prop_number.c revision 1.18 1 /* $NetBSD: prop_number.c,v 1.18 2008/06/17 21:29:47 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2006 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <prop/prop_number.h>
33 #include "prop_object_impl.h"
34 #include "prop_rb_impl.h"
35
36 #if defined(_KERNEL)
37 #include <sys/systm.h>
38 #elif defined(_STANDALONE)
39 #include <sys/param.h>
40 #include <lib/libkern/libkern.h>
41 #else
42 #include <errno.h>
43 #include <stdlib.h>
44 #endif
45
46 struct _prop_number {
47 struct _prop_object pn_obj;
48 struct rb_node pn_link;
49 struct _prop_number_value {
50 union {
51 int64_t pnu_signed;
52 uint64_t pnu_unsigned;
53 } pnv_un;
54 #define pnv_signed pnv_un.pnu_signed
55 #define pnv_unsigned pnv_un.pnu_unsigned
56 unsigned int pnv_is_unsigned :1,
57 :31;
58 } pn_value;
59 };
60
61 #define RBNODE_TO_PN(n) \
62 ((struct _prop_number *) \
63 ((uintptr_t)n - offsetof(struct _prop_number, pn_link)))
64
65 _PROP_POOL_INIT(_prop_number_pool, sizeof(struct _prop_number), "propnmbr")
66
67 static int _prop_number_free(prop_stack_t, prop_object_t *);
68 static bool _prop_number_externalize(
69 struct _prop_object_externalize_context *,
70 void *);
71 static bool _prop_number_equals(prop_object_t, prop_object_t,
72 void **, void **,
73 prop_object_t *, prop_object_t *);
74
75 static const struct _prop_object_type _prop_object_type_number = {
76 .pot_type = PROP_TYPE_NUMBER,
77 .pot_free = _prop_number_free,
78 .pot_extern = _prop_number_externalize,
79 .pot_equals = _prop_number_equals,
80 };
81
82 #define prop_object_is_number(x) \
83 ((x) != NULL && (x)->pn_obj.po_type == &_prop_object_type_number)
84
85 /*
86 * Number objects are immutable, and we are likely to have many number
87 * objects that have the same value. So, to save memory, we unique'ify
88 * numbers so we only have one copy of each.
89 */
90
91 static int
92 _prop_number_compare_values(const struct _prop_number_value *pnv1,
93 const struct _prop_number_value *pnv2)
94 {
95
96 /* Signed numbers are sorted before unsigned numbers. */
97
98 if (pnv1->pnv_is_unsigned) {
99 if (! pnv2->pnv_is_unsigned)
100 return (1);
101 if (pnv1->pnv_unsigned < pnv2->pnv_unsigned)
102 return (-1);
103 if (pnv1->pnv_unsigned > pnv2->pnv_unsigned)
104 return (1);
105 return (0);
106 }
107
108 if (pnv2->pnv_is_unsigned)
109 return (-1);
110 if (pnv1->pnv_signed < pnv2->pnv_signed)
111 return (-1);
112 if (pnv1->pnv_signed > pnv2->pnv_signed)
113 return (1);
114 return (0);
115 }
116
117 static int
118 _prop_number_rb_compare_nodes(const struct rb_node *n1,
119 const struct rb_node *n2)
120 {
121 const prop_number_t pn1 = RBNODE_TO_PN(n1);
122 const prop_number_t pn2 = RBNODE_TO_PN(n2);
123
124 return (_prop_number_compare_values(&pn1->pn_value, &pn2->pn_value));
125 }
126
127 static int
128 _prop_number_rb_compare_key(const struct rb_node *n,
129 const void *v)
130 {
131 const prop_number_t pn = RBNODE_TO_PN(n);
132 const struct _prop_number_value *pnv = v;
133
134 return (_prop_number_compare_values(&pn->pn_value, pnv));
135 }
136
137 static const struct rb_tree_ops _prop_number_rb_tree_ops = {
138 .rbto_compare_nodes = _prop_number_rb_compare_nodes,
139 .rbto_compare_key = _prop_number_rb_compare_key,
140 };
141
142 static struct rb_tree _prop_number_tree;
143 static bool _prop_number_tree_initialized;
144
145 _PROP_MUTEX_DECL_STATIC(_prop_number_tree_mutex)
146
147 /* ARGSUSED */
148 static int
149 _prop_number_free(prop_stack_t stack, prop_object_t *obj)
150 {
151 prop_number_t pn = *obj;
152
153 _PROP_MUTEX_LOCK(_prop_number_tree_mutex);
154 _prop_rb_tree_remove_node(&_prop_number_tree, &pn->pn_link);
155 _PROP_MUTEX_UNLOCK(_prop_number_tree_mutex);
156
157 _PROP_POOL_PUT(_prop_number_pool, pn);
158
159 return (_PROP_OBJECT_FREE_DONE);
160 }
161
162 static bool
163 _prop_number_externalize(struct _prop_object_externalize_context *ctx,
164 void *v)
165 {
166 prop_number_t pn = v;
167 char tmpstr[32];
168
169 /*
170 * For unsigned numbers, we output in hex. For signed numbers,
171 * we output in decimal.
