prop_number.c revision 1.13 1 /* $NetBSD: prop_number.c,v 1.13 2007/08/16 21:44:07 joerg Exp $ */
2
3 /*-
4 * Copyright (c) 2006 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <prop/prop_number.h>
40 #include "prop_object_impl.h"
41 #include "prop_rb_impl.h"
42
43 #if defined(_KERNEL)
44 #include <sys/systm.h>
45 #elif defined(_STANDALONE)
46 #include <sys/param.h>
47 #include <lib/libkern/libkern.h>
48 #else
49 #include <errno.h>
50 #include <stdlib.h>
51 #endif
52
53 struct _prop_number {
54 struct _prop_object pn_obj;
55 struct rb_node pn_link;
56 struct _prop_number_value {
57 union {
58 int64_t pnu_signed;
59 uint64_t pnu_unsigned;
60 } pnv_un;
61 #define pnv_signed pnv_un.pnu_signed
62 #define pnv_unsigned pnv_un.pnu_unsigned
63 unsigned int pnv_is_unsigned :1,
64 :31;
65 } pn_value;
66 };
67
68 #define RBNODE_TO_PN(n) \
69 ((struct _prop_number *) \
70 ((uintptr_t)n - offsetof(struct _prop_number, pn_link)))
71
72 _PROP_POOL_INIT(_prop_number_pool, sizeof(struct _prop_number), "propnmbr")
73
74 static int _prop_number_free(prop_stack_t, prop_object_t *);
75 static bool _prop_number_externalize(
76 struct _prop_object_externalize_context *,
77 void *);
78 static bool _prop_number_equals(void *, void *);
79
80 static const struct _prop_object_type _prop_object_type_number = {
81 .pot_type = PROP_TYPE_NUMBER,
82 .pot_free = _prop_number_free,
83 .pot_extern = _prop_number_externalize,
84 .pot_equals = _prop_number_equals,
85 };
86
87 #define prop_object_is_number(x) \
88 ((x) != NULL && (x)->pn_obj.po_type == &_prop_object_type_number)
89
90 /*
91 * Number objects are immutable, and we are likely to have many number
92 * objects that have the same value. So, to save memory, we unique'ify
93 * numbers so we only have one copy of each.
94 */
95
96 static int
97 _prop_number_compare_values(const struct _prop_number_value *pnv1,
98 const struct _prop_number_value *pnv2)
99 {
100
101 /* Signed numbers are sorted before unsigned numbers. */
102
103 if (pnv1->pnv_is_unsigned) {
104 if (! pnv2->pnv_is_unsigned)
105 return (1);
106 if (pnv1->pnv_unsigned < pnv2->pnv_unsigned)
107 return (-1);
108 if (pnv1->pnv_unsigned > pnv2->pnv_unsigned)
109 return (1);
110 return (0);
111 }
112
113 if (pnv2->pnv_is_unsigned)
114 return (-1);
115 if (pnv1->pnv_signed < pnv2->pnv_signed)
116 return (-1);
117 if (pnv1->pnv_signed > pnv2->pnv_signed)
118 return (1);
119 return (0);
120 }
121
122 static int
123 _prop_number_rb_compare_nodes(const struct rb_node *n1,
124 const struct rb_node *n2)
125 {
126 const prop_number_t pn1 = RBNODE_TO_PN(n1);
127 const prop_number_t pn2 = RBNODE_TO_PN(n2);
128
129 return (_prop_number_compare_values(&pn1->pn_value, &pn2->pn_value));
130 }
131
132 static int
133 _prop_number_rb_compare_key(const struct rb_node *n,
134 const void *v)
135 {
136 const prop_number_t pn = RBNODE_TO_PN(n);
137 const struct _prop_number_value *pnv = v;
138
139 return (_prop_number_compare_values(&pn->pn_value, pnv));
140 }
141
142 static const struct rb_tree_ops _prop_number_rb_tree_ops = {
143 .rbto_compare_nodes = _prop_number_rb_compare_nodes,
144 .rbto_compare_key = _prop_number_rb_compare_key,
145 };
146
147 static struct rb_tree _prop_number_tree;
148 static bool _prop_number_tree_initialized;
149
150 _PROP_MUTEX_DECL_STATIC(_prop_number_tree_mutex)
151
152 /* ARGSUSED */
153 static int
154 _prop_number_free(prop_stack_t stack, prop_object_t *obj)
155 {
156 prop_number_t pn = *obj;
157
158 _PROP_MUTEX_LOCK(_prop_number_tree_mutex);
159 _prop_rb_tree_remove_node(&_prop_number_tree, &pn->pn_link);
160 _PROP_MUTEX_UNLOCK(_prop_number_tree_mutex);
161
162 _PROP_POOL_PUT(_prop_number_pool, pn);
163
164 return (_PROP_OBJECT_FREE_DONE);
165 }
166
167 static bool
168 _prop_number_externalize(struct _prop_object_externalize_context *ctx,
169 void *v)
170 {
171 prop_number_t pn = v;
172 char tmpstr[32];
173
174 /*
175 * For unsigned numbers, we output in hex. For signed numbers,
176 * we output in decimal.
