1 1.4 matt /* $NetBSD: qdivrem.c,v 1.4 2012/03/20 16:21:41 matt Exp $ */ 2 1.1 christos 3 1.1 christos /*- 4 1.1 christos * Copyright (c) 1992, 1993 5 1.1 christos * The Regents of the University of California. All rights reserved. 6 1.1 christos * 7 1.1 christos * This software was developed by the Computer Systems Engineering group 8 1.1 christos * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 9 1.1 christos * contributed to Berkeley. 10 1.1 christos * 11 1.1 christos * Redistribution and use in source and binary forms, with or without 12 1.1 christos * modification, are permitted provided that the following conditions 13 1.1 christos * are met: 14 1.1 christos * 1. Redistributions of source code must retain the above copyright 15 1.1 christos * notice, this list of conditions and the following disclaimer. 16 1.1 christos * 2. Redistributions in binary form must reproduce the above copyright 17 1.1 christos * notice, this list of conditions and the following disclaimer in the 18 1.1 christos * documentation and/or other materials provided with the distribution. 19 1.1 christos * 3. Neither the name of the University nor the names of its contributors 20 1.1 christos * may be used to endorse or promote products derived from this software 21 1.1 christos * without specific prior written permission. 22 1.1 christos * 23 1.1 christos * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 1.1 christos * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 1.1 christos * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 1.1 christos * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 1.1 christos * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 1.1 christos * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 1.1 christos * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 1.1 christos * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 1.1 christos * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 1.1 christos * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 1.1 christos * SUCH DAMAGE. 34 1.1 christos */ 35 1.1 christos 36 1.1 christos #include <sys/cdefs.h> 37 1.1 christos #if defined(LIBC_SCCS) && !defined(lint) 38 1.1 christos #if 0 39 1.1 christos static char sccsid[] = "@(#)qdivrem.c 8.1 (Berkeley) 6/4/93"; 40 1.1 christos #else 41 1.4 matt __RCSID("$NetBSD: qdivrem.c,v 1.4 2012/03/20 16:21:41 matt Exp $"); 42 1.1 christos #endif 43 1.1 christos #endif /* LIBC_SCCS and not lint */ 44 1.1 christos 45 1.1 christos /* 46 1.1 christos * Multiprecision divide. This algorithm is from Knuth vol. 2 (2nd ed), 47 1.1 christos * section 4.3.1, pp. 257--259. 48 1.1 christos */ 49 1.1 christos 50 1.1 christos #include "quad.h" 51 1.1 christos 52 1.3 christos #define B ((int)1 << (unsigned int)HALF_BITS) /* digit base */ 53 1.1 christos 54 1.1 christos /* Combine two `digits' to make a single two-digit number. */ 55 1.3 christos #define COMBINE(a, b) (((u_int)(a) << (unsigned int)HALF_BITS) | (b)) 56 1.1 christos 57 1.1 christos /* select a type for digits in base B: use unsigned short if they fit */ 58 1.1 christos #if UINT_MAX == 0xffffffffU && USHRT_MAX >= 0xffff 59 1.1 christos typedef unsigned short digit; 60 1.1 christos #else 61 1.1 christos typedef u_int digit; 62 1.1 christos #endif 63 1.1 christos 64 1.4 matt static void shl(digit *p, int len, int sh); 65 1.1 christos 66 1.1 christos /* 67 1.1 christos * __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v. 68 1.1 christos * 69 1.1 christos * We do this in base 2-sup-HALF_BITS, so that all intermediate products 70 1.1 christos * fit within u_int. As a consequence, the maximum length dividend and 71 1.1 christos * divisor are 4 `digits' in this base (they are shorter if they have 72 1.1 christos * leading zeros). 