172 */
173 if (pn->pn_value.pnv_is_unsigned)
174 sprintf(tmpstr, "0x%" PRIx64, pn->pn_value.pnv_unsigned);
175 else
176 sprintf(tmpstr, "%" PRIi64, pn->pn_value.pnv_signed);
177
178 if (_prop_object_externalize_start_tag(ctx, "integer") == false ||
179 _prop_object_externalize_append_cstring(ctx, tmpstr) == false ||
180 _prop_object_externalize_end_tag(ctx, "integer") == false)
181 return (false);
182
183 return (true);
184 }
185
186 /* ARGSUSED */
187 static bool
188 _prop_number_equals(prop_object_t v1, prop_object_t v2,
189 void **stored_pointer1, void **stored_pointer2,
190 prop_object_t *next_obj1, prop_object_t *next_obj2)
191 {
192 prop_number_t num1 = v1;
193 prop_number_t num2 = v2;
194
195 /*
196 * There is only ever one copy of a number object at any given
197 * time, so we can reduce this to a simple pointer equality check
198 * in the common case.
199 */
200 if (num1 == num2)
201 return (_PROP_OBJECT_EQUALS_TRUE);
202
203 /*
204 * If the numbers are the same signed-ness, then we know they
205 * cannot be equal because they would have had pointer equality.
206 */
207 if (num1->pn_value.pnv_is_unsigned == num2->pn_value.pnv_is_unsigned)
208 return (_PROP_OBJECT_EQUALS_TRUE);
209
210 /*
211 * We now have one signed value and one unsigned value. We can
212 * compare them iff:
213 * - The unsigned value is not larger than the signed value
214 * can represent.
215 * - The signed value is not smaller than the unsigned value
216 * can represent.
217 */
218 if (num1->pn_value.pnv_is_unsigned) {
219 /*
220 * num1 is unsigned and num2 is signed.
221 */
222 if (num1->pn_value.pnv_unsigned > INT64_MAX)
223 return (_PROP_OBJECT_EQUALS_FALSE);
224 if (num2->pn_value.pnv_signed < 0)
225 return (_PROP_OBJECT_EQUALS_FALSE);
226 } else {
227 /*
228 * num1 is signed and num2 is unsigned.
229 */
230 if (num1->pn_value.pnv_signed < 0)
231 return (_PROP_OBJECT_EQUALS_FALSE);
232 if (num2->pn_value.pnv_unsigned > INT64_MAX)
233 return (_PROP_OBJECT_EQUALS_FALSE);
234 }
235
236 if (num1->pn_value.pnv_signed == num2->pn_value.pnv_signed)
237 return _PROP_OBJECT_EQUALS_TRUE;
238 else
239 return _PROP_OBJECT_EQUALS_FALSE;
240 }
241
242 static prop_number_t
243 _prop_number_alloc(const struct _prop_number_value *pnv)
244 {
245 prop_number_t opn, pn;
246 struct rb_node *n;
247 bool rv;
248
249 /*
250 * Check to see if this already exists in the tree. If it does,
251 * we just retain it and return it.
252 */
253 _PROP_MUTEX_LOCK(_prop_number_tree_mutex);
254 if (! _prop_number_tree_initialized) {
255 _prop_rb_tree_init(&_prop_number_tree,
256 &_prop_number_rb_tree_ops);
257 _prop_number_tree_initialized = true;
258 } else {
259 n = _prop_rb_tree_find(&_prop_number_tree, pnv);
260 if (n != NULL) {
261 opn = RBNODE_TO_PN(n);
262 prop_object_retain(opn);
263 _PROP_MUTEX_UNLOCK(_prop_number_tree_mutex);
264 return (opn);
265 }
266 }
267 _PROP_MUTEX_UNLOCK(_prop_number_tree_mutex);
268
269 /*
270 * Not in the tree. Create it now.
271 */
272
273 pn = _PROP_POOL_GET(_prop_number_pool);
274 if (pn == NULL)
275 return (NULL);
276
277 _prop_object_init(&pn->pn_obj, &_prop_object_type_number);
278
279 pn->pn_value = *pnv;
280
281 /*
282 * We dropped the mutex when we allocated the new object, so
283 * we have to check again if it is in the tree.
