x86emu.c revision 1.13 1 1.12 msaitoh
2 1.13 andvar /* $NetBSD: x86emu.c,v 1.13 2022/10/26 22:09:37 andvar Exp $ */
3 1.1 joerg
4 1.1 joerg /****************************************************************************
5 1.1 joerg *
6 1.1 joerg * Realmode X86 Emulator Library
7 1.1 joerg *
8 1.1 joerg * Copyright (C) 1996-1999 SciTech Software, Inc.
9 1.1 joerg * Copyright (C) David Mosberger-Tang
10 1.1 joerg * Copyright (C) 1999 Egbert Eich
11 1.1 joerg * Copyright (C) 2007 Joerg Sonnenberger
12 1.1 joerg *
13 1.1 joerg * ========================================================================
14 1.1 joerg *
15 1.1 joerg * Permission to use, copy, modify, distribute, and sell this software and
16 1.1 joerg * its documentation for any purpose is hereby granted without fee,
17 1.1 joerg * provided that the above copyright notice appear in all copies and that
18 1.1 joerg * both that copyright notice and this permission notice appear in
19 1.1 joerg * supporting documentation, and that the name of the authors not be used
20 1.1 joerg * in advertising or publicity pertaining to distribution of the software
21 1.1 joerg * without specific, written prior permission. The authors makes no
22 1.1 joerg * representations about the suitability of this software for any purpose.
23 1.1 joerg * It is provided "as is" without express or implied warranty.
24 1.1 joerg *
25 1.1 joerg * THE AUTHORS DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
26 1.1 joerg * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
27 1.1 joerg * EVENT SHALL THE AUTHORS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
28 1.1 joerg * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
29 1.1 joerg * USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
30 1.1 joerg * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
31 1.1 joerg * PERFORMANCE OF THIS SOFTWARE.
32 1.1 joerg *
33 1.1 joerg ****************************************************************************/
34 1.1 joerg
35 1.1 joerg #ifndef _KERNEL
36 1.1 joerg #include <stdbool.h>
37 1.1 joerg #endif
38 1.1 joerg
39 1.2 joerg #include <x86emu/x86emu.h>
40 1.2 joerg #include <x86emu/x86emu_regs.h>
41 1.1 joerg
42 1.1 joerg static void x86emu_intr_raise (struct X86EMU *, uint8_t type);
43 1.1 joerg
44 1.1 joerg static void X86EMU_exec_one_byte(struct X86EMU *);
45 1.1 joerg static void X86EMU_exec_two_byte(struct X86EMU *);
46 1.1 joerg
47 1.1 joerg static void fetch_decode_modrm (struct X86EMU *);
48 1.1 joerg static uint8_t fetch_byte_imm (struct X86EMU *);
49 1.1 joerg static uint16_t fetch_word_imm (struct X86EMU *);
50 1.1 joerg static uint32_t fetch_long_imm (struct X86EMU *);
51 1.1 joerg static uint8_t fetch_data_byte (struct X86EMU *, uint32_t offset);
52 1.1 joerg static uint8_t fetch_byte (struct X86EMU *, uint segment, uint32_t offset);
53 1.1 joerg static uint16_t fetch_data_word (struct X86EMU *, uint32_t offset);
54 1.1 joerg static uint16_t fetch_word (struct X86EMU *, uint32_t segment, uint32_t offset);
55 1.1 joerg static uint32_t fetch_data_long (struct X86EMU *, uint32_t offset);
56 1.1 joerg static uint32_t fetch_long (struct X86EMU *, uint32_t segment, uint32_t offset);
57 1.1 joerg static void store_data_byte (struct X86EMU *, uint32_t offset, uint8_t val);
58 1.1 joerg static void store_byte (struct X86EMU *, uint32_t segment, uint32_t offset, uint8_t val);
59 1.1 joerg static void store_data_word (struct X86EMU *, uint32_t offset, uint16_t val);
60 1.1 joerg static void store_word (struct X86EMU *, uint32_t segment, uint32_t offset, uint16_t val);
61 1.1 joerg static void store_data_long (struct X86EMU *, uint32_t offset, uint32_t val);
62 1.1 joerg static void store_long (struct X86EMU *, uint32_t segment, uint32_t offset, uint32_t val);
63 1.1 joerg static uint8_t* decode_rl_byte_register(struct X86EMU *);
64 1.1 joerg static uint16_t* decode_rl_word_register(struct X86EMU *);
65 1.1 joerg static uint32_t* decode_rl_long_register(struct X86EMU *);
66 1.1 joerg static uint8_t* decode_rh_byte_register(struct X86EMU *);
67 1.1 joerg static uint16_t* decode_rh_word_register(struct X86EMU *);
68 1.1 joerg static uint32_t* decode_rh_long_register(struct X86EMU *);
69 1.1 joerg static uint16_t* decode_rh_seg_register(struct X86EMU *);
70 1.1 joerg static uint32_t decode_rl_address(struct X86EMU *);
71 1.1 joerg
72 1.1 joerg static uint8_t decode_and_fetch_byte(struct X86EMU *);
73 1.1 joerg static uint16_t decode_and_fetch_word(struct X86EMU *);
74 1.1 joerg static uint32_t decode_and_fetch_long(struct X86EMU *);
75 1.1 joerg
76 1.1 joerg static uint8_t decode_and_fetch_byte_imm8(struct X86EMU *, uint8_t *);
77 1.1 joerg static uint16_t decode_and_fetch_word_imm8(struct X86EMU *, uint8_t *);
78 1.1 joerg static uint32_t decode_and_fetch_long_imm8(struct X86EMU *, uint8_t *);
79 1.1 joerg
80 1.1 joerg static uint16_t decode_and_fetch_word_disp(struct X86EMU *, int16_t);
81 1.1 joerg static uint32_t decode_and_fetch_long_disp(struct X86EMU *, int16_t);
82 1.1 joerg
83 1.1 joerg static void write_back_byte(struct X86EMU *, uint8_t);
84 1.1 joerg static void write_back_word(struct X86EMU *, uint16_t);
85 1.1 joerg static void write_back_long(struct X86EMU *, uint32_t);
86 1.1 joerg
87 1.1 joerg static uint16_t aaa_word (struct X86EMU *, uint16_t d);
88 1.1 joerg static uint16_t aas_word (struct X86EMU *, uint16_t d);
89 1.1 joerg static uint16_t aad_word (struct X86EMU *, uint16_t d);
90 1.1 joerg static uint16_t aam_word (struct X86EMU *, uint8_t d);
91 1.1 joerg static uint8_t adc_byte (struct X86EMU *, uint8_t d, uint8_t s);
92 1.1 joerg static uint16_t adc_word (struct X86EMU *, uint16_t d, uint16_t s);
93 1.1 joerg static uint32_t adc_long (struct X86EMU *, uint32_t d, uint32_t s);
94 1.1 joerg static uint8_t add_byte (struct X86EMU *, uint8_t d, uint8_t s);
95 1.1 joerg static uint16_t add_word (struct X86EMU *, uint16_t d, uint16_t s);
96 1.1 joerg static uint32_t add_long (struct X86EMU *, uint32_t d, uint32_t s);
97 1.1 joerg static uint8_t and_byte (struct X86EMU *, uint8_t d, uint8_t s);
98 1.1 joerg static uint16_t and_word (struct X86EMU *, uint16_t d, uint16_t s);
99 1.1 joerg static uint32_t and_long (struct X86EMU *, uint32_t d, uint32_t s);
100 1.1 joerg static uint8_t cmp_byte (struct X86EMU *, uint8_t d, uint8_t s);
101 1.1 joerg static uint16_t cmp_word (struct X86EMU *, uint16_t d, uint16_t s);
102 1.1 joerg static uint32_t cmp_long (struct X86EMU *, uint32_t d, uint32_t s);
103 1.1 joerg static void cmp_byte_no_return (struct X86EMU *, uint8_t d, uint8_t s);
104 1.1 joerg static void cmp_word_no_return (struct X86EMU *, uint16_t d, uint16_t s);
105 1.1 joerg static void cmp_long_no_return (struct X86EMU *, uint32_t d, uint32_t s);
106 1.1 joerg static uint8_t daa_byte (struct X86EMU *, uint8_t d);
107 1.1 joerg static uint8_t das_byte (struct X86EMU *, uint8_t d);
108 1.1 joerg static uint8_t dec_byte (struct X86EMU *, uint8_t d);
109 1.1 joerg static uint16_t dec_word (struct X86EMU *, uint16_t d);
110 1.1 joerg static uint32_t dec_long (struct X86EMU *, uint32_t d);
111 1.1 joerg static uint8_t inc_byte (struct X86EMU *, uint8_t d);
112 1.1 joerg static uint16_t inc_word (struct X86EMU *, uint16_t d);
113 1.1 joerg static uint32_t inc_long (struct X86EMU *, uint32_t d);
114 1.1 joerg static uint8_t or_byte (struct X86EMU *, uint8_t d, uint8_t s);
115 1.1 joerg static uint16_t or_word (struct X86EMU *, uint16_t d, uint16_t s);
116 1.1 joerg static uint32_t or_long (struct X86EMU *, uint32_t d, uint32_t s);
117 1.1 joerg static uint8_t neg_byte (struct X86EMU *, uint8_t s);
118 1.1 joerg static uint16_t neg_word (struct X86EMU *, uint16_t s);
119 1.1 joerg static uint32_t neg_long (struct X86EMU *, uint32_t s);
120 1.1 joerg static uint8_t rcl_byte (struct X86EMU *, uint8_t d, uint8_t s);
121 1.1 joerg static uint16_t rcl_word (struct X86EMU *, uint16_t d, uint8_t s);
122 1.1 joerg static uint32_t rcl_long (struct X86EMU *, uint32_t d, uint8_t s);
123 1.1 joerg static uint8_t rcr_byte (struct X86EMU *, uint8_t d, uint8_t s);
124 1.1 joerg static uint16_t rcr_word (struct X86EMU *, uint16_t d, uint8_t s);
125 1.1 joerg static uint32_t rcr_long (struct X86EMU *, uint32_t d, uint8_t s);
126 1.1 joerg static uint8_t rol_byte (struct X86EMU *, uint8_t d, uint8_t s);
127 1.1 joerg static uint16_t rol_word (struct X86EMU *, uint16_t d, uint8_t s);
128 1.1 joerg static uint32_t rol_long (struct X86EMU *, uint32_t d, uint8_t s);
129 1.1 joerg static uint8_t ror_byte (struct X86EMU *, uint8_t d, uint8_t s);
130 1.1 joerg static uint16_t ror_word (struct X86EMU *, uint16_t d, uint8_t s);
131 1.1 joerg static uint32_t ror_long (struct X86EMU *, uint32_t d, uint8_t s);
132 1.1 joerg static uint8_t shl_byte (struct X86EMU *, uint8_t d, uint8_t s);
133 1.1 joerg static uint16_t shl_word (struct X86EMU *, uint16_t d, uint8_t s);
134 1.1 joerg static uint32_t shl_long (struct X86EMU *, uint32_t d, uint8_t s);
135 1.1 joerg static uint8_t shr_byte (struct X86EMU *, uint8_t d, uint8_t s);
136 1.1 joerg static uint16_t shr_word (struct X86EMU *, uint16_t d, uint8_t s);
137 1.1 joerg static uint32_t shr_long (struct X86EMU *, uint32_t d, uint8_t s);
138 1.1 joerg static uint8_t sar_byte (struct X86EMU *, uint8_t d, uint8_t s);
139 1.1 joerg static uint16_t sar_word (struct X86EMU *, uint16_t d, uint8_t s);
140 1.1 joerg static uint32_t sar_long (struct X86EMU *, uint32_t d, uint8_t s);
141 1.1 joerg static uint16_t shld_word (struct X86EMU *, uint16_t d, uint16_t fill, uint8_t s);
142 1.1 joerg static uint32_t shld_long (struct X86EMU *, uint32_t d, uint32_t fill, uint8_t s);
143 1.1 joerg static uint16_t shrd_word (struct X86EMU *, uint16_t d, uint16_t fill, uint8_t s);
144 1.1 joerg static uint32_t shrd_long (struct X86EMU *, uint32_t d, uint32_t fill, uint8_t s);
145 1.1 joerg static uint8_t sbb_byte (struct X86EMU *, uint8_t d, uint8_t s);
146 1.1 joerg static uint16_t sbb_word (struct X86EMU *, uint16_t d, uint16_t s);
147 1.1 joerg static uint32_t sbb_long (struct X86EMU *, uint32_t d, uint32_t s);
148 1.1 joerg static uint8_t sub_byte (struct X86EMU *, uint8_t d, uint8_t s);
149 1.1 joerg static uint16_t sub_word (struct X86EMU *, uint16_t d, uint16_t s);
150 1.1 joerg static uint32_t sub_long (struct X86EMU *, uint32_t d, uint32_t s);
151 1.1 joerg static void test_byte (struct X86EMU *, uint8_t d, uint8_t s);
152 1.1 joerg static void test_word (struct X86EMU *, uint16_t d, uint16_t s);
153 1.1 joerg static void test_long (struct X86EMU *, uint32_t d, uint32_t s);
154 1.1 joerg static uint8_t xor_byte (struct X86EMU *, uint8_t d, uint8_t s);
155 1.1 joerg static uint16_t xor_word (struct X86EMU *, uint16_t d, uint16_t s);
156 1.1 joerg static uint32_t xor_long (struct X86EMU *, uint32_t d, uint32_t s);
157 1.1 joerg static void imul_byte (struct X86EMU *, uint8_t s);
158 1.1 joerg static void imul_word (struct X86EMU *, uint16_t s);
159 1.1 joerg static void imul_long (struct X86EMU *, uint32_t s);
160 1.1 joerg static void mul_byte (struct X86EMU *, uint8_t s);
161 1.1 joerg static void mul_word (struct X86EMU *, uint16_t s);
162 1.1 joerg static void mul_long (struct X86EMU *, uint32_t s);
163 1.1 joerg static void idiv_byte (struct X86EMU *, uint8_t s);
164 1.1 joerg static void idiv_word (struct X86EMU *, uint16_t s);
165 1.1 joerg static void idiv_long (struct X86EMU *, uint32_t s);
166 1.1 joerg static void div_byte (struct X86EMU *, uint8_t s);
167 1.1 joerg static void div_word (struct X86EMU *, uint16_t s);
168 1.1 joerg static void div_long (struct X86EMU *, uint32_t s);
169 1.1 joerg static void ins (struct X86EMU *, int size);
170 1.1 joerg static void outs (struct X86EMU *, int size);
171 1.1 joerg static void push_word (struct X86EMU *, uint16_t w);
172 1.1 joerg static void push_long (struct X86EMU *, uint32_t w);
173 1.1 joerg static uint16_t pop_word (struct X86EMU *);
174 1.1 joerg static uint32_t pop_long (struct X86EMU *);
175 1.1 joerg
176 1.1 joerg /****************************************************************************
177 1.1 joerg REMARKS:
178 1.12 msaitoh Handles any pending asynchronous interrupts.
