Home | History | Annotate | Line # | Download | only in stdlib
random.c revision 1.2
      1 /*	$NetBSD: random.c,v 1.2 2005/12/21 14:19:45 christos Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1983, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 #if !defined(_KERNEL) && !defined(_STANDALONE)
     33 #include <sys/cdefs.h>
     34 #if defined(LIBC_SCCS) && !defined(lint)
     35 #if 0
     36 static char sccsid[] = "@(#)random.c	8.2 (Berkeley) 5/19/95";
     37 #else
     38 __RCSID("$NetBSD: random.c,v 1.2 2005/12/21 14:19:45 christos Exp $");
     39 #endif
     40 #endif /* LIBC_SCCS and not lint */
     41 
     42 #include "namespace.h"
     43 
     44 #include <assert.h>
     45 #include <errno.h>
     46 #include <stdlib.h>
     47 #include "reentrant.h"
     48 
     49 #ifdef __weak_alias
     50 __weak_alias(initstate,_initstate)
     51 __weak_alias(random,_random)
     52 __weak_alias(setstate,_setstate)
     53 __weak_alias(srandom,_srandom)
     54 #endif
     55 
     56 
     57 #ifdef _REENTRANT
     58 static mutex_t random_mutex = MUTEX_INITIALIZER;
     59 #endif
     60 #else
     61 #include <lib/libkern/libkern.h>
     62 #define mutex_lock(a)	(void)0
     63 #define mutex_unlock(a) (void)0
     64 #endif
     65 
     66 static void srandom_unlocked(unsigned int);
     67 static long random_unlocked(void);
     68 
     69 #define USE_BETTER_RANDOM
     70 
     71 /*
     72  * random.c:
     73  *
     74  * An improved random number generation package.  In addition to the standard
     75  * rand()/srand() like interface, this package also has a special state info
     76  * interface.  The initstate() routine is called with a seed, an array of
     77  * bytes, and a count of how many bytes are being passed in; this array is
     78  * then initialized to contain information for random number generation with
     79  * that much state information.  Good sizes for the amount of state
     80  * information are 32, 64, 128, and 256 bytes.  The state can be switched by
     81  * calling the setstate() routine with the same array as was initiallized
     82  * with initstate().  By default, the package runs with 128 bytes of state
     83  * information and generates far better random numbers than a linear
     84  * congruential generator.  If the amount of state information is less than
     85  * 32 bytes, a simple linear congruential R.N.G. is used.
     86  *
     87  * Internally, the state information is treated as an array of ints; the
     88  * zeroeth element of the array is the type of R.N.G. being used (small
     89  * integer); the remainder of the array is the state information for the
     90  * R.N.G.  Thus, 32 bytes of state information will give 7 ints worth of
     91  * state information, which will allow a degree seven polynomial.  (Note:
     92  * the zeroeth word of state information also has some other information
     93  * stored in it -- see setstate() for details).
     94  *
     95  * The random number generation technique is a linear feedback shift register
     96  * approach, employing trinomials (since there are fewer terms to sum up that
     97  * way).  In this approach, the least significant bit of all the numbers in
     98  * the state table will act as a linear feedback shift register, and will
     99  * have period 2^deg - 1 (where deg is the degree of the polynomial being
    100  * used, assuming that the polynomial is irreducible and primitive).  The
    101  * higher order bits will have longer periods, since their values are also
    102  * influenced by pseudo-random carries out of the lower bits.  The total
    103  * period of the generator is approximately deg*(2**deg - 1); thus doubling
    104  * the amount of state information has a vast influence on the period of the
    105  * generator.  Note: the deg*(2**deg - 1) is an approximation only good for
    106  * large deg, when the period of the shift register is the dominant factor.
    107  * With deg equal to seven, the period is actually much longer than the
    108  * 7*(2**7 - 1) predicted by this formula.
    109  *
    110  * Modified 28 December 1994 by Jacob S. Rosenberg.
    111  * The following changes have been made:
    112  * All references to the type u_int have been changed to unsigned long.
    113  * All references to type int have been changed to type long.  Other
    114  * cleanups have been made as well.  A warning for both initstate and
    115  * setstate has been inserted to the effect that on Sparc platforms
    116  * the 'arg_state' variable must be forced to begin on word boundaries.
