prop_number.c revision 1.19 1 /* $NetBSD: prop_number.c,v 1.19 2008/08/03 04:00:12 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2006 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <prop/prop_number.h>
33 #include "prop_object_impl.h"
34 #include "prop_rb_impl.h"
35
36 #if defined(_KERNEL)
37 #include <sys/systm.h>
38 #elif defined(_STANDALONE)
39 #include <sys/param.h>
40 #include <lib/libkern/libkern.h>
41 #else
42 #include <errno.h>
43 #include <stdlib.h>
44 #endif
45
46 struct _prop_number {
47 struct _prop_object pn_obj;
48 struct rb_node pn_link;
49 struct _prop_number_value {
50 union {
51 int64_t pnu_signed;
52 uint64_t pnu_unsigned;
53 } pnv_un;
54 #define pnv_signed pnv_un.pnu_signed
55 #define pnv_unsigned pnv_un.pnu_unsigned
56 unsigned int pnv_is_unsigned :1,
57 :31;
58 } pn_value;
59 };
60
61 #define RBNODE_TO_PN(n) \
62 ((struct _prop_number *) \
63 ((uintptr_t)n - offsetof(struct _prop_number, pn_link)))
64
65 _PROP_POOL_INIT(_prop_number_pool, sizeof(struct _prop_number), "propnmbr")
66
67 static _prop_object_free_rv_t
68 _prop_number_free(prop_stack_t, prop_object_t *);
69 static bool _prop_number_externalize(
70 struct _prop_object_externalize_context *,
71 void *);
72 static _prop_object_equals_rv_t
73 _prop_number_equals(prop_object_t, prop_object_t,
74 void **, void **,
75 prop_object_t *, prop_object_t *);
76
77 static const struct _prop_object_type _prop_object_type_number = {
78 .pot_type = PROP_TYPE_NUMBER,
79 .pot_free = _prop_number_free,
80 .pot_extern = _prop_number_externalize,
81 .pot_equals = _prop_number_equals,
82 };
83
84 #define prop_object_is_number(x) \
85 ((x) != NULL && (x)->pn_obj.po_type == &_prop_object_type_number)
86
87 /*
88 * Number objects are immutable, and we are likely to have many number
89 * objects that have the same value. So, to save memory, we unique'ify
90 * numbers so we only have one copy of each.
91 */
92
93 static int
94 _prop_number_compare_values(const struct _prop_number_value *pnv1,
95 const struct _prop_number_value *pnv2)
96 {
97
98 /* Signed numbers are sorted before unsigned numbers. */
99
100 if (pnv1->pnv_is_unsigned) {
101 if (! pnv2->pnv_is_unsigned)
102 return (1);
103 if (pnv1->pnv_unsigned < pnv2->pnv_unsigned)
104 return (-1);
105 if (pnv1->pnv_unsigned > pnv2->pnv_unsigned)
106 return (1);
107 return (0);
108 }
109
110 if (pnv2->pnv_is_unsigned)
111 return (-1);
112 if (pnv1->pnv_signed < pnv2->pnv_signed)
113 return (-1);
114 if (pnv1->pnv_signed > pnv2->pnv_signed)
115 return (1);
116 return (0);
117 }
118
119 static int
120 _prop_number_rb_compare_nodes(const struct rb_node *n1,
121 const struct rb_node *n2)
122 {
123 const prop_number_t pn1 = RBNODE_TO_PN(n1);
124 const prop_number_t pn2 = RBNODE_TO_PN(n2);
125
126 return (_prop_number_compare_values(&pn1->pn_value, &pn2->pn_value));
127 }
128
129 static int
130 _prop_number_rb_compare_key(const struct rb_node *n,
131 const void *v)
132 {
133 const prop_number_t pn = RBNODE_TO_PN(n);
134 const struct _prop_number_value *pnv = v;
135
136 return (_prop_number_compare_values(&pn->pn_value, pnv));
137 }
138
139 static const struct rb_tree_ops _prop_number_rb_tree_ops = {
140 .rbto_compare_nodes = _prop_number_rb_compare_nodes,
141 .rbto_compare_key = _prop_number_rb_compare_key,
142 };
143
144 static struct rb_tree _prop_number_tree;
145 static bool _prop_number_tree_initialized;
146
147 _PROP_MUTEX_DECL_STATIC(_prop_number_tree_mutex)
148
149 /* ARGSUSED */
150 static _prop_object_free_rv_t
151 _prop_number_free(prop_stack_t stack, prop_object_t *obj)
152 {
153 prop_number_t pn = *obj;
154
155 _PROP_MUTEX_LOCK(_prop_number_tree_mutex);
156 _prop_rb_tree_remove_node(&_prop_number_tree, &pn->pn_link);
157 _PROP_MUTEX_UNLOCK(_prop_number_tree_mutex);
158
159 _PROP_POOL_PUT(_prop_number_pool, pn);
160
161 return (_PROP_OBJECT_FREE_DONE);
162 }
163
164 static bool
165 _prop_number_externalize(struct _prop_object_externalize_context *ctx,
166 void *v)
167 {
168 prop_number_t pn = v;
169 char tmpstr[32];
170
171 /*
172 * For unsigned numbers, we output in hex. For signed numbers,
173 * we output in decimal.