179 1.1 joerg ****************************************************************************/
180 1.3 joerg static void
181 1.3 joerg x86emu_intr_dispatch(struct X86EMU *emu, uint8_t intno)
182 1.3 joerg {
183 1.3 joerg if (emu->_X86EMU_intrTab[intno]) {
184 1.3 joerg (*emu->_X86EMU_intrTab[intno]) (emu, intno);
185 1.3 joerg } else {
186 1.3 joerg push_word(emu, (uint16_t) emu->x86.R_FLG);
187 1.3 joerg CLEAR_FLAG(F_IF);
188 1.3 joerg CLEAR_FLAG(F_TF);
189 1.3 joerg push_word(emu, emu->x86.R_CS);
190 1.3 joerg emu->x86.R_CS = fetch_word(emu, 0, intno * 4 + 2);
191 1.3 joerg push_word(emu, emu->x86.R_IP);
192 1.3 joerg emu->x86.R_IP = fetch_word(emu, 0, intno * 4);
193 1.3 joerg }
194 1.3 joerg }
195 1.3 joerg
196 1.1 joerg static void
197 1.1 joerg x86emu_intr_handle(struct X86EMU *emu)
198 1.1 joerg {
199 1.1 joerg uint8_t intno;
200 1.1 joerg
201 1.1 joerg if (emu->x86.intr & INTR_SYNCH) {
202 1.1 joerg intno = emu->x86.intno;
203 1.3 joerg emu->x86.intr = 0;
204 1.3 joerg x86emu_intr_dispatch(emu, intno);
205 1.1 joerg }
206 1.1 joerg }
207 1.1 joerg /****************************************************************************
208 1.1 joerg PARAMETERS:
209 1.1 joerg intrnum - Interrupt number to raise
210 1.1 joerg
211 1.1 joerg REMARKS:
212 1.1 joerg Raise the specified interrupt to be handled before the execution of the
213 1.1 joerg next instruction.
214 1.1 joerg ****************************************************************************/
215 1.1 joerg void
216 1.1 joerg x86emu_intr_raise(struct X86EMU *emu, uint8_t intrnum)
217 1.1 joerg {
218 1.1 joerg emu->x86.intno = intrnum;
219 1.1 joerg emu->x86.intr |= INTR_SYNCH;
220 1.1 joerg }
221 1.1 joerg /****************************************************************************
222 1.1 joerg REMARKS:
223 1.1 joerg Main execution loop for the emulator. We return from here when the system
224 1.1 joerg halts, which is normally caused by a stack fault when we return from the
225 1.1 joerg original real mode call.
226 1.1 joerg ****************************************************************************/
227 1.1 joerg void
228 1.1 joerg X86EMU_exec(struct X86EMU *emu)
229 1.1 joerg {
230 1.1 joerg emu->x86.intr = 0;
231 1.1 joerg
232 1.1 joerg #ifdef _KERNEL
233 1.1 joerg if (setjmp(&emu->exec_state))
234 1.1 joerg return;
235 1.1 joerg #else
236 1.1 joerg if (setjmp(emu->exec_state))
237 1.1 joerg return;
238 1.1 joerg #endif
239 1.1 joerg
240 1.1 joerg for (;;) {
241 1.1 joerg if (emu->x86.intr) {
242 1.1 joerg if (((emu->x86.intr & INTR_SYNCH) && (emu->x86.intno == 0 || emu->x86.intno == 2)) ||
243 1.1 joerg !ACCESS_FLAG(F_IF)) {
244 1.1 joerg x86emu_intr_handle(emu);
245 1.1 joerg }
246 1.1 joerg }
247 1.7 joerg if (emu->x86.R_CS == 0 && emu->x86.R_IP == 0)
248 1.7 joerg return;
249 1.1 joerg X86EMU_exec_one_byte(emu);
250 1.1 joerg ++emu->cur_cycles;
251 1.1 joerg }
252 1.1 joerg }
253 1.1 joerg
254 1.1 joerg void
255 1.1 joerg X86EMU_exec_call(struct X86EMU *emu, uint16_t seg, uint16_t off)
256 1.1 joerg {
257 1.1 joerg push_word(emu, 0);
258 1.1 joerg push_word(emu, 0);
259 1.1 joerg emu->x86.R_CS = seg;
260 1.1 joerg emu->x86.R_IP = off;
261 1.1 joerg
262 1.1 joerg X86EMU_exec(emu);
263 1.1 joerg }
264 1.1 joerg
265 1.1 joerg void
266 1.1 joerg X86EMU_exec_intr(struct X86EMU *emu, uint8_t intr)
267 1.1 joerg {
268 1.1 joerg push_word(emu, emu->x86.R_FLG);
269 1.1 joerg CLEAR_FLAG(F_IF);
270 1.1 joerg CLEAR_FLAG(F_TF);
271 1.1 joerg push_word(emu, 0);
272 1.1 joerg push_word(emu, 0);
273 1.1 joerg emu->x86.R_CS = (*emu->emu_rdw)(emu, intr * 4 + 2);
274 1.1 joerg emu->x86.R_IP = (*emu->emu_rdw)(emu, intr * 4);
275 1.1 joerg emu->x86.intr = 0;
276 1.1 joerg
277 1.1 joerg X86EMU_exec(emu);
278 1.1 joerg }
279 1.1 joerg /****************************************************************************
280 1.1 joerg REMARKS:
281 1.1 joerg Halts the system by setting the halted system flag.
282 1.1 joerg ****************************************************************************/
283 1.1 joerg void
284 1.1 joerg X86EMU_halt_sys(struct X86EMU *emu)
285 1.1 joerg {
286 1.1 joerg #ifdef _KERNEL
287 1.1 joerg longjmp(&emu->exec_state);
288 1.1 joerg #else
289 1.1 joerg longjmp(emu->exec_state, 1);
290 1.1 joerg #endif
291 1.1 joerg }
292 1.1 joerg /****************************************************************************
293 1.1 joerg PARAMETERS:
294 1.1 joerg mod - Mod value from decoded byte
295 1.1 joerg regh - Reg h value from decoded byte
296 1.1 joerg regl - Reg l value from decoded byte
297 1.1 joerg
298 1.1 joerg REMARKS:
299 1.1 joerg Raise the specified interrupt to be handled before the execution of the
300 1.1 joerg next instruction.
301 1.1 joerg
302 1.1 joerg NOTE: Do not inline this function, as (*emu->emu_rdb) is already inline!
303 1.1 joerg ****************************************************************************/
304 1.1 joerg static void
305 1.1 joerg fetch_decode_modrm(struct X86EMU *emu)
306 1.1 joerg {
307 1.1 joerg int fetched;
308 1.1 joerg
309 1.1 joerg fetched = fetch_byte_imm(emu);
310 1.1 joerg emu->cur_mod = (fetched >> 6) & 0x03;
311 1.1 joerg emu->cur_rh = (fetched >> 3) & 0x07;
312 1.1 joerg emu->cur_rl = (fetched >> 0) & 0x07;
313 1.1 joerg }
314 1.1 joerg /****************************************************************************
315 1.1 joerg RETURNS:
316 1.1 joerg Immediate byte value read from instruction queue
317 1.1 joerg
318 1.1 joerg REMARKS:
319 1.1 joerg This function returns the immediate byte from the instruction queue, and
320 1.1 joerg moves the instruction pointer to the next value.
321 1.1 joerg
322 1.1 joerg NOTE: Do not inline this function, as (*emu->emu_rdb) is already inline!
323 1.1 joerg ****************************************************************************/
324 1.1 joerg static uint8_t
325 1.1 joerg fetch_byte_imm(struct X86EMU *emu)
326 1.1 joerg {
327 1.1 joerg uint8_t fetched;
328 1.1 joerg
329 1.1 joerg fetched = fetch_byte(emu, emu->x86.R_CS, emu->x86.R_IP);
330 1.1 joerg emu->x86.R_IP++;
331 1.1 joerg return fetched;
332 1.1 joerg }
333 1.1 joerg /****************************************************************************
334 1.1 joerg RETURNS:
335 1.1 joerg Immediate word value read from instruction queue
336 1.1 joerg
337 1.1 joerg REMARKS:
338 1.1 joerg This function returns the immediate byte from the instruction queue, and
339 1.1 joerg moves the instruction pointer to the next value.
340 1.1 joerg
341 1.1 joerg NOTE: Do not inline this function, as (*emu->emu_rdw) is already inline!
342 1.1 joerg ****************************************************************************/
343 1.1 joerg static uint16_t
344 1.1 joerg fetch_word_imm(struct X86EMU *emu)
345 1.1 joerg {
346 1.1 joerg uint16_t fetched;
347 1.1 joerg
348 1.1 joerg fetched = fetch_word(emu, emu->x86.R_CS, emu->x86.R_IP);
349 1.1 joerg emu->x86.R_IP += 2;
350 1.1 joerg return fetched;
351 1.1 joerg }
352 1.1 joerg /****************************************************************************
353 1.1 joerg RETURNS:
354 1.1 joerg Immediate lone value read from instruction queue
355 1.1 joerg
356 1.1 joerg REMARKS:
357 1.1 joerg This function returns the immediate byte from the instruction queue, and
358 1.1 joerg moves the instruction pointer to the next value.
359 1.1 joerg
360 1.1 joerg NOTE: Do not inline this function, as (*emu->emu_rdw) is already inline!
361 1.1 joerg ****************************************************************************/
362 1.1 joerg static uint32_t
363 1.1 joerg fetch_long_imm(struct X86EMU *emu)
364 1.1 joerg {
365 1.1 joerg uint32_t fetched;
366 1.1 joerg
367 1.1 joerg fetched = fetch_long(emu, emu->x86.R_CS, emu->x86.R_IP);
368 1.1 joerg emu->x86.R_IP += 4;
369 1.1 joerg return fetched;
370 1.1 joerg }
371 1.1 joerg /****************************************************************************
372 1.1 joerg RETURNS:
373 1.1 joerg Value of the default data segment
374 1.1 joerg
375 1.1 joerg REMARKS:
376 1.1 joerg Inline function that returns the default data segment for the current
377 1.1 joerg instruction.
378 1.1 joerg
379 1.1 joerg On the x86 processor, the default segment is not always DS if there is
380 1.1 joerg no segment override. Address modes such as -3[BP] or 10[BP+SI] all refer to
381 1.1 joerg addresses relative to SS (ie: on the stack). So, at the minimum, all
382 1.1 joerg decodings of addressing modes would have to set/clear a bit describing
383 1.1 joerg whether the access is relative to DS or SS. That is the function of the
384 1.1 joerg cpu-state-varible emu->x86.mode. There are several potential states:
385 1.1 joerg
386 1.1 joerg repe prefix seen (handled elsewhere)
387 1.1 joerg repne prefix seen (ditto)
388 1.1 joerg
389 1.1 joerg cs segment override
390 1.1 joerg ds segment override
391 1.1 joerg es segment override
392 1.1 joerg fs segment override
393 1.1 joerg gs segment override
394 1.1 joerg ss segment override
395 1.1 joerg
396 1.11 msaitoh ds/ss select (in absence of override)
397 1.1 joerg
398 1.1 joerg Each of the above 7 items are handled with a bit in the mode field.
399 1.1 joerg ****************************************************************************/
400 1.1 joerg static uint32_t
401 1.1 joerg get_data_segment(struct X86EMU *emu)
402 1.1 joerg {
403 1.1 joerg switch (emu->x86.mode & SYSMODE_SEGMASK) {
404 1.1 joerg case 0: /* default case: use ds register */
405 1.1 joerg case SYSMODE_SEGOVR_DS:
406 1.1 joerg case SYSMODE_SEGOVR_DS | SYSMODE_SEG_DS_SS:
407 1.1 joerg return emu->x86.R_DS;
408 1.1 joerg case SYSMODE_SEG_DS_SS:/* non-overridden, use ss register */
409 1.1 joerg return emu->x86.R_SS;
410 1.1 joerg case SYSMODE_SEGOVR_CS:
411 1.1 joerg case SYSMODE_SEGOVR_CS | SYSMODE_SEG_DS_SS:
412 1.1 joerg return emu->x86.R_CS;
413 1.1 joerg case SYSMODE_SEGOVR_ES:
414 1.1 joerg case SYSMODE_SEGOVR_ES | SYSMODE_SEG_DS_SS:
415 1.1 joerg return emu->x86.R_ES;
416 1.1 joerg case SYSMODE_SEGOVR_FS:
417 1.1 joerg case SYSMODE_SEGOVR_FS | SYSMODE_SEG_DS_SS:
418 1.1 joerg return emu->x86.R_FS;
419 1.1 joerg case SYSMODE_SEGOVR_GS:
420 1.1 joerg case SYSMODE_SEGOVR_GS | SYSMODE_SEG_DS_SS:
421 1.1 joerg return emu->x86.R_GS;
422 1.1 joerg case SYSMODE_SEGOVR_SS:
423 1.1 joerg case SYSMODE_SEGOVR_SS | SYSMODE_SEG_DS_SS:
424 1.1 joerg return emu->x86.R_SS;
425 1.1 joerg }
426 1.1 joerg X86EMU_halt_sys(emu);
427 1.1 joerg }
428 1.1 joerg /****************************************************************************
429 1.1 joerg PARAMETERS:
430 1.1 joerg offset - Offset to load data from
431 1.1 joerg
432 1.1 joerg RETURNS:
433 1.1 joerg Byte value read from the absolute memory location.
434 1.1 joerg
435 1.1 joerg NOTE: Do not inline this function as (*emu->emu_rdX) is already inline!
436 1.1 joerg ****************************************************************************/
437 1.1 joerg static uint8_t
438 1.1 joerg fetch_data_byte(struct X86EMU *emu, uint32_t offset)
439 1.1 joerg {
440 1.1 joerg return fetch_byte(emu, get_data_segment(emu), offset);
441 1.1 joerg }
442 1.1 joerg /****************************************************************************
443 1.1 joerg PARAMETERS:
444 1.1 joerg offset - Offset to load data from
445 1.1 joerg
446 1.1 joerg RETURNS:
447 1.1 joerg Word value read from the absolute memory location.
448 1.1 joerg
449 1.1 joerg NOTE: Do not inline this function as (*emu->emu_rdX) is already inline!
450 1.1 joerg ****************************************************************************/
451 1.1 joerg static uint16_t
452 1.1 joerg fetch_data_word(struct X86EMU *emu, uint32_t offset)
453 1.1 joerg {
454 1.1 joerg return fetch_word(emu, get_data_segment(emu), offset);
455 1.1 joerg }
456 1.1 joerg /****************************************************************************
457 1.1 joerg PARAMETERS:
458 1.1 joerg offset - Offset to load data from
459 1.1 joerg
460 1.1 joerg RETURNS:
461 1.1 joerg Long value read from the absolute memory location.
462 1.1 joerg
463 1.1 joerg NOTE: Do not inline this function as (*emu->emu_rdX) is already inline!
464 1.1 joerg ****************************************************************************/
465 1.1 joerg static uint32_t
466 1.1 joerg fetch_data_long(struct X86EMU *emu, uint32_t offset)
467 1.1 joerg {
468 1.1 joerg return fetch_long(emu, get_data_segment(emu), offset);
469 1.1 joerg }
470 1.1 joerg /****************************************************************************
471 1.1 joerg PARAMETERS:
472 1.1 joerg segment - Segment to load data from
473 1.1 joerg offset - Offset to load data from
474 1.1 joerg
475 1.1 joerg RETURNS:
476 1.1 joerg Byte value read from the absolute memory location.
477 1.1 joerg
478 1.1 joerg NOTE: Do not inline this function as (*emu->emu_rdX) is already inline!
