prop_number.c revision 1.17 1 /* $NetBSD: prop_number.c,v 1.17 2008/04/28 20:22:53 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2006 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <prop/prop_number.h>
33 #include "prop_object_impl.h"
34 #include "prop_rb_impl.h"
35
36 #if defined(_KERNEL)
37 #include <sys/systm.h>
38 #elif defined(_STANDALONE)
39 #include <sys/param.h>
40 #include <lib/libkern/libkern.h>
41 #else
42 #include <errno.h>
43 #include <stdlib.h>
44 #endif
45
46 struct _prop_number {
47 struct _prop_object pn_obj;
48 struct rb_node pn_link;
49 struct _prop_number_value {
50 union {
51 int64_t pnu_signed;
52 uint64_t pnu_unsigned;
53 } pnv_un;
54 #define pnv_signed pnv_un.pnu_signed
55 #define pnv_unsigned pnv_un.pnu_unsigned
56 unsigned int pnv_is_unsigned :1,
57 :31;
58 } pn_value;
59 };
60
61 #define RBNODE_TO_PN(n) \
62 ((struct _prop_number *) \
63 ((uintptr_t)n - offsetof(struct _prop_number, pn_link)))
64
65 _PROP_POOL_INIT(_prop_number_pool, sizeof(struct _prop_number), "propnmbr")
66
67 static int _prop_number_free(prop_stack_t, prop_object_t *);
68 static bool _prop_number_externalize(
69 struct _prop_object_externalize_context *,
70 void *);
71 static bool _prop_number_equals(prop_object_t, prop_object_t,
72 void **, void **,
73 prop_object_t *, prop_object_t *);
74
75 static const struct _prop_object_type _prop_object_type_number = {
76 .pot_type = PROP_TYPE_NUMBER,
77 .pot_free = _prop_number_free,
78 .pot_extern = _prop_number_externalize,
79 .pot_equals = _prop_number_equals,
80 };
81
82 #define prop_object_is_number(x) \
83 ((x) != NULL && (x)->pn_obj.po_type == &_prop_object_type_number)
84
85 /*
86 * Number objects are immutable, and we are likely to have many number
87 * objects that have the same value. So, to save memory, we unique'ify
88 * numbers so we only have one copy of each.
89 */
90
91 static int
92 _prop_number_compare_values(const struct _prop_number_value *pnv1,
93 const struct _prop_number_value *pnv2)
94 {
95
96 /* Signed numbers are sorted before unsigned numbers. */
97
98 if (pnv1->pnv_is_unsigned) {
99 if (! pnv2->pnv_is_unsigned)
100 return (1);
101 if (pnv1->pnv_unsigned < pnv2->pnv_unsigned)
102 return (-1);
103 if (pnv1->pnv_unsigned > pnv2->pnv_unsigned)
104 return (1);
105 return (0);
106 }
107
108 if (pnv2->pnv_is_unsigned)
109 return (-1);
110 if (pnv1->pnv_signed < pnv2->pnv_signed)
111 return (-1);
112 if (pnv1->pnv_signed > pnv2->pnv_signed)
113 return (1);
114 return (0);
115 }
116
117 static int
118 _prop_number_rb_compare_nodes(const struct rb_node *n1,
119 const struct rb_node *n2)
120 {
121 const prop_number_t pn1 = RBNODE_TO_PN(n1);
122 const prop_number_t pn2 = RBNODE_TO_PN(n2);
123
124 return (_prop_number_compare_values(&pn1->pn_value, &pn2->pn_value));
125 }
126
127 static int
128 _prop_number_rb_compare_key(const struct rb_node *n,
129 const void *v)
130 {
131 const prop_number_t pn = RBNODE_TO_PN(n);
132 const struct _prop_number_value *pnv = v;
133
134 return (_prop_number_compare_values(&pn->pn_value, pnv));
135 }
136
137 static const struct rb_tree_ops _prop_number_rb_tree_ops = {
138 .rbto_compare_nodes = _prop_number_rb_compare_nodes,
139 .rbto_compare_key = _prop_number_rb_compare_key,
140 };
141
142 static struct rb_tree _prop_number_tree;
143 static bool _prop_number_tree_initialized;
144
145 _PROP_MUTEX_DECL_STATIC(_prop_number_tree_mutex)
146
147 /* ARGSUSED */
148 static int
149 _prop_number_free(prop_stack_t stack, prop_object_t *obj)
150 {
151 prop_number_t pn = *obj;
152
153 _PROP_MUTEX_LOCK(_prop_number_tree_mutex);
154 _prop_rb_tree_remove_node(&_prop_number_tree, &pn->pn_link);
155 _PROP_MUTEX_UNLOCK(_prop_number_tree_mutex);
156
157 _PROP_POOL_PUT(_prop_number_pool, pn);
158
159 return (_PROP_OBJECT_FREE_DONE);
160 }
161
162 static bool
163 _prop_number_externalize(struct _prop_object_externalize_context *ctx,
164 void *v)
165 {
166 prop_number_t pn = v;
167 char tmpstr[32];
168
169 /*
170 * For unsigned numbers, we output in hex. For signed numbers,
171 * we output in decimal.
