prop_dictionary.c revision 1.9 1 /* $NetBSD: prop_dictionary.c,v 1.9 2006/08/21 04:13:28 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2006 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <prop/prop_dictionary.h>
40 #include <prop/prop_string.h>
41 #include "prop_object_impl.h"
42
43 #if defined(__NetBSD__)
44 #include <sys/tree.h>
45 #else
46 #error Need to find a NetBSD sys/tree.h
47 #endif
48
49 #if !defined(_KERNEL) && !defined(_STANDALONE)
50 #include <errno.h>
51 #endif
52
53 /*
54 * We implement these like arrays, but we keep them sorted by key.
55 * This allows us to binary-search as well as keep externalized output
56 * sane-looking for human eyes.
57 */
58
59 #define EXPAND_STEP 16
60
61 /*
62 * prop_dictionary_keysym_t is allocated with space at the end to hold the
63 * key. This must be a regular object so that we can maintain sane iterator
64 * semantics -- we don't want to require that the caller release the result
65 * of prop_object_iterator_next().
66 *
67 * We'd like to have some small'ish keysym objects for up-to-16 characters
68 * in a key, some for up-to-32 characters in a key, and then a final bucket
69 * for up-to-128 characters in a key (not including NUL). Keys longer than
70 * 128 characters are not allowed.
71 */
72 struct _prop_dictionary_keysym {
73 struct _prop_object pdk_obj;
74 size_t pdk_size;
75 RB_ENTRY(_prop_dictionary_keysym) pdk_link;
76 char pdk_key[1];
77 /* actually variable length */
78 };
79
80 /* pdk_key[1] takes care of the NUL */
81 #define PDK_SIZE_16 (sizeof(struct _prop_dictionary_keysym) + 16)
82 #define PDK_SIZE_32 (sizeof(struct _prop_dictionary_keysym) + 32)
83 #define PDK_SIZE_128 (sizeof(struct _prop_dictionary_keysym) + 128)
84
85 #define PDK_MAXKEY 128
86
87 _PROP_POOL_INIT(_prop_dictionary_keysym16_pool, PDK_SIZE_16, "pdict16")
88 _PROP_POOL_INIT(_prop_dictionary_keysym32_pool, PDK_SIZE_32, "pdict32")
89 _PROP_POOL_INIT(_prop_dictionary_keysym128_pool, PDK_SIZE_128, "pdict128")
90
91 struct _prop_dict_entry {
92 prop_dictionary_keysym_t pde_key;
93 prop_object_t pde_objref;
94 };
95
96 struct _prop_dictionary {
97 struct _prop_object pd_obj;
98 struct _prop_dict_entry *pd_array;
99 unsigned int pd_capacity;
100 unsigned int pd_count;
101 int pd_flags;
102
103 uint32_t pd_version;
104 };
105
106 #define PD_F_IMMUTABLE 0x01 /* dictionary is immutable */
107
108 _PROP_POOL_INIT(_prop_dictionary_pool, sizeof(struct _prop_dictionary),
109 "propdict")
110 _PROP_MALLOC_DEFINE(M_PROP_DICT, "prop dictionary",
111 "property dictionary container object")
112
113 static void _prop_dictionary_free(void *);
114 static boolean_t _prop_dictionary_externalize(
115 struct _prop_object_externalize_context *,
116 void *);
117 static boolean_t _prop_dictionary_equals(void *, void *);
118
119 static const struct _prop_object_type _prop_object_type_dictionary = {
120 .pot_type = PROP_TYPE_DICTIONARY,
121 .pot_free = _prop_dictionary_free,
122 .pot_extern = _prop_dictionary_externalize,
123 .pot_equals = _prop_dictionary_equals,
124 };
125
126 static void _prop_dict_keysym_free(void *);
127 static boolean_t _prop_dict_keysym_externalize(
128 struct _prop_object_externalize_context *,
129 void *);
130 static boolean_t _prop_dict_keysym_equals(void *, void *);
131
132 static const struct _prop_object_type _prop_object_type_dict_keysym = {
133 .pot_type = PROP_TYPE_DICT_KEYSYM,
134 .pot_free = _prop_dict_keysym_free,
135 .pot_extern = _prop_dict_keysym_externalize,
136 .pot_equals = _prop_dict_keysym_equals,
137 };
138
139 #define prop_object_is_dictionary(x) \
140 ((x)->pd_obj.po_type == &_prop_object_type_dictionary)
141 #define prop_object_is_dictionary_keysym(x) \
142 ((x)->pdk_obj.po_type == &_prop_object_type_dict_keysym)
143
144 #define prop_dictionary_is_immutable(x) \
145 (((x)->pd_flags & PD_F_IMMUTABLE) != 0)
146
147 struct _prop_dictionary_iterator {
148 struct _prop_object_iterator pdi_base;
149 unsigned int pdi_index;
150 };
151
152 /*
153 * Dictionary key symbols are immutable, and we are likely to have many
154 * duplicated key symbols. So, to save memory, we unique'ify key symbols
155 * so we only have to have one copy of each string.