479 1.1 joerg ****************************************************************************/
480 1.1 joerg static uint8_t
481 1.1 joerg fetch_byte(struct X86EMU *emu, uint32_t segment, uint32_t offset)
482 1.1 joerg {
483 1.1 joerg return (*emu->emu_rdb) (emu, ((uint32_t) segment << 4) + offset);
484 1.1 joerg }
485 1.1 joerg /****************************************************************************
486 1.1 joerg PARAMETERS:
487 1.1 joerg segment - Segment to load data from
488 1.1 joerg offset - Offset to load data from
489 1.1 joerg
490 1.1 joerg RETURNS:
491 1.1 joerg Word value read from the absolute memory location.
492 1.1 joerg
493 1.1 joerg NOTE: Do not inline this function as (*emu->emu_rdX) is already inline!
494 1.1 joerg ****************************************************************************/
495 1.1 joerg static uint16_t
496 1.1 joerg fetch_word(struct X86EMU *emu, uint32_t segment, uint32_t offset)
497 1.1 joerg {
498 1.1 joerg return (*emu->emu_rdw) (emu, ((uint32_t) segment << 4) + offset);
499 1.1 joerg }
500 1.1 joerg /****************************************************************************
501 1.1 joerg PARAMETERS:
502 1.1 joerg segment - Segment to load data from
503 1.1 joerg offset - Offset to load data from
504 1.1 joerg
505 1.1 joerg RETURNS:
506 1.1 joerg Long value read from the absolute memory location.
507 1.1 joerg
508 1.1 joerg NOTE: Do not inline this function as (*emu->emu_rdX) is already inline!
509 1.1 joerg ****************************************************************************/
510 1.1 joerg static uint32_t
511 1.1 joerg fetch_long(struct X86EMU *emu, uint32_t segment, uint32_t offset)
512 1.1 joerg {
513 1.1 joerg return (*emu->emu_rdl) (emu, ((uint32_t) segment << 4) + offset);
514 1.1 joerg }
515 1.1 joerg /****************************************************************************
516 1.1 joerg PARAMETERS:
517 1.1 joerg offset - Offset to store data at
518 1.1 joerg val - Value to store
519 1.1 joerg
520 1.1 joerg REMARKS:
521 1.1 joerg Writes a word value to an segmented memory location. The segment used is
522 1.1 joerg the current 'default' segment, which may have been overridden.
523 1.1 joerg
524 1.1 joerg NOTE: Do not inline this function as (*emu->emu_wrX) is already inline!
525 1.1 joerg ****************************************************************************/
526 1.1 joerg static void
527 1.1 joerg store_data_byte(struct X86EMU *emu, uint32_t offset, uint8_t val)
528 1.1 joerg {
529 1.1 joerg store_byte(emu, get_data_segment(emu), offset, val);
530 1.1 joerg }
531 1.1 joerg /****************************************************************************
532 1.1 joerg PARAMETERS:
533 1.1 joerg offset - Offset to store data at
534 1.1 joerg val - Value to store
535 1.1 joerg
536 1.1 joerg REMARKS:
537 1.1 joerg Writes a word value to an segmented memory location. The segment used is
538 1.1 joerg the current 'default' segment, which may have been overridden.
539 1.1 joerg
540 1.1 joerg NOTE: Do not inline this function as (*emu->emu_wrX) is already inline!
541 1.1 joerg ****************************************************************************/
542 1.1 joerg static void
543 1.1 joerg store_data_word(struct X86EMU *emu, uint32_t offset, uint16_t val)
544 1.1 joerg {
545 1.1 joerg store_word(emu, get_data_segment(emu), offset, val);
546 1.1 joerg }
547 1.1 joerg /****************************************************************************
548 1.1 joerg PARAMETERS:
549 1.1 joerg offset - Offset to store data at
550 1.1 joerg val - Value to store
551 1.1 joerg
552 1.1 joerg REMARKS:
553 1.1 joerg Writes a long value to an segmented memory location. The segment used is
554 1.1 joerg the current 'default' segment, which may have been overridden.
555 1.1 joerg
556 1.1 joerg NOTE: Do not inline this function as (*emu->emu_wrX) is already inline!
557 1.1 joerg ****************************************************************************/
558 1.1 joerg static void
559 1.1 joerg store_data_long(struct X86EMU *emu, uint32_t offset, uint32_t val)
560 1.1 joerg {
561 1.1 joerg store_long(emu, get_data_segment(emu), offset, val);
562 1.1 joerg }
563 1.1 joerg /****************************************************************************
564 1.1 joerg PARAMETERS:
565 1.1 joerg segment - Segment to store data at
566 1.1 joerg offset - Offset to store data at
567 1.1 joerg val - Value to store
568 1.1 joerg
569 1.1 joerg REMARKS:
570 1.1 joerg Writes a byte value to an absolute memory location.
571 1.1 joerg
572 1.1 joerg NOTE: Do not inline this function as (*emu->emu_wrX) is already inline!
573 1.1 joerg ****************************************************************************/
574 1.1 joerg static void
575 1.1 joerg store_byte(struct X86EMU *emu, uint32_t segment, uint32_t offset, uint8_t val)
576 1.1 joerg {
577 1.1 joerg (*emu->emu_wrb) (emu, ((uint32_t) segment << 4) + offset, val);
578 1.1 joerg }
579 1.1 joerg /****************************************************************************
580 1.1 joerg PARAMETERS:
581 1.1 joerg segment - Segment to store data at
582 1.1 joerg offset - Offset to store data at
583 1.1 joerg val - Value to store
584 1.1 joerg
585 1.1 joerg REMARKS:
586 1.1 joerg Writes a word value to an absolute memory location.
587 1.1 joerg
588 1.1 joerg NOTE: Do not inline this function as (*emu->emu_wrX) is already inline!
589 1.1 joerg ****************************************************************************/
590 1.1 joerg static void
591 1.1 joerg store_word(struct X86EMU *emu, uint32_t segment, uint32_t offset, uint16_t val)
592 1.1 joerg {
593 1.1 joerg (*emu->emu_wrw) (emu, ((uint32_t) segment << 4) + offset, val);
594 1.1 joerg }
595 1.1 joerg /****************************************************************************
596 1.1 joerg PARAMETERS:
597 1.1 joerg segment - Segment to store data at
598 1.1 joerg offset - Offset to store data at
599 1.1 joerg val - Value to store
600 1.1 joerg
601 1.1 joerg REMARKS:
602 1.1 joerg Writes a long value to an absolute memory location.
603 1.1 joerg
604 1.1 joerg NOTE: Do not inline this function as (*emu->emu_wrX) is already inline!
605 1.1 joerg ****************************************************************************/
606 1.1 joerg static void
607 1.1 joerg store_long(struct X86EMU *emu, uint32_t segment, uint32_t offset, uint32_t val)
608 1.1 joerg {
609 1.1 joerg (*emu->emu_wrl) (emu, ((uint32_t) segment << 4) + offset, val);
610 1.1 joerg }
611 1.1 joerg /****************************************************************************
612 1.1 joerg PARAMETERS:
613 1.1 joerg reg - Register to decode
614 1.1 joerg
615 1.1 joerg RETURNS:
616 1.1 joerg Pointer to the appropriate register
617 1.1 joerg
618 1.1 joerg REMARKS:
619 1.1 joerg Return a pointer to the register given by the R/RM field of the
620 1.1 joerg modrm byte, for byte operands. Also enables the decoding of instructions.
621 1.1 joerg ****************************************************************************/
622 1.1 joerg static uint8_t *
623 1.1 joerg decode_rm_byte_register(struct X86EMU *emu, int reg)
624 1.1 joerg {
625 1.1 joerg switch (reg) {
626 1.1 joerg case 0:
627 1.1 joerg return &emu->x86.R_AL;
628 1.1 joerg case 1:
629 1.1 joerg return &emu->x86.R_CL;
630 1.1 joerg case 2:
631 1.1 joerg return &emu->x86.R_DL;
632 1.1 joerg case 3:
633 1.1 joerg return &emu->x86.R_BL;
634 1.1 joerg case 4:
635 1.1 joerg return &emu->x86.R_AH;
636 1.1 joerg case 5:
637 1.1 joerg return &emu->x86.R_CH;
638 1.1 joerg case 6:
639 1.1 joerg return &emu->x86.R_DH;
640 1.1 joerg case 7:
641 1.1 joerg return &emu->x86.R_BH;
642 1.1 joerg default:
643 1.1 joerg X86EMU_halt_sys(emu);
644 1.1 joerg }
645 1.1 joerg }
646 1.1 joerg
647 1.1 joerg static uint8_t *
648 1.1 joerg decode_rl_byte_register(struct X86EMU *emu)
649 1.1 joerg {
650 1.1 joerg return decode_rm_byte_register(emu, emu->cur_rl);
651 1.1 joerg }
652 1.1 joerg
653 1.1 joerg static uint8_t *
654 1.1 joerg decode_rh_byte_register(struct X86EMU *emu)
655 1.1 joerg {
656 1.1 joerg return decode_rm_byte_register(emu, emu->cur_rh);
657 1.1 joerg }
658 1.1 joerg /****************************************************************************
659 1.1 joerg PARAMETERS:
660 1.1 joerg reg - Register to decode
661 1.1 joerg
662 1.1 joerg RETURNS:
663 1.1 joerg Pointer to the appropriate register
664 1.1 joerg
665 1.1 joerg REMARKS:
666 1.1 joerg Return a pointer to the register given by the R/RM field of the
667 1.1 joerg modrm byte, for word operands. Also enables the decoding of instructions.
668 1.1 joerg ****************************************************************************/
669 1.1 joerg static uint16_t *
670 1.1 joerg decode_rm_word_register(struct X86EMU *emu, int reg)
671 1.1 joerg {
672 1.1 joerg switch (reg) {
673 1.1 joerg case 0:
674 1.1 joerg return &emu->x86.R_AX;
675 1.1 joerg case 1:
676 1.1 joerg return &emu->x86.R_CX;
677 1.1 joerg case 2:
678 1.1 joerg return &emu->x86.R_DX;
679 1.1 joerg case 3:
680 1.1 joerg return &emu->x86.R_BX;
681 1.1 joerg case 4:
682 1.1 joerg return &emu->x86.R_SP;
683 1.1 joerg case 5:
684 1.1 joerg return &emu->x86.R_BP;
685 1.1 joerg case 6:
686 1.1 joerg return &emu->x86.R_SI;
687 1.1 joerg case 7:
688 1.1 joerg return &emu->x86.R_DI;
689 1.1 joerg default:
690 1.1 joerg X86EMU_halt_sys(emu);
691 1.1 joerg }
692 1.1 joerg }
693 1.1 joerg
694 1.1 joerg static uint16_t *
695 1.1 joerg decode_rl_word_register(struct X86EMU *emu)
696 1.1 joerg {
697 1.1 joerg return decode_rm_word_register(emu, emu->cur_rl);
698 1.1 joerg }
699 1.1 joerg
700 1.1 joerg static uint16_t *
701 1.1 joerg decode_rh_word_register(struct X86EMU *emu)
702 1.1 joerg {
703 1.1 joerg return decode_rm_word_register(emu, emu->cur_rh);
704 1.1 joerg }
705 1.1 joerg /****************************************************************************
706 1.1 joerg PARAMETERS:
707 1.1 joerg reg - Register to decode
708 1.1 joerg
709 1.1 joerg RETURNS:
710 1.1 joerg Pointer to the appropriate register
711 1.1 joerg
712 1.1 joerg REMARKS:
713 1.1 joerg Return a pointer to the register given by the R/RM field of the
714 1.1 joerg modrm byte, for dword operands. Also enables the decoding of instructions.
715 1.1 joerg ****************************************************************************/
716 1.1 joerg static uint32_t *
717 1.1 joerg decode_rm_long_register(struct X86EMU *emu, int reg)
718 1.1 joerg {
719 1.1 joerg switch (reg) {
720 1.1 joerg case 0:
721 1.1 joerg return &emu->x86.R_EAX;
722 1.1 joerg case 1:
723 1.1 joerg return &emu->x86.R_ECX;
724 1.1 joerg case 2:
725 1.1 joerg return &emu->x86.R_EDX;
726 1.1 joerg case 3:
727 1.1 joerg return &emu->x86.R_EBX;
728 1.1 joerg case 4:
729 1.1 joerg return &emu->x86.R_ESP;
730 1.1 joerg case 5:
731 1.1 joerg return &emu->x86.R_EBP;
732 1.1 joerg case 6:
733 1.1 joerg return &emu->x86.R_ESI;
734 1.1 joerg case 7:
735 1.1 joerg return &emu->x86.R_EDI;
736 1.1 joerg default:
737 1.1 joerg X86EMU_halt_sys(emu);
738 1.1 joerg }
739 1.1 joerg }
740 1.1 joerg
741 1.1 joerg static uint32_t *
742 1.1 joerg decode_rl_long_register(struct X86EMU *emu)
743 1.1 joerg {
744 1.1 joerg return decode_rm_long_register(emu, emu->cur_rl);
745 1.1 joerg }
746 1.1 joerg
747 1.1 joerg static uint32_t *
748 1.1 joerg decode_rh_long_register(struct X86EMU *emu)
749 1.1 joerg {
750 1.1 joerg return decode_rm_long_register(emu, emu->cur_rh);
751 1.1 joerg }
752 1.1 joerg
753 1.1 joerg /****************************************************************************
754 1.1 joerg PARAMETERS:
755 1.1 joerg reg - Register to decode
756 1.1 joerg
757 1.1 joerg RETURNS:
758 1.1 joerg Pointer to the appropriate register
759 1.1 joerg
760 1.1 joerg REMARKS:
761 1.1 joerg Return a pointer to the register given by the R/RM field of the
762 1.1 joerg modrm byte, for word operands, modified from above for the weirdo
763 1.1 joerg special case of segreg operands. Also enables the decoding of instructions.
