prop_number.c revision 1.9 1 /* $NetBSD: prop_number.c,v 1.9 2006/10/12 18:52:55 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2006 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <prop/prop_number.h>
40 #include "prop_object_impl.h"
41 #include "prop_rb_impl.h"
42
43 #if defined(_KERNEL)
44 #include <sys/systm.h>
45 #elif defined(_STANDALONE)
46 #include <sys/param.h>
47 #include <lib/libkern/libkern.h>
48 #else
49 #include <errno.h>
50 #include <stdlib.h>
51 #endif
52
53 struct _prop_number {
54 struct _prop_object pn_obj;
55 struct rb_node pn_link;
56 struct _prop_number_value {
57 union {
58 int64_t pnu_signed;
59 uint64_t pnu_unsigned;
60 } pnv_un;
61 #define pnv_signed pnv_un.pnu_signed
62 #define pnv_unsigned pnv_un.pnu_unsigned
63 unsigned int pnv_is_unsigned :1,
64 :31;
65 } pn_value;
66 };
67
68 #define RBNODE_TO_PN(n) \
69 ((struct _prop_number *) \
70 ((uintptr_t)n - offsetof(struct _prop_number, pn_link)))
71
72 _PROP_POOL_INIT(_prop_number_pool, sizeof(struct _prop_number), "propnmbr")
73
74 static void _prop_number_free(void *);
75 static boolean_t _prop_number_externalize(
76 struct _prop_object_externalize_context *,
77 void *);
78 static boolean_t _prop_number_equals(void *, void *);
79
80 static const struct _prop_object_type _prop_object_type_number = {
81 .pot_type = PROP_TYPE_NUMBER,
82 .pot_free = _prop_number_free,
83 .pot_extern = _prop_number_externalize,
84 .pot_equals = _prop_number_equals,
85 };
86
87 #define prop_object_is_number(x) \
88 ((x) != NULL && (x)->pn_obj.po_type == &_prop_object_type_number)
89
90 /*
91 * Number objects are immutable, and we are likely to have many number
92 * objects that have the same value. So, to save memory, we unique'ify
93 * numbers so we only have one copy of each.
94 */
95
96 static int
97 _prop_number_compare_values(const struct _prop_number_value *pnv1,
98 const struct _prop_number_value *pnv2)
99 {
100
101 /* Signed numbers are sorted before unsigned numbers. */
102
103 if (pnv1->pnv_is_unsigned) {
104 if (! pnv2->pnv_is_unsigned)
105 return (1);
106 if (pnv1->pnv_unsigned < pnv2->pnv_unsigned)
107 return (-1);
108 if (pnv1->pnv_unsigned > pnv2->pnv_unsigned)
109 return (1);
110 return (0);
111 }
112
113 if (pnv2->pnv_is_unsigned)
114 return (-1);
115 if (pnv1->pnv_signed < pnv2->pnv_signed)
116 return (-1);
117 if (pnv1->pnv_signed > pnv2->pnv_signed)
118 return (1);
119 return (0);
120 }
121
122 static int
123 _prop_number_rb_compare_nodes(const struct rb_node *n1,
124 const struct rb_node *n2)
125 {
126 const prop_number_t pn1 = RBNODE_TO_PN(n1);
127 const prop_number_t pn2 = RBNODE_TO_PN(n2);
128
129 return (_prop_number_compare_values(&pn1->pn_value, &pn2->pn_value));
130 }
131
132 static int
133 _prop_number_rb_compare_key(const struct rb_node *n,
134 const void *v)
135 {
136 const prop_number_t pn = RBNODE_TO_PN(n);
137 const struct _prop_number_value *pnv = v;
138
139 return (_prop_number_compare_values(&pn->pn_value, pnv));
140 }
141
142 static const struct rb_tree_ops _prop_number_rb_tree_ops = {
143 .rbto_compare_nodes = _prop_number_rb_compare_nodes,
144 .rbto_compare_key = _prop_number_rb_compare_key,
145 };
146
147 static struct rb_tree _prop_number_tree;
148 static boolean_t _prop_number_tree_initialized;
149
150 _PROP_MUTEX_DECL_STATIC(_prop_number_tree_mutex)
151
152 static void
153 _prop_number_free(void *v)
154 {
155 prop_number_t pn = v;
156
157 _PROP_MUTEX_LOCK(_prop_number_tree_mutex);
158 _prop_rb_tree_remove_node(&_prop_number_tree, &pn->pn_link);
159 _PROP_MUTEX_UNLOCK(_prop_number_tree_mutex);
160
161 _PROP_POOL_PUT(_prop_number_pool, pn);
162 }
163
164 static boolean_t
165 _prop_number_externalize(struct _prop_object_externalize_context *ctx,
166 void *v)
167 {
168 prop_number_t pn = v;
169 char tmpstr[32];
170
171 /*
172 * For unsigned numbers, we output in hex. For signed numbers,
173 * we output in decimal.