    117  * This can be easily done by casting a long integer array to char *.
    118  * The overall logic has been left STRICTLY alone.  This software was
    119  * tested on both a VAX and Sun SpacsStation with exactly the same
    120  * results.  The new version and the original give IDENTICAL results.
    121  * The new version is somewhat faster than the original.  As the
    122  * documentation says:  "By default, the package runs with 128 bytes of
    123  * state information and generates far better random numbers than a linear
    124  * congruential generator.  If the amount of state information is less than
    125  * 32 bytes, a simple linear congruential R.N.G. is used."  For a buffer of
    126  * 128 bytes, this new version runs about 19 percent faster and for a 16
    127  * byte buffer it is about 5 percent faster.
    128  *
    129  * Modified 07 January 2002 by Jason R. Thorpe.
    130  * The following changes have been made:
    131  * All the references to "long" have been changed back to "int".  This
    132  * fixes memory corruption problems on LP64 platforms.
    133  */
    134 
    135 /*
    136  * For each of the currently supported random number generators, we have a
    137  * break value on the amount of state information (you need at least this
    138  * many bytes of state info to support this random number generator), a degree
    139  * for the polynomial (actually a trinomial) that the R.N.G. is based on, and
    140  * the separation between the two lower order coefficients of the trinomial.
    141  */
    142 #define	TYPE_0		0		/* linear congruential */
    143 #define	BREAK_0		8
    144 #define	DEG_0		0
    145 #define	SEP_0		0
    146 
    147 #define	TYPE_1		1		/* x**7 + x**3 + 1 */
    148 #define	BREAK_1		32
    149 #define	DEG_1		7
    150 #define	SEP_1		3
    151 
    152 #define	TYPE_2		2		/* x**15 + x + 1 */
    153 #define	BREAK_2		64
    154 #define	DEG_2		15
    155 #define	SEP_2		1
    156 
    157 #define	TYPE_3		3		/* x**31 + x**3 + 1 */
    158 #define	BREAK_3		128
    159 #define	DEG_3		31
    160 #define	SEP_3		3
    161 
    162 #define	TYPE_4		4		/* x**63 + x + 1 */
    163 #define	BREAK_4		256
    164 #define	DEG_4		63
    165 #define	SEP_4		1
    166 
    167 /*
    168  * Array versions of the above information to make code run faster --
    169  * relies on fact that TYPE_i == i.
    170  */
    171 #define	MAX_TYPES	5		/* max number of types above */
    172 
    173 static const int degrees[MAX_TYPES] =	{ DEG_0, DEG_1, DEG_2, DEG_3, DEG_4 };
    174 static const int seps[MAX_TYPES] =	{ SEP_0, SEP_1, SEP_2, SEP_3, SEP_4 };
    175 
    176 /*
    177  * Initially, everything is set up as if from:
    178  *
    179  *	initstate(1, &randtbl, 128);
    180  *
    181  * Note that this initialization takes advantage of the fact that srandom()
    182  * advances the front and rear pointers 10*rand_deg times, and hence the
    183  * rear pointer which starts at 0 will also end up at zero; thus the zeroeth
    184  * element of the state information, which contains info about the current
    185  * position of the rear pointer is just
    186  *
    187  *	MAX_TYPES * (rptr - state) + TYPE_3 == TYPE_3.