764 1.1 joerg ****************************************************************************/
765 1.1 joerg static uint16_t *
766 1.1 joerg decode_rh_seg_register(struct X86EMU *emu)
767 1.1 joerg {
768 1.1 joerg switch (emu->cur_rh) {
769 1.1 joerg case 0:
770 1.1 joerg return &emu->x86.R_ES;
771 1.1 joerg case 1:
772 1.1 joerg return &emu->x86.R_CS;
773 1.1 joerg case 2:
774 1.1 joerg return &emu->x86.R_SS;
775 1.1 joerg case 3:
776 1.1 joerg return &emu->x86.R_DS;
777 1.1 joerg case 4:
778 1.1 joerg return &emu->x86.R_FS;
779 1.1 joerg case 5:
780 1.1 joerg return &emu->x86.R_GS;
781 1.1 joerg default:
782 1.1 joerg X86EMU_halt_sys(emu);
783 1.1 joerg }
784 1.1 joerg }
785 1.1 joerg /*
786 1.1 joerg *
787 1.1 joerg * return offset from the SIB Byte
788 1.1 joerg */
789 1.1 joerg static uint32_t
790 1.1 joerg decode_sib_address(struct X86EMU *emu, int sib, int mod)
791 1.1 joerg {
792 1.1 joerg uint32_t base = 0, i = 0, scale = 1;
793 1.1 joerg
794 1.1 joerg switch (sib & 0x07) {
795 1.1 joerg case 0:
796 1.1 joerg base = emu->x86.R_EAX;
797 1.1 joerg break;
798 1.1 joerg case 1:
799 1.1 joerg base = emu->x86.R_ECX;
800 1.1 joerg break;
801 1.1 joerg case 2:
802 1.1 joerg base = emu->x86.R_EDX;
803 1.1 joerg break;
804 1.1 joerg case 3:
805 1.1 joerg base = emu->x86.R_EBX;
806 1.1 joerg break;
807 1.1 joerg case 4:
808 1.1 joerg base = emu->x86.R_ESP;
809 1.1 joerg emu->x86.mode |= SYSMODE_SEG_DS_SS;
810 1.1 joerg break;
811 1.1 joerg case 5:
812 1.1 joerg if (mod == 0) {
813 1.1 joerg base = fetch_long_imm(emu);
814 1.1 joerg } else {
815 1.6 joerg base = emu->x86.R_EBP;
816 1.1 joerg emu->x86.mode |= SYSMODE_SEG_DS_SS;
817 1.1 joerg }
818 1.1 joerg break;
819 1.1 joerg case 6:
820 1.1 joerg base = emu->x86.R_ESI;
821 1.1 joerg break;
822 1.1 joerg case 7:
823 1.1 joerg base = emu->x86.R_EDI;
824 1.1 joerg break;
825 1.1 joerg }
826 1.1 joerg switch ((sib >> 3) & 0x07) {
827 1.1 joerg case 0:
828 1.1 joerg i = emu->x86.R_EAX;
829 1.1 joerg break;
830 1.1 joerg case 1:
831 1.1 joerg i = emu->x86.R_ECX;
832 1.1 joerg break;
833 1.1 joerg case 2:
834 1.1 joerg i = emu->x86.R_EDX;
835 1.1 joerg break;
836 1.1 joerg case 3:
837 1.1 joerg i = emu->x86.R_EBX;
838 1.1 joerg break;
839 1.1 joerg case 4:
840 1.1 joerg i = 0;
841 1.1 joerg break;
842 1.1 joerg case 5:
843 1.1 joerg i = emu->x86.R_EBP;
844 1.1 joerg break;
845 1.1 joerg case 6:
846 1.1 joerg i = emu->x86.R_ESI;
847 1.1 joerg break;
848 1.1 joerg case 7:
849 1.1 joerg i = emu->x86.R_EDI;
850 1.1 joerg break;
851 1.1 joerg }
852 1.1 joerg scale = 1 << ((sib >> 6) & 0x03);
853 1.1 joerg return base + (i * scale);
854 1.1 joerg }
855 1.1 joerg /****************************************************************************
856 1.1 joerg PARAMETERS:
857 1.1 joerg rm - RM value to decode
858 1.1 joerg
859 1.1 joerg RETURNS:
860 1.1 joerg Offset in memory for the address decoding
861 1.1 joerg
862 1.1 joerg REMARKS:
863 1.1 joerg Return the offset given by mod=00, mod=01 or mod=10 addressing.
864 1.1 joerg Also enables the decoding of instructions.
865 1.1 joerg ****************************************************************************/
866 1.1 joerg static uint32_t
867 1.1 joerg decode_rl_address(struct X86EMU *emu)
868 1.1 joerg {
869 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_ADDR) {
870 1.1 joerg uint32_t offset, sib;
871 1.1 joerg /* 32-bit addressing */
872 1.1 joerg switch (emu->cur_rl) {
873 1.1 joerg case 0:
874 1.1 joerg offset = emu->x86.R_EAX;
875 1.1 joerg break;
876 1.1 joerg case 1:
877 1.1 joerg offset = emu->x86.R_ECX;
878 1.1 joerg break;
879 1.1 joerg case 2:
880 1.1 joerg offset = emu->x86.R_EDX;
881 1.1 joerg break;
882 1.1 joerg case 3:
883 1.1 joerg offset = emu->x86.R_EBX;
884 1.1 joerg break;
885 1.1 joerg case 4:
886 1.1 joerg sib = fetch_byte_imm(emu);
887 1.1 joerg offset = decode_sib_address(emu, sib, 0);
888 1.1 joerg break;
889 1.1 joerg case 5:
890 1.6 joerg if (emu->cur_mod == 0) {
891 1.1 joerg offset = fetch_long_imm(emu);
892 1.6 joerg } else {
893 1.6 joerg emu->x86.mode |= SYSMODE_SEG_DS_SS;
894 1.1 joerg offset = emu->x86.R_EBP;
895 1.6 joerg }
896 1.1 joerg break;
897 1.1 joerg case 6:
898 1.1 joerg offset = emu->x86.R_ESI;
899 1.1 joerg break;
900 1.1 joerg case 7:
901 1.1 joerg offset = emu->x86.R_EDI;
902 1.1 joerg break;
903 1.1 joerg default:
904 1.1 joerg X86EMU_halt_sys(emu);
905 1.1 joerg }
906 1.1 joerg if (emu->cur_mod == 1)
907 1.1 joerg offset += (int8_t)fetch_byte_imm(emu);
908 1.1 joerg else if (emu->cur_mod == 2)
909 1.1 joerg offset += fetch_long_imm(emu);
910 1.1 joerg return offset;
911 1.1 joerg } else {
912 1.1 joerg uint16_t offset;
913 1.1 joerg
914 1.1 joerg /* 16-bit addressing */
915 1.1 joerg switch (emu->cur_rl) {
916 1.1 joerg case 0:
917 1.1 joerg offset = emu->x86.R_BX + emu->x86.R_SI;
918 1.1 joerg break;
919 1.1 joerg case 1:
920 1.1 joerg offset = emu->x86.R_BX + emu->x86.R_DI;
921 1.1 joerg break;
922 1.1 joerg case 2:
923 1.1 joerg emu->x86.mode |= SYSMODE_SEG_DS_SS;
924 1.1 joerg offset = emu->x86.R_BP + emu->x86.R_SI;
925 1.1 joerg break;
926 1.1 joerg case 3:
927 1.1 joerg emu->x86.mode |= SYSMODE_SEG_DS_SS;
928 1.1 joerg offset = emu->x86.R_BP + emu->x86.R_DI;
929 1.1 joerg break;
930 1.1 joerg case 4:
931 1.1 joerg offset = emu->x86.R_SI;
932 1.1 joerg break;
933 1.1 joerg case 5:
934 1.1 joerg offset = emu->x86.R_DI;
935 1.1 joerg break;
936 1.1 joerg case 6:
937 1.6 joerg if (emu->cur_mod == 0) {
938 1.1 joerg offset = fetch_word_imm(emu);
939 1.6 joerg } else {
940 1.6 joerg emu->x86.mode |= SYSMODE_SEG_DS_SS;
941 1.1 joerg offset = emu->x86.R_BP;
942 1.6 joerg }
943 1.1 joerg break;
944 1.1 joerg case 7:
945 1.1 joerg offset = emu->x86.R_BX;
946 1.1 joerg break;
947 1.1 joerg default:
948 1.1 joerg X86EMU_halt_sys(emu);
949 1.1 joerg }
950 1.1 joerg if (emu->cur_mod == 1)
951 1.1 joerg offset += (int8_t)fetch_byte_imm(emu);
952 1.1 joerg else if (emu->cur_mod == 2)
953 1.1 joerg offset += fetch_word_imm(emu);
954 1.1 joerg return offset;
955 1.1 joerg }
956 1.1 joerg }
957 1.1 joerg
958 1.1 joerg static uint8_t
959 1.1 joerg decode_and_fetch_byte(struct X86EMU *emu)
960 1.1 joerg {
961 1.1 joerg if (emu->cur_mod != 3) {
962 1.1 joerg emu->cur_offset = decode_rl_address(emu);
963 1.1 joerg return fetch_data_byte(emu, emu->cur_offset);
964 1.1 joerg } else {
965 1.1 joerg return *decode_rl_byte_register(emu);
966 1.1 joerg }
967 1.1 joerg }
968 1.1 joerg
969 1.1 joerg static uint16_t
970 1.1 joerg decode_and_fetch_word_disp(struct X86EMU *emu, int16_t disp)
971 1.1 joerg {
972 1.1 joerg if (emu->cur_mod != 3) {
973 1.1 joerg /* TODO: A20 gate emulation */
974 1.1 joerg emu->cur_offset = decode_rl_address(emu) + disp;
975 1.1 joerg if ((emu->x86.mode & SYSMODE_PREFIX_ADDR) == 0)
976 1.1 joerg emu->cur_offset &= 0xffff;
977 1.1 joerg return fetch_data_word(emu, emu->cur_offset);
978 1.1 joerg } else {
979 1.1 joerg return *decode_rl_word_register(emu);
980 1.1 joerg }
981 1.1 joerg }
982 1.1 joerg
983 1.1 joerg static uint32_t
984 1.1 joerg decode_and_fetch_long_disp(struct X86EMU *emu, int16_t disp)
985 1.1 joerg {
986 1.1 joerg if (emu->cur_mod != 3) {
987 1.1 joerg /* TODO: A20 gate emulation */
988 1.1 joerg emu->cur_offset = decode_rl_address(emu) + disp;
989 1.1 joerg if ((emu->x86.mode & SYSMODE_PREFIX_ADDR) == 0)
990 1.1 joerg emu->cur_offset &= 0xffff;
991 1.1 joerg return fetch_data_long(emu, emu->cur_offset);
992 1.1 joerg } else {
993 1.1 joerg return *decode_rl_long_register(emu);
994 1.1 joerg }
995 1.1 joerg }
996 1.1 joerg
997 1.1 joerg uint16_t
998 1.1 joerg decode_and_fetch_word(struct X86EMU *emu)
999 1.1 joerg {
1000 1.1 joerg return decode_and_fetch_word_disp(emu, 0);
1001 1.1 joerg }
1002 1.1 joerg
1003 1.1 joerg uint32_t
1004 1.1 joerg decode_and_fetch_long(struct X86EMU *emu)
1005 1.1 joerg {
1006 1.1 joerg return decode_and_fetch_long_disp(emu, 0);
1007 1.1 joerg }
1008 1.1 joerg
1009 1.1 joerg uint8_t
1010 1.1 joerg decode_and_fetch_byte_imm8(struct X86EMU *emu, uint8_t *imm)
1011 1.1 joerg {
1012 1.1 joerg if (emu->cur_mod != 3) {
1013 1.1 joerg emu->cur_offset = decode_rl_address(emu);
1014 1.1 joerg *imm = fetch_byte_imm(emu);
1015 1.1 joerg return fetch_data_byte(emu, emu->cur_offset);
1016 1.1 joerg } else {
1017 1.1 joerg *imm = fetch_byte_imm(emu);
1018 1.1 joerg return *decode_rl_byte_register(emu);
1019 1.1 joerg }
1020 1.1 joerg }
1021 1.1 joerg
1022 1.1 joerg static uint16_t
1023 1.1 joerg decode_and_fetch_word_imm8(struct X86EMU *emu, uint8_t *imm)
1024 1.1 joerg {
1025 1.1 joerg if (emu->cur_mod != 3) {
1026 1.1 joerg emu->cur_offset = decode_rl_address(emu);
1027 1.1 joerg *imm = fetch_byte_imm(emu);
1028 1.1 joerg return fetch_data_word(emu, emu->cur_offset);
1029 1.1 joerg } else {
1030 1.1 joerg *imm = fetch_byte_imm(emu);
1031 1.1 joerg return *decode_rl_word_register(emu);
1032 1.1 joerg }
1033 1.1 joerg }
1034 1.1 joerg
1035 1.1 joerg static uint32_t
1036 1.1 joerg decode_and_fetch_long_imm8(struct X86EMU *emu, uint8_t *imm)
1037 1.1 joerg {
1038 1.1 joerg if (emu->cur_mod != 3) {
1039 1.1 joerg emu->cur_offset = decode_rl_address(emu);
1040 1.1 joerg *imm = fetch_byte_imm(emu);
1041 1.1 joerg return fetch_data_long(emu, emu->cur_offset);
1042 1.1 joerg } else {
1043 1.1 joerg *imm = fetch_byte_imm(emu);
1044 1.1 joerg return *decode_rl_long_register(emu);
1045 1.1 joerg }
1046 1.1 joerg }
1047 1.1 joerg
1048 1.1 joerg static void
1049 1.1 joerg write_back_byte(struct X86EMU *emu, uint8_t val)
1050 1.1 joerg {
1051 1.1 joerg if (emu->cur_mod != 3)
1052 1.1 joerg store_data_byte(emu, emu->cur_offset, val);
1053 1.1 joerg else
1054 1.1 joerg *decode_rl_byte_register(emu) = val;
1055 1.1 joerg }
1056 1.1 joerg
1057 1.1 joerg static void
1058 1.1 joerg write_back_word(struct X86EMU *emu, uint16_t val)
1059 1.1 joerg {
1060 1.1 joerg if (emu->cur_mod != 3)
1061 1.1 joerg store_data_word(emu, emu->cur_offset, val);
1062 1.1 joerg else
1063 1.1 joerg *decode_rl_word_register(emu) = val;
1064 1.1 joerg }
1065 1.1 joerg
1066 1.1 joerg static void
1067 1.1 joerg write_back_long(struct X86EMU *emu, uint32_t val)
1068 1.1 joerg {
1069 1.1 joerg if (emu->cur_mod != 3)
1070 1.1 joerg store_data_long(emu, emu->cur_offset, val);
1071 1.1 joerg else
1072 1.1 joerg *decode_rl_long_register(emu) = val;
1073 1.1 joerg }
1074 1.1 joerg
1075 1.1 joerg static void
1076 1.1 joerg common_inc_word_long(struct X86EMU *emu, union X86EMU_register *reg)
1077 1.1 joerg {
1078 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1079 1.1 joerg reg->I32_reg.e_reg = inc_long(emu, reg->I32_reg.e_reg);
1080 1.1 joerg else
1081 1.1 joerg reg->I16_reg.x_reg = inc_word(emu, reg->I16_reg.x_reg);
1082 1.1 joerg }
1083 1.1 joerg
1084 1.1 joerg static void
1085 1.1 joerg common_dec_word_long(struct X86EMU *emu, union X86EMU_register *reg)
1086 1.1 joerg {
1087 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1088 1.1 joerg reg->I32_reg.e_reg = dec_long(emu, reg->I32_reg.e_reg);
1089 1.1 joerg else
1090 1.1 joerg reg->I16_reg.x_reg = dec_word(emu, reg->I16_reg.x_reg);
1091 1.1 joerg }
1092 1.1 joerg
1093 1.1 joerg static void
1094 1.1 joerg common_binop_byte_rm_r(struct X86EMU *emu, uint8_t (*binop)(struct X86EMU *, uint8_t, uint8_t))
1095 1.1 joerg {
1096 1.1 joerg uint32_t destoffset;
1097 1.1 joerg uint8_t *destreg, srcval;
1098 1.1 joerg uint8_t destval;
1099 1.1 joerg
1100 1.1 joerg fetch_decode_modrm(emu);
1101 1.1 joerg srcval = *decode_rh_byte_register(emu);
1102 1.1 joerg if (emu->cur_mod != 3) {
1103 1.1 joerg destoffset = decode_rl_address(emu);
1104 1.1 joerg destval = fetch_data_byte(emu, destoffset);
1105 1.1 joerg destval = (*binop)(emu, destval, srcval);
1106 1.1 joerg store_data_byte(emu, destoffset, destval);
1107 1.1 joerg } else {