174 */
175 if (pn->pn_value.pnv_is_unsigned)
176 sprintf(tmpstr, "0x%" PRIx64, pn->pn_value.pnv_unsigned);
177 else
178 sprintf(tmpstr, "%" PRIi64, pn->pn_value.pnv_signed);
179
180 if (_prop_object_externalize_start_tag(ctx, "integer") == FALSE ||
181 _prop_object_externalize_append_cstring(ctx, tmpstr) == FALSE ||
182 _prop_object_externalize_end_tag(ctx, "integer") == FALSE)
183 return (FALSE);
184
185 return (TRUE);
186 }
187
188 static boolean_t
189 _prop_number_equals(void *v1, void *v2)
190 {
191 prop_number_t num1 = v1;
192 prop_number_t num2 = v2;
193
194 if (! (prop_object_is_number(num1) &&
195 prop_object_is_number(num2)))
196 return (FALSE);
197
198 /*
199 * There is only ever one copy of a number object at any given
200 * time, so we can reduce this to a simple pointer equality check
201 * in the common case.
202 */
203 if (num1 == num2)
204 return (TRUE);
205
206 /*
207 * If the numbers are the same signed-ness, then we know they
208 * cannot be equal because they would have had pointer equality.
209 */
210 if (num1->pn_value.pnv_is_unsigned == num2->pn_value.pnv_is_unsigned)
211 return (FALSE);
212
213 /*
214 * We now have one signed value and one unsigned value. We can
215 * compare them iff:
216 * - The unsigned value is not larger than the signed value
217 * can represent.
218 * - The signed value is not smaller than the unsigned value
219 * can represent.
220 */
221 if (num1->pn_value.pnv_is_unsigned) {
222 /*
223 * num1 is unsigned and num2 is signed.
224 */
225 if (num1->pn_value.pnv_unsigned > INT64_MAX)
226 return (FALSE);
227 if (num2->pn_value.pnv_signed < 0)
228 return (FALSE);
229 } else {
230 /*
231 * num1 is signed and num2 is unsigned.
232 */
233 if (num1->pn_value.pnv_signed < 0)
234 return (FALSE);
235 if (num2->pn_value.pnv_unsigned > INT64_MAX)
236 return (FALSE);
237 }
238
239 return (num1->pn_value.pnv_signed == num2->pn_value.pnv_signed);
240 }
241
242 static prop_number_t
243 _prop_number_alloc(const struct _prop_number_value *pnv)
244 {
245 prop_number_t opn, pn;
246 struct rb_node *n;
247
248 /*
249 * Check to see if this already exists in the tree. If it does,
250 * we just retain it and return it.
251 */
252 _PROP_MUTEX_LOCK(_prop_number_tree_mutex);
253 if (! _prop_number_tree_initialized) {
254 _prop_rb_tree_init(&_prop_number_tree,
255 &_prop_number_rb_tree_ops);
256 _prop_number_tree_initialized = TRUE;
257 } else {
258 n = _prop_rb_tree_find(&_prop_number_tree, pnv);
259 if (n != NULL) {
260 opn = RBNODE_TO_PN(n);
261 prop_object_retain(opn);
262 _PROP_MUTEX_UNLOCK(_prop_number_tree_mutex);
263 return (opn);
264 }
265 }
266 _PROP_MUTEX_UNLOCK(_prop_number_tree_mutex);
267
268 /*
269 * Not in the tree. Create it now.
270 */
271
272 pn = _PROP_POOL_GET(_prop_number_pool);
273 if (pn == NULL)
274 return (NULL);
275
276 _prop_object_init(&pn->pn_obj, &_prop_object_type_number);
277
278 pn->pn_value = *pnv;
279
280 /*
281 * We dropped the mutex when we allocated the new object, so
282 * we have to check again if it is in the tree.
