prop_dictionary.c revision 1.19 1 /* $NetBSD: prop_dictionary.c,v 1.19 2007/08/16 21:44:07 joerg Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <prop/prop_array.h>
40 #include <prop/prop_dictionary.h>
41 #include <prop/prop_string.h>
42 #include "prop_object_impl.h"
43 #include "prop_rb_impl.h"
44
45 #if !defined(_KERNEL) && !defined(_STANDALONE)
46 #include <errno.h>
47 #endif
48
49 /*
50 * We implement these like arrays, but we keep them sorted by key.
51 * This allows us to binary-search as well as keep externalized output
52 * sane-looking for human eyes.
53 */
54
55 #define EXPAND_STEP 16
56
57 /*
58 * prop_dictionary_keysym_t is allocated with space at the end to hold the
59 * key. This must be a regular object so that we can maintain sane iterator
60 * semantics -- we don't want to require that the caller release the result
61 * of prop_object_iterator_next().
62 *
63 * We'd like to have some small'ish keysym objects for up-to-16 characters
64 * in a key, some for up-to-32 characters in a key, and then a final bucket
65 * for up-to-128 characters in a key (not including NUL). Keys longer than
66 * 128 characters are not allowed.
67 */
68 struct _prop_dictionary_keysym {
69 struct _prop_object pdk_obj;
70 size_t pdk_size;
71 struct rb_node pdk_link;
72 char pdk_key[1];
73 /* actually variable length */
74 };
75
76 #define RBNODE_TO_PDK(n) \
77 ((struct _prop_dictionary_keysym *) \
78 ((uintptr_t)n - offsetof(struct _prop_dictionary_keysym, pdk_link)))
79
80 /* pdk_key[1] takes care of the NUL */
81 #define PDK_SIZE_16 (sizeof(struct _prop_dictionary_keysym) + 16)
82 #define PDK_SIZE_32 (sizeof(struct _prop_dictionary_keysym) + 32)
83 #define PDK_SIZE_128 (sizeof(struct _prop_dictionary_keysym) + 128)
84
85 #define PDK_MAXKEY 128
86
87 _PROP_POOL_INIT(_prop_dictionary_keysym16_pool, PDK_SIZE_16, "pdict16")
88 _PROP_POOL_INIT(_prop_dictionary_keysym32_pool, PDK_SIZE_32, "pdict32")
89 _PROP_POOL_INIT(_prop_dictionary_keysym128_pool, PDK_SIZE_128, "pdict128")
90
91 struct _prop_dict_entry {
92 prop_dictionary_keysym_t pde_key;
93 prop_object_t pde_objref;
94 };
95
96 struct _prop_dictionary {
97 struct _prop_object pd_obj;
98 _PROP_RWLOCK_DECL(pd_rwlock)
99 struct _prop_dict_entry *pd_array;
100 unsigned int pd_capacity;
101 unsigned int pd_count;
102 int pd_flags;
103
104 uint32_t pd_version;
105 };
106
107 #define PD_F_IMMUTABLE 0x01 /* dictionary is immutable */
108
109 _PROP_POOL_INIT(_prop_dictionary_pool, sizeof(struct _prop_dictionary),
110 "propdict")
111 _PROP_MALLOC_DEFINE(M_PROP_DICT, "prop dictionary",
112 "property dictionary container object")
113
114 static int _prop_dictionary_free(prop_stack_t, prop_object_t *);
115 static void _prop_dictionary_emergency_free(prop_object_t);
116 static bool _prop_dictionary_externalize(
117 struct _prop_object_externalize_context *,
118 void *);
119 static bool _prop_dictionary_equals(void *, void *);
120
121 static const struct _prop_object_type _prop_object_type_dictionary = {
122 .pot_type = PROP_TYPE_DICTIONARY,
123 .pot_free = _prop_dictionary_free,
124 .pot_emergency_free = _prop_dictionary_emergency_free,
125 .pot_extern = _prop_dictionary_externalize,
126 .pot_equals = _prop_dictionary_equals,
127 };
128
129 static int _prop_dict_keysym_free(prop_stack_t, prop_object_t *);
130 static bool _prop_dict_keysym_externalize(
131 struct _prop_object_externalize_context *,
132 void *);
133 static bool _prop_dict_keysym_equals(void *, void *);
134
135 static const struct _prop_object_type _prop_object_type_dict_keysym = {
136 .pot_type = PROP_TYPE_DICT_KEYSYM,
137 .pot_free = _prop_dict_keysym_free,
138 .pot_extern = _prop_dict_keysym_externalize,
139 .pot_equals = _prop_dict_keysym_equals,
140 };
141
142 #define prop_object_is_dictionary(x) \
143 ((x) != NULL && (x)->pd_obj.po_type == &_prop_object_type_dictionary)
144 #define prop_object_is_dictionary_keysym(x) \
145 ((x) != NULL && (x)->pdk_obj.po_type == &_prop_object_type_dict_keysym)
146
147 #define prop_dictionary_is_immutable(x) \
148 (((x)->pd_flags & PD_F_IMMUTABLE) != 0)
149
150 struct _prop_dictionary_iterator {
151 struct _prop_object_iterator pdi_base;
152 unsigned int pdi_index;
153 };
154
155 /*
156 * Dictionary key symbols are immutable, and we are likely to have many
157 * duplicated key symbols. So, to save memory, we unique'ify key symbols
158 * so we only have to have one copy of each string.