156 */
157
158 static int
159 _prop_dict_keysym_tree_cmp(prop_dictionary_keysym_t pdk1,
160 prop_dictionary_keysym_t pdk2)
161 {
162
163 return (strcmp(pdk1->pdk_key, pdk2->pdk_key));
164 }
165
166 static RB_HEAD(_prop_dict_keysym_tree, _prop_dictionary_keysym)
167 _prop_dict_keysym_tree = RB_INITIALIZER(&_prop_dict_keysym_tree);
168 RB_PROTOTYPE(_prop_dict_keysym_tree, _prop_dictionary_keysym, pdk_link,
169 _prop_dict_keysym_tree_cmp)
170 RB_GENERATE(_prop_dict_keysym_tree, _prop_dictionary_keysym, pdk_link,
171 _prop_dict_keysym_tree_cmp)
172
173 _PROP_MUTEX_DECL(_prop_dict_keysym_tree_mutex)
174
175 static void
176 _prop_dict_keysym_put(prop_dictionary_keysym_t pdk)
177 {
178
179 if (pdk->pdk_size <= PDK_SIZE_16)
180 _PROP_POOL_PUT(_prop_dictionary_keysym16_pool, pdk);
181 else if (pdk->pdk_size <= PDK_SIZE_32)
182 _PROP_POOL_PUT(_prop_dictionary_keysym32_pool, pdk);
183 else {
184 _PROP_ASSERT(pdk->pdk_size <= PDK_SIZE_128);
185 _PROP_POOL_PUT(_prop_dictionary_keysym128_pool, pdk);
186 }
187 }
188
189 static void
190 _prop_dict_keysym_free(void *v)
191 {
192 prop_dictionary_keysym_t pdk = v;
193
194 _PROP_MUTEX_LOCK(_prop_dict_keysym_tree_mutex);
195 RB_REMOVE(_prop_dict_keysym_tree, &_prop_dict_keysym_tree, pdk);
196 _PROP_MUTEX_UNLOCK(_prop_dict_keysym_tree_mutex);
197
198 _prop_dict_keysym_put(pdk);
199 }
200
201 static boolean_t
202 _prop_dict_keysym_externalize(struct _prop_object_externalize_context *ctx,
203 void *v)
204 {
205 prop_dictionary_keysym_t pdk = v;
206
207 /* We externalize these as strings, and they're never empty. */
208
209 _PROP_ASSERT(pdk->pdk_key[0] != '\0');
210
211 if (_prop_object_externalize_start_tag(ctx, "string") == FALSE ||
212 _prop_object_externalize_append_encoded_cstring(ctx,
213 pdk->pdk_key) == FALSE ||
214 _prop_object_externalize_end_tag(ctx, "string") == FALSE)
215 return (FALSE);
216
217 return (TRUE);
218 }
219
220 static boolean_t
221 _prop_dict_keysym_equals(void *v1, void *v2)
222 {
223 prop_dictionary_keysym_t pdk1 = v1;
224 prop_dictionary_keysym_t pdk2 = v2;
225
226 if (! (prop_object_is_dictionary_keysym(pdk1) &&
227 prop_object_is_dictionary_keysym(pdk2)))
228 return (FALSE);
229
230 /*
231 * There is only ever one copy of a keysym at any given time,
232 * so we can reduce this to a simple pointer equality check.
233 */
234 return (pdk1 == pdk2);
235 }
236
237 static prop_dictionary_keysym_t
238 _prop_dict_keysym_alloc(const char *key)
239 {
240 prop_dictionary_keysym_t opdk, pdk;
241 size_t size;
242
243 /*
244 * Because of the way our RB trees work, we need to create the
245 * new keysym in order to check if it's already in the tree.
246 * Oh well.
247 */
248
249 size = sizeof(*pdk) + strlen(key) /* pdk_key[1] covers the NUL */;
250
251 if (size <= PDK_SIZE_16)
252 pdk = _PROP_POOL_GET(_prop_dictionary_keysym16_pool);
253 else if (size <= PDK_SIZE_32)
254 pdk = _PROP_POOL_GET(_prop_dictionary_keysym32_pool);
255 else if (size <= PDK_SIZE_128)
256 pdk = _PROP_POOL_GET(_prop_dictionary_keysym128_pool);
257 else
258 pdk = NULL; /* key too long */
259
260 if (pdk == NULL)
261 return (NULL);
262
263 _prop_object_init(&pdk->pdk_obj, &_prop_object_type_dict_keysym);
264
265 strcpy(pdk->pdk_key, key);
266 pdk->pdk_size = size;
267
268 /*
269 * Now check to see if this already exists in the tree. If it
270 * does, we return a reference to the existing one and free the
271 * new one we just created.