73 1.1 christos */ 74 1.1 christos u_quad_t 75 1.2 cegger __qdivrem(u_quad_t uq, u_quad_t vq, u_quad_t *arq) 76 1.1 christos { 77 1.1 christos union uu tmp; 78 1.1 christos digit *u, *v, *q; 79 1.1 christos digit v1, v2; 80 1.1 christos u_int qhat, rhat, t; 81 1.1 christos int m, n, d, j, i; 82 1.1 christos digit uspace[5], vspace[5], qspace[5]; 83 1.1 christos 84 1.1 christos /* 85 1.1 christos * Take care of special cases: divide by zero, and u < v. 86 1.1 christos */ 87 1.1 christos if (vq == 0) { 88 1.1 christos /* divide by zero. */ 89 1.1 christos static volatile const unsigned int zero = 0; 90 1.1 christos 91 1.1 christos tmp.ul[H] = tmp.ul[L] = 1 / zero; 92 1.1 christos if (arq) 93 1.1 christos *arq = uq; 94 1.1 christos return (tmp.q); 95 1.1 christos } 96 1.1 christos if (uq < vq) { 97 1.1 christos if (arq) 98 1.1 christos *arq = uq; 99 1.1 christos return (0); 100 1.1 christos } 101 1.1 christos u = &uspace[0]; 102 1.1 christos v = &vspace[0]; 103 1.1 christos q = &qspace[0]; 104 1.1 christos 105 1.1 christos /* 106 1.1 christos * Break dividend and divisor into digits in base B, then 107 1.1 christos * count leading zeros to determine m and n. When done, we 108 1.1 christos * will have: 109 1.1 christos * u = (u[1]u[2]...u[m+n]) sub B 110 1.1 christos * v = (v[1]v[2]...v[n]) sub B 111 1.1 christos * v[1] != 0 112 1.1 christos * 1 < n <= 4 (if n = 1, we use a different division algorithm) 113 1.1 christos * m >= 0 (otherwise u < v, which we already checked) 114 1.1 christos * m + n = 4 115 1.1 christos * and thus 116 1.1 christos * m = 4 - n <= 2 117 1.1 christos */ 118 1.1 christos tmp.uq = uq; 119 1.1 christos u[0] = 0; 120 1.1 christos u[1] = (digit)HHALF(tmp.ul[H]); 121 1.1 christos u[2] = (digit)LHALF(tmp.ul[H]); 122 1.1 christos u[3] = (digit)HHALF(tmp.ul[L]); 123 1.1 christos u[4] = (digit)LHALF(tmp.ul[L]); 124 1.1 christos tmp.uq = vq; 125 1.1 christos v[1] = (digit)HHALF(tmp.ul[H]); 126 1.1 christos v[2] = (digit)LHALF(tmp.ul[H]); 127 1.1 christos v[3] = (digit)HHALF(tmp.ul[L]); 128 1.1 christos v[4] = (digit)LHALF(tmp.ul[L]); 129 1.1 christos for (n = 4; v[1] == 0; v++) { 130 1.1 christos if (--n == 1) { 131 1.1 christos u_int rbj; /* r*B+u[j] (not root boy jim) */ 132 1.1 christos digit q1, q2, q3, q4; 133 1.1 christos 134 1.1 christos /* 135 1.1 christos * Change of plan, per exercise 16. 136 1.1 christos * r = 0; 137 1.1 christos * for j = 1..4: 138 1.1 christos * q[j] = floor((r*B + u[j]) / v), 139 1.1 christos * r = (r*B + u[j]) % v; 140 1.1 christos * We unroll this completely here. 141 1.1 christos */ 142 1.1 christos t = v[2]; /* nonzero, by definition */ 143 1.1 christos q1 = (digit)(u[1] / t); 144 1.1 christos rbj = COMBINE(u[1] % t, u[2]); 145 1.1 christos q2 = (digit)(rbj / t); 146 1.1 christos rbj = COMBINE(rbj % t, u[3]); 147 1.1 christos q3 = (digit)(rbj / t); 148 1.1 christos rbj = COMBINE(rbj % t, u[4]); 149 1.1 christos q4 = (digit)(rbj / t); 150 1.1 christos if (arq) 151 1.1 christos *arq = rbj % t; 152 1.1 christos tmp.ul[H] = COMBINE(q1, q2); 153 1.1 christos tmp.ul[L] = COMBINE(q3, q4); 154 1.1 christos return (tmp.q); 155 1.1 christos } 156 1.1 christos } 157 1.1 christos 158 1.1 christos /* 159 1.1 christos * By adjusting q once we determine m, we can guarantee that 160 1.1 christos * there is a complete four-digit quotient at &qspace[1] when 161 1.1 christos * we finally stop. 162 1.1 christos */ 163 1.1 christos for (m = 4 - n; u[1] == 0; u++) 164 1.1 christos m--; 165 1.1 christos for (i = 4 - m; --i >= 0;) 166 1.1 christos q[i] = 0; 167 1.1 christos q += 4 - m; 168 1.1 christos 169 1.1 christos /* 170 1.1 christos * Here we run Program D, translated from MIX to C and acquiring 171 1.1 christos * a few minor changes. 172 1.1 christos * 173 1.1 christos * D1: choose multiplier 1 << d to ensure v[1] >= B/2. 174 1.1 christos */ 175 1.1 christos d = 0; 176 1.3 christos for (t = v[1]; t < B / 2; t <<= (unsigned int)1) 177 1.1 christos d++; 178 1.1 christos if (d > 0) { 179 1.1 christos shl(&u[0], m + n, d); /* u <<= d */ 180 1.1 christos shl(&v[1], n - 1, d); /* v <<= d */ 181 1.1 christos } 182 1.1 christos /* 183 1.1 christos * D2: j = 0. 