Home | History | Annotate | Line # | Download | only in quad
muldi3.c revision 1.3
      1 /*	$NetBSD: muldi3.c,v 1.3 2012/08/06 02:31:54 matt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1992, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This software was developed by the Computer Systems Engineering group
      8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  * contributed to Berkeley.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 #if defined(LIBC_SCCS) && !defined(lint)
     38 #if 0
     39 static char sccsid[] = "@(#)muldi3.c	8.1 (Berkeley) 6/4/93";
     40 #else
     41 __RCSID("$NetBSD: muldi3.c,v 1.3 2012/08/06 02:31:54 matt Exp $");
     42 #endif
     43 #endif /* LIBC_SCCS and not lint */
     44 
     45 #include "quad.h"
     46 
     47 ARM_EABI_ALIAS(__aeabi_lmul, __muldi3)	/* no semicolon */
     48 
     49 /*
     50  * Multiply two quads.
     51  *
     52  * Our algorithm is based on the following.  Split incoming quad values
     53  * u and v (where u,v >= 0) into
     54  *
     55  *	u = 2^n u1  *  u0	(n = number of bits in `u_int', usu. 32)
     56  *
     57  * and
     58  *
     59  *	v = 2^n v1  *  v0
     60  *
     61  * Then
     62  *
     63  *	uv = 2^2n u1 v1  +  2^n u1 v0  +  2^n v1 u0  +  u0 v0
     64  *	   = 2^2n u1 v1  +     2^n (u1 v0 + v1 u0)   +  u0 v0
     65  *
     66  * Now add 2^n u1 v1 to the first term and subtract it from the middle,
     67  * and add 2^n u0 v0 to the last term and subtract it from the middle.
     68  * This gives:
     69  *
     70  *	uv = (2^2n + 2^n) (u1 v1)  +
     71  *	         (2^n)    (u1 v0 - u1 v1 + u0 v1 - u0 v0)  +
     72  *	       (2^n + 1)  (u0 v0)
     73  *
     74  * Factoring the middle a bit gives us:
     75  *
     76  *	uv = (2^2n + 2^n) (u1 v1)  +			[u1v1 = high]
     77  *		 (2^n)    (u1 - u0) (v0 - v1)  +	[(u1-u0)... = mid]
     78  *	       (2^n + 1)  (u0 v0)			[u0v0 = low]
     79  *
     80  * The terms (u1 v1), (u1 - u0) (v0 - v1), and (u0 v0) can all be done
     81  * in just half the precision of the original.  (Note that either or both
     82  * of (u1 - u0) or (v0 - v1) may be negative.)
     83  *
     84  * This algorithm is from Knuth vol. 2 (2nd ed), section 4.3.3, p. 278.
     85  *
     86  * Since C does not give us a `int * int = quad' operator, we split
     87  * our input quads into two ints, then split the two ints into two
     88  * shorts.  We can then calculate `short * short = int' in native
     89  * arithmetic.
     90  *
     91  * Our product should, strictly speaking, be a `long quad', with 128
     92  * bits, but we are going to discard the upper 64.  In other words,
     93  * we are not interested in uv, but rather in (uv mod 2^2n).  This
     94  * makes some of the terms above vanish, and we get:
     95  *
     96  *	(2^n)(high) + (2^n)(mid) + (2^n + 1)(low)
     97  *
     98  * or
     99  *
    100  *	(2^n)(high + mid + low) + low
    101  *
    102  * Furthermore, `high' and `mid' can be computed mod 2^n, as any factor
    103  * of 2^n in either one will also vanish.  Only `low' need be computed
    104  * mod 2^2n, and only because of the final term above.
    105  */
    106 static quad_t __lmulq(u_int, u_int);
    107 
    108 quad_t
    109 __muldi3(quad_t a, quad_t b)
    110 {
    111 	union uu u, v, low, prod;
    112 	u_int high, mid, udiff, vdiff;
    113 	int negall, negmid;
    114 #define	u1	u.ul[H]
    115 #define	u0	u.ul[L]
    116 #define	v1	v.ul[H]
    117 #define	v0	v.ul[L]
    118 
    119 	/*
    120 	 * Get u and v such that u, v >= 0.  When this is finished,
    121 	 * u1, u0, v1, and v0 will be directly accessible through the
    122 	 * int fields.