177 */
178 if (pn->pn_value.pnv_is_unsigned)
179 sprintf(tmpstr, "0x%" PRIx64, pn->pn_value.pnv_unsigned);
180 else
181 sprintf(tmpstr, "%" PRIi64, pn->pn_value.pnv_signed);
182
183 if (_prop_object_externalize_start_tag(ctx, "integer") == false ||
184 _prop_object_externalize_append_cstring(ctx, tmpstr) == false ||
185 _prop_object_externalize_end_tag(ctx, "integer") == false)
186 return (false);
187
188 return (true);
189 }
190
191 static bool
192 _prop_number_equals(void *v1, void *v2)
193 {
194 prop_number_t num1 = v1;
195 prop_number_t num2 = v2;
196
197 if (! (prop_object_is_number(num1) &&
198 prop_object_is_number(num2)))
199 return (false);
200
201 /*
202 * There is only ever one copy of a number object at any given
203 * time, so we can reduce this to a simple pointer equality check
204 * in the common case.
205 */
206 if (num1 == num2)
207 return (true);
208
209 /*
210 * If the numbers are the same signed-ness, then we know they
211 * cannot be equal because they would have had pointer equality.
212 */
213 if (num1->pn_value.pnv_is_unsigned == num2->pn_value.pnv_is_unsigned)
214 return (false);
215
216 /*
217 * We now have one signed value and one unsigned value. We can
218 * compare them iff:
219 * - The unsigned value is not larger than the signed value
220 * can represent.
221 * - The signed value is not smaller than the unsigned value
222 * can represent.
223 */
224 if (num1->pn_value.pnv_is_unsigned) {
225 /*
226 * num1 is unsigned and num2 is signed.
227 */
228 if (num1->pn_value.pnv_unsigned > INT64_MAX)
229 return (false);
230 if (num2->pn_value.pnv_signed < 0)
231 return (false);
232 } else {
233 /*
234 * num1 is signed and num2 is unsigned.
235 */
236 if (num1->pn_value.pnv_signed < 0)
237 return (false);
238 if (num2->pn_value.pnv_unsigned > INT64_MAX)
239 return (false);
240 }
241
242 return (num1->pn_value.pnv_signed == num2->pn_value.pnv_signed);
243 }
244
245 static prop_number_t
246 _prop_number_alloc(const struct _prop_number_value *pnv)
247 {
248 prop_number_t opn, pn;
249 struct rb_node *n;
250
251 /*
252 * Check to see if this already exists in the tree. If it does,
253 * we just retain it and return it.
254 */
255 _PROP_MUTEX_LOCK(_prop_number_tree_mutex);
256 if (! _prop_number_tree_initialized) {
257 _prop_rb_tree_init(&_prop_number_tree,
258 &_prop_number_rb_tree_ops);
259 _prop_number_tree_initialized = true;
260 } else {
261 n = _prop_rb_tree_find(&_prop_number_tree, pnv);
262 if (n != NULL) {
263 opn = RBNODE_TO_PN(n);
264 prop_object_retain(opn);
265 _PROP_MUTEX_UNLOCK(_prop_number_tree_mutex);
266 return (opn);
267 }
268 }
269 _PROP_MUTEX_UNLOCK(_prop_number_tree_mutex);
270
271 /*
272 * Not in the tree. Create it now.
273 */
274
275 pn = _PROP_POOL_GET(_prop_number_pool);
276 if (pn == NULL)
277 return (NULL);
278
279 _prop_object_init(&pn->pn_obj, &_prop_object_type_number);
280
281 pn->pn_value = *pnv;
282
283 /*
284 * We dropped the mutex when we allocated the new object, so
285 * we have to check again if it is in the tree.