    188  */
    189 
    190 /* LINTED */
    191 static int randtbl[DEG_3 + 1] = {
    192 	TYPE_3,
    193 #ifdef USE_BETTER_RANDOM
    194 	0x991539b1, 0x16a5bce3, 0x6774a4cd,
    195 	0x3e01511e, 0x4e508aaa, 0x61048c05,
    196 	0xf5500617, 0x846b7115, 0x6a19892c,
    197 	0x896a97af, 0xdb48f936, 0x14898454,
    198 	0x37ffd106, 0xb58bff9c, 0x59e17104,
    199 	0xcf918a49, 0x09378c83, 0x52c7a471,
    200 	0x8d293ea9, 0x1f4fc301, 0xc3db71be,
    201 	0x39b44e1c, 0xf8a44ef9, 0x4c8b80b1,
    202 	0x19edc328, 0x87bf4bdd, 0xc9b240e5,
    203 	0xe9ee4b1b, 0x4382aee7, 0x535b6b41,
    204 	0xf3bec5da,
    205 #else
    206 	0x9a319039, 0x32d9c024, 0x9b663182,
    207 	0x5da1f342, 0xde3b81e0, 0xdf0a6fb5,
    208 	0xf103bc02, 0x48f340fb, 0x7449e56b,
    209 	0xbeb1dbb0, 0xab5c5918, 0x946554fd,
    210 	0x8c2e680f, 0xeb3d799f, 0xb11ee0b7,
    211 	0x2d436b86, 0xda672e2a, 0x1588ca88,
    212 	0xe369735d, 0x904f35f7, 0xd7158fd6,
    213 	0x6fa6f051, 0x616e6b96, 0xac94efdc,
    214 	0x36413f93, 0xc622c298, 0xf5a42ab8,
    215 	0x8a88d77b, 0xf5ad9d0e, 0x8999220b,
    216 	0x27fb47b9,
    217 #endif /* USE_BETTER_RANDOM */
    218 };
    219 
    220 /*
    221  * fptr and rptr are two pointers into the state info, a front and a rear
    222  * pointer.  These two pointers are always rand_sep places aparts, as they
    223  * cycle cyclically through the state information.  (Yes, this does mean we
    224  * could get away with just one pointer, but the code for random() is more
    225  * efficient this way).  The pointers are left positioned as they would be
    226  * from the call
    227  *
    228  *	initstate(1, randtbl, 128);
    229  *
    230  * (The position of the rear pointer, rptr, is really 0 (as explained above
    231  * in the initialization of randtbl) because the state table pointer is set
    232  * to point to randtbl[1] (as explained below).
    233  */
    234 static int *fptr = &randtbl[SEP_3 + 1];
    235 static int *rptr = &randtbl[1];
    236 
    237 /*
    238  * The following things are the pointer to the state information table, the
    239  * type of the current generator, the degree of the current polynomial being
    240  * used, and the separation between the two pointers.  Note that for efficiency
    241  * of random(), we remember the first location of the state information, not
    242  * the zeroeth.  Hence it is valid to access state[-1], which is used to
    243  * store the type of the R.N.G.  Also, we remember the last location, since
    244  * this is more efficient than indexing every time to find the address of
    245  * the last element to see if the front and rear pointers have wrapped.
    246  */
    247 static int *state = &randtbl[1];
    248 static int rand_type = TYPE_3;
    249 static int rand_deg = DEG_3;
    250 static int rand_sep = SEP_3;
    251 static int *end_ptr = &randtbl[DEG_3 + 1];
    252 
    253 /*
    254  * srandom:
    255  *
    256  * Initialize the random number generator based on the given seed.  If the
    257  * type is the trivial no-state-information type, just remember the seed.
    258  * Otherwise, initializes state[] based on the given "seed" via a linear
    259  * congruential generator.  Then, the pointers are set to known locations
    260  * that are exactly rand_sep places apart.  Lastly, it cycles the state
    261  * information a given number of times to get rid of any initial dependencies
    262  * introduced by the L.C.R.N.G.  Note that the initialization of randtbl[]
    263  * for default usage relies on values produced by this routine.
    264  */
    265 static void
    266 srandom_unlocked(unsigned int x)
    267 {
    268 	int i;
    269 
    270 	if (rand_type == TYPE_0)
    271 		state[0] = x;
    272 	else {
    273 		state[0] = x;
    274 		for (i = 1; i < rand_deg; i++) {
    275 #ifdef USE_BETTER_RANDOM
    276 			int x1, hi, lo, t;
    277 
    278 			/*
    279 			 * Compute x[n + 1] = (7^5 * x[n]) mod (2^31 - 1).
    280 			 * From "Random number generators: good ones are hard
    281 			 * to find", Park and Miller, Communications of the ACM,
    282 			 * vol. 31, no. 10,
    283 			 * October 1988, p. 1195.