    123 	 */
    124 	if (a >= 0)
    125 		u.q = a, negall = 0;
    126 	else
    127 		u.q = -a, negall = 1;
    128 	if (b >= 0)
    129 		v.q = b;
    130 	else
    131 		v.q = -b, negall ^= 1;
    132 
    133 	if (u1 == 0 && v1 == 0) {
    134 		/*
    135 		 * An (I hope) important optimization occurs when u1 and v1
    136 		 * are both 0.  This should be common since most numbers
    137 		 * are small.  Here the product is just u0*v0.
    138 		 */
    139 		prod.q = __lmulq(u0, v0);
    140 	} else {
    141 		/*
    142 		 * Compute the three intermediate products, remembering
    143 		 * whether the middle term is negative.  We can discard
    144 		 * any upper bits in high and mid, so we can use native
    145 		 * u_int * u_int => u_int arithmetic.
    146 		 */
    147 		low.q = __lmulq(u0, v0);
    148 
    149 		if (u1 >= u0)
    150 			negmid = 0, udiff = u1 - u0;
    151 		else
    152 			negmid = 1, udiff = u0 - u1;
    153 		if (v0 >= v1)
    154 			vdiff = v0 - v1;
    155 		else
    156 			vdiff = v1 - v0, negmid ^= 1;
    157 		mid = udiff * vdiff;
    158 
    159 		high = u1 * v1;
    160 
    161 		/*
    162 		 * Assemble the final product.
    163 		 */
    164 		prod.ul[H] = high + (negmid ? -mid : mid) + low.ul[L] +
    165 		    low.ul[H];
    166 		prod.ul[L] = low.ul[L];
    167 	}
    168 	return (negall ? -prod.q : prod.q);
    169 #undef u1
    170 #undef u0
    171 #undef v1
    172 #undef v0
    173 }
    174 
    175 /*
    176  * Multiply two 2N-bit ints to produce a 4N-bit quad, where N is half
    177  * the number of bits in an int (whatever that is---the code below
    178  * does not care as long as quad.h does its part of the bargain---but
    179  * typically N==16).
    180  *
    181  * We use the same algorithm from Knuth, but this time the modulo refinement
    182  * does not apply.  On the other hand, since N is half the size of an int,
    183  * we can get away with native multiplication---none of our input terms
    184  * exceeds (UINT_MAX >> 1).
    185  *
    186  * Note that, for u_int l, the quad-precision result
    187  *
    188  *	l << N
    189  *
    190  * splits into high and low ints as HHALF(l) and LHUP(l) respectively.
    191  */
    192 static quad_t
    193 __lmulq(u_int u, u_int v)
    194 {
    195 	u_int u1, u0, v1, v0, udiff, vdiff, high, mid, low;
    196 	u_int prodh, prodl, was;
    197 	union uu prod;
    198 	int neg;
    199 
    200 	u1 = HHALF(u);
    201 	u0 = LHALF(u);
    202 	v1 = HHALF(v);
    203 	v0 = LHALF(v);
    204 
    205 	low = u0 * v0;
    206 
    207 	/* This is the same small-number optimization as before. */
    208 	if (u1 == 0 && v1 == 0)
    209 		return (low);
    210 
    211 	if (u1 >= u0)
    212 		udiff = u1 - u0, neg = 0;
    213 	else
    214 		udiff = u0 - u1, neg = 1;
    215 	if (v0 >= v1)
    216 		vdiff = v0 - v1;
    217 	else
    218 		vdiff = v1 - v0, neg ^= 1;
    219 	mid = udiff * vdiff;
    220 
    221 	high = u1 * v1;
    222 
    223 	/* prod = (high << 2N) + (high << N); */
    224 	prodh = high + HHALF(high);
    225 	prodl = LHUP(high);
    226 
    227 	/* if (neg) prod -= mid << N; else prod += mid << N; */
    228 	if (neg) {
    229 		was = prodl;
    230 		prodl -= LHUP(mid);
    231 		prodh -= HHALF(mid) + (prodl > was);
    232 	} else {
    233 		was = prodl;
    234 		prodl += LHUP(mid);
    235 		prodh += HHALF(mid) + (prodl < was);
    236 	}
    237 
    238 	/* prod += low << N */
    239 	was = prodl;
    240 	prodl += LHUP(low);
    241 	prodh += HHALF(low) + (prodl < was);
    242 	/* ... + low; */
    243 	if ((prodl += low) < low)
    244 		prodh++;
    245 
    246 	/* return 4N-bit product */
    247 	prod.ul[H] = prodh;
    248 	prod.ul[L] = prodl;
    249 	return (prod.q);
    250 }
    251