172 */
173 if (pn->pn_value.pnv_is_unsigned)
174 sprintf(tmpstr, "0x%" PRIx64, pn->pn_value.pnv_unsigned);
175 else
176 sprintf(tmpstr, "%" PRIi64, pn->pn_value.pnv_signed);
177
178 if (_prop_object_externalize_start_tag(ctx, "integer") == false ||
179 _prop_object_externalize_append_cstring(ctx, tmpstr) == false ||
180 _prop_object_externalize_end_tag(ctx, "integer") == false)
181 return (false);
182
183 return (true);
184 }
185
186 /* ARGSUSED */
187 static bool
188 _prop_number_equals(prop_object_t v1, prop_object_t v2,
189 void **stored_pointer1, void **stored_pointer2,
190 prop_object_t *next_obj1, prop_object_t *next_obj2)
191 {
192 prop_number_t num1 = v1;
193 prop_number_t num2 = v2;
194
195 /*
196 * There is only ever one copy of a number object at any given
197 * time, so we can reduce this to a simple pointer equality check
198 * in the common case.
199 */
200 if (num1 == num2)
201 return (_PROP_OBJECT_EQUALS_TRUE);
202
203 /*
204 * If the numbers are the same signed-ness, then we know they
205 * cannot be equal because they would have had pointer equality.
206 */
207 if (num1->pn_value.pnv_is_unsigned == num2->pn_value.pnv_is_unsigned)
208 return (_PROP_OBJECT_EQUALS_TRUE);
209
210 /*
211 * We now have one signed value and one unsigned value. We can
212 * compare them iff:
213 * - The unsigned value is not larger than the signed value
214 * can represent.
215 * - The signed value is not smaller than the unsigned value
216 * can represent.
217 */
218 if (num1->pn_value.pnv_is_unsigned) {
219 /*
220 * num1 is unsigned and num2 is signed.
221 */
222 if (num1->pn_value.pnv_unsigned > INT64_MAX)
223 return (_PROP_OBJECT_EQUALS_FALSE);
224 if (num2->pn_value.pnv_signed < 0)
225 return (_PROP_OBJECT_EQUALS_FALSE);
226 } else {
227 /*
228 * num1 is signed and num2 is unsigned.
229 */
230 if (num1->pn_value.pnv_signed < 0)
231 return (_PROP_OBJECT_EQUALS_FALSE);
232 if (num2->pn_value.pnv_unsigned > INT64_MAX)
233 return (_PROP_OBJECT_EQUALS_FALSE);
234 }
235
236 if (num1->pn_value.pnv_signed == num2->pn_value.pnv_signed)
237 return _PROP_OBJECT_EQUALS_TRUE;
238 else
239 return _PROP_OBJECT_EQUALS_FALSE;
240 }
241
242 static prop_number_t
243 _prop_number_alloc(const struct _prop_number_value *pnv)
244 {
245 prop_number_t opn, pn;
246 struct rb_node *n;
247
248 /*
249 * Check to see if this already exists in the tree. If it does,
250 * we just retain it and return it.
251 */
252 _PROP_MUTEX_LOCK(_prop_number_tree_mutex);
253 if (! _prop_number_tree_initialized) {
254 _prop_rb_tree_init(&_prop_number_tree,
255 &_prop_number_rb_tree_ops);
256 _prop_number_tree_initialized = true;
257 } else {
258 n = _prop_rb_tree_find(&_prop_number_tree, pnv);
259 if (n != NULL) {
260 opn = RBNODE_TO_PN(n);
261 prop_object_retain(opn);
262 _PROP_MUTEX_UNLOCK(_prop_number_tree_mutex);
263 return (opn);
264 }
265 }
266 _PROP_MUTEX_UNLOCK(_prop_number_tree_mutex);
267
268 /*
269 * Not in the tree. Create it now.
270 */
271
272 pn = _PROP_POOL_GET(_prop_number_pool);
273 if (pn == NULL)
274 return (NULL);
275
276 _prop_object_init(&pn->pn_obj, &_prop_object_type_number);
277
278 pn->pn_value = *pnv;
279
280 /*
281 * We dropped the mutex when we allocated the new object, so
282 * we have to check again if it is in the tree.
