hand, since N is half the size of an int,
    181  * we can get away with native multiplication---none of our input terms
    182  * exceeds (UINT_MAX >> 1).
    183  *
    184  * Note that, for u_int l, the quad-precision result
    185  *
    186  *	l << N
    187  *
    188  * splits into high and low ints as HHALF(l) and LHUP(l) respectively.
    189  */
    190 static quad_t
    191 __lmulq(u_int u, u_int v)
    192 {
    193 	u_int u1, u0, v1, v0, udiff, vdiff, high, mid, low;
    194 	u_int prodh, prodl, was;
    195 	union uu prod;
    196 	int neg;
    197 
    198 	u1 = HHALF(u);
    199 	u0 = LHALF(u);
    200 	v1 = HHALF(v);
    201 	v0 = LHALF(v);
    202 
    203 	low = u0 * v0;
    204 
    205 	/* This is the same small-number optimization as before. */
    206 	if (u1 == 0 && v1 == 0)
    207 		return (low);
    208 
    209 	if (u1 >= u0)
    210 		udiff = u1 - u0, neg = 0;
    211 	else
    212 		udiff = u0 - u1, neg = 1;
    213 	if (v0 >= v1)
    214 		vdiff = v0 - v1;
    215 	else
    216 		vdiff = v1 - v0, neg ^= 1;
    217 	mid = udiff * vdiff;
    218 
    219 	high = u1 * v1;
    220 
    221 	/* prod = (high << 2N) + (high << N); */
    222 	prodh = high + HHALF(high);
    223 	prodl = LHUP(high);
    224 
    225 	/* if (neg) prod -= mid << N; else prod += mid << N; */
    226 	if (neg) {
    227 		was = prodl;
    228 		prodl -= LHUP(mid);
    229 		prodh -= HHALF(mid) + (prodl > was);
    230 	} else {
    231 		was = prodl;
    232 		prodl += LHUP(mid);
    233 		prodh += HHALF(mid) + (prodl < was);
    234 	}
    235 
    236 	/* prod += low << N */
    237 	was = prodl;
    238 	prodl += LHUP(low);
    239 	prodh += HHALF(low) + (prodl < was);
    240 	/* ... + low; */
    241 	if ((prodl += low) < low)
    242 		prodh++;
    243 
    244 	/* return 4N-bit product */
    245 	prod.ul[H] = prodh;
    246 	prod.ul[L] = prodl;
    247 	return (prod.q);
    248 }
    249