284 */
285 _PROP_MUTEX_LOCK(_prop_number_tree_mutex);
286 n = _prop_rb_tree_find(&_prop_number_tree, pnv);
287 if (n != NULL) {
288 opn = RBNODE_TO_PN(n);
289 prop_object_retain(opn);
290 _PROP_MUTEX_UNLOCK(_prop_number_tree_mutex);
291 _PROP_POOL_PUT(_prop_number_pool, pn);
292 return (opn);
293 }
294 rv = _prop_rb_tree_insert_node(&_prop_number_tree, &pn->pn_link);
295 _PROP_ASSERT(rv == true);
296 _PROP_MUTEX_UNLOCK(_prop_number_tree_mutex);
297 return (pn);
298 }
299
300 /*
301 * prop_number_create_integer --
302 * Create a prop_number_t and initialize it with the
303 * provided integer value.
304 */
305 prop_number_t
306 prop_number_create_integer(int64_t val)
307 {
308 struct _prop_number_value pnv;
309
310 memset(&pnv, 0, sizeof(pnv));
311 pnv.pnv_signed = val;
312 pnv.pnv_is_unsigned = false;
313
314 return (_prop_number_alloc(&pnv));
315 }
316
317 /*
318 * prop_number_create_unsigned_integer --
319 * Create a prop_number_t and initialize it with the
320 * provided unsigned integer value.
321 */
322 prop_number_t
323 prop_number_create_unsigned_integer(uint64_t val)
324 {
325 struct _prop_number_value pnv;
326
327 memset(&pnv, 0, sizeof(pnv));
328 pnv.pnv_unsigned = val;
329 pnv.pnv_is_unsigned = true;
330
331 return (_prop_number_alloc(&pnv));
332 }
333
334 /*
335 * prop_number_copy --
336 * Copy a prop_number_t.
337 */
338 prop_number_t
339 prop_number_copy(prop_number_t opn)
340 {
341
342 if (! prop_object_is_number(opn))
343 return (NULL);
344
345 /*
346 * Because we only ever allocate one object for any given
347 * value, this can be reduced to a simple retain operation.
348 */
349 prop_object_retain(opn);
350 return (opn);
351 }
352
353 /*
354 * prop_number_unsigned --
355 * Returns true if the prop_number_t has an unsigned value.
356 */
357 bool
358 prop_number_unsigned(prop_number_t pn)
359 {
360
361 return (pn->pn_value.pnv_is_unsigned);
362 }
363
364 /*
365 * prop_number_size --
366 * Return the size, in bits, required to hold the value of
367 * the specified number.
368 */
369 int
370 prop_number_size(prop_number_t pn)
371 {
372 struct _prop_number_value *pnv;
373
374 if (! prop_object_is_number(pn))
375 return (0);
376
377 pnv = &pn->pn_value;
378
379 if (pnv->pnv_is_unsigned) {
380 if (pnv->pnv_unsigned > UINT32_MAX)
381 return (64);
382 if (pnv->pnv_unsigned > UINT16_MAX)
383 return (32);
384 if (pnv->pnv_unsigned > UINT8_MAX)
385 return (16);
386 return (8);
387 }
388
389 if (pnv->pnv_signed > INT32_MAX || pnv->pnv_signed < INT32_MIN)
390 return (64);
391 if (pnv->pnv_signed > INT16_MAX || pnv->pnv_signed < INT16_MIN)
392 return (32);
393 if (pnv->pnv_signed > INT8_MAX || pnv->pnv_signed < INT8_MIN)
394 return (16);
395 return (8);
396 }
397
398 /*
399 * prop_number_integer_value --
400 * Get the integer value of a prop_number_t.
401 */
402 int64_t
403 prop_number_integer_value(prop_number_t pn)
404 {
405
406 /*
407 * XXX Impossible to distinguish between "not a prop_number_t"
408 * XXX and "prop_number_t has a value of 0".
409 */
410 if (! prop_object_is_number(pn))
411 return (0);
412
413 return (pn->pn_value.pnv_signed);
414 }
415
416 /*
417 * prop_number_unsigned_integer_value --
418 * Get the unsigned integer value of a prop_number_t.
419 */
420 uint64_t
421 prop_number_unsigned_integer_value(prop_number_t pn)
422 {
423
424 /*
425 * XXX Impossible to distinguish between "not a prop_number_t"
426 * XXX and "prop_number_t has a value of 0".
427 */
428 if (! prop_object_is_number(pn))
429 return (0);
430
431 return (pn->pn_value.pnv_unsigned);
432 }
433
434 /*
435 * prop_number_equals --
436 * Return true if two numbers are equivalent.