159 */
160
161 static int
162 _prop_dict_keysym_rb_compare_nodes(const struct rb_node *n1,
163 const struct rb_node *n2)
164 {
165 const prop_dictionary_keysym_t pdk1 = RBNODE_TO_PDK(n1);
166 const prop_dictionary_keysym_t pdk2 = RBNODE_TO_PDK(n2);
167
168 return (strcmp(pdk1->pdk_key, pdk2->pdk_key));
169 }
170
171 static int
172 _prop_dict_keysym_rb_compare_key(const struct rb_node *n,
173 const void *v)
174 {
175 const prop_dictionary_keysym_t pdk = RBNODE_TO_PDK(n);
176 const char *cp = v;
177
178 return (strcmp(pdk->pdk_key, cp));
179 }
180
181 static const struct rb_tree_ops _prop_dict_keysym_rb_tree_ops = {
182 .rbto_compare_nodes = _prop_dict_keysym_rb_compare_nodes,
183 .rbto_compare_key = _prop_dict_keysym_rb_compare_key,
184 };
185
186 static struct rb_tree _prop_dict_keysym_tree;
187 static bool _prop_dict_keysym_tree_initialized;
188
189 _PROP_MUTEX_DECL_STATIC(_prop_dict_keysym_tree_mutex)
190
191 static void
192 _prop_dict_keysym_put(prop_dictionary_keysym_t pdk)
193 {
194
195 if (pdk->pdk_size <= PDK_SIZE_16)
196 _PROP_POOL_PUT(_prop_dictionary_keysym16_pool, pdk);
197 else if (pdk->pdk_size <= PDK_SIZE_32)
198 _PROP_POOL_PUT(_prop_dictionary_keysym32_pool, pdk);
199 else {
200 _PROP_ASSERT(pdk->pdk_size <= PDK_SIZE_128);
201 _PROP_POOL_PUT(_prop_dictionary_keysym128_pool, pdk);
202 }
203 }
204
205 /* ARGSUSED */
206 static int
207 _prop_dict_keysym_free(prop_stack_t stack, prop_object_t *obj)
208 {
209 prop_dictionary_keysym_t pdk = *obj;
210
211 _PROP_MUTEX_LOCK(_prop_dict_keysym_tree_mutex);
212 _prop_rb_tree_remove_node(&_prop_dict_keysym_tree, &pdk->pdk_link);
213 _PROP_MUTEX_UNLOCK(_prop_dict_keysym_tree_mutex);
214
215 _prop_dict_keysym_put(pdk);
216
217 return _PROP_OBJECT_FREE_DONE;
218 }
219
220 static bool
221 _prop_dict_keysym_externalize(struct _prop_object_externalize_context *ctx,
222 void *v)
223 {
224 prop_dictionary_keysym_t pdk = v;
225
226 /* We externalize these as strings, and they're never empty. */
227
228 _PROP_ASSERT(pdk->pdk_key[0] != '\0');
229
230 if (_prop_object_externalize_start_tag(ctx, "string") == false ||
231 _prop_object_externalize_append_encoded_cstring(ctx,
232 pdk->pdk_key) == false ||
233 _prop_object_externalize_end_tag(ctx, "string") == false)
234 return (false);
235
236 return (true);
237 }
238
239 static bool
240 _prop_dict_keysym_equals(void *v1, void *v2)
241 {
242 prop_dictionary_keysym_t pdk1 = v1;
243 prop_dictionary_keysym_t pdk2 = v2;
244
245 if (! (prop_object_is_dictionary_keysym(pdk1) &&
246 prop_object_is_dictionary_keysym(pdk2)))
247 return (false);
248
249 /*
250 * There is only ever one copy of a keysym at any given time,
251 * so we can reduce this to a simple pointer equality check.
252 */
253 return (pdk1 == pdk2);
254 }
255
256 static prop_dictionary_keysym_t
257 _prop_dict_keysym_alloc(const char *key)
258 {
259 prop_dictionary_keysym_t opdk, pdk;
260 const struct rb_node *n;
261 size_t size;
262
263 /*
264 * Check to see if this already exists in the tree. If it does,
265 * we just retain it and return it.
266 */
267 _PROP_MUTEX_LOCK(_prop_dict_keysym_tree_mutex);
268 if (! _prop_dict_keysym_tree_initialized) {
269 _prop_rb_tree_init(&_prop_dict_keysym_tree,
270 &_prop_dict_keysym_rb_tree_ops);
271 _prop_dict_keysym_tree_initialized = true;
272 } else {
273 n = _prop_rb_tree_find(&_prop_dict_keysym_tree, key);
274 if (n != NULL) {
275 opdk = RBNODE_TO_PDK(n);
276 prop_object_retain(opdk);
277 _PROP_MUTEX_UNLOCK(_prop_dict_keysym_tree_mutex);
278 return (opdk);
279 }
280 }
281 _PROP_MUTEX_UNLOCK(_prop_dict_keysym_tree_mutex);
282
283 /*
284 * Not in the tree. Create it now.
285 */
286
287 size = sizeof(*pdk) + strlen(key) /* pdk_key[1] covers the NUL */;
288
289 if (size <= PDK_SIZE_16)
290 pdk = _PROP_POOL_GET(_prop_dictionary_keysym16_pool);
291 else if (size <= PDK_SIZE_32)
292 pdk = _PROP_POOL_GET(_prop_dictionary_keysym32_pool);
293 else if (size <= PDK_SIZE_128)
294 pdk = _PROP_POOL_GET(_prop_dictionary_keysym128_pool);
295 else
296 pdk = NULL; /* key too long */
297
298 if (pdk == NULL)
299 return (NULL);
300
301 _prop_object_init(&pdk->pdk_obj, &_prop_object_type_dict_keysym);
302
303 strcpy(pdk->pdk_key, key);
304 pdk->pdk_size = size;
305
306 /*
307 * We dropped the mutex when we allocated the new object, so
308 * we have to check again if it is in the tree.