283 */
284 _PROP_MUTEX_LOCK(_prop_number_tree_mutex);
285 n = _prop_rb_tree_find(&_prop_number_tree, pnv);
286 if (n != NULL) {
287 opn = RBNODE_TO_PN(n);
288 prop_object_retain(opn);
289 _PROP_MUTEX_UNLOCK(_prop_number_tree_mutex);
290 _PROP_POOL_PUT(_prop_number_pool, pn);
291 return (opn);
292 }
293 _prop_rb_tree_insert_node(&_prop_number_tree, &pn->pn_link);
294 _PROP_MUTEX_UNLOCK(_prop_number_tree_mutex);
295 return (pn);
296 }
297
298 /*
299 * prop_number_create_integer --
300 * Create a prop_number_t and initialize it with the
301 * provided integer value.
302 */
303 prop_number_t
304 prop_number_create_integer(int64_t val)
305 {
306 struct _prop_number_value pnv;
307
308 memset(&pnv, 0, sizeof(pnv));
309 pnv.pnv_signed = val;
310 pnv.pnv_is_unsigned = FALSE;
311
312 return (_prop_number_alloc(&pnv));
313 }
314
315 /*
316 * prop_number_create_unsigned_integer --
317 * Create a prop_number_t and initialize it with the
318 * provided unsigned integer value.
319 */
320 prop_number_t
321 prop_number_create_unsigned_integer(uint64_t val)
322 {
323 struct _prop_number_value pnv;
324
325 memset(&pnv, 0, sizeof(pnv));
326 pnv.pnv_unsigned = val;
327 pnv.pnv_is_unsigned = TRUE;
328
329 return (_prop_number_alloc(&pnv));
330 }
331
332 /*
333 * prop_number_copy --
334 * Copy a prop_number_t.
335 */
336 prop_number_t
337 prop_number_copy(prop_number_t opn)
338 {
339
340 if (! prop_object_is_number(opn))
341 return (NULL);
342
343 /*
344 * Because we only ever allocate one object for any given
345 * value, this can be reduced to a simple retain operation.
346 */
347 prop_object_retain(opn);
348 return (opn);
349 }
350
351 /*
352 * prop_number_unsigned --
353 * Returns TRUE if the prop_number_t has an unsigned value.
354 */
355 boolean_t
356 prop_number_unsigned(prop_number_t pn)
357 {
358
359 return (pn->pn_value.pnv_is_unsigned);
360 }
361
362 /*
363 * prop_number_size --
364 * Return the size, in bits, required to hold the value of
365 * the specified number.
366 */
367 int
368 prop_number_size(prop_number_t pn)
369 {
370 struct _prop_number_value *pnv;
371
372 if (! prop_object_is_number(pn))
373 return (0);
374
375 pnv = &pn->pn_value;
376
377 if (pnv->pnv_is_unsigned) {
378 if (pnv->pnv_unsigned > UINT32_MAX)
379 return (64);
380 if (pnv->pnv_unsigned > UINT16_MAX)
381 return (32);
382 if (pnv->pnv_unsigned > UINT8_MAX)
383 return (16);
384 return (8);
385 }
386
387 if (pnv->pnv_signed > INT32_MAX || pnv->pnv_signed < INT32_MIN)
388 return (64);
389 if (pnv->pnv_signed > INT16_MAX || pnv->pnv_signed < INT16_MIN)
390 return (32);
391 if (pnv->pnv_signed > INT8_MAX || pnv->pnv_signed < INT8_MIN)
392 return (16);
393 return (8);
394 }
395
396 /*
397 * prop_number_integer_value --
398 * Get the integer value of a prop_number_t.
399 */
400 int64_t
401 prop_number_integer_value(prop_number_t pn)
402 {
403
404 /*
405 * XXX Impossible to distinguish between "not a prop_number_t"
406 * XXX and "prop_number_t has a value of 0".
407 */
408 if (! prop_object_is_number(pn))
409 return (0);
410
411 return (pn->pn_value.pnv_signed);
412 }
413
414 /*
415 * prop_number_unsigned_integer_value --
416 * Get the unsigned integer value of a prop_number_t.
417 */
418 uint64_t
419 prop_number_unsigned_integer_value(prop_number_t pn)
420 {
421
422 /*
423 * XXX Impossible to distinguish between "not a prop_number_t"
424 * XXX and "prop_number_t has a value of 0".
425 */
426 if (! prop_object_is_number(pn))
427 return (0);
428
429 return (pn->pn_value.pnv_unsigned);
430 }
431
432 /*
433 * prop_number_equals --
434 * Return TRUE if two numbers are equivalent.
435 */
436 boolean_t
437 prop_number_equals(prop_number_t num1, prop_number_t num2)
438 {
439
440 return (_prop_number_equals(num1, num2));
441 }
442
443 /*
444 * prop_number_equals_integer --
445 * Return TRUE if the number is equivalent to the specified integer.