286 */
287 _PROP_MUTEX_LOCK(_prop_number_tree_mutex);
288 n = _prop_rb_tree_find(&_prop_number_tree, pnv);
289 if (n != NULL) {
290 opn = RBNODE_TO_PN(n);
291 prop_object_retain(opn);
292 _PROP_MUTEX_UNLOCK(_prop_number_tree_mutex);
293 _PROP_POOL_PUT(_prop_number_pool, pn);
294 return (opn);
295 }
296 _prop_rb_tree_insert_node(&_prop_number_tree, &pn->pn_link);
297 _PROP_MUTEX_UNLOCK(_prop_number_tree_mutex);
298 return (pn);
299 }
300
301 /*
302 * prop_number_create_integer --
303 * Create a prop_number_t and initialize it with the
304 * provided integer value.
305 */
306 prop_number_t
307 prop_number_create_integer(int64_t val)
308 {
309 struct _prop_number_value pnv;
310
311 memset(&pnv, 0, sizeof(pnv));
312 pnv.pnv_signed = val;
313 pnv.pnv_is_unsigned = false;
314
315 return (_prop_number_alloc(&pnv));
316 }
317
318 /*
319 * prop_number_create_unsigned_integer --
320 * Create a prop_number_t and initialize it with the
321 * provided unsigned integer value.
322 */
323 prop_number_t
324 prop_number_create_unsigned_integer(uint64_t val)
325 {
326 struct _prop_number_value pnv;
327
328 memset(&pnv, 0, sizeof(pnv));
329 pnv.pnv_unsigned = val;
330 pnv.pnv_is_unsigned = true;
331
332 return (_prop_number_alloc(&pnv));
333 }
334
335 /*
336 * prop_number_copy --
337 * Copy a prop_number_t.
338 */
339 prop_number_t
340 prop_number_copy(prop_number_t opn)
341 {
342
343 if (! prop_object_is_number(opn))
344 return (NULL);
345
346 /*
347 * Because we only ever allocate one object for any given
348 * value, this can be reduced to a simple retain operation.
349 */
350 prop_object_retain(opn);
351 return (opn);
352 }
353
354 /*
355 * prop_number_unsigned --
356 * Returns true if the prop_number_t has an unsigned value.
357 */
358 bool
359 prop_number_unsigned(prop_number_t pn)
360 {
361
362 return (pn->pn_value.pnv_is_unsigned);
363 }
364
365 /*
366 * prop_number_size --
367 * Return the size, in bits, required to hold the value of
368 * the specified number.
369 */
370 int
371 prop_number_size(prop_number_t pn)
372 {
373 struct _prop_number_value *pnv;
374
375 if (! prop_object_is_number(pn))
376 return (0);
377
378 pnv = &pn->pn_value;
379
380 if (pnv->pnv_is_unsigned) {
381 if (pnv->pnv_unsigned > UINT32_MAX)
382 return (64);
383 if (pnv->pnv_unsigned > UINT16_MAX)
384 return (32);
385 if (pnv->pnv_unsigned > UINT8_MAX)
386 return (16);
387 return (8);
388 }
389
390 if (pnv->pnv_signed > INT32_MAX || pnv->pnv_signed < INT32_MIN)
391 return (64);
392 if (pnv->pnv_signed > INT16_MAX || pnv->pnv_signed < INT16_MIN)
393 return (32);
394 if (pnv->pnv_signed > INT8_MAX || pnv->pnv_signed < INT8_MIN)
395 return (16);
396 return (8);
397 }
398
399 /*
400 * prop_number_integer_value --
401 * Get the integer value of a prop_number_t.
402 */
403 int64_t
404 prop_number_integer_value(prop_number_t pn)
405 {
406
407 /*
408 * XXX Impossible to distinguish between "not a prop_number_t"
409 * XXX and "prop_number_t has a value of 0".
410 */
411 if (! prop_object_is_number(pn))
412 return (0);
413
414 return (pn->pn_value.pnv_signed);
415 }
416
417 /*
418 * prop_number_unsigned_integer_value --
419 * Get the unsigned integer value of a prop_number_t.
420 */
421 uint64_t
422 prop_number_unsigned_integer_value(prop_number_t pn)
423 {
424
425 /*
426 * XXX Impossible to distinguish between "not a prop_number_t"
427 * XXX and "prop_number_t has a value of 0".
428 */
429 if (! prop_object_is_number(pn))
430 return (0);
431
432 return (pn->pn_value.pnv_unsigned);
433 }
434
435 /*
436 * prop_number_equals --
437 * Return true if two numbers are equivalent.