272 */
273 _PROP_MUTEX_LOCK(_prop_dict_keysym_tree_mutex);
274 opdk = RB_INSERT(_prop_dict_keysym_tree, &_prop_dict_keysym_tree, pdk);
275 if (opdk != NULL) {
276 prop_object_retain(opdk);
277 _PROP_MUTEX_UNLOCK(_prop_dict_keysym_tree_mutex);
278 _prop_dict_keysym_put(pdk);
279 return (opdk);
280 }
281 _PROP_MUTEX_UNLOCK(_prop_dict_keysym_tree_mutex);
282 return (pdk);
283 }
284
285 static void
286 _prop_dictionary_free(void *v)
287 {
288 prop_dictionary_t pd = v;
289 prop_dictionary_keysym_t pdk;
290 prop_object_t po;
291 unsigned int idx;
292
293 _PROP_ASSERT(pd->pd_count <= pd->pd_capacity);
294 _PROP_ASSERT((pd->pd_capacity == 0 && pd->pd_array == NULL) ||
295 (pd->pd_capacity != 0 && pd->pd_array != NULL));
296
297 for (idx = 0; idx < pd->pd_count; idx++) {
298 pdk = pd->pd_array[idx].pde_key;
299 _PROP_ASSERT(pdk != NULL);
300 prop_object_release(pdk);
301 po = pd->pd_array[idx].pde_objref;
302 _PROP_ASSERT(po != NULL);
303 prop_object_release(po);
304 }
305
306 if (pd->pd_array != NULL)
307 _PROP_FREE(pd->pd_array, M_PROP_DICT);
308
309 _PROP_POOL_PUT(_prop_dictionary_pool, pd);
310 }
311
312 static boolean_t
313 _prop_dictionary_externalize(struct _prop_object_externalize_context *ctx,
314 void *v)
315 {
316 prop_dictionary_t pd = v;
317 prop_dictionary_keysym_t pdk;
318 struct _prop_object *po;
319 prop_object_iterator_t pi;
320 unsigned int i;
321
322 if (pd->pd_count == 0)
323 return (_prop_object_externalize_empty_tag(ctx, "dict"));
324
325 if (_prop_object_externalize_start_tag(ctx, "dict") == FALSE ||
326 _prop_object_externalize_append_char(ctx, '\n') == FALSE)
327 return (FALSE);
328
329 pi = prop_dictionary_iterator(pd);
330 if (pi == NULL)
331 return (FALSE);
332
333 ctx->poec_depth++;
334 _PROP_ASSERT(ctx->poec_depth != 0);
335
336 while ((pdk = prop_object_iterator_next(pi)) != NULL) {
337 po = prop_dictionary_get_keysym(pd, pdk);
338 if (po == NULL ||
339 _prop_object_externalize_start_tag(ctx, "key") == FALSE ||
340 _prop_object_externalize_append_encoded_cstring(ctx,
341 pdk->pdk_key) == FALSE ||
342 _prop_object_externalize_end_tag(ctx, "key") == FALSE ||
343 (*po->po_type->pot_extern)(ctx, po) == FALSE) {
344 prop_object_iterator_release(pi);
345 return (FALSE);
346 }
347 }
348
349 prop_object_iterator_release(pi);
350
351 ctx->poec_depth--;
352 for (i = 0; i < ctx->poec_depth; i++) {
353 if (_prop_object_externalize_append_char(ctx, '\t') == FALSE)
354 return (FALSE);
355 }
356 if (_prop_object_externalize_end_tag(ctx, "dict") == FALSE)
357 return (FALSE);
358
359 return (TRUE);
360 }
361
362 static boolean_t
363 _prop_dictionary_equals(void *v1, void *v2)
364 {
365 prop_dictionary_t dict1 = v1;
366 prop_dictionary_t dict2 = v2;
367 const struct _prop_dict_entry *pde1, *pde2;
368 unsigned int idx;
369
370 if (! (prop_object_is_dictionary(dict1) &&
371 prop_object_is_dictionary(dict2)))
372 return (FALSE);
373
374 if (dict1 == dict2)
375 return (TRUE);
376 if (dict1->pd_count != dict2->pd_count)
377 return (FALSE);
378
379 for (idx = 0; idx < dict1->pd_count; idx++) {
380 pde1 = &dict1->pd_array[idx];
381 pde2 = &dict2->pd_array[idx];
382
383 if (prop_dictionary_keysym_equals(pde1->pde_key,
384 pde2->pde_key) == FALSE)
385 return (FALSE);
386 if (prop_object_equals(pde1->pde_objref,
387 pde2->pde_objref) == FALSE)
388 return (FALSE);
389 }
390
391 return (TRUE);
392 }
393
394 static prop_dictionary_t
395 _prop_dictionary_alloc(unsigned int capacity)
396 {
397 prop_dictionary_t pd;
398 struct _prop_dict_entry *array;
399
400 if (capacity != 0) {