309 */
310 _PROP_MUTEX_LOCK(_prop_dict_keysym_tree_mutex);
311 n = _prop_rb_tree_find(&_prop_dict_keysym_tree, key);
312 if (n != NULL) {
313 opdk = RBNODE_TO_PDK(n);
314 prop_object_retain(opdk);
315 _PROP_MUTEX_UNLOCK(_prop_dict_keysym_tree_mutex);
316 _prop_dict_keysym_put(pdk);
317 return (opdk);
318 }
319 _prop_rb_tree_insert_node(&_prop_dict_keysym_tree, &pdk->pdk_link);
320 _PROP_MUTEX_UNLOCK(_prop_dict_keysym_tree_mutex);
321 return (pdk);
322 }
323
324 int dont_free = 1;
325
326 static int
327 _prop_dictionary_free(prop_stack_t stack, prop_object_t *obj)
328 {
329 prop_dictionary_t pd = *obj;
330 prop_dictionary_keysym_t pdk;
331 prop_object_t po;
332
333 _PROP_ASSERT(pd->pd_count <= pd->pd_capacity);
334 _PROP_ASSERT((pd->pd_capacity == 0 && pd->pd_array == NULL) ||
335 (pd->pd_capacity != 0 && pd->pd_array != NULL));
336
337 /* The empty dictorinary is easy, handle that first. */
338 if (pd->pd_count == 0) {
339 if (pd->pd_array != NULL)
340 _PROP_FREE(pd->pd_array, M_PROP_DICT);
341
342 _PROP_RWLOCK_DESTROY(pd->pd_rwlock);
343
344 _PROP_POOL_PUT(_prop_dictionary_pool, pd);
345
346 return (_PROP_OBJECT_FREE_DONE);
347 }
348
349 po = pd->pd_array[pd->pd_count - 1].pde_objref;
350 _PROP_ASSERT(po != NULL);
351
352 if (stack == NULL) {
353 /*
354 * If we are in emergency release mode,
355 * just let caller recurse down.
356 */
357 *obj = po;
358 return (_PROP_OBJECT_FREE_FAILED);
359 }
360
361 /* Otherwise, try to push the current object on the stack. */
362 if (!_prop_stack_push(stack, pd, NULL, NULL)) {
363 /* Push failed, entering emergency release mode. */
364 return (_PROP_OBJECT_FREE_FAILED);
365 }
366 /* Object pushed on stack, caller will release it. */
367 --pd->pd_count;
368 pdk = pd->pd_array[pd->pd_count].pde_key;
369 _PROP_ASSERT(pdk != NULL);
370 prop_object_release(pdk);
371 *obj = po;
372 return (_PROP_OBJECT_FREE_RECURSE);
373 }
374
375 static void
376 _prop_dictionary_emergency_free(prop_object_t obj)
377 {
378 prop_dictionary_t pd = obj;
379 prop_dictionary_keysym_t pdk;
380
381 _PROP_ASSERT(pd->pd_count != 0);
382 --pd->pd_count;
383
384 pdk = pd->pd_array[pd->pd_count].pde_key;
385 _PROP_ASSERT(pdk != NULL);
386 prop_object_release(pdk);
387 }
388
389 static bool
390 _prop_dictionary_externalize(struct _prop_object_externalize_context *ctx,
391 void *v)
392 {
393 prop_dictionary_t pd = v;
394 prop_dictionary_keysym_t pdk;
395 struct _prop_object *po;
396 prop_object_iterator_t pi;
397 unsigned int i;
398 bool rv = false;
399
400 _PROP_RWLOCK_RDLOCK(pd->pd_rwlock);
401
402 if (pd->pd_count == 0) {
403 _PROP_RWLOCK_UNLOCK(pd->pd_rwlock);
404 return (_prop_object_externalize_empty_tag(ctx, "dict"));
405 }
406
407 if (_prop_object_externalize_start_tag(ctx, "dict") == false ||
408 _prop_object_externalize_append_char(ctx, '\n') == false)
409 goto out;
410
411 pi = prop_dictionary_iterator(pd);
412 if (pi == NULL)
413 goto out;
414
415 ctx->poec_depth++;
416 _PROP_ASSERT(ctx->poec_depth != 0);
417
418 while ((pdk = prop_object_iterator_next(pi)) != NULL) {
419 po = prop_dictionary_get_keysym(pd, pdk);
420 if (po == NULL ||
421 _prop_object_externalize_start_tag(ctx, "key") == false ||
422 _prop_object_externalize_append_encoded_cstring(ctx,
423 pdk->pdk_key) == false ||
424 _prop_object_externalize_end_tag(ctx, "key") == false ||
425 (*po->po_type->pot_extern)(ctx, po) == false) {
426 prop_object_iterator_release(pi);
427 goto out;
428 }
429 }
430
431 prop_object_iterator_release(pi);
432
433 ctx->poec_depth--;
434 for (i = 0; i < ctx->poec_depth; i++) {
435 if (_prop_object_externalize_append_char(ctx, '\t') == false)
436 goto out;
437 }
438 if (_prop_object_externalize_end_tag(ctx, "dict") == false)
439 goto out;
440
441 rv = true;
442
443 out:
444 _PROP_RWLOCK_UNLOCK(pd->pd_rwlock);
445 return (rv);
446 }
447
448 static bool
449 _prop_dictionary_equals(void *v1, void *v2)
450 {
451 prop_dictionary_t dict1 = v1;
452 prop_dictionary_t dict2 = v2;
453 const struct _prop_dict_entry *pde1, *pde2;
454 unsigned int idx;
455 bool rv = false;
456
457 if (! (prop_object_is_dictionary(dict1) &&