438 */
439 bool
440 prop_number_equals(prop_number_t num1, prop_number_t num2)
441 {
442
443 return (_prop_number_equals(num1, num2));
444 }
445
446 /*
447 * prop_number_equals_integer --
448 * Return true if the number is equivalent to the specified integer.
449 */
450 bool
451 prop_number_equals_integer(prop_number_t pn, int64_t val)
452 {
453
454 if (! prop_object_is_number(pn))
455 return (false);
456
457 if (pn->pn_value.pnv_is_unsigned &&
458 (pn->pn_value.pnv_unsigned > INT64_MAX || val < 0))
459 return (false);
460
461 return (pn->pn_value.pnv_signed == val);
462 }
463
464 /*
465 * prop_number_equals_unsigned_integer --
466 * Return true if the number is equivalent to the specified
467 * unsigned integer.
468 */
469 bool
470 prop_number_equals_unsigned_integer(prop_number_t pn, uint64_t val)
471 {
472
473 if (! prop_object_is_number(pn))
474 return (false);
475
476 if (! pn->pn_value.pnv_is_unsigned &&
477 (pn->pn_value.pnv_signed < 0 || val > INT64_MAX))
478 return (false);
479
480 return (pn->pn_value.pnv_unsigned == val);
481 }
482
483 static bool
484 _prop_number_internalize_unsigned(struct _prop_object_internalize_context *ctx,
485 struct _prop_number_value *pnv)
486 {
487 char *cp;
488
489 _PROP_ASSERT(/*CONSTCOND*/sizeof(unsigned long long) ==
490 sizeof(uint64_t));
491
492 #ifndef _KERNEL
493 errno = 0;
494 #endif
495 pnv->pnv_unsigned = (uint64_t) strtoull(ctx->poic_cp, &cp, 0);
496 #ifndef _KERNEL /* XXX can't check for ERANGE in the kernel */
497 if (pnv->pnv_unsigned == UINT64_MAX && errno == ERANGE)
498 return (false);
499 #endif
500 pnv->pnv_is_unsigned = true;
501 ctx->poic_cp = cp;
502
503 return (true);
504 }
505
506 static bool
507 _prop_number_internalize_signed(struct _prop_object_internalize_context *ctx,
508 struct _prop_number_value *pnv)
509 {
510 char *cp;
511
512 _PROP_ASSERT(/*CONSTCOND*/sizeof(long long) == sizeof(int64_t));
513
514 #ifndef _KERNEL
515 errno = 0;
516 #endif
517 pnv->pnv_signed = (int64_t) strtoll(ctx->poic_cp, &cp, 0);
518 #ifndef _KERNEL /* XXX can't check for ERANGE in the kernel */
519 if ((pnv->pnv_signed == INT64_MAX || pnv->pnv_signed == INT64_MIN) &&
520 errno == ERANGE)
521 return (false);
522 #endif
523 pnv->pnv_is_unsigned = false;
524 ctx->poic_cp = cp;
525
526 return (true);
527 }
528
529 /*
530 * _prop_number_internalize --
531 * Parse a <number>...</number> and return the object created from
532 * the external representation.
533 */
534 /* ARGSUSED */
535 bool
536 _prop_number_internalize(prop_stack_t stack, prop_object_t *obj,
537 struct _prop_object_internalize_context *ctx)
538 {
539 struct _prop_number_value pnv;
540
541 memset(&pnv, 0, sizeof(pnv));
542
543 /* No attributes, no empty elements. */
544 if (ctx->poic_tagattr != NULL || ctx->poic_is_empty_element)
545 return (true);
546
547 /*
548 * If the first character is '-', then we treat as signed.
549 * If the first two characters are "0x" (i.e. the number is
550 * in hex), then we treat as unsigned. Otherwise, we try
551 * signed first, and if that fails (presumably due to ERANGE),
552 * then we switch to unsigned.
553 */
554 if (ctx->poic_cp[0] == '-') {
555 if (_prop_number_internalize_signed(ctx, &pnv) == false)
556 return (true);
557 } else if (ctx->poic_cp[0] == '0' && ctx->poic_cp[1] == 'x') {
558 if (_prop_number_internalize_unsigned(ctx, &pnv) == false)
559 return (true);
560 } else {
561 if (_prop_number_internalize_signed(ctx, &pnv) == false &&
562 _prop_number_internalize_unsigned(ctx, &pnv) == false)
563 return (true);
564 }
565
566 if (_prop_object_internalize_find_tag(ctx, "integer",
567 _PROP_TAG_TYPE_END) == false)
568 return (true);
569
570 *obj = _prop_number_alloc(&pnv);
571 return (true);
572 }
573