401 array = _PROP_CALLOC(capacity * sizeof(*array), M_PROP_DICT);
402 if (array == NULL)
403 return (NULL);
404 } else
405 array = NULL;
406
407 pd = _PROP_POOL_GET(_prop_dictionary_pool);
408 if (pd != NULL) {
409 _prop_object_init(&pd->pd_obj, &_prop_object_type_dictionary);
410
411 pd->pd_array = array;
412 pd->pd_capacity = capacity;
413 pd->pd_count = 0;
414 pd->pd_flags = 0;
415
416 pd->pd_version = 0;
417 } else if (array != NULL)
418 _PROP_FREE(array, M_PROP_DICT);
419
420 return (pd);
421 }
422
423 static boolean_t
424 _prop_dictionary_expand(prop_dictionary_t pd, unsigned int capacity)
425 {
426 struct _prop_dict_entry *array, *oarray;
427
428 oarray = pd->pd_array;
429
430 array = _PROP_CALLOC(capacity * sizeof(*array), M_PROP_DICT);
431 if (array == NULL)
432 return (FALSE);
433 if (oarray != NULL)
434 memcpy(array, oarray, pd->pd_capacity * sizeof(*array));
435 pd->pd_array = array;
436 pd->pd_capacity = capacity;
437
438 if (oarray != NULL)
439 _PROP_FREE(oarray, M_PROP_DICT);
440
441 return (TRUE);
442 }
443
444 static prop_object_t
445 _prop_dictionary_iterator_next_object(void *v)
446 {
447 struct _prop_dictionary_iterator *pdi = v;
448 prop_dictionary_t pd = pdi->pdi_base.pi_obj;
449 prop_dictionary_keysym_t pdk;
450
451 _PROP_ASSERT(prop_object_is_dictionary(pd));
452
453 if (pd->pd_version != pdi->pdi_base.pi_version)
454 return (NULL); /* dictionary changed during iteration */
455
456 _PROP_ASSERT(pdi->pdi_index <= pd->pd_count);
457
458 if (pdi->pdi_index == pd->pd_count)
459 return (NULL); /* we've iterated all objects */
460
461 pdk = pd->pd_array[pdi->pdi_index].pde_key;
462 pdi->pdi_index++;
463
464 return (pdk);
465 }
466
467 static void
468 _prop_dictionary_iterator_reset(void *v)
469 {
470 struct _prop_dictionary_iterator *pdi = v;
471 prop_dictionary_t pd = pdi->pdi_base.pi_obj;
472
473 _PROP_ASSERT(prop_object_is_dictionary(pd));
474
475 pdi->pdi_index = 0;
476 pdi->pdi_base.pi_version = pd->pd_version;
477 }
478
479 /*
480 * prop_dictionary_create --
481 * Create a dictionary.
482 */
483 prop_dictionary_t
484 prop_dictionary_create(void)
485 {
486
487 return (_prop_dictionary_alloc(0));
488 }
489
490 /*
491 * prop_dictionary_create_with_capacity --
492 * Create a dictionary with the capacity to store N objects.
493 */
494 prop_dictionary_t
495 prop_dictionary_create_with_capacity(unsigned int capacity)
496 {
497
498 return (_prop_dictionary_alloc(capacity));
499 }
500
501 /*
502 * prop_dictionary_copy --
503 * Copy a dictionary. The new dictionary has an initial capacity equal
504 * to the number of objects stored int the original dictionary. The new
505 * dictionary contains refrences to the original dictionary's objects,
506 * not copies of those objects (i.e. a shallow copy).
507 */
508 prop_dictionary_t
509 prop_dictionary_copy(prop_dictionary_t opd)
510 {
511 prop_dictionary_t pd;
512 prop_dictionary_keysym_t pdk;
513 prop_object_t po;
514 unsigned int idx;
515
516 if (! prop_object_is_dictionary(opd))
517 return (NULL);
518
519 pd = _prop_dictionary_alloc(opd->pd_count);
520 if (pd != NULL) {
521 for (idx = 0; idx < opd->pd_count; idx++) {
522 pdk = opd->pd_array[idx].pde_key;
523 po = opd->pd_array[idx].pde_objref;
524
525 prop_object_retain(pdk);
526 prop_object_retain(po);
527
528 pd->pd_array[idx].pde_key = pdk;
529 pd->pd_array[idx].pde_objref = po;
530 }
531 pd->pd_count = opd->pd_count;
532 pd->pd_flags = opd->pd_flags;
533 }
534 return (pd);
535 }
536
537 /*
538 * prop_dictionary_copy_mutable --
539 * Like prop_dictionary_copy(), but the resulting dictionary is
540 * mutable.