    284 			 */
    285 			x1 = state[i - 1];
    286 			hi = x1 / 127773;
    287 			lo = x1 % 127773;
    288 			t = 16807 * lo - 2836 * hi;
    289 			if (t <= 0)
    290 				t += 0x7fffffff;
    291 			state[i] = t;
    292 #else
    293 			state[i] = 1103515245 * state[i - 1] + 12345;
    294 #endif /* USE_BETTER_RANDOM */
    295 		}
    296 		fptr = &state[rand_sep];
    297 		rptr = &state[0];
    298 		for (i = 0; i < 10 * rand_deg; i++)
    299 			(void)random_unlocked();
    300 	}
    301 }
    302 
    303 void
    304 srandom(unsigned long x)
    305 {
    306 
    307 	mutex_lock(&random_mutex);
    308 	srandom_unlocked((unsigned int) x);
    309 	mutex_unlock(&random_mutex);
    310 }
    311 
    312 /*
    313  * initstate:
    314  *
    315  * Initialize the state information in the given array of n bytes for future
    316  * random number generation.  Based on the number of bytes we are given, and
    317  * the break values for the different R.N.G.'s, we choose the best (largest)
    318  * one we can and set things up for it.  srandom() is then called to
    319  * initialize the state information.
    320  *
    321  * Note that on return from srandom(), we set state[-1] to be the type
    322  * multiplexed with the current value of the rear pointer; this is so
    323  * successive calls to initstate() won't lose this information and will be
    324  * able to restart with setstate().
    325  *
    326  * Note: the first thing we do is save the current state, if any, just like
    327  * setstate() so that it doesn't matter when initstate is called.
    328  *
    329  * Returns a pointer to the old state.
    330  *
    331  * Note: The Sparc platform requires that arg_state begin on an int
    332  * word boundary; otherwise a bus error will occur. Even so, lint will
    333  * complain about mis-alignment, but you should disregard these messages.
    334  */
    335 char *
    336 initstate(
    337 	unsigned long seed,		/* seed for R.N.G. */
    338 	char *arg_state,		/* pointer to state array */
    339 	size_t n)			/* # bytes of state info */
    340 {
    341 	void *ostate = (void *)(&state[-1]);
    342 	int *int_arg_state;
    343 
    344 	_DIAGASSERT(arg_state != NULL);
    345 
    346 	int_arg_state = (int *)(void *)arg_state;
    347 
    348 	mutex_lock(&random_mutex);
    349 	if (rand_type == TYPE_0)
    350 		state[-1] = rand_type;
    351 	else
    352 		state[-1] = MAX_TYPES * (int)(rptr - state) + rand_type;
    353 	if (n < BREAK_0) {
    354 		mutex_unlock(&random_mutex);
    355 		return (NULL);
    356 	} else if (n < BREAK_1) {
    357 		rand_type = TYPE_0;
    358 		rand_deg = DEG_0;
    359 		rand_sep = SEP_0;
    360 	} else if (n < BREAK_2) {
    361 		rand_type = TYPE_1;
    362 		rand_deg = DEG_1;
    363 		rand_sep = SEP_1;
    364 	} else if (n < BREAK_3) {
    365 		rand_type = TYPE_2;
    366 		rand_deg = DEG_2;
    367 		rand_sep = SEP_2;
    368 	} else if (n < BREAK_4) {
    369 		rand_type = TYPE_3;
    370 		rand_deg = DEG_3;
    371 		rand_sep = SEP_3;
    372 	} else {
    373 		rand_type = TYPE_4;
    374 		rand_deg = DEG_4;
    375 		rand_sep = SEP_4;
    376 	}
    377 	state = (int *) (int_arg_state + 1); /* first location */
    378 	end_ptr = &state[rand_deg];	/* must set end_ptr before srandom */
    379 	srandom_unlocked((unsigned int) seed);
    380 	if (rand_type == TYPE_0)
    381 		int_arg_state[0] = rand_type;
    382 	else
    383 		int_arg_state[0] = MAX_TYPES * (int)(rptr - state) + rand_type;
    384 	mutex_unlock(&random_mutex);
    385 	return((char *)ostate);
    386 }
    387 
    388 /*
    389  * setstate:
    390  *
    391  * Restore the state from the given state array.