174 */
175 if (pn->pn_value.pnv_is_unsigned)
176 sprintf(tmpstr, "0x%" PRIx64, pn->pn_value.pnv_unsigned);
177 else
178 sprintf(tmpstr, "%" PRIi64, pn->pn_value.pnv_signed);
179
180 if (_prop_object_externalize_start_tag(ctx, "integer") == false ||
181 _prop_object_externalize_append_cstring(ctx, tmpstr) == false ||
182 _prop_object_externalize_end_tag(ctx, "integer") == false)
183 return (false);
184
185 return (true);
186 }
187
188 /* ARGSUSED */
189 static _prop_object_equals_rv_t
190 _prop_number_equals(prop_object_t v1, prop_object_t v2,
191 void **stored_pointer1, void **stored_pointer2,
192 prop_object_t *next_obj1, prop_object_t *next_obj2)
193 {
194 prop_number_t num1 = v1;
195 prop_number_t num2 = v2;
196
197 /*
198 * There is only ever one copy of a number object at any given
199 * time, so we can reduce this to a simple pointer equality check
200 * in the common case.
201 */
202 if (num1 == num2)
203 return (_PROP_OBJECT_EQUALS_TRUE);
204
205 /*
206 * If the numbers are the same signed-ness, then we know they
207 * cannot be equal because they would have had pointer equality.
208 */
209 if (num1->pn_value.pnv_is_unsigned == num2->pn_value.pnv_is_unsigned)
210 return (_PROP_OBJECT_EQUALS_FALSE);
211
212 /*
213 * We now have one signed value and one unsigned value. We can
214 * compare them iff:
215 * - The unsigned value is not larger than the signed value
216 * can represent.
217 * - The signed value is not smaller than the unsigned value
218 * can represent.
219 */
220 if (num1->pn_value.pnv_is_unsigned) {
221 /*
222 * num1 is unsigned and num2 is signed.
223 */
224 if (num1->pn_value.pnv_unsigned > INT64_MAX)
225 return (_PROP_OBJECT_EQUALS_FALSE);
226 if (num2->pn_value.pnv_signed < 0)
227 return (_PROP_OBJECT_EQUALS_FALSE);
228 } else {
229 /*
230 * num1 is signed and num2 is unsigned.
231 */
232 if (num1->pn_value.pnv_signed < 0)
233 return (_PROP_OBJECT_EQUALS_FALSE);
234 if (num2->pn_value.pnv_unsigned > INT64_MAX)
235 return (_PROP_OBJECT_EQUALS_FALSE);
236 }
237
238 if (num1->pn_value.pnv_signed == num2->pn_value.pnv_signed)
239 return _PROP_OBJECT_EQUALS_TRUE;
240 else
241 return _PROP_OBJECT_EQUALS_FALSE;
242 }
243
244 static prop_number_t
245 _prop_number_alloc(const struct _prop_number_value *pnv)
246 {
247 prop_number_t opn, pn;
248 struct rb_node *n;
249 bool rv;
250
251 /*
252 * Check to see if this already exists in the tree. If it does,
253 * we just retain it and return it.
254 */
255 _PROP_MUTEX_LOCK(_prop_number_tree_mutex);
256 if (! _prop_number_tree_initialized) {
257 _prop_rb_tree_init(&_prop_number_tree,
258 &_prop_number_rb_tree_ops);
259 _prop_number_tree_initialized = true;
260 } else {
261 n = _prop_rb_tree_find(&_prop_number_tree, pnv);
262 if (n != NULL) {
263 opn = RBNODE_TO_PN(n);
264 prop_object_retain(opn);
265 _PROP_MUTEX_UNLOCK(_prop_number_tree_mutex);
266 return (opn);
267 }
268 }
269 _PROP_MUTEX_UNLOCK(_prop_number_tree_mutex);
270
271 /*
272 * Not in the tree. Create it now.
273 */
274
275 pn = _PROP_POOL_GET(_prop_number_pool);
276 if (pn == NULL)
277 return (NULL);
278
279 _prop_object_init(&pn->pn_obj, &_prop_object_type_number);
280
281 pn->pn_value = *pnv;
282
283 /*
284 * We dropped the mutex when we allocated the new object, so
285 * we have to check again if it is in the tree.