458 prop_object_is_dictionary(dict2)))
459 return (false);
460
461 if (dict1 == dict2)
462 return (true);
463
464 if ((uintptr_t)dict1 < (uintptr_t)dict2) {
465 _PROP_RWLOCK_RDLOCK(dict1->pd_rwlock);
466 _PROP_RWLOCK_RDLOCK(dict2->pd_rwlock);
467 } else {
468 _PROP_RWLOCK_RDLOCK(dict2->pd_rwlock);
469 _PROP_RWLOCK_RDLOCK(dict1->pd_rwlock);
470 }
471
472 if (dict1->pd_count != dict2->pd_count)
473 goto out;
474
475 for (idx = 0; idx < dict1->pd_count; idx++) {
476 pde1 = &dict1->pd_array[idx];
477 pde2 = &dict2->pd_array[idx];
478
479 if (prop_dictionary_keysym_equals(pde1->pde_key,
480 pde2->pde_key) == false)
481 goto out;
482 if (prop_object_equals(pde1->pde_objref,
483 pde2->pde_objref) == false)
484 goto out;
485 }
486
487 rv = true;
488
489 out:
490 _PROP_RWLOCK_UNLOCK(dict1->pd_rwlock);
491 _PROP_RWLOCK_UNLOCK(dict2->pd_rwlock);
492 return (rv);
493 }
494
495 static prop_dictionary_t
496 _prop_dictionary_alloc(unsigned int capacity)
497 {
498 prop_dictionary_t pd;
499 struct _prop_dict_entry *array;
500
501 if (capacity != 0) {
502 array = _PROP_CALLOC(capacity * sizeof(*array), M_PROP_DICT);
503 if (array == NULL)
504 return (NULL);
505 } else
506 array = NULL;
507
508 pd = _PROP_POOL_GET(_prop_dictionary_pool);
509 if (pd != NULL) {
510 _prop_object_init(&pd->pd_obj, &_prop_object_type_dictionary);
511
512 _PROP_RWLOCK_INIT(pd->pd_rwlock);
513 pd->pd_array = array;
514 pd->pd_capacity = capacity;
515 pd->pd_count = 0;
516 pd->pd_flags = 0;
517
518 pd->pd_version = 0;
519 } else if (array != NULL)
520 _PROP_FREE(array, M_PROP_DICT);
521
522 return (pd);
523 }
524
525 static bool
526 _prop_dictionary_expand(prop_dictionary_t pd, unsigned int capacity)
527 {
528 struct _prop_dict_entry *array, *oarray;
529
530 /*
531 * Dictionary must be WRITE-LOCKED.
532 */
533
534 oarray = pd->pd_array;
535
536 array = _PROP_CALLOC(capacity * sizeof(*array), M_PROP_DICT);
537 if (array == NULL)
538 return (false);
539 if (oarray != NULL)
540 memcpy(array, oarray, pd->pd_capacity * sizeof(*array));
541 pd->pd_array = array;
542 pd->pd_capacity = capacity;
543
544 if (oarray != NULL)
545 _PROP_FREE(oarray, M_PROP_DICT);
546
547 return (true);
548 }
549
550 static prop_object_t
551 _prop_dictionary_iterator_next_object(void *v)
552 {
553 struct _prop_dictionary_iterator *pdi = v;
554 prop_dictionary_t pd = pdi->pdi_base.pi_obj;
555 prop_dictionary_keysym_t pdk = NULL;
556
557 _PROP_ASSERT(prop_object_is_dictionary(pd));
558
559 _PROP_RWLOCK_RDLOCK(pd->pd_rwlock);
560
561 if (pd->pd_version != pdi->pdi_base.pi_version)
562 goto out; /* dictionary changed during iteration */
563
564 _PROP_ASSERT(pdi->pdi_index <= pd->pd_count);
565
566 if (pdi->pdi_index == pd->pd_count)
567 goto out; /* we've iterated all objects */
568
569 pdk = pd->pd_array[pdi->pdi_index].pde_key;
570 pdi->pdi_index++;
571
572 out:
573 _PROP_RWLOCK_UNLOCK(pd->pd_rwlock);
574 return (pdk);
575 }
576
577 static void
578 _prop_dictionary_iterator_reset(void *v)
579 {
580 struct _prop_dictionary_iterator *pdi = v;
581 prop_dictionary_t pd = pdi->pdi_base.pi_obj;
582
583 _PROP_ASSERT(prop_object_is_dictionary(pd));
584
585 _PROP_RWLOCK_RDLOCK(pd->pd_rwlock);
586
587 pdi->pdi_index = 0;
588 pdi->pdi_base.pi_version = pd->pd_version;
589
590 _PROP_RWLOCK_UNLOCK(pd->pd_rwlock);
591 }
592
593 /*
594 * prop_dictionary_create --
595 * Create a dictionary.
596 */
597 prop_dictionary_t
598 prop_dictionary_create(void)
599 {
600
601 return (_prop_dictionary_alloc(0));
602 }
603
604 /*
605 * prop_dictionary_create_with_capacity --
606 * Create a dictionary with the capacity to store N objects.
607 */
608 prop_dictionary_t
609 prop_dictionary_create_with_capacity(unsigned int capacity)
610 {
611
612 return (_prop_dictionary_alloc(capacity));
613 }
614
615 /*
616 * prop_dictionary_copy --
617 * Copy a dictionary. The new dictionary has an initial capacity equal
618 * to the number of objects stored int the original dictionary. The new
619 * dictionary contains refrences to the original dictionary's objects,
620 * not copies of those objects (i.e. a shallow copy).