446 */
447 boolean_t
448 prop_number_equals_integer(prop_number_t pn, int64_t val)
449 {
450
451 if (! prop_object_is_number(pn))
452 return (FALSE);
453
454 if (pn->pn_value.pnv_is_unsigned &&
455 (pn->pn_value.pnv_unsigned > INT64_MAX || val < 0))
456 return (FALSE);
457
458 return (pn->pn_value.pnv_signed == val);
459 }
460
461 /*
462 * prop_number_equals_unsigned_integer --
463 * Return TRUE if the number is equivalent to the specified
464 * unsigned integer.
465 */
466 boolean_t
467 prop_number_equals_unsigned_integer(prop_number_t pn, uint64_t val)
468 {
469
470 if (! prop_object_is_number(pn))
471 return (FALSE);
472
473 if (! pn->pn_value.pnv_is_unsigned &&
474 (pn->pn_value.pnv_signed < 0 || val > INT64_MAX))
475 return (FALSE);
476
477 return (pn->pn_value.pnv_unsigned == val);
478 }
479
480 static boolean_t
481 _prop_number_internalize_unsigned(struct _prop_object_internalize_context *ctx,
482 struct _prop_number_value *pnv)
483 {
484 char *cp;
485
486 _PROP_ASSERT(/*CONSTCOND*/sizeof(unsigned long long) ==
487 sizeof(uint64_t));
488
489 #ifndef _KERNEL
490 errno = 0;
491 #endif
492 pnv->pnv_unsigned = (uint64_t) strtoull(ctx->poic_cp, &cp, 0);
493 #ifndef _KERNEL /* XXX can't check for ERANGE in the kernel */
494 if (pnv->pnv_unsigned == UINT64_MAX && errno == ERANGE)
495 return (FALSE);
496 #endif
497 pnv->pnv_is_unsigned = TRUE;
498 ctx->poic_cp = cp;
499
500 return (TRUE);
501 }
502
503 static boolean_t
504 _prop_number_internalize_signed(struct _prop_object_internalize_context *ctx,
505 struct _prop_number_value *pnv)
506 {
507 char *cp;
508
509 _PROP_ASSERT(/*CONSTCOND*/sizeof(long long) == sizeof(int64_t));
510
511 #ifndef _KERNEL
512 errno = 0;
513 #endif
514 pnv->pnv_signed = (int64_t) strtoll(ctx->poic_cp, &cp, 0);
515 #ifndef _KERNEL /* XXX can't check for ERANGE in the kernel */
516 if ((pnv->pnv_signed == INT64_MAX || pnv->pnv_signed == INT64_MIN) &&
517 errno == ERANGE)
518 return (FALSE);
519 #endif
520 pnv->pnv_is_unsigned = FALSE;
521 ctx->poic_cp = cp;
522
523 return (TRUE);
524 }
525
526 /*
527 * _prop_number_internalize --
528 * Parse a <number>...</number> and return the object created from
529 * the external representation.
530 */
531 prop_object_t
532 _prop_number_internalize(struct _prop_object_internalize_context *ctx)
533 {
534 struct _prop_number_value pnv;
535
536 memset(&pnv, 0, sizeof(pnv));
537
538 /* No attributes, no empty elements. */
539 if (ctx->poic_tagattr != NULL || ctx->poic_is_empty_element)
540 return (NULL);
541
542 /*
543 * If the first character is '-', then we treat as signed.
544 * If the first two characters are "0x" (i.e. the number is
545 * in hex), then we treat as unsigned. Otherwise, we try
546 * signed first, and if that fails (presumably due to ERANGE),
547 * then we switch to unsigned.
548 */
549 if (ctx->poic_cp[0] == '-') {
550 if (_prop_number_internalize_signed(ctx, &pnv) == FALSE)
551 return (NULL);
552 } else if (ctx->poic_cp[0] == '0' && ctx->poic_cp[1] == 'x') {
553 if (_prop_number_internalize_unsigned(ctx, &pnv) == FALSE)
554 return (NULL);
555 } else {
556 if (_prop_number_internalize_signed(ctx, &pnv) == FALSE &&
557 _prop_number_internalize_unsigned(ctx, &pnv) == FALSE)
558 return (NULL);
559 }
560
561 if (_prop_object_internalize_find_tag(ctx, "integer",
562 _PROP_TAG_TYPE_END) == FALSE)
563 return (NULL);
564
565 return (_prop_number_alloc(&pnv));
566 }
567