286 */
287 _PROP_MUTEX_LOCK(_prop_number_tree_mutex);
288 n = _prop_rb_tree_find(&_prop_number_tree, pnv);
289 if (n != NULL) {
290 opn = RBNODE_TO_PN(n);
291 prop_object_retain(opn);
292 _PROP_MUTEX_UNLOCK(_prop_number_tree_mutex);
293 _PROP_POOL_PUT(_prop_number_pool, pn);
294 return (opn);
295 }
296 rv = _prop_rb_tree_insert_node(&_prop_number_tree, &pn->pn_link);
297 _PROP_ASSERT(rv == true);
298 _PROP_MUTEX_UNLOCK(_prop_number_tree_mutex);
299 return (pn);
300 }
301
302 /*
303 * prop_number_create_integer --
304 * Create a prop_number_t and initialize it with the
305 * provided integer value.
306 */
307 prop_number_t
308 prop_number_create_integer(int64_t val)
309 {
310 struct _prop_number_value pnv;
311
312 memset(&pnv, 0, sizeof(pnv));
313 pnv.pnv_signed = val;
314 pnv.pnv_is_unsigned = false;
315
316 return (_prop_number_alloc(&pnv));
317 }
318
319 /*
320 * prop_number_create_unsigned_integer --
321 * Create a prop_number_t and initialize it with the
322 * provided unsigned integer value.
323 */
324 prop_number_t
325 prop_number_create_unsigned_integer(uint64_t val)
326 {
327 struct _prop_number_value pnv;
328
329 memset(&pnv, 0, sizeof(pnv));
330 pnv.pnv_unsigned = val;
331 pnv.pnv_is_unsigned = true;
332
333 return (_prop_number_alloc(&pnv));
334 }
335
336 /*
337 * prop_number_copy --
338 * Copy a prop_number_t.
339 */
340 prop_number_t
341 prop_number_copy(prop_number_t opn)
342 {
343
344 if (! prop_object_is_number(opn))
345 return (NULL);
346
347 /*
348 * Because we only ever allocate one object for any given
349 * value, this can be reduced to a simple retain operation.
350 */
351 prop_object_retain(opn);
352 return (opn);
353 }
354
355 /*
356 * prop_number_unsigned --
357 * Returns true if the prop_number_t has an unsigned value.
358 */
359 bool
360 prop_number_unsigned(prop_number_t pn)
361 {
362
363 return (pn->pn_value.pnv_is_unsigned);
364 }
365
366 /*
367 * prop_number_size --
368 * Return the size, in bits, required to hold the value of
369 * the specified number.
370 */
371 int
372 prop_number_size(prop_number_t pn)
373 {
374 struct _prop_number_value *pnv;
375
376 if (! prop_object_is_number(pn))
377 return (0);
378
379 pnv = &pn->pn_value;
380
381 if (pnv->pnv_is_unsigned) {
382 if (pnv->pnv_unsigned > UINT32_MAX)
383 return (64);
384 if (pnv->pnv_unsigned > UINT16_MAX)
385 return (32);
386 if (pnv->pnv_unsigned > UINT8_MAX)
387 return (16);
388 return (8);
389 }
390
391 if (pnv->pnv_signed > INT32_MAX || pnv->pnv_signed < INT32_MIN)
392 return (64);
393 if (pnv->pnv_signed > INT16_MAX || pnv->pnv_signed < INT16_MIN)
394 return (32);
395 if (pnv->pnv_signed > INT8_MAX || pnv->pnv_signed < INT8_MIN)
396 return (16);
397 return (8);
398 }
399
400 /*
401 * prop_number_integer_value --
402 * Get the integer value of a prop_number_t.
403 */
404 int64_t
405 prop_number_integer_value(prop_number_t pn)
406 {
407
408 /*
409 * XXX Impossible to distinguish between "not a prop_number_t"
410 * XXX and "prop_number_t has a value of 0".
411 */
412 if (! prop_object_is_number(pn))
413 return (0);
414
415 return (pn->pn_value.pnv_signed);
416 }
417
418 /*
419 * prop_number_unsigned_integer_value --
420 * Get the unsigned integer value of a prop_number_t.
421 */
422 uint64_t
423 prop_number_unsigned_integer_value(prop_number_t pn)
424 {
425
426 /*
427 * XXX Impossible to distinguish between "not a prop_number_t"
428 * XXX and "prop_number_t has a value of 0".
429 */
430 if (! prop_object_is_number(pn))
431 return (0);
432
433 return (pn->pn_value.pnv_unsigned);
434 }
435
436 /*
437 * prop_number_equals --
438 * Return true if two numbers are equivalent.