1108 1.1 joerg destreg = decode_rl_byte_register(emu);
1109 1.1 joerg *destreg = (*binop)(emu, *destreg, srcval);
1110 1.1 joerg }
1111 1.1 joerg }
1112 1.1 joerg
1113 1.1 joerg static void
1114 1.1 joerg common_binop_ns_byte_rm_r(struct X86EMU *emu, void (*binop)(struct X86EMU *, uint8_t, uint8_t))
1115 1.1 joerg {
1116 1.1 joerg uint32_t destoffset;
1117 1.1 joerg uint8_t destval, srcval;
1118 1.1 joerg
1119 1.1 joerg fetch_decode_modrm(emu);
1120 1.1 joerg srcval = *decode_rh_byte_register(emu);
1121 1.1 joerg if (emu->cur_mod != 3) {
1122 1.1 joerg destoffset = decode_rl_address(emu);
1123 1.1 joerg destval = fetch_data_byte(emu, destoffset);
1124 1.1 joerg } else {
1125 1.1 joerg destval = *decode_rl_byte_register(emu);
1126 1.1 joerg }
1127 1.1 joerg (*binop)(emu, destval, srcval);
1128 1.1 joerg }
1129 1.1 joerg
1130 1.1 joerg static void
1131 1.1 joerg common_binop_word_rm_r(struct X86EMU *emu, uint16_t (*binop)(struct X86EMU *, uint16_t, uint16_t))
1132 1.1 joerg {
1133 1.1 joerg uint32_t destoffset;
1134 1.1 joerg uint16_t destval, *destreg, srcval;
1135 1.1 joerg
1136 1.1 joerg fetch_decode_modrm(emu);
1137 1.1 joerg srcval = *decode_rh_word_register(emu);
1138 1.1 joerg if (emu->cur_mod != 3) {
1139 1.1 joerg destoffset = decode_rl_address(emu);
1140 1.1 joerg destval = fetch_data_word(emu, destoffset);
1141 1.1 joerg destval = (*binop)(emu, destval, srcval);
1142 1.1 joerg store_data_word(emu, destoffset, destval);
1143 1.1 joerg } else {
1144 1.1 joerg destreg = decode_rl_word_register(emu);
1145 1.1 joerg *destreg = (*binop)(emu, *destreg, srcval);
1146 1.1 joerg }
1147 1.1 joerg }
1148 1.1 joerg
1149 1.1 joerg static void
1150 1.1 joerg common_binop_byte_r_rm(struct X86EMU *emu, uint8_t (*binop)(struct X86EMU *, uint8_t, uint8_t))
1151 1.1 joerg {
1152 1.1 joerg uint8_t *destreg, srcval;
1153 1.1 joerg uint32_t srcoffset;
1154 1.1 joerg
1155 1.1 joerg fetch_decode_modrm(emu);
1156 1.1 joerg destreg = decode_rh_byte_register(emu);
1157 1.1 joerg if (emu->cur_mod != 3) {
1158 1.1 joerg srcoffset = decode_rl_address(emu);
1159 1.1 joerg srcval = fetch_data_byte(emu, srcoffset);
1160 1.1 joerg } else {
1161 1.1 joerg srcval = *decode_rl_byte_register(emu);
1162 1.1 joerg }
1163 1.1 joerg *destreg = (*binop)(emu, *destreg, srcval);
1164 1.1 joerg }
1165 1.1 joerg
1166 1.1 joerg static void
1167 1.1 joerg common_binop_long_rm_r(struct X86EMU *emu, uint32_t (*binop)(struct X86EMU *, uint32_t, uint32_t))
1168 1.1 joerg {
1169 1.1 joerg uint32_t destoffset;
1170 1.1 joerg uint32_t destval, *destreg, srcval;
1171 1.1 joerg
1172 1.1 joerg fetch_decode_modrm(emu);
1173 1.1 joerg srcval = *decode_rh_long_register(emu);
1174 1.1 joerg if (emu->cur_mod != 3) {
1175 1.1 joerg destoffset = decode_rl_address(emu);
1176 1.1 joerg destval = fetch_data_long(emu, destoffset);
1177 1.1 joerg destval = (*binop)(emu, destval, srcval);
1178 1.1 joerg store_data_long(emu, destoffset, destval);
1179 1.1 joerg } else {
1180 1.1 joerg destreg = decode_rl_long_register(emu);
1181 1.1 joerg *destreg = (*binop)(emu, *destreg, srcval);
1182 1.1 joerg }
1183 1.1 joerg }
1184 1.1 joerg
1185 1.1 joerg static void
1186 1.1 joerg common_binop_word_long_rm_r(struct X86EMU *emu,
1187 1.1 joerg uint16_t (*binop16)(struct X86EMU *, uint16_t, uint16_t), uint32_t (*binop32)(struct X86EMU *, uint32_t, uint32_t))
1188 1.1 joerg {
1189 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1190 1.1 joerg common_binop_long_rm_r(emu, binop32);
1191 1.1 joerg else
1192 1.1 joerg common_binop_word_rm_r(emu, binop16);
1193 1.1 joerg }
1194 1.1 joerg
1195 1.1 joerg static void
1196 1.1 joerg common_binop_ns_word_rm_r(struct X86EMU *emu, void (*binop)(struct X86EMU *, uint16_t, uint16_t))
1197 1.1 joerg {
1198 1.1 joerg uint32_t destoffset;
1199 1.1 joerg uint16_t destval, srcval;
1200 1.1 joerg
1201 1.1 joerg fetch_decode_modrm(emu);
1202 1.1 joerg srcval = *decode_rh_word_register(emu);
1203 1.1 joerg if (emu->cur_mod != 3) {
1204 1.1 joerg destoffset = decode_rl_address(emu);
1205 1.1 joerg destval = fetch_data_word(emu, destoffset);
1206 1.1 joerg } else {
1207 1.1 joerg destval = *decode_rl_word_register(emu);
1208 1.1 joerg }
1209 1.1 joerg (*binop)(emu, destval, srcval);
1210 1.1 joerg }
1211 1.1 joerg
1212 1.1 joerg
1213 1.1 joerg static void
1214 1.1 joerg common_binop_ns_long_rm_r(struct X86EMU *emu, void (*binop)(struct X86EMU *, uint32_t, uint32_t))
1215 1.1 joerg {
1216 1.1 joerg uint32_t destoffset;
1217 1.1 joerg uint32_t destval, srcval;
1218 1.1 joerg
1219 1.1 joerg fetch_decode_modrm(emu);
1220 1.1 joerg srcval = *decode_rh_long_register(emu);
1221 1.1 joerg if (emu->cur_mod != 3) {
1222 1.1 joerg destoffset = decode_rl_address(emu);
1223 1.1 joerg destval = fetch_data_long(emu, destoffset);
1224 1.1 joerg } else {
1225 1.1 joerg destval = *decode_rl_long_register(emu);
1226 1.1 joerg }
1227 1.1 joerg (*binop)(emu, destval, srcval);
1228 1.1 joerg }
1229 1.1 joerg
1230 1.1 joerg static void
1231 1.1 joerg common_binop_ns_word_long_rm_r(struct X86EMU *emu,
1232 1.1 joerg void (*binop16)(struct X86EMU *, uint16_t, uint16_t), void (*binop32)(struct X86EMU *, uint32_t, uint32_t))
1233 1.1 joerg {
1234 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1235 1.1 joerg common_binop_ns_long_rm_r(emu, binop32);
1236 1.1 joerg else
1237 1.1 joerg common_binop_ns_word_rm_r(emu, binop16);
1238 1.1 joerg }
1239 1.1 joerg
1240 1.1 joerg static void
1241 1.1 joerg common_binop_long_r_rm(struct X86EMU *emu, uint32_t (*binop)(struct X86EMU *, uint32_t, uint32_t))
1242 1.1 joerg {
1243 1.1 joerg uint32_t srcoffset;
1244 1.1 joerg uint32_t *destreg, srcval;
1245 1.1 joerg
1246 1.1 joerg fetch_decode_modrm(emu);
1247 1.1 joerg destreg = decode_rh_long_register(emu);
1248 1.1 joerg if (emu->cur_mod != 3) {
1249 1.1 joerg srcoffset = decode_rl_address(emu);
1250 1.1 joerg srcval = fetch_data_long(emu, srcoffset);
1251 1.1 joerg } else {
1252 1.1 joerg srcval = *decode_rl_long_register(emu);
1253 1.1 joerg }
1254 1.1 joerg *destreg = (*binop)(emu, *destreg, srcval);
1255 1.1 joerg }
1256 1.1 joerg
1257 1.1 joerg static void
1258 1.1 joerg common_binop_word_r_rm(struct X86EMU *emu, uint16_t (*binop)(struct X86EMU *, uint16_t, uint16_t))
1259 1.1 joerg {
1260 1.1 joerg uint32_t srcoffset;
1261 1.1 joerg uint16_t *destreg, srcval;
1262 1.1 joerg
1263 1.1 joerg fetch_decode_modrm(emu);
1264 1.1 joerg destreg = decode_rh_word_register(emu);
1265 1.1 joerg if (emu->cur_mod != 3) {
1266 1.1 joerg srcoffset = decode_rl_address(emu);
1267 1.1 joerg srcval = fetch_data_word(emu, srcoffset);
1268 1.1 joerg } else {
1269 1.1 joerg srcval = *decode_rl_word_register(emu);
1270 1.1 joerg }
1271 1.1 joerg *destreg = (*binop)(emu, *destreg, srcval);
1272 1.1 joerg }
1273 1.1 joerg
1274 1.1 joerg static void
1275 1.1 joerg common_binop_word_long_r_rm(struct X86EMU *emu,
1276 1.1 joerg uint16_t (*binop16)(struct X86EMU *, uint16_t, uint16_t), uint32_t (*binop32)(struct X86EMU *, uint32_t, uint32_t))
1277 1.1 joerg {
1278 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1279 1.1 joerg common_binop_long_r_rm(emu, binop32);
1280 1.1 joerg else
1281 1.1 joerg common_binop_word_r_rm(emu, binop16);
1282 1.1 joerg }
1283 1.1 joerg
1284 1.1 joerg static void
1285 1.1 joerg common_binop_byte_imm(struct X86EMU *emu, uint8_t (*binop)(struct X86EMU *, uint8_t, uint8_t))
1286 1.1 joerg {
1287 1.1 joerg uint8_t srcval;
1288 1.1 joerg
1289 1.1 joerg srcval = fetch_byte_imm(emu);
1290 1.1 joerg emu->x86.R_AL = (*binop)(emu, emu->x86.R_AL, srcval);
1291 1.1 joerg }
1292 1.1 joerg
1293 1.1 joerg static void
1294 1.1 joerg common_binop_word_long_imm(struct X86EMU *emu,
1295 1.1 joerg uint16_t (*binop16)(struct X86EMU *, uint16_t, uint16_t), uint32_t (*binop32)(struct X86EMU *, uint32_t, uint32_t))
1296 1.1 joerg {
1297 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
1298 1.1 joerg uint32_t srcval;
1299 1.1 joerg
1300 1.1 joerg srcval = fetch_long_imm(emu);
1301 1.1 joerg emu->x86.R_EAX = (*binop32)(emu, emu->x86.R_EAX, srcval);
1302 1.1 joerg } else {
1303 1.1 joerg uint16_t srcval;
1304 1.1 joerg
1305 1.1 joerg srcval = fetch_word_imm(emu);
1306 1.1 joerg emu->x86.R_AX = (*binop16)(emu, emu->x86.R_AX, srcval);
1307 1.1 joerg }
1308 1.1 joerg }
1309 1.1 joerg
1310 1.1 joerg static void
1311 1.1 joerg common_push_word_long(struct X86EMU *emu, union X86EMU_register *reg)
1312 1.1 joerg {
1313 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1314 1.1 joerg push_long(emu, reg->I32_reg.e_reg);
1315 1.1 joerg else
1316 1.1 joerg push_word(emu, reg->I16_reg.x_reg);
1317 1.1 joerg }
1318 1.1 joerg
1319 1.1 joerg static void
1320 1.1 joerg common_pop_word_long(struct X86EMU *emu, union X86EMU_register *reg)
1321 1.1 joerg {
1322 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1323 1.1 joerg reg->I32_reg.e_reg = pop_long(emu);
1324 1.1 joerg else
1325 1.1 joerg reg->I16_reg.x_reg = pop_word(emu);
1326 1.1 joerg }
1327 1.1 joerg
1328 1.1 joerg static void
1329 1.1 joerg common_imul_long_IMM(struct X86EMU *emu, bool byte_imm)
1330 1.1 joerg {
1331 1.1 joerg uint32_t srcoffset;
1332 1.1 joerg uint32_t *destreg, srcval;
1333 1.1 joerg int32_t imm;
1334 1.1 joerg uint64_t res;
1335 1.1 joerg
1336 1.1 joerg fetch_decode_modrm(emu);
1337 1.1 joerg destreg = decode_rh_long_register(emu);
1338 1.1 joerg if (emu->cur_mod != 3) {
1339 1.1 joerg srcoffset = decode_rl_address(emu);
1340 1.1 joerg srcval = fetch_data_long(emu, srcoffset);
1341 1.1 joerg } else {
1342 1.1 joerg srcval = *decode_rl_long_register(emu);
1343 1.1 joerg }
1344 1.1 joerg
1345 1.1 joerg if (byte_imm)
1346 1.1 joerg imm = (int8_t)fetch_byte_imm(emu);
1347 1.1 joerg else
1348 1.1 joerg imm = fetch_long_imm(emu);
1349 1.1 joerg res = (int32_t)srcval * imm;
1350 1.1 joerg
1351 1.1 joerg if (res > 0xffffffff) {
1352 1.1 joerg SET_FLAG(F_CF);
1353 1.1 joerg SET_FLAG(F_OF);
1354 1.1 joerg } else {
1355 1.1 joerg CLEAR_FLAG(F_CF);
1356 1.1 joerg CLEAR_FLAG(F_OF);
1357 1.1 joerg }
1358 1.1 joerg *destreg = (uint32_t)res;
1359 1.1 joerg }
1360 1.1 joerg
1361 1.1 joerg static void
1362 1.1 joerg common_imul_word_IMM(struct X86EMU *emu, bool byte_imm)
1363 1.1 joerg {
1364 1.1 joerg uint32_t srcoffset;
1365 1.1 joerg uint16_t *destreg, srcval;
1366 1.1 joerg int16_t imm;
1367 1.1 joerg uint32_t res;
1368 1.1 joerg
1369 1.1 joerg fetch_decode_modrm(emu);
1370 1.1 joerg destreg = decode_rh_word_register(emu);
1371 1.1 joerg if (emu->cur_mod != 3) {
1372 1.1 joerg srcoffset = decode_rl_address(emu);
1373 1.1 joerg srcval = fetch_data_word(emu, srcoffset);
1374 1.1 joerg } else {
1375 1.1 joerg srcval = *decode_rl_word_register(emu);
1376 1.1 joerg }
1377 1.1 joerg
1378 1.1 joerg if (byte_imm)
1379 1.1 joerg imm = (int8_t)fetch_byte_imm(emu);
1380 1.1 joerg else
1381 1.1 joerg imm = fetch_word_imm(emu);
1382 1.1 joerg res = (int16_t)srcval * imm;
1383 1.1 joerg
1384 1.1 joerg if (res > 0xffff) {
1385 1.1 joerg SET_FLAG(F_CF);
1386 1.1 joerg SET_FLAG(F_OF);
1387 1.1 joerg } else {
1388 1.1 joerg CLEAR_FLAG(F_CF);
1389 1.1 joerg CLEAR_FLAG(F_OF);
1390 1.1 joerg }
1391 1.1 joerg *destreg = (uint16_t) res;
1392 1.1 joerg }
1393 1.1 joerg
1394 1.1 joerg static void
1395 1.1 joerg common_imul_imm(struct X86EMU *emu, bool byte_imm)
1396 1.1 joerg {
1397 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1398 1.1 joerg common_imul_long_IMM(emu, byte_imm);
1399 1.1 joerg else
1400 1.1 joerg common_imul_word_IMM(emu, byte_imm);
1401 1.1 joerg }
1402 1.1 joerg
1403 1.1 joerg static void
1404 1.1 joerg common_jmp_near(struct X86EMU *emu, bool cond)
1405 1.1 joerg {
1406 1.1 joerg int8_t offset;
1407 1.1 joerg uint16_t target;
1408 1.1 joerg
1409 1.1 joerg offset = (int8_t) fetch_byte_imm(emu);
1410 1.1 joerg target = (uint16_t) (emu->x86.R_IP + (int16_t) offset);
1411 1.1 joerg if (cond)