621 */
622 prop_dictionary_t
623 prop_dictionary_copy(prop_dictionary_t opd)
624 {
625 prop_dictionary_t pd;
626 prop_dictionary_keysym_t pdk;
627 prop_object_t po;
628 unsigned int idx;
629
630 if (! prop_object_is_dictionary(opd))
631 return (NULL);
632
633 _PROP_RWLOCK_RDLOCK(opd->pd_rwlock);
634
635 pd = _prop_dictionary_alloc(opd->pd_count);
636 if (pd != NULL) {
637 for (idx = 0; idx < opd->pd_count; idx++) {
638 pdk = opd->pd_array[idx].pde_key;
639 po = opd->pd_array[idx].pde_objref;
640
641 prop_object_retain(pdk);
642 prop_object_retain(po);
643
644 pd->pd_array[idx].pde_key = pdk;
645 pd->pd_array[idx].pde_objref = po;
646 }
647 pd->pd_count = opd->pd_count;
648 pd->pd_flags = opd->pd_flags;
649 }
650 _PROP_RWLOCK_UNLOCK(opd->pd_rwlock);
651 return (pd);
652 }
653
654 /*
655 * prop_dictionary_copy_mutable --
656 * Like prop_dictionary_copy(), but the resulting dictionary is
657 * mutable.
658 */
659 prop_dictionary_t
660 prop_dictionary_copy_mutable(prop_dictionary_t opd)
661 {
662 prop_dictionary_t pd;
663
664 if (! prop_object_is_dictionary(opd))
665 return (NULL);
666
667 pd = prop_dictionary_copy(opd);
668 if (pd != NULL)
669 pd->pd_flags &= ~PD_F_IMMUTABLE;
670
671 return (pd);
672 }
673
674 /*
675 * prop_dictionary_count --
676 * Return the number of objects stored in the dictionary.
677 */
678 unsigned int
679 prop_dictionary_count(prop_dictionary_t pd)
680 {
681 unsigned int rv;
682
683 if (! prop_object_is_dictionary(pd))
684 return (0);
685
686 _PROP_RWLOCK_RDLOCK(pd->pd_rwlock);
687 rv = pd->pd_count;
688 _PROP_RWLOCK_UNLOCK(pd->pd_rwlock);
689
690 return (rv);
691 }
692
693 /*
694 * prop_dictionary_ensure_capacity --
695 * Ensure that the dictionary has the capacity to store the specified
696 * total number of objects (including the objects already stored in
697 * the dictionary).
698 */
699 bool
700 prop_dictionary_ensure_capacity(prop_dictionary_t pd, unsigned int capacity)
701 {
702 bool rv;
703
704 if (! prop_object_is_dictionary(pd))
705 return (false);
706
707 _PROP_RWLOCK_WRLOCK(pd->pd_rwlock);
708 if (capacity > pd->pd_capacity)
709 rv = _prop_dictionary_expand(pd, capacity);
710 else
711 rv = true;
712 _PROP_RWLOCK_UNLOCK(pd->pd_rwlock);
713 return (rv);
714 }
715
716 /*
717 * prop_dictionary_iterator --
718 * Return an iterator for the dictionary. The dictionary is retained by
719 * the iterator.
720 */
721 prop_object_iterator_t
722 prop_dictionary_iterator(prop_dictionary_t pd)
723 {
724 struct _prop_dictionary_iterator *pdi;
725
726 if (! prop_object_is_dictionary(pd))
727 return (NULL);
728
729 pdi = _PROP_CALLOC(sizeof(*pdi), M_TEMP);
730 if (pdi == NULL)
731 return (NULL);
732 pdi->pdi_base.pi_next_object = _prop_dictionary_iterator_next_object;
733 pdi->pdi_base.pi_reset = _prop_dictionary_iterator_reset;
734 prop_object_retain(pd);
735 pdi->pdi_base.pi_obj = pd;
736 _prop_dictionary_iterator_reset(pdi);
737
738 return (&pdi->pdi_base);
739 }
740
741 /*
742 * prop_dictionary_all_keys --
743 * Return an array containing a snapshot of all of the keys
744 * in the dictionary.
745 */
746 prop_array_t
747 prop_dictionary_all_keys(prop_dictionary_t pd)
748 {
749 prop_array_t array;
750 unsigned int idx;
751 bool rv = true;
752
753 if (! prop_object_is_dictionary(pd))
754 return (NULL);
755
756 /* There is no pressing need to lock the dictionary for this. */
757 array = prop_array_create_with_capacity(pd->pd_count);
758
759 _PROP_RWLOCK_RDLOCK(pd->pd_rwlock);
760
761 for (idx = 0; idx < pd->pd_count; idx++) {
762 rv = prop_array_add(array, pd->pd_array[idx].pde_key);
763 if (rv == false)
764 break;
765 }
766
767 _PROP_RWLOCK_UNLOCK(pd->pd_rwlock);
768
769 if (rv == false) {
770 prop_object_release(array);
771 array = NULL;
772 }
773 return (array);
774 }
775
776 static struct _prop_dict_entry *
777 _prop_dict_lookup(prop_dictionary_t pd, const char *key,
778 unsigned int *idxp)
779 {
780 struct _prop_dict_entry *pde;
781 unsigned int base, idx, distance;
782 int res;
783
784 /*
785 * Dictionary must be READ-LOCKED or WRITE-LOCKED.
786 */
787
788 for (idx = 0, base = 0, distance = pd->pd_count; distance != 0;
789 distance >>= 1) {
790 idx = base + (distance >> 1);
791 pde = &pd->pd_array[idx];
792 _PROP_ASSERT(pde->pde_key != NULL);
793 res = strcmp(key, pde->pde_key->pdk_key);
794 if (res == 0) {
795 if (idxp != NULL)
796 *idxp = idx;
797 return (pde);
798 }
799 if (res > 0) { /* key > pdk_key: move right */
800 base = idx + 1;
801 distance--;
802 } /* else move left */
803 }
804
805 /* idx points to the slot we looked at last. */
806 if (idxp != NULL)
807 *idxp = idx;
808 return (NULL);
809 }
810
811 /*
812 * prop_dictionary_get --
813 * Return the object stored with specified key.