541 */
542 prop_dictionary_t
543 prop_dictionary_copy_mutable(prop_dictionary_t opd)
544 {
545 prop_dictionary_t pd;
546
547 if (! prop_object_is_dictionary(opd))
548 return (NULL);
549
550 pd = prop_dictionary_copy(opd);
551 if (pd != NULL)
552 pd->pd_flags &= ~PD_F_IMMUTABLE;
553
554 return (pd);
555 }
556
557 /*
558 * prop_dictionary_count --
559 * Return the number of objects stored in the dictionary.
560 */
561 unsigned int
562 prop_dictionary_count(prop_dictionary_t pd)
563 {
564
565 if (! prop_object_is_dictionary(pd))
566 return (0);
567
568 return (pd->pd_count);
569 }
570
571 /*
572 * prop_dictionary_ensure_capacity --
573 * Ensure that the dictionary has the capacity to store the specified
574 * total number of objects (including the objects already stored in
575 * the dictionary).
576 */
577 boolean_t
578 prop_dictionary_ensure_capacity(prop_dictionary_t pd, unsigned int capacity)
579 {
580
581 if (! prop_object_is_dictionary(pd))
582 return (FALSE);
583
584 if (capacity > pd->pd_capacity)
585 return (_prop_dictionary_expand(pd, capacity));
586 return (TRUE);
587 }
588
589 /*
590 * prop_dictionary_iterator --
591 * Return an iterator for the dictionary. The dictionary is retained by
592 * the iterator.
593 */
594 prop_object_iterator_t
595 prop_dictionary_iterator(prop_dictionary_t pd)
596 {
597 struct _prop_dictionary_iterator *pdi;
598
599 if (! prop_object_is_dictionary(pd))
600 return (NULL);
601
602 pdi = _PROP_CALLOC(sizeof(*pdi), M_TEMP);
603 if (pdi == NULL)
604 return (NULL);
605 pdi->pdi_base.pi_next_object = _prop_dictionary_iterator_next_object;
606 pdi->pdi_base.pi_reset = _prop_dictionary_iterator_reset;
607 prop_object_retain(pd);
608 pdi->pdi_base.pi_obj = pd;
609 pdi->pdi_base.pi_version = pd->pd_version;
610
611 _prop_dictionary_iterator_reset(pdi);
612
613 return (&pdi->pdi_base);
614 }
615
616 static struct _prop_dict_entry *
617 _prop_dict_lookup(prop_dictionary_t pd, const char *key,
618 unsigned int *idxp)
619 {
620 struct _prop_dict_entry *pde;
621 unsigned int base, idx, distance;
622 int res;
623
624 for (idx = 0, base = 0, distance = pd->pd_count; distance != 0;
625 distance >>= 1) {
626 idx = base + (distance >> 1);
627 pde = &pd->pd_array[idx];
628 _PROP_ASSERT(pde->pde_key != NULL);
629 res = strcmp(key, pde->pde_key->pdk_key);
630 if (res == 0) {
631 if (idxp != NULL)
632 *idxp = idx;
633 return (pde);
634 }
635 if (res > 0) { /* key > pdk_key: move right */
636 base = idx + 1;
637 distance--;
638 } /* else move left */
639 }
640
641 /* idx points to the slot we looked at last. */
642 if (idxp != NULL)
643 *idxp = idx;
644 return (NULL);
645 }
646
647 /*
648 * prop_dictionary_get --
649 * Return the object stored with specified key.
650 */
651 prop_object_t
652 prop_dictionary_get(prop_dictionary_t pd, const char *key)
653 {
654 const struct _prop_dict_entry *pde;
655
656 if (! prop_object_is_dictionary(pd))
657 return (NULL);
658
659 pde = _prop_dict_lookup(pd, key, NULL);
660 if (pde != NULL) {
661 _PROP_ASSERT(pde->pde_objref != NULL);
662 return (pde->pde_objref);
663 }
664 return (NULL);
665 }
666
667 /*
668 * prop_dictionary_get_keysym --
669 * Return the object stored at the location encoded by the keysym.
670 */
671 prop_object_t
672 prop_dictionary_get_keysym(prop_dictionary_t pd, prop_dictionary_keysym_t pdk)
673 {
674
675 if (! (prop_object_is_dictionary(pd) &&
676 prop_object_is_dictionary_keysym(pdk)))
677 return (NULL);
678
679 return (prop_dictionary_get(pd, pdk->pdk_key));
680 }
681
682 /*
683 * prop_dictionary_set --
684 * Store a reference to an object at with the specified key.
685 * If the key already exisit, the original object is released.