    392  *
    393  * Note: it is important that we also remember the locations of the pointers
    394  * in the current state information, and restore the locations of the pointers
    395  * from the old state information.  This is done by multiplexing the pointer
    396  * location into the zeroeth word of the state information.
    397  *
    398  * Note that due to the order in which things are done, it is OK to call
    399  * setstate() with the same state as the current state.
    400  *
    401  * Returns a pointer to the old state information.
    402  *
    403  * Note: The Sparc platform requires that arg_state begin on a long
    404  * word boundary; otherwise a bus error will occur. Even so, lint will
    405  * complain about mis-alignment, but you should disregard these messages.
    406  */
    407 char *
    408 setstate(char *arg_state)		/* pointer to state array */
    409 {
    410 	int *new_state;
    411 	int type;
    412 	int rear;
    413 	void *ostate = (void *)(&state[-1]);
    414 
    415 	_DIAGASSERT(arg_state != NULL);
    416 
    417 	new_state = (int *)(void *)arg_state;
    418 	type = (int)(new_state[0] % MAX_TYPES);
    419 	rear = (int)(new_state[0] / MAX_TYPES);
    420 
    421 	mutex_lock(&random_mutex);
    422 	if (rand_type == TYPE_0)
    423 		state[-1] = rand_type;
    424 	else
    425 		state[-1] = MAX_TYPES * (int)(rptr - state) + rand_type;
    426 	switch(type) {
    427 	case TYPE_0:
    428 	case TYPE_1:
    429 	case TYPE_2:
    430 	case TYPE_3:
    431 	case TYPE_4:
    432 		rand_type = type;
    433 		rand_deg = degrees[type];
    434 		rand_sep = seps[type];
    435 		break;
    436 	default:
    437 		mutex_unlock(&random_mutex);
    438 		return (NULL);
    439 	}
    440 	state = (int *) (new_state + 1);
    441 	if (rand_type != TYPE_0) {
    442 		rptr = &state[rear];
    443 		fptr = &state[(rear + rand_sep) % rand_deg];
    444 	}
    445 	end_ptr = &state[rand_deg];		/* set end_ptr too */
    446 	mutex_unlock(&random_mutex);
    447 	return((char *)ostate);
    448 }
    449 
    450 /*
    451  * random:
    452  *
    453  * If we are using the trivial TYPE_0 R.N.G., just do the old linear
    454  * congruential bit.  Otherwise, we do our fancy trinomial stuff, which is
    455  * the same in all the other cases due to all the global variables that have
    456  * been set up.  The basic operation is to add the number at the rear pointer
    457  * into the one at the front pointer.  Then both pointers are advanced to
    458  * the next location cyclically in the table.  The value returned is the sum
    459  * generated, reduced to 31 bits by throwing away the "least random" low bit.
    460  *
    461  * Note: the code takes advantage of the fact that both the front and
    462  * rear pointers can't wrap on the same call by not testing the rear
    463  * pointer if the front one has wrapped.
    464  *
    465  * Returns a 31-bit random number.
    466  */
    467 static long
    468 random_unlocked(void)
    469 {
    470 	int i;
    471 	int *f, *r;
    472 
    473 	if (rand_type == TYPE_0) {
    474 		i = state[0];
    475 		state[0] = i = (i * 1103515245 + 12345) & 0x7fffffff;
    476 	} else {
    477 		/*
    478 		 * Use local variables rather than static variables for speed.
    479 		 */
    480 		f = fptr; r = rptr;
    481 		*f += *r;
    482 		/* chucking least random bit */
    483 		i = ((unsigned int)*f >> 1) & 0x7fffffff;
    484 		if (++f >= end_ptr) {
    485 			f = state;
    486 			++r;
    487 		}
    488 		else if (++r >= end_ptr) {
    489 			r = state;
    490 		}
    491 
    492 		fptr = f; rptr = r;
    493 	}
    494 	return(i);
    495 }
    496 
    497 long
    498 random(void)
    499 {
    500 	long r;
    501 
    502 	mutex_lock(&random_mutex);
    503 	r = random_unlocked();
    504 	mutex_unlock(&random_mutex);
    505 	return (r);
    506 }
    507