814 */
815 prop_object_t
816 prop_dictionary_get(prop_dictionary_t pd, const char *key)
817 {
818 const struct _prop_dict_entry *pde;
819 prop_object_t po = NULL;
820
821 if (! prop_object_is_dictionary(pd))
822 return (NULL);
823
824 _PROP_RWLOCK_RDLOCK(pd->pd_rwlock);
825 pde = _prop_dict_lookup(pd, key, NULL);
826 if (pde != NULL) {
827 _PROP_ASSERT(pde->pde_objref != NULL);
828 po = pde->pde_objref;
829 }
830 _PROP_RWLOCK_UNLOCK(pd->pd_rwlock);
831 return (po);
832 }
833
834 /*
835 * prop_dictionary_get_keysym --
836 * Return the object stored at the location encoded by the keysym.
837 */
838 prop_object_t
839 prop_dictionary_get_keysym(prop_dictionary_t pd, prop_dictionary_keysym_t pdk)
840 {
841
842 if (! (prop_object_is_dictionary(pd) &&
843 prop_object_is_dictionary_keysym(pdk)))
844 return (NULL);
845
846 return (prop_dictionary_get(pd, pdk->pdk_key));
847 }
848
849 /*
850 * prop_dictionary_set --
851 * Store a reference to an object at with the specified key.
852 * If the key already exisit, the original object is released.
853 */
854 bool
855 prop_dictionary_set(prop_dictionary_t pd, const char *key, prop_object_t po)
856 {
857 struct _prop_dict_entry *pde;
858 prop_dictionary_keysym_t pdk;
859 unsigned int idx;
860 bool rv = false;
861
862 if (! prop_object_is_dictionary(pd))
863 return (false);
864
865 _PROP_ASSERT(pd->pd_count <= pd->pd_capacity);
866
867 if (prop_dictionary_is_immutable(pd))
868 return (false);
869
870 _PROP_RWLOCK_WRLOCK(pd->pd_rwlock);
871
872 pde = _prop_dict_lookup(pd, key, &idx);
873 if (pde != NULL) {
874 prop_object_t opo = pde->pde_objref;
875 prop_object_retain(po);
876 pde->pde_objref = po;
877 prop_object_release(opo);
878 rv = true;
879 goto out;
880 }
881
882 pdk = _prop_dict_keysym_alloc(key);
883 if (pdk == NULL)
884 goto out;
885
886 if (pd->pd_count == pd->pd_capacity &&
887 _prop_dictionary_expand(pd,
888 pd->pd_capacity + EXPAND_STEP) == false) {
889 prop_object_release(pdk);
890 goto out;
891 }
892
893 /* At this point, the store will succeed. */
894 prop_object_retain(po);
895
896 if (pd->pd_count == 0) {
897 pd->pd_array[0].pde_key = pdk;
898 pd->pd_array[0].pde_objref = po;
899 pd->pd_count++;
900 pd->pd_version++;
901 rv = true;
902 goto out;
903 }
904
905 pde = &pd->pd_array[idx];
906 _PROP_ASSERT(pde->pde_key != NULL);
907
908 if (strcmp(key, pde->pde_key->pdk_key) < 0) {
909 /*
910 * key < pdk_key: insert to the left. This is the same as
911 * inserting to the right, except we decrement the current
912 * index first.
913 *
914 * Because we're unsigned, we have to special case 0
915 * (grumble).
916 */
917 if (idx == 0) {
918 memmove(&pd->pd_array[1], &pd->pd_array[0],
919 pd->pd_count * sizeof(*pde));
920 pd->pd_array[0].pde_key = pdk;
921 pd->pd_array[0].pde_objref = po;
922 pd->pd_count++;
923 pd->pd_version++;
924 rv = true;
925 goto out;
926 }
927 idx--;
928 }
929
930 memmove(&pd->pd_array[idx + 2], &pd->pd_array[idx + 1],
931 (pd->pd_count - (idx + 1)) * sizeof(*pde));
932 pd->pd_array[idx + 1].pde_key = pdk;
933 pd->pd_array[idx + 1].pde_objref = po;
934 pd->pd_count++;
935
936 pd->pd_version++;
937
938 rv = true;
939
940 out:
941 _PROP_RWLOCK_UNLOCK(pd->pd_rwlock);
942 return (rv);
943 }
944
945 /*
946 * prop_dictionary_set_keysym --
947 * Replace the object in the dictionary at the location encoded by
948 * the keysym.
949 */
950 bool
951 prop_dictionary_set_keysym(prop_dictionary_t pd, prop_dictionary_keysym_t pdk,
952 prop_object_t po)
953 {
954
955 if (! (prop_object_is_dictionary(pd) &&
956 prop_object_is_dictionary_keysym(pdk)))
957 return (false);
958
959 return (prop_dictionary_set(pd, pdk->pdk_key, po));
960 }
961
962 static void
963 _prop_dictionary_remove(prop_dictionary_t pd, struct _prop_dict_entry *pde,
964 unsigned int idx)
965 {
966 prop_dictionary_keysym_t pdk = pde->pde_key;
967 prop_object_t po = pde->pde_objref;
968
969 /*
970 * Dictionary must be WRITE-LOCKED.