184 1.1 christos */ 185 1.1 christos j = 0; 186 1.1 christos v1 = v[1]; /* for D3 -- note that v[1..n] are constant */ 187 1.1 christos v2 = v[2]; /* for D3 */ 188 1.1 christos do { 189 1.1 christos digit uj0, uj1, uj2; 190 1.1 christos 191 1.1 christos /* 192 1.1 christos * D3: Calculate qhat (\^q, in TeX notation). 193 1.1 christos * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and 194 1.1 christos * let rhat = (u[j]*B + u[j+1]) mod v[1]. 195 1.1 christos * While rhat < B and v[2]*qhat > rhat*B+u[j+2], 196 1.1 christos * decrement qhat and increase rhat correspondingly. 197 1.1 christos * Note that if rhat >= B, v[2]*qhat < rhat*B. 198 1.1 christos */ 199 1.1 christos uj0 = u[j + 0]; /* for D3 only -- note that u[j+...] change */ 200 1.1 christos uj1 = u[j + 1]; /* for D3 only */ 201 1.1 christos uj2 = u[j + 2]; /* for D3 only */ 202 1.1 christos if (uj0 == v1) { 203 1.1 christos qhat = B; 204 1.1 christos rhat = uj1; 205 1.1 christos goto qhat_too_big; 206 1.1 christos } else { 207 1.1 christos u_int nn = COMBINE(uj0, uj1); 208 1.1 christos qhat = nn / v1; 209 1.1 christos rhat = nn % v1; 210 1.1 christos } 211 1.1 christos while (v2 * qhat > COMBINE(rhat, uj2)) { 212 1.1 christos qhat_too_big: 213 1.1 christos qhat--; 214 1.1 christos if ((rhat += v1) >= B) 215 1.1 christos break; 216 1.1 christos } 217 1.1 christos /* 218 1.1 christos * D4: Multiply and subtract. 219 1.1 christos * The variable `t' holds any borrows across the loop. 220 1.1 christos * We split this up so that we do not require v[0] = 0, 221 1.1 christos * and to eliminate a final special case. 222 1.1 christos */ 223 1.1 christos for (t = 0, i = n; i > 0; i--) { 224 1.1 christos t = u[i + j] - v[i] * qhat - t; 225 1.1 christos u[i + j] = (digit)LHALF(t); 226 1.1 christos t = (B - HHALF(t)) & (B - 1); 227 1.1 christos } 228 1.1 christos t = u[j] - t; 229 1.1 christos u[j] = (digit)LHALF(t); 230 1.1 christos /* 231 1.1 christos * D5: test remainder. 232 1.1 christos * There is a borrow if and only if HHALF(t) is nonzero; 233 1.1 christos * in that (rare) case, qhat was too large (by exactly 1). 234 1.1 christos * Fix it by adding v[1..n] to u[j..j+n]. 235 1.1 christos */ 236 1.1 christos if (HHALF(t)) { 237 1.1 christos qhat--; 238 1.1 christos for (t = 0, i = n; i > 0; i--) { /* D6: add back. */ 239 1.1 christos t += u[i + j] + v[i]; 240 1.1 christos u[i + j] = (digit)LHALF(t); 241 1.1 christos t = HHALF(t); 242 1.1 christos } 243 1.1 christos u[j] = (digit)LHALF(u[j] + t); 244 1.1 christos } 245 1.1 christos q[j] = (digit)qhat; 246 1.1 christos } while (++j <= m); /* D7: loop on j. */ 247 1.1 christos 248 1.1 christos /* 249 1.1 christos * If caller wants the remainder, we have to calculate it as 250 1.1 christos * u[m..m+n] >> d (this is at most n digits and thus fits in 251 1.1 christos * u[m+1..m+n], but we may need more source digits). 252 1.1 christos */ 253 1.1 christos if (arq) { 254 1.1 christos if (d) { 255 1.1 christos for (i = m + n; i > m; --i) 256 1.1 christos u[i] = (digit)(((u_int)u[i] >> d) | 257 1.3 christos LHALF((u_int)u[i - 1] << (unsigned int)(HALF_BITS - d))); 258 1.1 christos u[i] = 0; 259 1.1 christos } 260 1.1 christos tmp.ul[H] = COMBINE(uspace[1], uspace[2]); 261 1.1 christos tmp.ul[L] = COMBINE(uspace[3], uspace[4]); 262 1.1 christos *arq = tmp.q; 263 1.1 christos } 264 1.1 christos 265 1.1 christos tmp.ul[H] = COMBINE(qspace[1], qspace[2]); 266 1.1 christos tmp.ul[L] = COMBINE(qspace[3], qspace[4]); 267 1.1 christos return (tmp.q); 268 1.1 christos } 269 1.1 christos 270 1.1 christos /* 271 1.1 christos * Shift p[0]..p[len] left `sh' bits, ignoring any bits that 272 1.1 christos * `fall out' the left (there never will be any such anyway). 273 1.1 christos * We may assume len >= 0. NOTE THAT THIS WRITES len+1 DIGITS. 274 1.1 christos */ 275 1.1 christos static void 276 1.1 christos shl(digit *p, int len, int sh) 277 1.1 christos { 278 1.1 christos int i; 279 1.1 christos 280 1.1 christos for (i = 0; i < len; i++) 281 1.1 christos p[i] = (digit)(LHALF((u_int)p[i] << sh) | 282 1.1 christos ((u_int)p[i + 1] >> (HALF_BITS - sh))); 283 1.1 christos p[i] = (digit)(LHALF((u_int)p[i] << sh)); 284 1.1 christos } 285