1412 1.1 joerg emu->x86.R_IP = target;
1413 1.1 joerg }
1414 1.1 joerg
1415 1.1 joerg static void
1416 1.1 joerg common_load_far_pointer(struct X86EMU *emu, uint16_t *seg)
1417 1.1 joerg {
1418 1.1 joerg uint16_t *dstreg;
1419 1.1 joerg uint32_t srcoffset;
1420 1.1 joerg
1421 1.1 joerg fetch_decode_modrm(emu);
1422 1.1 joerg if (emu->cur_mod == 3)
1423 1.1 joerg X86EMU_halt_sys(emu);
1424 1.1 joerg
1425 1.1 joerg dstreg = decode_rh_word_register(emu);
1426 1.1 joerg srcoffset = decode_rl_address(emu);
1427 1.1 joerg *dstreg = fetch_data_word(emu, srcoffset);
1428 1.1 joerg *seg = fetch_data_word(emu, srcoffset + 2);
1429 1.1 joerg }
1430 1.1 joerg
1431 1.1 joerg /*----------------------------- Implementation ----------------------------*/
1432 1.1 joerg /****************************************************************************
1433 1.1 joerg REMARKS:
1434 1.1 joerg Handles opcode 0x3a
1435 1.1 joerg ****************************************************************************/
1436 1.1 joerg static void
1437 1.1 joerg x86emuOp_cmp_byte_R_RM(struct X86EMU *emu)
1438 1.1 joerg {
1439 1.1 joerg uint8_t *destreg, srcval;
1440 1.1 joerg
1441 1.1 joerg fetch_decode_modrm(emu);
1442 1.1 joerg destreg = decode_rh_byte_register(emu);
1443 1.1 joerg srcval = decode_and_fetch_byte(emu);
1444 1.1 joerg cmp_byte(emu, *destreg, srcval);
1445 1.1 joerg }
1446 1.1 joerg /****************************************************************************
1447 1.1 joerg REMARKS:
1448 1.1 joerg Handles opcode 0x3b
1449 1.1 joerg ****************************************************************************/
1450 1.1 joerg static void
1451 1.1 joerg x86emuOp32_cmp_word_R_RM(struct X86EMU *emu)
1452 1.1 joerg {
1453 1.1 joerg uint32_t srcval, *destreg;
1454 1.1 joerg
1455 1.1 joerg fetch_decode_modrm(emu);
1456 1.1 joerg destreg = decode_rh_long_register(emu);
1457 1.1 joerg srcval = decode_and_fetch_long(emu);
1458 1.1 joerg cmp_long(emu, *destreg, srcval);
1459 1.1 joerg }
1460 1.1 joerg
1461 1.1 joerg static void
1462 1.1 joerg x86emuOp16_cmp_word_R_RM(struct X86EMU *emu)
1463 1.1 joerg {
1464 1.1 joerg uint16_t srcval, *destreg;
1465 1.1 joerg
1466 1.1 joerg fetch_decode_modrm(emu);
1467 1.1 joerg destreg = decode_rh_word_register(emu);
1468 1.1 joerg srcval = decode_and_fetch_word(emu);
1469 1.1 joerg cmp_word(emu, *destreg, srcval);
1470 1.1 joerg }
1471 1.1 joerg
1472 1.1 joerg static void
1473 1.1 joerg x86emuOp_cmp_word_R_RM(struct X86EMU *emu)
1474 1.1 joerg {
1475 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1476 1.1 joerg x86emuOp32_cmp_word_R_RM(emu);
1477 1.1 joerg else
1478 1.1 joerg x86emuOp16_cmp_word_R_RM(emu);
1479 1.1 joerg }
1480 1.1 joerg /****************************************************************************
1481 1.1 joerg REMARKS:
1482 1.1 joerg Handles opcode 0x3c
1483 1.1 joerg ****************************************************************************/
1484 1.1 joerg static void
1485 1.1 joerg x86emuOp_cmp_byte_AL_IMM(struct X86EMU *emu)
1486 1.1 joerg {
1487 1.1 joerg uint8_t srcval;
1488 1.1 joerg
1489 1.1 joerg srcval = fetch_byte_imm(emu);
1490 1.1 joerg cmp_byte(emu, emu->x86.R_AL, srcval);
1491 1.1 joerg }
1492 1.1 joerg /****************************************************************************
1493 1.1 joerg REMARKS:
1494 1.1 joerg Handles opcode 0x3d
1495 1.1 joerg ****************************************************************************/
1496 1.1 joerg static void
1497 1.1 joerg x86emuOp32_cmp_word_AX_IMM(struct X86EMU *emu)
1498 1.1 joerg {
1499 1.1 joerg uint32_t srcval;
1500 1.1 joerg
1501 1.1 joerg srcval = fetch_long_imm(emu);
1502 1.1 joerg cmp_long(emu, emu->x86.R_EAX, srcval);
1503 1.1 joerg }
1504 1.1 joerg
1505 1.1 joerg static void
1506 1.1 joerg x86emuOp16_cmp_word_AX_IMM(struct X86EMU *emu)
1507 1.1 joerg {
1508 1.1 joerg uint16_t srcval;
1509 1.1 joerg
1510 1.1 joerg srcval = fetch_word_imm(emu);
1511 1.1 joerg cmp_word(emu, emu->x86.R_AX, srcval);
1512 1.1 joerg }
1513 1.1 joerg
1514 1.1 joerg static void
1515 1.1 joerg x86emuOp_cmp_word_AX_IMM(struct X86EMU *emu)
1516 1.1 joerg {
1517 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1518 1.1 joerg x86emuOp32_cmp_word_AX_IMM(emu);
1519 1.1 joerg else
1520 1.1 joerg x86emuOp16_cmp_word_AX_IMM(emu);
1521 1.1 joerg }
1522 1.1 joerg /****************************************************************************
1523 1.1 joerg REMARKS:
1524 1.1 joerg Handles opcode 0x60
1525 1.1 joerg ****************************************************************************/
1526 1.1 joerg static void
1527 1.1 joerg x86emuOp_push_all(struct X86EMU *emu)
1528 1.1 joerg {
1529 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
1530 1.1 joerg uint32_t old_sp = emu->x86.R_ESP;
1531 1.1 joerg
1532 1.1 joerg push_long(emu, emu->x86.R_EAX);
1533 1.1 joerg push_long(emu, emu->x86.R_ECX);
1534 1.1 joerg push_long(emu, emu->x86.R_EDX);
1535 1.1 joerg push_long(emu, emu->x86.R_EBX);
1536 1.1 joerg push_long(emu, old_sp);
1537 1.1 joerg push_long(emu, emu->x86.R_EBP);
1538 1.1 joerg push_long(emu, emu->x86.R_ESI);
1539 1.1 joerg push_long(emu, emu->x86.R_EDI);
1540 1.1 joerg } else {
1541 1.1 joerg uint16_t old_sp = emu->x86.R_SP;
1542 1.1 joerg
1543 1.1 joerg push_word(emu, emu->x86.R_AX);
1544 1.1 joerg push_word(emu, emu->x86.R_CX);
1545 1.1 joerg push_word(emu, emu->x86.R_DX);
1546 1.1 joerg push_word(emu, emu->x86.R_BX);
1547 1.1 joerg push_word(emu, old_sp);
1548 1.1 joerg push_word(emu, emu->x86.R_BP);
1549 1.1 joerg push_word(emu, emu->x86.R_SI);
1550 1.1 joerg push_word(emu, emu->x86.R_DI);
1551 1.1 joerg }
1552 1.1 joerg }
1553 1.1 joerg /****************************************************************************
1554 1.1 joerg REMARKS:
1555 1.1 joerg Handles opcode 0x61
1556 1.1 joerg ****************************************************************************/
1557 1.1 joerg static void
1558 1.1 joerg x86emuOp_pop_all(struct X86EMU *emu)
1559 1.1 joerg {
1560 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
1561 1.1 joerg emu->x86.R_EDI = pop_long(emu);
1562 1.1 joerg emu->x86.R_ESI = pop_long(emu);
1563 1.1 joerg emu->x86.R_EBP = pop_long(emu);
1564 1.1 joerg emu->x86.R_ESP += 4; /* skip ESP */
1565 1.1 joerg emu->x86.R_EBX = pop_long(emu);
1566 1.1 joerg emu->x86.R_EDX = pop_long(emu);
1567 1.1 joerg emu->x86.R_ECX = pop_long(emu);
1568 1.1 joerg emu->x86.R_EAX = pop_long(emu);
1569 1.1 joerg } else {
1570 1.1 joerg emu->x86.R_DI = pop_word(emu);
1571 1.1 joerg emu->x86.R_SI = pop_word(emu);
1572 1.1 joerg emu->x86.R_BP = pop_word(emu);
1573 1.1 joerg emu->x86.R_SP += 2;/* skip SP */
1574 1.1 joerg emu->x86.R_BX = pop_word(emu);
1575 1.1 joerg emu->x86.R_DX = pop_word(emu);
1576 1.1 joerg emu->x86.R_CX = pop_word(emu);
1577 1.1 joerg emu->x86.R_AX = pop_word(emu);
1578 1.1 joerg }
1579 1.1 joerg }
1580 1.1 joerg /*opcode 0x62 ILLEGAL OP, calls x86emuOp_illegal_op() */
1581 1.1 joerg /*opcode 0x63 ILLEGAL OP, calls x86emuOp_illegal_op() */
1582 1.1 joerg
1583 1.1 joerg /****************************************************************************
1584 1.1 joerg REMARKS:
1585 1.1 joerg Handles opcode 0x68
1586 1.1 joerg ****************************************************************************/
1587 1.1 joerg static void
1588 1.1 joerg x86emuOp_push_word_IMM(struct X86EMU *emu)
1589 1.1 joerg {
1590 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
1591 1.1 joerg uint32_t imm;
1592 1.1 joerg
1593 1.1 joerg imm = fetch_long_imm(emu);
1594 1.1 joerg push_long(emu, imm);
1595 1.1 joerg } else {
1596 1.1 joerg uint16_t imm;
1597 1.1 joerg
1598 1.1 joerg imm = fetch_word_imm(emu);
1599 1.1 joerg push_word(emu, imm);
1600 1.1 joerg }
1601 1.1 joerg }
1602 1.1 joerg /****************************************************************************
1603 1.1 joerg REMARKS:
1604 1.1 joerg Handles opcode 0x6a
1605 1.1 joerg ****************************************************************************/
1606 1.1 joerg static void
1607 1.1 joerg x86emuOp_push_byte_IMM(struct X86EMU *emu)
1608 1.1 joerg {
1609 1.1 joerg int16_t imm;
1610 1.1 joerg
1611 1.1 joerg imm = (int8_t) fetch_byte_imm(emu);
1612 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
1613 1.1 joerg push_long(emu, (int32_t) imm);
1614 1.1 joerg } else {
1615 1.1 joerg push_word(emu, imm);
1616 1.1 joerg }
1617 1.1 joerg }
1618 1.1 joerg /****************************************************************************
1619 1.1 joerg REMARKS:
1620 1.1 joerg Handles opcode 0x6c
1621 1.1 joerg ****************************************************************************/
1622 1.1 joerg /****************************************************************************
1623 1.1 joerg REMARKS:
1624 1.1 joerg Handles opcode 0x6d
1625 1.1 joerg ****************************************************************************/
1626 1.1 joerg static void
1627 1.1 joerg x86emuOp_ins_word(struct X86EMU *emu)
1628 1.1 joerg {
1629 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
1630 1.1 joerg ins(emu, 4);
1631 1.1 joerg } else {
1632 1.1 joerg ins(emu, 2);
1633 1.1 joerg }
1634 1.1 joerg }
1635 1.1 joerg /****************************************************************************
1636 1.1 joerg REMARKS:
1637 1.1 joerg Handles opcode 0x6f
1638 1.1 joerg ****************************************************************************/
1639 1.1 joerg static void
1640 1.1 joerg x86emuOp_outs_word(struct X86EMU *emu)
1641 1.1 joerg {
1642 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
1643 1.1 joerg outs(emu, 4);
1644 1.1 joerg } else {
1645 1.1 joerg outs(emu, 2);
1646 1.1 joerg }
1647 1.1 joerg }
1648 1.1 joerg /****************************************************************************
1649 1.1 joerg REMARKS:
1650 1.1 joerg Handles opcode 0x7c
1651 1.1 joerg ****************************************************************************/
1652 1.1 joerg static void
1653 1.1 joerg x86emuOp_jump_near_L(struct X86EMU *emu)
1654 1.1 joerg {
1655 1.1 joerg bool sf, of;
1656 1.1 joerg
1657 1.1 joerg sf = ACCESS_FLAG(F_SF) != 0;
1658 1.1 joerg of = ACCESS_FLAG(F_OF) != 0;
1659 1.1 joerg
1660 1.1 joerg common_jmp_near(emu, sf != of);
1661 1.1 joerg }
1662 1.1 joerg /****************************************************************************
1663 1.1 joerg REMARKS:
1664 1.1 joerg Handles opcode 0x7d
1665 1.1 joerg ****************************************************************************/
1666 1.1 joerg static void
1667 1.1 joerg x86emuOp_jump_near_NL(struct X86EMU *emu)
1668 1.1 joerg {
1669 1.1 joerg bool sf, of;
1670 1.1 joerg
1671 1.1 joerg sf = ACCESS_FLAG(F_SF) != 0;
1672 1.1 joerg of = ACCESS_FLAG(F_OF) != 0;
1673 1.1 joerg
1674 1.1 joerg common_jmp_near(emu, sf == of);
1675 1.1 joerg }
1676 1.1 joerg /****************************************************************************
1677 1.1 joerg REMARKS:
1678 1.1 joerg Handles opcode 0x7e
1679 1.1 joerg ****************************************************************************/
1680 1.1 joerg static void
1681 1.1 joerg x86emuOp_jump_near_LE(struct X86EMU *emu)
1682 1.1 joerg {
1683 1.1 joerg bool sf, of;
1684 1.1 joerg
1685 1.1 joerg sf = ACCESS_FLAG(F_SF) != 0;
1686 1.1 joerg of = ACCESS_FLAG(F_OF) != 0;
1687 1.1 joerg
1688 1.1 joerg common_jmp_near(emu, sf != of || ACCESS_FLAG(F_ZF));
1689 1.1 joerg }
1690 1.1 joerg /****************************************************************************
1691 1.1 joerg REMARKS:
1692 1.1 joerg Handles opcode 0x7f
1693 1.1 joerg ****************************************************************************/
1694 1.1 joerg static void
1695 1.1 joerg x86emuOp_jump_near_NLE(struct X86EMU *emu)
1696 1.1 joerg {
1697 1.1 joerg bool sf, of;
1698 1.1 joerg
1699 1.1 joerg sf = ACCESS_FLAG(F_SF) != 0;