971 */
972
973 _PROP_ASSERT(pd->pd_count != 0);
974 _PROP_ASSERT(idx < pd->pd_count);
975 _PROP_ASSERT(pde == &pd->pd_array[idx]);
976
977 idx++;
978 memmove(&pd->pd_array[idx - 1], &pd->pd_array[idx],
979 (pd->pd_count - idx) * sizeof(*pde));
980 pd->pd_count--;
981 pd->pd_version++;
982
983 prop_object_release(pdk);
984 prop_object_release(po);
985 }
986
987 /*
988 * prop_dictionary_remove --
989 * Remove the reference to an object with the specified key from
990 * the dictionary.
991 */
992 void
993 prop_dictionary_remove(prop_dictionary_t pd, const char *key)
994 {
995 struct _prop_dict_entry *pde;
996 unsigned int idx;
997
998 if (! prop_object_is_dictionary(pd))
999 return;
1000
1001 _PROP_RWLOCK_WRLOCK(pd->pd_rwlock);
1002
1003 /* XXX Should this be a _PROP_ASSERT()? */
1004 if (prop_dictionary_is_immutable(pd))
1005 goto out;
1006
1007 pde = _prop_dict_lookup(pd, key, &idx);
1008 /* XXX Should this be a _PROP_ASSERT()? */
1009 if (pde == NULL)
1010 goto out;
1011
1012 _prop_dictionary_remove(pd, pde, idx);
1013 out:
1014 _PROP_RWLOCK_UNLOCK(pd->pd_rwlock);
1015 }
1016
1017 /*
1018 * prop_dictionary_remove_keysym --
1019 * Remove a reference to an object stored in the dictionary at the
1020 * location encoded by the keysym.
1021 */
1022 void
1023 prop_dictionary_remove_keysym(prop_dictionary_t pd,
1024 prop_dictionary_keysym_t pdk)
1025 {
1026
1027 if (! (prop_object_is_dictionary(pd) &&
1028 prop_object_is_dictionary_keysym(pdk)))
1029 return;
1030
1031 prop_dictionary_remove(pd, pdk->pdk_key);
1032 }
1033
1034 /*
1035 * prop_dictionary_equals --
1036 * Return true if the two dictionaries are equivalent. Note we do a
1037 * by-value comparison of the objects in the dictionary.
1038 */
1039 bool
1040 prop_dictionary_equals(prop_dictionary_t dict1, prop_dictionary_t dict2)
1041 {
1042
1043 return (_prop_dictionary_equals(dict1, dict2));
1044 }
1045
1046 /*
1047 * prop_dictionary_keysym_cstring_nocopy --
1048 * Return an immutable reference to the keysym's value.
1049 */
1050 const char *
1051 prop_dictionary_keysym_cstring_nocopy(prop_dictionary_keysym_t pdk)
1052 {
1053
1054 if (! prop_object_is_dictionary_keysym(pdk))
1055 return (NULL);
1056
1057 return (pdk->pdk_key);
1058 }
1059
1060 /*
1061 * prop_dictionary_keysym_equals --
1062 * Return true if the two dictionary key symbols are equivalent.
1063 * Note: We do not compare the object references.
1064 */
1065 bool
1066 prop_dictionary_keysym_equals(prop_dictionary_keysym_t pdk1,
1067 prop_dictionary_keysym_t pdk2)
1068 {
1069
1070 return (_prop_dict_keysym_equals(pdk1, pdk2));
1071 }
1072
1073 /*
1074 * prop_dictionary_externalize --
1075 * Externalize a dictionary, returning a NUL-terminated buffer
1076 * containing the XML-style representation. The buffer is allocated
1077 * with the M_TEMP memory type.
1078 */
1079 char *
1080 prop_dictionary_externalize(prop_dictionary_t pd)
1081 {
1082 struct _prop_object_externalize_context *ctx;
1083 char *cp;
1084
1085 ctx = _prop_object_externalize_context_alloc();
1086 if (ctx == NULL)
1087 return (NULL);
1088
1089 if (_prop_object_externalize_header(ctx) == false ||
1090 (*pd->pd_obj.po_type->pot_extern)(ctx, pd) == false ||
1091 _prop_object_externalize_footer(ctx) == false) {
1092 /* We are responsible for releasing the buffer. */
1093 _PROP_FREE(ctx->poec_buf, M_TEMP);
1094 _prop_object_externalize_context_free(ctx);
1095 return (NULL);
1096 }
1097
1098 cp = ctx->poec_buf;
1099 _prop_object_externalize_context_free(ctx);
1100
1101 return (cp);
1102 }
1103
1104 /*
1105 * _prop_dictionary_internalize --
1106 * Parse a <dict>...</dict> and return the object created from the
1107 * external representation.
1108 *
1109 * Internal state in via rec_data is the storage area for the last processed
1110 * key.
1111 * _prop_dictionary_internalize_body is the upper half of the parse loop.
1112 * It is responsible for parsing the key directly and storing it in the area
1113 * referenced by rec_data.
1114 * _prop_dictionary_internalize_cont is the lower half and called with the value
1115 * associated with the key.
1116 */
1117 static bool _prop_dictionary_internalize_body(prop_stack_t,
1118 prop_object_t *, struct _prop_object_internalize_context *, char *);
1119
1120 bool
1121 _prop_dictionary_internalize(prop_stack_t stack, prop_object_t *obj,
1122 struct _prop_object_internalize_context *ctx)
1123 {
1124 prop_dictionary_t dict;
1125 char *tmpkey;
1126
1127 /* We don't currently understand any attributes. */
1128 if (ctx->poic_tagattr != NULL)
1129 return (true);
1130
1131 dict = prop_dictionary_create();
1132 if (dict == NULL)
1133 return (true);
1134
1135 if (ctx->poic_is_empty_element) {
1136 *obj = dict;
1137 return (true);
1138 }
1139
1140 tmpkey = _PROP_MALLOC(PDK_MAXKEY + 1, M_TEMP);
1141 if (tmpkey == NULL) {
1142 prop_object_release(dict);
1143 return (true);
1144 }
1145
1146 *obj = dict;
1147 /*
1148 * Opening tag is found, storage for key allocated and
1149 * now continue to the first element.