686 */
687 boolean_t
688 prop_dictionary_set(prop_dictionary_t pd, const char *key, prop_object_t po)
689 {
690 struct _prop_dict_entry *pde;
691 prop_dictionary_keysym_t pdk;
692 unsigned int idx;
693
694 if (! prop_object_is_dictionary(pd))
695 return (FALSE);
696
697 _PROP_ASSERT(pd->pd_count <= pd->pd_capacity);
698
699 if (prop_dictionary_is_immutable(pd))
700 return (FALSE);
701
702 pde = _prop_dict_lookup(pd, key, &idx);
703 if (pde != NULL) {
704 prop_object_t opo = pde->pde_objref;
705 prop_object_retain(po);
706 pde->pde_objref = po;
707 prop_object_release(opo);
708 return (TRUE);
709 }
710
711 pdk = _prop_dict_keysym_alloc(key);
712 if (pdk == NULL)
713 return (FALSE);
714
715 if (pd->pd_count == pd->pd_capacity &&
716 _prop_dictionary_expand(pd,
717 pd->pd_capacity + EXPAND_STEP) == FALSE) {
718 prop_object_release(pdk);
719 return (FALSE);
720 }
721
722 /* At this point, the store will succeed. */
723 prop_object_retain(po);
724
725 if (pd->pd_count == 0) {
726 pd->pd_array[0].pde_key = pdk;
727 pd->pd_array[0].pde_objref = po;
728 pd->pd_count++;
729 pd->pd_version++;
730 return (TRUE);
731 }
732
733 pde = &pd->pd_array[idx];
734 _PROP_ASSERT(pde->pde_key != NULL);
735
736 if (strcmp(key, pde->pde_key->pdk_key) < 0) {
737 /*
738 * key < pdk_key: insert to the left. This is the same as
739 * inserting to the right, except we decrement the current
740 * index first.
741 *
742 * Because we're unsigned, we have to special case 0
743 * (grumble).
744 */
745 if (idx == 0) {
746 memmove(&pd->pd_array[1], &pd->pd_array[0],
747 pd->pd_count * sizeof(*pde));
748 pd->pd_array[0].pde_key = pdk;
749 pd->pd_array[0].pde_objref = po;
750 pd->pd_count++;
751 pd->pd_version++;
752 return (TRUE);
753 }
754 idx--;
755 }
756
757 memmove(&pd->pd_array[idx + 2], &pd->pd_array[idx + 1],
758 (pd->pd_count - (idx + 1)) * sizeof(*pde));
759 pd->pd_array[idx + 1].pde_key = pdk;
760 pd->pd_array[idx + 1].pde_objref = po;
761 pd->pd_count++;
762
763 pd->pd_version++;
764
765 return (TRUE);
766 }
767
768 /*
769 * prop_dictionary_set_keysym --
770 * Replace the object in the dictionary at the location encoded by
771 * the keysym.
772 */
773 boolean_t
774 prop_dictionary_set_keysym(prop_dictionary_t pd, prop_dictionary_keysym_t pdk,
775 prop_object_t po)
776 {
777
778 if (! (prop_object_is_dictionary(pd) &&
779 prop_object_is_dictionary_keysym(pdk)))
780 return (FALSE);
781
782 if (prop_dictionary_is_immutable(pd))
783 return (FALSE);
784
785 return (prop_dictionary_set(pd, pdk->pdk_key, po));
786 }
787
788 static void
789 _prop_dictionary_remove(prop_dictionary_t pd, struct _prop_dict_entry *pde,
790 unsigned int idx)
791 {
792 prop_dictionary_keysym_t pdk = pde->pde_key;
793 prop_object_t po = pde->pde_objref;
794
795 _PROP_ASSERT(pd->pd_count != 0);
796 _PROP_ASSERT(idx < pd->pd_count);
797 _PROP_ASSERT(pde == &pd->pd_array[idx]);
798
799 idx++;
800 memmove(&pd->pd_array[idx - 1], &pd->pd_array[idx],
801 (pd->pd_count - idx) * sizeof(*pde));
802 pd->pd_count--;
803 pd->pd_version++;
804
805 prop_object_release(pdk);
806 prop_object_release(po);
807 }
808
809 /*
810 * prop_dictionary_remove --
811 * Remove the reference to an object with the specified key from
812 * the dictionary.
813 */
814 void
815 prop_dictionary_remove(prop_dictionary_t pd, const char *key)
816 {
817 struct _prop_dict_entry *pde;
818 unsigned int idx;
819
820 if (! prop_object_is_dictionary(pd))
821 return;
822
823 /* XXX Should this be a _PROP_ASSERT()? */
824 if (prop_dictionary_is_immutable(pd))
825 return;
826
827 pde = _prop_dict_lookup(pd, key, &idx);
828 /* XXX Should this be a _PROP_ASSERT()? */
829 if (pde == NULL)
830 return;
831
832 _prop_dictionary_remove(pd, pde, idx);
833 }
834
835 /*
836 * prop_dictionary_remove_keysym --
837 * Remove a reference to an object stored in the dictionary at the
838 * location encoded by the keysym.