437 */
438 bool
439 prop_number_equals(prop_number_t num1, prop_number_t num2)
440 {
441 if (!prop_object_is_number(num1) || !prop_object_is_number(num2))
442 return (false);
443
444 return (prop_object_equals(num1, num2));
445 }
446
447 /*
448 * prop_number_equals_integer --
449 * Return true if the number is equivalent to the specified integer.
450 */
451 bool
452 prop_number_equals_integer(prop_number_t pn, int64_t val)
453 {
454
455 if (! prop_object_is_number(pn))
456 return (false);
457
458 if (pn->pn_value.pnv_is_unsigned &&
459 (pn->pn_value.pnv_unsigned > INT64_MAX || val < 0))
460 return (false);
461
462 return (pn->pn_value.pnv_signed == val);
463 }
464
465 /*
466 * prop_number_equals_unsigned_integer --
467 * Return true if the number is equivalent to the specified
468 * unsigned integer.
469 */
470 bool
471 prop_number_equals_unsigned_integer(prop_number_t pn, uint64_t val)
472 {
473
474 if (! prop_object_is_number(pn))
475 return (false);
476
477 if (! pn->pn_value.pnv_is_unsigned &&
478 (pn->pn_value.pnv_signed < 0 || val > INT64_MAX))
479 return (false);
480
481 return (pn->pn_value.pnv_unsigned == val);
482 }
483
484 static bool
485 _prop_number_internalize_unsigned(struct _prop_object_internalize_context *ctx,
486 struct _prop_number_value *pnv)
487 {
488 char *cp;
489
490 _PROP_ASSERT(/*CONSTCOND*/sizeof(unsigned long long) ==
491 sizeof(uint64_t));
492
493 #ifndef _KERNEL
494 errno = 0;
495 #endif
496 pnv->pnv_unsigned = (uint64_t) strtoull(ctx->poic_cp, &cp, 0);
497 #ifndef _KERNEL /* XXX can't check for ERANGE in the kernel */
498 if (pnv->pnv_unsigned == UINT64_MAX && errno == ERANGE)
499 return (false);
500 #endif
501 pnv->pnv_is_unsigned = true;
502 ctx->poic_cp = cp;
503
504 return (true);
505 }
506
507 static bool
508 _prop_number_internalize_signed(struct _prop_object_internalize_context *ctx,
509 struct _prop_number_value *pnv)
510 {
511 char *cp;
512
513 _PROP_ASSERT(/*CONSTCOND*/sizeof(long long) == sizeof(int64_t));
514
515 #ifndef _KERNEL
516 errno = 0;
517 #endif
518 pnv->pnv_signed = (int64_t) strtoll(ctx->poic_cp, &cp, 0);
519 #ifndef _KERNEL /* XXX can't check for ERANGE in the kernel */
520 if ((pnv->pnv_signed == INT64_MAX || pnv->pnv_signed == INT64_MIN) &&
521 errno == ERANGE)
522 return (false);
523 #endif
524 pnv->pnv_is_unsigned = false;
525 ctx->poic_cp = cp;
526
527 return (true);
528 }
529
530 /*
531 * _prop_number_internalize --
532 * Parse a <number>...</number> and return the object created from
533 * the external representation.
534 */
535 /* ARGSUSED */
536 bool
537 _prop_number_internalize(prop_stack_t stack, prop_object_t *obj,
538 struct _prop_object_internalize_context *ctx)
539 {
540 struct _prop_number_value pnv;
541
542 memset(&pnv, 0, sizeof(pnv));
543
544 /* No attributes, no empty elements. */
545 if (ctx->poic_tagattr != NULL || ctx->poic_is_empty_element)
546 return (true);
547
548 /*
549 * If the first character is '-', then we treat as signed.
550 * If the first two characters are "0x" (i.e. the number is
551 * in hex), then we treat as unsigned. Otherwise, we try
552 * signed first, and if that fails (presumably due to ERANGE),
553 * then we switch to unsigned.
554 */
555 if (ctx->poic_cp[0] == '-') {
556 if (_prop_number_internalize_signed(ctx, &pnv) == false)
557 return (true);
558 } else if (ctx->poic_cp[0] == '0' && ctx->poic_cp[1] == 'x') {
559 if (_prop_number_internalize_unsigned(ctx, &pnv) == false)
560 return (true);
561 } else {
562 if (_prop_number_internalize_signed(ctx, &pnv) == false &&
563 _prop_number_internalize_unsigned(ctx, &pnv) == false)
564 return (true);
565 }
566
567 if (_prop_object_internalize_find_tag(ctx, "integer",
568 _PROP_TAG_TYPE_END) == false)
569 return (true);
570
571 *obj = _prop_number_alloc(&pnv);
572 return (true);
573 }
574