439 */
440 bool
441 prop_number_equals(prop_number_t num1, prop_number_t num2)
442 {
443 if (!prop_object_is_number(num1) || !prop_object_is_number(num2))
444 return (false);
445
446 return (prop_object_equals(num1, num2));
447 }
448
449 /*
450 * prop_number_equals_integer --
451 * Return true if the number is equivalent to the specified integer.
452 */
453 bool
454 prop_number_equals_integer(prop_number_t pn, int64_t val)
455 {
456
457 if (! prop_object_is_number(pn))
458 return (false);
459
460 if (pn->pn_value.pnv_is_unsigned &&
461 (pn->pn_value.pnv_unsigned > INT64_MAX || val < 0))
462 return (false);
463
464 return (pn->pn_value.pnv_signed == val);
465 }
466
467 /*
468 * prop_number_equals_unsigned_integer --
469 * Return true if the number is equivalent to the specified
470 * unsigned integer.
471 */
472 bool
473 prop_number_equals_unsigned_integer(prop_number_t pn, uint64_t val)
474 {
475
476 if (! prop_object_is_number(pn))
477 return (false);
478
479 if (! pn->pn_value.pnv_is_unsigned &&
480 (pn->pn_value.pnv_signed < 0 || val > INT64_MAX))
481 return (false);
482
483 return (pn->pn_value.pnv_unsigned == val);
484 }
485
486 static bool
487 _prop_number_internalize_unsigned(struct _prop_object_internalize_context *ctx,
488 struct _prop_number_value *pnv)
489 {
490 char *cp;
491
492 _PROP_ASSERT(/*CONSTCOND*/sizeof(unsigned long long) ==
493 sizeof(uint64_t));
494
495 #ifndef _KERNEL
496 errno = 0;
497 #endif
498 pnv->pnv_unsigned = (uint64_t) strtoull(ctx->poic_cp, &cp, 0);
499 #ifndef _KERNEL /* XXX can't check for ERANGE in the kernel */
500 if (pnv->pnv_unsigned == UINT64_MAX && errno == ERANGE)
501 return (false);
502 #endif
503 pnv->pnv_is_unsigned = true;
504 ctx->poic_cp = cp;
505
506 return (true);
507 }
508
509 static bool
510 _prop_number_internalize_signed(struct _prop_object_internalize_context *ctx,
511 struct _prop_number_value *pnv)
512 {
513 char *cp;
514
515 _PROP_ASSERT(/*CONSTCOND*/sizeof(long long) == sizeof(int64_t));
516
517 #ifndef _KERNEL
518 errno = 0;
519 #endif
520 pnv->pnv_signed = (int64_t) strtoll(ctx->poic_cp, &cp, 0);
521 #ifndef _KERNEL /* XXX can't check for ERANGE in the kernel */
522 if ((pnv->pnv_signed == INT64_MAX || pnv->pnv_signed == INT64_MIN) &&
523 errno == ERANGE)
524 return (false);
525 #endif
526 pnv->pnv_is_unsigned = false;
527 ctx->poic_cp = cp;
528
529 return (true);
530 }
531
532 /*
533 * _prop_number_internalize --
534 * Parse a <number>...</number> and return the object created from
535 * the external representation.
536 */
537 /* ARGSUSED */
538 bool
539 _prop_number_internalize(prop_stack_t stack, prop_object_t *obj,
540 struct _prop_object_internalize_context *ctx)
541 {
542 struct _prop_number_value pnv;
543
544 memset(&pnv, 0, sizeof(pnv));
545
546 /* No attributes, no empty elements. */
547 if (ctx->poic_tagattr != NULL || ctx->poic_is_empty_element)
548 return (true);
549
550 /*
551 * If the first character is '-', then we treat as signed.
552 * If the first two characters are "0x" (i.e. the number is
553 * in hex), then we treat as unsigned. Otherwise, we try
554 * signed first, and if that fails (presumably due to ERANGE),
555 * then we switch to unsigned.
556 */
557 if (ctx->poic_cp[0] == '-') {
558 if (_prop_number_internalize_signed(ctx, &pnv) == false)
559 return (true);
560 } else if (ctx->poic_cp[0] == '0' && ctx->poic_cp[1] == 'x') {
561 if (_prop_number_internalize_unsigned(ctx, &pnv) == false)
562 return (true);
563 } else {
564 if (_prop_number_internalize_signed(ctx, &pnv) == false &&
565 _prop_number_internalize_unsigned(ctx, &pnv) == false)
566 return (true);
567 }
568
569 if (_prop_object_internalize_find_tag(ctx, "integer",
570 _PROP_TAG_TYPE_END) == false)
571 return (true);
572
573 *obj = _prop_number_alloc(&pnv);
574 return (true);
575 }
576