1700 1.1 joerg of = ACCESS_FLAG(F_OF) != 0;
1701 1.1 joerg
1702 1.1 joerg common_jmp_near(emu, sf == of && !ACCESS_FLAG(F_ZF));
1703 1.1 joerg }
1704 1.1 joerg
1705 1.1 joerg static
1706 1.1 joerg uint8_t(*const opc80_byte_operation[]) (struct X86EMU *, uint8_t d, uint8_t s) =
1707 1.1 joerg {
1708 1.1 joerg add_byte, /* 00 */
1709 1.1 joerg or_byte, /* 01 */
1710 1.1 joerg adc_byte, /* 02 */
1711 1.1 joerg sbb_byte, /* 03 */
1712 1.1 joerg and_byte, /* 04 */
1713 1.1 joerg sub_byte, /* 05 */
1714 1.1 joerg xor_byte, /* 06 */
1715 1.1 joerg cmp_byte, /* 07 */
1716 1.1 joerg };
1717 1.1 joerg /****************************************************************************
1718 1.1 joerg REMARKS:
1719 1.1 joerg Handles opcode 0x80
1720 1.1 joerg ****************************************************************************/
1721 1.1 joerg static void
1722 1.1 joerg x86emuOp_opc80_byte_RM_IMM(struct X86EMU *emu)
1723 1.1 joerg {
1724 1.1 joerg uint8_t imm, destval;
1725 1.1 joerg
1726 1.1 joerg /*
1727 1.1 joerg * Weirdo special case instruction format. Part of the opcode
1728 1.1 joerg * held below in "RH". Doubly nested case would result, except
1729 1.1 joerg * that the decoded instruction
1730 1.1 joerg */
1731 1.1 joerg fetch_decode_modrm(emu);
1732 1.1 joerg destval = decode_and_fetch_byte(emu);
1733 1.1 joerg imm = fetch_byte_imm(emu);
1734 1.1 joerg destval = (*opc80_byte_operation[emu->cur_rh]) (emu, destval, imm);
1735 1.1 joerg if (emu->cur_rh != 7)
1736 1.1 joerg write_back_byte(emu, destval);
1737 1.1 joerg }
1738 1.1 joerg
1739 1.1 joerg static
1740 1.1 joerg uint16_t(* const opc81_word_operation[]) (struct X86EMU *, uint16_t d, uint16_t s) =
1741 1.1 joerg {
1742 1.1 joerg add_word, /* 00 */
1743 1.1 joerg or_word, /* 01 */
1744 1.1 joerg adc_word, /* 02 */
1745 1.1 joerg sbb_word, /* 03 */
1746 1.1 joerg and_word, /* 04 */
1747 1.1 joerg sub_word, /* 05 */
1748 1.1 joerg xor_word, /* 06 */
1749 1.1 joerg cmp_word, /* 07 */
1750 1.1 joerg };
1751 1.1 joerg
1752 1.1 joerg static
1753 1.1 joerg uint32_t(* const opc81_long_operation[]) (struct X86EMU *, uint32_t d, uint32_t s) =
1754 1.1 joerg {
1755 1.1 joerg add_long, /* 00 */
1756 1.1 joerg or_long, /* 01 */
1757 1.1 joerg adc_long, /* 02 */
1758 1.1 joerg sbb_long, /* 03 */
1759 1.1 joerg and_long, /* 04 */
1760 1.1 joerg sub_long, /* 05 */
1761 1.1 joerg xor_long, /* 06 */
1762 1.1 joerg cmp_long, /* 07 */
1763 1.1 joerg };
1764 1.1 joerg /****************************************************************************
1765 1.1 joerg REMARKS:
1766 1.1 joerg Handles opcode 0x81
1767 1.1 joerg ****************************************************************************/
1768 1.1 joerg static void
1769 1.1 joerg x86emuOp32_opc81_word_RM_IMM(struct X86EMU *emu)
1770 1.1 joerg {
1771 1.1 joerg uint32_t destval, imm;
1772 1.1 joerg
1773 1.1 joerg /*
1774 1.1 joerg * Weirdo special case instruction format. Part of the opcode
1775 1.1 joerg * held below in "RH". Doubly nested case would result, except
1776 1.1 joerg * that the decoded instruction
1777 1.1 joerg */
1778 1.1 joerg fetch_decode_modrm(emu);
1779 1.1 joerg destval = decode_and_fetch_long(emu);
1780 1.1 joerg imm = fetch_long_imm(emu);
1781 1.1 joerg destval = (*opc81_long_operation[emu->cur_rh]) (emu, destval, imm);
1782 1.1 joerg if (emu->cur_rh != 7)
1783 1.1 joerg write_back_long(emu, destval);
1784 1.1 joerg }
1785 1.1 joerg
1786 1.1 joerg static void
1787 1.1 joerg x86emuOp16_opc81_word_RM_IMM(struct X86EMU *emu)
1788 1.1 joerg {
1789 1.1 joerg uint16_t destval, imm;
1790 1.1 joerg
1791 1.1 joerg /*
1792 1.1 joerg * Weirdo special case instruction format. Part of the opcode
1793 1.1 joerg * held below in "RH". Doubly nested case would result, except
1794 1.1 joerg * that the decoded instruction
1795 1.1 joerg */
1796 1.1 joerg fetch_decode_modrm(emu);
1797 1.1 joerg destval = decode_and_fetch_word(emu);
1798 1.1 joerg imm = fetch_word_imm(emu);
1799 1.1 joerg destval = (*opc81_word_operation[emu->cur_rh]) (emu, destval, imm);
1800 1.1 joerg if (emu->cur_rh != 7)
1801 1.1 joerg write_back_word(emu, destval);
1802 1.1 joerg }
1803 1.1 joerg
1804 1.1 joerg static void
1805 1.1 joerg x86emuOp_opc81_word_RM_IMM(struct X86EMU *emu)
1806 1.1 joerg {
1807 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1808 1.1 joerg x86emuOp32_opc81_word_RM_IMM(emu);
1809 1.1 joerg else
1810 1.1 joerg x86emuOp16_opc81_word_RM_IMM(emu);
1811 1.1 joerg }
1812 1.1 joerg
1813 1.1 joerg static
1814 1.1 joerg uint8_t(* const opc82_byte_operation[]) (struct X86EMU *, uint8_t s, uint8_t d) =
1815 1.1 joerg {
1816 1.1 joerg add_byte, /* 00 */
1817 1.1 joerg or_byte, /* 01 *//* YYY UNUSED ???? */
1818 1.1 joerg adc_byte, /* 02 */
1819 1.1 joerg sbb_byte, /* 03 */
1820 1.1 joerg and_byte, /* 04 *//* YYY UNUSED ???? */
1821 1.1 joerg sub_byte, /* 05 */
1822 1.1 joerg xor_byte, /* 06 *//* YYY UNUSED ???? */
1823 1.1 joerg cmp_byte, /* 07 */
1824 1.1 joerg };
1825 1.1 joerg /****************************************************************************
1826 1.1 joerg REMARKS:
1827 1.1 joerg Handles opcode 0x82
1828 1.1 joerg ****************************************************************************/
1829 1.1 joerg static void
1830 1.1 joerg x86emuOp_opc82_byte_RM_IMM(struct X86EMU *emu)
1831 1.1 joerg {
1832 1.1 joerg uint8_t imm, destval;
1833 1.1 joerg
1834 1.1 joerg /*
1835 1.1 joerg * Weirdo special case instruction format. Part of the opcode
1836 1.1 joerg * held below in "RH". Doubly nested case would result, except
1837 1.1 joerg * that the decoded instruction Similar to opcode 81, except that
1838 1.1 joerg * the immediate byte is sign extended to a word length.
1839 1.1 joerg */
1840 1.1 joerg fetch_decode_modrm(emu);
1841 1.1 joerg destval = decode_and_fetch_byte(emu);
1842 1.1 joerg imm = fetch_byte_imm(emu);
1843 1.1 joerg destval = (*opc82_byte_operation[emu->cur_rh]) (emu, destval, imm);
1844 1.1 joerg if (emu->cur_rh != 7)
1845 1.1 joerg write_back_byte(emu, destval);
1846 1.1 joerg }
1847 1.1 joerg
1848 1.1 joerg static
1849 1.1 joerg uint16_t(* const opc83_word_operation[]) (struct X86EMU *, uint16_t s, uint16_t d) =
1850 1.1 joerg {
1851 1.1 joerg add_word, /* 00 */
1852 1.1 joerg or_word, /* 01 *//* YYY UNUSED ???? */
1853 1.1 joerg adc_word, /* 02 */
1854 1.1 joerg sbb_word, /* 03 */
1855 1.1 joerg and_word, /* 04 *//* YYY UNUSED ???? */
1856 1.1 joerg sub_word, /* 05 */
1857 1.1 joerg xor_word, /* 06 *//* YYY UNUSED ???? */
1858 1.1 joerg cmp_word, /* 07 */
1859 1.1 joerg };
1860 1.1 joerg
1861 1.1 joerg static
1862 1.1 joerg uint32_t(* const opc83_long_operation[]) (struct X86EMU *, uint32_t s, uint32_t d) =
1863 1.1 joerg {
1864 1.1 joerg add_long, /* 00 */
1865 1.1 joerg or_long, /* 01 *//* YYY UNUSED ???? */
1866 1.1 joerg adc_long, /* 02 */
1867 1.1 joerg sbb_long, /* 03 */
1868 1.1 joerg and_long, /* 04 *//* YYY UNUSED ???? */
1869 1.1 joerg sub_long, /* 05 */
1870 1.1 joerg xor_long, /* 06 *//* YYY UNUSED ???? */
1871 1.1 joerg cmp_long, /* 07 */
1872 1.1 joerg };
1873 1.1 joerg /****************************************************************************
1874 1.1 joerg REMARKS:
1875 1.1 joerg Handles opcode 0x83
1876 1.1 joerg ****************************************************************************/
1877 1.1 joerg static void
1878 1.1 joerg x86emuOp32_opc83_word_RM_IMM(struct X86EMU *emu)
1879 1.1 joerg {
1880 1.1 joerg uint32_t destval, imm;
1881 1.1 joerg
1882 1.1 joerg fetch_decode_modrm(emu);
1883 1.1 joerg destval = decode_and_fetch_long(emu);
1884 1.1 joerg imm = (int8_t) fetch_byte_imm(emu);
1885 1.1 joerg destval = (*opc83_long_operation[emu->cur_rh]) (emu, destval, imm);
1886 1.1 joerg if (emu->cur_rh != 7)
1887 1.1 joerg write_back_long(emu, destval);
1888 1.1 joerg }
1889 1.1 joerg
1890 1.1 joerg static void
1891 1.1 joerg x86emuOp16_opc83_word_RM_IMM(struct X86EMU *emu)
1892 1.1 joerg {
1893 1.1 joerg uint16_t destval, imm;
1894 1.1 joerg
1895 1.1 joerg fetch_decode_modrm(emu);
1896 1.1 joerg destval = decode_and_fetch_word(emu);
1897 1.1 joerg imm = (int8_t) fetch_byte_imm(emu);
1898 1.1 joerg destval = (*opc83_word_operation[emu->cur_rh]) (emu, destval, imm);
1899 1.1 joerg if (emu->cur_rh != 7)
1900 1.1 joerg write_back_word(emu, destval);
1901 1.1 joerg }
1902 1.1 joerg
1903 1.1 joerg static void
1904 1.1 joerg x86emuOp_opc83_word_RM_IMM(struct X86EMU *emu)
1905 1.1 joerg {
1906 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1907 1.1 joerg x86emuOp32_opc83_word_RM_IMM(emu);
1908 1.1 joerg else
1909 1.1 joerg x86emuOp16_opc83_word_RM_IMM(emu);
1910 1.1 joerg }
1911 1.1 joerg /****************************************************************************
1912 1.1 joerg REMARKS:
1913 1.1 joerg Handles opcode 0x86
1914 1.1 joerg ****************************************************************************/
1915 1.1 joerg static void
1916 1.1 joerg x86emuOp_xchg_byte_RM_R(struct X86EMU *emu)
1917 1.1 joerg {
1918 1.1 joerg uint8_t *srcreg, destval, tmp;
1919 1.1 joerg
1920 1.1 joerg fetch_decode_modrm(emu);
1921 1.1 joerg destval = decode_and_fetch_byte(emu);
1922 1.1 joerg srcreg = decode_rh_byte_register(emu);
1923 1.1 joerg tmp = destval;
1924 1.1 joerg destval = *srcreg;
1925 1.1 joerg *srcreg = tmp;
1926 1.1 joerg write_back_byte(emu, destval);
1927 1.1 joerg }
1928 1.1 joerg /****************************************************************************
1929 1.1 joerg REMARKS:
1930 1.1 joerg Handles opcode 0x87
1931 1.1 joerg ****************************************************************************/
1932 1.1 joerg static void
1933 1.1 joerg x86emuOp32_xchg_word_RM_R(struct X86EMU *emu)
1934 1.1 joerg {
1935 1.1 joerg uint32_t *srcreg, destval, tmp;
1936 1.1 joerg
1937 1.1 joerg fetch_decode_modrm(emu);
1938 1.1 joerg destval = decode_and_fetch_long(emu);
1939 1.1 joerg srcreg = decode_rh_long_register(emu);
1940 1.1 joerg tmp = destval;
1941 1.1 joerg destval = *srcreg;
1942 1.1 joerg *srcreg = tmp;
1943 1.1 joerg write_back_long(emu, destval);
1944 1.1 joerg }
1945 1.1 joerg
1946 1.1 joerg static void
1947 1.1 joerg x86emuOp16_xchg_word_RM_R(struct X86EMU *emu)
1948 1.1 joerg {
1949 1.1 joerg uint16_t *srcreg, destval, tmp;
1950 1.1 joerg
1951 1.1 joerg fetch_decode_modrm(emu);
1952 1.1 joerg destval = decode_and_fetch_word(emu);
1953 1.1 joerg srcreg = decode_rh_word_register(emu);
1954 1.1 joerg tmp = destval;
1955 1.1 joerg destval = *srcreg;
1956 1.1 joerg *srcreg = tmp;
1957 1.1 joerg write_back_word(emu, destval);
1958 1.1 joerg }
1959 1.1 joerg
1960 1.1 joerg static void
1961 1.1 joerg x86emuOp_xchg_word_RM_R(struct X86EMU *emu)
1962 1.1 joerg {
1963 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1964 1.1 joerg x86emuOp32_xchg_word_RM_R(emu);
1965 1.1 joerg else
1966 1.1 joerg x86emuOp16_xchg_word_RM_R(emu);
1967 1.1 joerg }
1968 1.1 joerg /****************************************************************************
1969 1.1 joerg REMARKS:
1970 1.1 joerg Handles opcode 0x88
1971 1.1 joerg ****************************************************************************/
1972 1.1 joerg static void
1973 1.1 joerg x86emuOp_mov_byte_RM_R(struct X86EMU *emu)
1974 1.1 joerg {
1975 1.1 joerg uint8_t *destreg, *srcreg;
1976 1.1 joerg uint32_t destoffset;
1977 1.1 joerg
1978 1.1 joerg fetch_decode_modrm(emu);
1979 1.1 joerg srcreg = decode_rh_byte_register(emu);
1980 1.1 joerg if (emu->cur_mod != 3) {
1981 1.1 joerg destoffset = decode_rl_address(emu);
1982 1.1 joerg store_data_byte(emu, destoffset, *srcreg);
1983 1.1 joerg } else {
1984 1.1 joerg destreg = decode_rl_byte_register(emu);
1985 1.1 joerg *destreg = *srcreg;
1986 1.1 joerg }
1987 1.1 joerg }
1988 1.1 joerg /****************************************************************************
1989 1.1 joerg REMARKS:
1990 1.1 joerg Handles opcode 0x89