839 */
840 void
841 prop_dictionary_remove_keysym(prop_dictionary_t pd,
842 prop_dictionary_keysym_t pdk)
843 {
844
845 if (! (prop_object_is_dictionary(pd) &&
846 prop_object_is_dictionary_keysym(pdk)))
847 return;
848
849 /* XXX Should this be a _PROP_ASSERT()? */
850 if (prop_dictionary_is_immutable(pd))
851 return;
852
853 prop_dictionary_remove(pd, pdk->pdk_key);
854 }
855
856 /*
857 * prop_dictionary_equals --
858 * Return TRUE if the two dictionaries are equivalent. Note we do a
859 * by-value comparison of the objects in the dictionary.
860 */
861 boolean_t
862 prop_dictionary_equals(prop_dictionary_t dict1, prop_dictionary_t dict2)
863 {
864
865 return (_prop_dictionary_equals(dict1, dict2));
866 }
867
868 /*
869 * prop_dictionary_keysym_cstring_nocopy --
870 * Return an immutable reference to the keysym's value.
871 */
872 const char *
873 prop_dictionary_keysym_cstring_nocopy(prop_dictionary_keysym_t pdk)
874 {
875
876 if (! prop_object_is_dictionary_keysym(pdk))
877 return (NULL);
878
879 return (pdk->pdk_key);
880 }
881
882 /*
883 * prop_dictionary_keysym_equals --
884 * Return TRUE if the two dictionary key symbols are equivalent.
885 * Note: We do not compare the object references.
886 */
887 boolean_t
888 prop_dictionary_keysym_equals(prop_dictionary_keysym_t pdk1,
889 prop_dictionary_keysym_t pdk2)
890 {
891
892 return (_prop_dict_keysym_equals(pdk1, pdk2));
893 }
894
895 /*
896 * prop_dictionary_externalize --
897 * Externalize a dictionary, returning a NUL-terminated buffer
898 * containing the XML-style representation. The buffer is allocated
899 * with the M_TEMP memory type.
900 */
901 char *
902 prop_dictionary_externalize(prop_dictionary_t pd)
903 {
904 struct _prop_object_externalize_context *ctx;
905 char *cp;
906
907 ctx = _prop_object_externalize_context_alloc();
908 if (ctx == NULL)
909 return (NULL);
910
911 if (_prop_object_externalize_header(ctx) == FALSE ||
912 (*pd->pd_obj.po_type->pot_extern)(ctx, pd) == FALSE ||
913 _prop_object_externalize_footer(ctx) == FALSE) {
914 /* We are responsible for releasing the buffer. */
915 _PROP_FREE(ctx->poec_buf, M_TEMP);
916 _prop_object_externalize_context_free(ctx);
917 return (NULL);
918 }
919
920 cp = ctx->poec_buf;
921 _prop_object_externalize_context_free(ctx);
922
923 return (cp);
924 }
925
926 /*
927 * _prop_dictionary_internalize --
928 * Parse a <dict>...</dict> and return the object created from the
929 * external representation.