283 */
284 _PROP_MUTEX_LOCK(_prop_number_tree_mutex);
285 n = _prop_rb_tree_find(&_prop_number_tree, pnv);
286 if (n != NULL) {
287 opn = RBNODE_TO_PN(n);
288 prop_object_retain(opn);
289 _PROP_MUTEX_UNLOCK(_prop_number_tree_mutex);
290 _PROP_POOL_PUT(_prop_number_pool, pn);
291 return (opn);
292 }
293 _prop_rb_tree_insert_node(&_prop_number_tree, &pn->pn_link);
294 _PROP_MUTEX_UNLOCK(_prop_number_tree_mutex);
295 return (pn);
296 }
297
298 /*
299 * prop_number_create_integer --
300 * Create a prop_number_t and initialize it with the
301 * provided integer value.
302 */
303 prop_number_t
304 prop_number_create_integer(int64_t val)
305 {
306 struct _prop_number_value pnv;
307
308 memset(&pnv, 0, sizeof(pnv));
309 pnv.pnv_signed = val;
310 pnv.pnv_is_unsigned = false;
311
312 return (_prop_number_alloc(&pnv));
313 }
314
315 /*
316 * prop_number_create_unsigned_integer --
317 * Create a prop_number_t and initialize it with the
318 * provided unsigned integer value.
319 */
320 prop_number_t
321 prop_number_create_unsigned_integer(uint64_t val)
322 {
323 struct _prop_number_value pnv;
324
325 memset(&pnv, 0, sizeof(pnv));
326 pnv.pnv_unsigned = val;
327 pnv.pnv_is_unsigned = true;
328
329 return (_prop_number_alloc(&pnv));
330 }
331
332 /*
333 * prop_number_copy --
334 * Copy a prop_number_t.
335 */
336 prop_number_t
337 prop_number_copy(prop_number_t opn)
338 {
339
340 if (! prop_object_is_number(opn))
341 return (NULL);
342
343 /*
344 * Because we only ever allocate one object for any given
345 * value, this can be reduced to a simple retain operation.
346 */
347 prop_object_retain(opn);
348 return (opn);
349 }
350
351 /*
352 * prop_number_unsigned --
353 * Returns true if the prop_number_t has an unsigned value.
354 */
355 bool
356 prop_number_unsigned(prop_number_t pn)
357 {
358
359 return (pn->pn_value.pnv_is_unsigned);
360 }
361
362 /*
363 * prop_number_size --
364 * Return the size, in bits, required to hold the value of
365 * the specified number.
366 */
367 int
368 prop_number_size(prop_number_t pn)
369 {
370 struct _prop_number_value *pnv;
371
372 if (! prop_object_is_number(pn))
373 return (0);
374
375 pnv = &pn->pn_value;
376
377 if (pnv->pnv_is_unsigned) {
378 if (pnv->pnv_unsigned > UINT32_MAX)
379 return (64);
380 if (pnv->pnv_unsigned > UINT16_MAX)
381 return (32);
382 if (pnv->pnv_unsigned > UINT8_MAX)
383 return (16);
384 return (8);
385 }
386
387 if (pnv->pnv_signed > INT32_MAX || pnv->pnv_signed < INT32_MIN)
388 return (64);
389 if (pnv->pnv_signed > INT16_MAX || pnv->pnv_signed < INT16_MIN)
390 return (32);
391 if (pnv->pnv_signed > INT8_MAX || pnv->pnv_signed < INT8_MIN)
392 return (16);
393 return (8);
394 }
395
396 /*
397 * prop_number_integer_value --
398 * Get the integer value of a prop_number_t.
399 */
400 int64_t
401 prop_number_integer_value(prop_number_t pn)
402 {
403
404 /*
405 * XXX Impossible to distinguish between "not a prop_number_t"
406 * XXX and "prop_number_t has a value of 0".
407 */
408 if (! prop_object_is_number(pn))
409 return (0);
410
411 return (pn->pn_value.pnv_signed);
412 }
413
414 /*
415 * prop_number_unsigned_integer_value --
416 * Get the unsigned integer value of a prop_number_t.
417 */
418 uint64_t
419 prop_number_unsigned_integer_value(prop_number_t pn)
420 {
421
422 /*
423 * XXX Impossible to distinguish between "not a prop_number_t"
424 * XXX and "prop_number_t has a value of 0".
425 */
426 if (! prop_object_is_number(pn))
427 return (0);
428
429 return (pn->pn_value.pnv_unsigned);
430 }
431
432 /*
433 * prop_number_equals --
434 * Return true if two numbers are equivalent.