1150 */
1151 return _prop_dictionary_internalize_body(stack, obj, ctx, tmpkey);
1152 }
1153
1154 static bool
1155 _prop_dictionary_internalize_continue(prop_stack_t stack, prop_object_t *obj,
1156 struct _prop_object_internalize_context *ctx, void *data, prop_object_t child)
1157 {
1158 prop_dictionary_t dict = *obj;
1159 char *tmpkey = data;
1160
1161 _PROP_ASSERT(tmpkey != NULL);
1162
1163 if (child == NULL ||
1164 prop_dictionary_set(dict, tmpkey, child) == false) {
1165 _PROP_FREE(tmpkey, M_TEMP);
1166 if (child != NULL)
1167 prop_object_release(child);
1168 prop_object_release(dict);
1169 *obj = NULL;
1170 return (true);
1171 }
1172
1173 prop_object_release(child);
1174
1175 /*
1176 * key, value was added, now continue looking for the next key
1177 * or the closing tag.
1178 */
1179 return _prop_dictionary_internalize_body(stack, obj, ctx, tmpkey);
1180 }
1181
1182 static bool
1183 _prop_dictionary_internalize_body(prop_stack_t stack, prop_object_t *obj,
1184 struct _prop_object_internalize_context *ctx, char *tmpkey)
1185 {
1186 prop_dictionary_t dict = *obj;
1187 size_t keylen;
1188
1189 /* Fetch the next tag. */
1190 if (_prop_object_internalize_find_tag(ctx, NULL, _PROP_TAG_TYPE_EITHER) == false)
1191 goto bad;
1192
1193 /* Check to see if this is the end of the dictionary. */
1194 if (_PROP_TAG_MATCH(ctx, "dict") &&
1195 ctx->poic_tag_type == _PROP_TAG_TYPE_END) {
1196 _PROP_FREE(tmpkey, M_TEMP);
1197 return (true);
1198 }
1199
1200 /* Ok, it must be a non-empty key start tag. */
1201 if (!_PROP_TAG_MATCH(ctx, "key") ||
1202 ctx->poic_tag_type != _PROP_TAG_TYPE_START ||
1203 ctx->poic_is_empty_element)
1204 goto bad;
1205
1206 if (_prop_object_internalize_decode_string(ctx,
1207 tmpkey, PDK_MAXKEY, &keylen,
1208 &ctx->poic_cp) == false)
1209 goto bad;
1210
1211 _PROP_ASSERT(keylen <= PDK_MAXKEY);
1212 tmpkey[keylen] = '\0';
1213
1214 if (_prop_object_internalize_find_tag(ctx, "key",
1215 _PROP_TAG_TYPE_END) == false)
1216 goto bad;
1217
1218 /* ..and now the beginning of the value. */
1219 if (_prop_object_internalize_find_tag(ctx, NULL,
1220 _PROP_TAG_TYPE_START) == false)
1221 goto bad;
1222
1223 /*
1224 * Key is found, now wait for value to be parsed.
1225 */
1226 if (_prop_stack_push(stack, *obj, tmpkey,
1227 _prop_dictionary_internalize_continue))
1228 return (false);
1229
1230 bad:
1231 _PROP_FREE(tmpkey, M_TEMP);
1232 prop_object_release(dict);
1233 *obj = NULL;
1234 return (true);
1235 }
1236
1237 /*
1238 * prop_dictionary_internalize --
1239 * Create a dictionary by parsing the NUL-terminated XML-style
1240 * representation.
1241 */
1242 prop_dictionary_t
1243 prop_dictionary_internalize(const char *xml)
1244 {
1245 return _prop_generic_internalize(xml, "dict");
1246 }
1247
1248 #if !defined(_KERNEL) && !defined(_STANDALONE)
1249 /*
1250 * prop_dictionary_externalize_to_file --
1251 * Externalize a dictionary to the specified file.
1252 */
1253 bool
1254 prop_dictionary_externalize_to_file(prop_dictionary_t dict, const char *fname)
1255 {
1256 char *xml;
1257 bool rv;
1258 int save_errno = 0; /* XXXGCC -Wuninitialized [mips, ...] */
1259
1260 xml = prop_dictionary_externalize(dict);
1261 if (xml == NULL)
1262 return (false);
1263 rv = _prop_object_externalize_write_file(fname, xml, strlen(xml));
1264 if (rv == false)
1265 save_errno = errno;
1266 _PROP_FREE(xml, M_TEMP);
1267 if (rv == false)
1268 errno = save_errno;
1269
1270 return (rv);
1271 }
1272
1273 /*
1274 * prop_dictionary_internalize_from_file --
1275 * Internalize a dictionary from a file.
1276 */
1277 prop_dictionary_t
1278 prop_dictionary_internalize_from_file(const char *fname)
1279 {
1280 struct _prop_object_internalize_mapped_file *mf;
1281 prop_dictionary_t dict;
1282
1283 mf = _prop_object_internalize_map_file(fname);
1284 if (mf == NULL)
1285 return (NULL);
1286 dict = prop_dictionary_internalize(mf->poimf_xml);
1287 _prop_object_internalize_unmap_file(mf);
1288
1289 return (dict);
1290 }
1291 #endif /* !_KERNEL && !_STANDALONE */
1292