930 */
931 prop_object_t
932 _prop_dictionary_internalize(struct _prop_object_internalize_context *ctx)
933 {
934 prop_dictionary_t dict;
935 prop_object_t val;
936 size_t keylen;
937 char *tmpkey;
938
939 /* We don't currently understand any attributes. */
940 if (ctx->poic_tagattr != NULL)
941 return (NULL);
942
943 dict = prop_dictionary_create();
944 if (dict == NULL)
945 return (NULL);
946
947 if (ctx->poic_is_empty_element)
948 return (dict);
949
950 tmpkey = _PROP_MALLOC(PDK_MAXKEY + 1, M_TEMP);
951 if (tmpkey == NULL)
952 goto bad;
953
954 for (;;) {
955 /* Fetch the next tag. */
956 if (_prop_object_internalize_find_tag(ctx, NULL,
957 _PROP_TAG_TYPE_EITHER) == FALSE)
958 goto bad;
959
960 /* Check to see if this is the end of the dictionary. */
961 if (_PROP_TAG_MATCH(ctx, "dict") &&
962 ctx->poic_tag_type == _PROP_TAG_TYPE_END)
963 break;
964
965 /* Ok, it must be a non-empty key start tag. */
966 if (!_PROP_TAG_MATCH(ctx, "key") ||
967 ctx->poic_tag_type != _PROP_TAG_TYPE_START ||
968 ctx->poic_is_empty_element)
969 goto bad;
970
971 if (_prop_object_internalize_decode_string(ctx,
972 tmpkey, PDK_MAXKEY, &keylen,
973 &ctx->poic_cp) == FALSE)
974 goto bad;
975
976 _PROP_ASSERT(keylen <= PDK_MAXKEY);
977 tmpkey[keylen] = '\0';
978
979 if (_prop_object_internalize_find_tag(ctx, "key",
980 _PROP_TAG_TYPE_END) == FALSE)
981 goto bad;
982
983 /* ..and now the beginning of the value. */
984 if (_prop_object_internalize_find_tag(ctx, NULL,
985 _PROP_TAG_TYPE_START) == FALSE)
986 goto bad;
987
988 val = _prop_object_internalize_by_tag(ctx);
989 if (val == NULL)
990 goto bad;
991
992 if (prop_dictionary_set(dict, tmpkey, val) == FALSE) {
993 prop_object_release(val);
994 goto bad;
995 }
996 prop_object_release(val);
997 }
998
999 _PROP_FREE(tmpkey, M_TEMP);
1000 return (dict);
1001
1002 bad:
1003 if (tmpkey != NULL)
1004 _PROP_FREE(tmpkey, M_TEMP);
1005 prop_object_release(dict);
1006 return (NULL);
1007 }
1008
1009 /*
1010 * prop_dictionary_internalize --
1011 * Create a dictionary by parsing the NUL-terminated XML-style
1012 * representation.
1013 */
1014 prop_dictionary_t
1015 prop_dictionary_internalize(const char *xml)
1016 {
1017 prop_dictionary_t dict = NULL;
1018 struct _prop_object_internalize_context *ctx;
1019
1020 ctx = _prop_object_internalize_context_alloc(xml);
1021 if (ctx == NULL)
1022 return (NULL);
1023
1024 /* We start with a <plist> tag. */
1025 if (_prop_object_internalize_find_tag(ctx, "plist",
1026 _PROP_TAG_TYPE_START) == FALSE)
1027 goto out;
1028
1029 /* Plist elements cannot be empty. */
1030 if (ctx->poic_is_empty_element)
1031 goto out;
1032
1033 /*
1034 * We don't understand any plist attributes, but Apple XML
1035 * property lists often have a "version" attribute. If we
1036 * see that one, we simply ignore it.
1037 */
1038 if (ctx->poic_tagattr != NULL &&
1039 !_PROP_TAGATTR_MATCH(ctx, "version"))
1040 goto out;
1041
1042 /* Next we expect to see <dict>. */
1043 if (_prop_object_internalize_find_tag(ctx, "dict",
1044 _PROP_TAG_TYPE_START) == FALSE)
1045 goto out;
1046
1047 dict = _prop_dictionary_internalize(ctx);
1048 if (dict == NULL)
1049 goto out;
1050
1051 /* We've advanced past </dict>. Now we want </plist>. */
1052 if (_prop_object_internalize_find_tag(ctx, "plist",
1053 _PROP_TAG_TYPE_END) == FALSE) {
1054 prop_object_release(dict);
1055 dict = NULL;
1056 }
1057
1058 out:
1059 _prop_object_internalize_context_free(ctx);
1060 return (dict);
1061 }
1062
1063 #if !defined(_KERNEL) && !defined(_STANDALONE)
1064 /*
1065 * prop_dictionary_externalize_to_file --
1066 * Externalize a dictionary to the specified file.
1067 */
1068 boolean_t
1069 prop_dictionary_externalize_to_file(prop_dictionary_t dict, const char *fname)
1070 {
1071 char *xml;
1072 boolean_t rv;
1073 int save_errno;
1074
1075 xml = prop_dictionary_externalize(dict);
1076 if (xml == NULL)
1077 return (FALSE);
1078 rv = _prop_object_externalize_write_file(fname, xml, strlen(xml));
1079 if (rv == FALSE)
1080 save_errno = errno;
1081 _PROP_FREE(xml, M_TEMP);
1082 if (rv == FALSE)
1083 errno = save_errno;
1084
1085 return (rv);
1086 }
1087
1088 /*
1089 * prop_dictionary_internalize_from_file --
1090 * Internalize a dictionary from a file.
1091 */
1092 prop_dictionary_t
1093 prop_dictionary_internalize_from_file(const char *fname)
1094 {
1095 struct _prop_object_internalize_mapped_file *mf;
1096 prop_dictionary_t dict;
1097
1098 mf = _prop_object_internalize_map_file(fname);
1099 if (mf == NULL)
1100 return (NULL);
1101 dict = prop_dictionary_internalize(mf->poimf_xml);
1102 _prop_object_internalize_unmap_file(mf);
1103
1104 return (dict);
1105 }
1106 #endif /* !_KERNEL && !_STANDALONE */
1107