435 */
436 bool
437 prop_number_equals(prop_number_t num1, prop_number_t num2)
438 {
439 if (!prop_object_is_number(num1) || !prop_object_is_number(num2))
440 return (false);
441
442 return (prop_object_equals(num1, num2));
443 }
444
445 /*
446 * prop_number_equals_integer --
447 * Return true if the number is equivalent to the specified integer.
448 */
449 bool
450 prop_number_equals_integer(prop_number_t pn, int64_t val)
451 {
452
453 if (! prop_object_is_number(pn))
454 return (false);
455
456 if (pn->pn_value.pnv_is_unsigned &&
457 (pn->pn_value.pnv_unsigned > INT64_MAX || val < 0))
458 return (false);
459
460 return (pn->pn_value.pnv_signed == val);
461 }
462
463 /*
464 * prop_number_equals_unsigned_integer --
465 * Return true if the number is equivalent to the specified
466 * unsigned integer.
467 */
468 bool
469 prop_number_equals_unsigned_integer(prop_number_t pn, uint64_t val)
470 {
471
472 if (! prop_object_is_number(pn))
473 return (false);
474
475 if (! pn->pn_value.pnv_is_unsigned &&
476 (pn->pn_value.pnv_signed < 0 || val > INT64_MAX))
477 return (false);
478
479 return (pn->pn_value.pnv_unsigned == val);
480 }
481
482 static bool
483 _prop_number_internalize_unsigned(struct _prop_object_internalize_context *ctx,
484 struct _prop_number_value *pnv)
485 {
486 char *cp;
487
488 _PROP_ASSERT(/*CONSTCOND*/sizeof(unsigned long long) ==
489 sizeof(uint64_t));
490
491 #ifndef _KERNEL
492 errno = 0;
493 #endif
494 pnv->pnv_unsigned = (uint64_t) strtoull(ctx->poic_cp, &cp, 0);
495 #ifndef _KERNEL /* XXX can't check for ERANGE in the kernel */
496 if (pnv->pnv_unsigned == UINT64_MAX && errno == ERANGE)
497 return (false);
498 #endif
499 pnv->pnv_is_unsigned = true;
500 ctx->poic_cp = cp;
501
502 return (true);
503 }
504
505 static bool
506 _prop_number_internalize_signed(struct _prop_object_internalize_context *ctx,
507 struct _prop_number_value *pnv)
508 {
509 char *cp;
510
511 _PROP_ASSERT(/*CONSTCOND*/sizeof(long long) == sizeof(int64_t));
512
513 #ifndef _KERNEL
514 errno = 0;
515 #endif
516 pnv->pnv_signed = (int64_t) strtoll(ctx->poic_cp, &cp, 0);
517 #ifndef _KERNEL /* XXX can't check for ERANGE in the kernel */
518 if ((pnv->pnv_signed == INT64_MAX || pnv->pnv_signed == INT64_MIN) &&
519 errno == ERANGE)
520 return (false);
521 #endif
522 pnv->pnv_is_unsigned = false;
523 ctx->poic_cp = cp;
524
525 return (true);
526 }
527
528 /*
529 * _prop_number_internalize --
530 * Parse a <number>...</number> and return the object created from
531 * the external representation.
532 */
533 /* ARGSUSED */
534 bool
535 _prop_number_internalize(prop_stack_t stack, prop_object_t *obj,
536 struct _prop_object_internalize_context *ctx)
537 {
538 struct _prop_number_value pnv;
539
540 memset(&pnv, 0, sizeof(pnv));
541
542 /* No attributes, no empty elements. */
543 if (ctx->poic_tagattr != NULL || ctx->poic_is_empty_element)
544 return (true);
545
546 /*
547 * If the first character is '-', then we treat as signed.
548 * If the first two characters are "0x" (i.e. the number is
549 * in hex), then we treat as unsigned. Otherwise, we try
550 * signed first, and if that fails (presumably due to ERANGE),
551 * then we switch to unsigned.
552 */
553 if (ctx->poic_cp[0] == '-') {
554 if (_prop_number_internalize_signed(ctx, &pnv) == false)
555 return (true);
556 } else if (ctx->poic_cp[0] == '0' && ctx->poic_cp[1] == 'x') {
557 if (_prop_number_internalize_unsigned(ctx, &pnv) == false)
558 return (true);
559 } else {
560 if (_prop_number_internalize_signed(ctx, &pnv) == false &&
561 _prop_number_internalize_unsigned(ctx, &pnv) == false)
562 return (true);
563 }
564
565 if (_prop_object_internalize_find_tag(ctx, "integer",
566 _PROP_TAG_TYPE_END) == false)
567 return (true);
568
569 *obj = _prop_number_alloc(&pnv);
570 return (true);
571 }
572