1991 1.1 joerg ****************************************************************************/
1992 1.1 joerg static void
1993 1.1 joerg x86emuOp32_mov_word_RM_R(struct X86EMU *emu)
1994 1.1 joerg {
1995 1.1 joerg uint32_t destoffset;
1996 1.1 joerg uint32_t *destreg, srcval;
1997 1.1 joerg
1998 1.1 joerg fetch_decode_modrm(emu);
1999 1.1 joerg srcval = *decode_rh_long_register(emu);
2000 1.1 joerg if (emu->cur_mod != 3) {
2001 1.1 joerg destoffset = decode_rl_address(emu);
2002 1.1 joerg store_data_long(emu, destoffset, srcval);
2003 1.1 joerg } else {
2004 1.1 joerg destreg = decode_rl_long_register(emu);
2005 1.1 joerg *destreg = srcval;
2006 1.1 joerg }
2007 1.1 joerg }
2008 1.1 joerg
2009 1.1 joerg static void
2010 1.1 joerg x86emuOp16_mov_word_RM_R(struct X86EMU *emu)
2011 1.1 joerg {
2012 1.1 joerg uint32_t destoffset;
2013 1.1 joerg uint16_t *destreg, srcval;
2014 1.1 joerg
2015 1.1 joerg fetch_decode_modrm(emu);
2016 1.1 joerg srcval = *decode_rh_word_register(emu);
2017 1.1 joerg if (emu->cur_mod != 3) {
2018 1.1 joerg destoffset = decode_rl_address(emu);
2019 1.1 joerg store_data_word(emu, destoffset, srcval);
2020 1.1 joerg } else {
2021 1.1 joerg destreg = decode_rl_word_register(emu);
2022 1.1 joerg *destreg = srcval;
2023 1.1 joerg }
2024 1.1 joerg }
2025 1.1 joerg
2026 1.1 joerg static void
2027 1.1 joerg x86emuOp_mov_word_RM_R(struct X86EMU *emu)
2028 1.1 joerg {
2029 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2030 1.1 joerg x86emuOp32_mov_word_RM_R(emu);
2031 1.1 joerg else
2032 1.1 joerg x86emuOp16_mov_word_RM_R(emu);
2033 1.1 joerg }
2034 1.1 joerg /****************************************************************************
2035 1.1 joerg REMARKS:
2036 1.1 joerg Handles opcode 0x8a
2037 1.1 joerg ****************************************************************************/
2038 1.1 joerg static void
2039 1.1 joerg x86emuOp_mov_byte_R_RM(struct X86EMU *emu)
2040 1.1 joerg {
2041 1.1 joerg uint8_t *destreg;
2042 1.1 joerg
2043 1.1 joerg fetch_decode_modrm(emu);
2044 1.1 joerg destreg = decode_rh_byte_register(emu);
2045 1.1 joerg *destreg = decode_and_fetch_byte(emu);
2046 1.1 joerg }
2047 1.1 joerg /****************************************************************************
2048 1.1 joerg REMARKS:
2049 1.1 joerg Handles opcode 0x8b
2050 1.1 joerg ****************************************************************************/
2051 1.1 joerg static void
2052 1.1 joerg x86emuOp_mov_word_R_RM(struct X86EMU *emu)
2053 1.1 joerg {
2054 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2055 1.1 joerg uint32_t *destreg;
2056 1.1 joerg
2057 1.1 joerg fetch_decode_modrm(emu);
2058 1.1 joerg destreg = decode_rh_long_register(emu);
2059 1.1 joerg *destreg = decode_and_fetch_long(emu);
2060 1.1 joerg } else {
2061 1.1 joerg uint16_t *destreg;
2062 1.1 joerg
2063 1.1 joerg fetch_decode_modrm(emu);
2064 1.1 joerg destreg = decode_rh_word_register(emu);
2065 1.1 joerg *destreg = decode_and_fetch_word(emu);
2066 1.1 joerg }
2067 1.1 joerg }
2068 1.1 joerg /****************************************************************************
2069 1.1 joerg REMARKS:
2070 1.1 joerg Handles opcode 0x8c
2071 1.1 joerg ****************************************************************************/
2072 1.1 joerg static void
2073 1.1 joerg x86emuOp_mov_word_RM_SR(struct X86EMU *emu)
2074 1.1 joerg {
2075 1.1 joerg uint16_t *destreg, srcval;
2076 1.1 joerg uint32_t destoffset;
2077 1.1 joerg
2078 1.1 joerg fetch_decode_modrm(emu);
2079 1.1 joerg srcval = *decode_rh_seg_register(emu);
2080 1.1 joerg if (emu->cur_mod != 3) {
2081 1.1 joerg destoffset = decode_rl_address(emu);
2082 1.1 joerg store_data_word(emu, destoffset, srcval);
2083 1.1 joerg } else {
2084 1.1 joerg destreg = decode_rl_word_register(emu);
2085 1.1 joerg *destreg = srcval;
2086 1.1 joerg }
2087 1.1 joerg }
2088 1.1 joerg /****************************************************************************
2089 1.1 joerg REMARKS:
2090 1.1 joerg Handles opcode 0x8d
2091 1.1 joerg ****************************************************************************/
2092 1.1 joerg static void
2093 1.1 joerg x86emuOp_lea_word_R_M(struct X86EMU *emu)
2094 1.1 joerg {
2095 1.1 joerg uint32_t destoffset;
2096 1.1 joerg
2097 1.1 joerg fetch_decode_modrm(emu);
2098 1.1 joerg if (emu->cur_mod == 3)
2099 1.1 joerg X86EMU_halt_sys(emu);
2100 1.1 joerg
2101 1.1 joerg destoffset = decode_rl_address(emu);
2102 1.9 joerg if (emu->x86.mode & SYSMODE_PREFIX_ADDR) {
2103 1.9 joerg uint32_t *srcreg;
2104 1.9 joerg
2105 1.9 joerg srcreg = decode_rh_long_register(emu);
2106 1.9 joerg *srcreg = (uint32_t) destoffset;
2107 1.9 joerg } else {
2108 1.9 joerg uint16_t *srcreg;
2109 1.9 joerg
2110 1.9 joerg srcreg = decode_rh_word_register(emu);
2111 1.9 joerg *srcreg = (uint16_t) destoffset;
2112 1.9 joerg }
2113 1.1 joerg }
2114 1.1 joerg /****************************************************************************
2115 1.1 joerg REMARKS:
2116 1.1 joerg Handles opcode 0x8e
2117 1.1 joerg ****************************************************************************/
2118 1.1 joerg static void
2119 1.1 joerg x86emuOp_mov_word_SR_RM(struct X86EMU *emu)
2120 1.1 joerg {
2121 1.1 joerg uint16_t *destreg;
2122 1.1 joerg
2123 1.1 joerg fetch_decode_modrm(emu);
2124 1.1 joerg destreg = decode_rh_seg_register(emu);
2125 1.1 joerg *destreg = decode_and_fetch_word(emu);
2126 1.1 joerg /*
2127 1.1 joerg * Clean up, and reset all the R_xSP pointers to the correct
2128 1.1 joerg * locations. This is about 3x too much overhead (doing all the
2129 1.1 joerg * segreg ptrs when only one is needed, but this instruction
2130 1.1 joerg * *cannot* be that common, and this isn't too much work anyway.
2131 1.1 joerg */
2132 1.1 joerg }
2133 1.1 joerg /****************************************************************************
2134 1.1 joerg REMARKS:
2135 1.1 joerg Handles opcode 0x8f
2136 1.1 joerg ****************************************************************************/
2137 1.1 joerg static void
2138 1.1 joerg x86emuOp32_pop_RM(struct X86EMU *emu)
2139 1.1 joerg {
2140 1.1 joerg uint32_t destoffset;
2141 1.1 joerg uint32_t destval, *destreg;
2142 1.1 joerg
2143 1.1 joerg fetch_decode_modrm(emu);
2144 1.1 joerg if (emu->cur_mod != 3) {
2145 1.1 joerg destoffset = decode_rl_address(emu);
2146 1.1 joerg destval = pop_long(emu);
2147 1.1 joerg store_data_long(emu, destoffset, destval);
2148 1.1 joerg } else {
2149 1.1 joerg destreg = decode_rl_long_register(emu);
2150 1.1 joerg *destreg = pop_long(emu);
2151 1.1 joerg }
2152 1.1 joerg }
2153 1.1 joerg
2154 1.1 joerg static void
2155 1.1 joerg x86emuOp16_pop_RM(struct X86EMU *emu)
2156 1.1 joerg {
2157 1.1 joerg uint32_t destoffset;
2158 1.1 joerg uint16_t destval, *destreg;
2159 1.1 joerg
2160 1.1 joerg fetch_decode_modrm(emu);
2161 1.1 joerg if (emu->cur_mod != 3) {
2162 1.1 joerg destoffset = decode_rl_address(emu);
2163 1.1 joerg destval = pop_word(emu);
2164 1.1 joerg store_data_word(emu, destoffset, destval);
2165 1.1 joerg } else {
2166 1.1 joerg destreg = decode_rl_word_register(emu);
2167 1.1 joerg *destreg = pop_word(emu);
2168 1.1 joerg }
2169 1.1 joerg }
2170 1.1 joerg
2171 1.1 joerg static void
2172 1.1 joerg x86emuOp_pop_RM(struct X86EMU *emu)
2173 1.1 joerg {
2174 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2175 1.1 joerg x86emuOp32_pop_RM(emu);
2176 1.1 joerg else
2177 1.1 joerg x86emuOp16_pop_RM(emu);
2178 1.1 joerg }
2179 1.1 joerg /****************************************************************************
2180 1.1 joerg REMARKS:
2181 1.1 joerg Handles opcode 0x91
2182 1.1 joerg ****************************************************************************/
2183 1.1 joerg static void
2184 1.1 joerg x86emuOp_xchg_word_AX_CX(struct X86EMU *emu)
2185 1.1 joerg {
2186 1.1 joerg uint32_t tmp;
2187 1.1 joerg
2188 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2189 1.1 joerg tmp = emu->x86.R_EAX;
2190 1.1 joerg emu->x86.R_EAX = emu->x86.R_ECX;
2191 1.1 joerg emu->x86.R_ECX = tmp;
2192 1.1 joerg } else {
2193 1.1 joerg tmp = emu->x86.R_AX;
2194 1.1 joerg emu->x86.R_AX = emu->x86.R_CX;
2195 1.1 joerg emu->x86.R_CX = (uint16_t) tmp;
2196 1.1 joerg }
2197 1.1 joerg }
2198 1.1 joerg /****************************************************************************
2199 1.1 joerg REMARKS:
2200 1.1 joerg Handles opcode 0x92
2201 1.1 joerg ****************************************************************************/
2202 1.1 joerg static void
2203 1.1 joerg x86emuOp_xchg_word_AX_DX(struct X86EMU *emu)
2204 1.1 joerg {
2205 1.1 joerg uint32_t tmp;
2206 1.1 joerg
2207 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2208 1.1 joerg tmp = emu->x86.R_EAX;
2209 1.1 joerg emu->x86.R_EAX = emu->x86.R_EDX;
2210 1.1 joerg emu->x86.R_EDX = tmp;
2211 1.1 joerg } else {
2212 1.1 joerg tmp = emu->x86.R_AX;
2213 1.1 joerg emu->x86.R_AX = emu->x86.R_DX;
2214 1.1 joerg emu->x86.R_DX = (uint16_t) tmp;
2215 1.1 joerg }
2216 1.1 joerg }
2217 1.1 joerg /****************************************************************************
2218 1.1 joerg REMARKS:
2219 1.1 joerg Handles opcode 0x93
2220 1.1 joerg ****************************************************************************/
2221 1.1 joerg static void
2222 1.1 joerg x86emuOp_xchg_word_AX_BX(struct X86EMU *emu)
2223 1.1 joerg {
2224 1.1 joerg uint32_t tmp;
2225 1.1 joerg
2226 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2227 1.1 joerg tmp = emu->x86.R_EAX;
2228 1.1 joerg emu->x86.R_EAX = emu->x86.R_EBX;
2229 1.1 joerg emu->x86.R_EBX = tmp;
2230 1.1 joerg } else {
2231 1.1 joerg tmp = emu->x86.R_AX;
2232 1.1 joerg emu->x86.R_AX = emu->x86.R_BX;
2233 1.1 joerg emu->x86.R_BX = (uint16_t) tmp;
2234 1.1 joerg }
2235 1.1 joerg }
2236 1.1 joerg /****************************************************************************
2237 1.1 joerg REMARKS:
2238 1.1 joerg Handles opcode 0x94
2239 1.1 joerg ****************************************************************************/
2240 1.1 joerg static void
2241 1.1 joerg x86emuOp_xchg_word_AX_SP(struct X86EMU *emu)
2242 1.1 joerg {
2243 1.1 joerg uint32_t tmp;
2244 1.1 joerg
2245 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2246 1.1 joerg tmp = emu->x86.R_EAX;
2247 1.1 joerg emu->x86.R_EAX = emu->x86.R_ESP;
2248 1.1 joerg emu->x86.R_ESP = tmp;
2249 1.1 joerg } else {
2250 1.1 joerg tmp = emu->x86.R_AX;
2251 1.1 joerg emu->x86.R_AX = emu->x86.R_SP;
2252 1.1 joerg emu->x86.R_SP = (uint16_t) tmp;
2253 1.1 joerg }
2254 1.1 joerg }
2255 1.1 joerg /****************************************************************************
2256 1.1 joerg REMARKS:
2257 1.1 joerg Handles opcode 0x95
2258 1.1 joerg ****************************************************************************/
2259 1.1 joerg static void
2260 1.1 joerg x86emuOp_xchg_word_AX_BP(struct X86EMU *emu)
2261 1.1 joerg {
2262 1.1 joerg uint32_t tmp;
2263 1.1 joerg
2264 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2265 1.1 joerg tmp = emu->x86.R_EAX;
2266 1.1 joerg emu->x86.R_EAX = emu->x86.R_EBP;
2267 1.1 joerg emu->x86.R_EBP = tmp;
2268 1.1 joerg } else {
2269 1.1 joerg tmp = emu->x86.R_AX;
2270 1.1 joerg emu->x86.R_AX = emu->x86.R_BP;
2271 1.1 joerg emu->x86.R_BP = (uint16_t) tmp;
2272 1.1 joerg }
2273 1.1 joerg }
2274 1.1 joerg /****************************************************************************
2275 1.1 joerg REMARKS:
2276 1.1 joerg Handles opcode 0x96
2277 1.1 joerg ****************************************************************************/
2278 1.1 joerg static void
2279 1.1 joerg x86emuOp_xchg_word_AX_SI(struct X86EMU *emu)
2280 1.1 joerg {
2281 1.1 joerg uint32_t tmp;
2282 1.1 joerg
2283 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2284 1.1 joerg tmp = emu->x86.R_EAX;
2285 1.1 joerg emu->x86.R_EAX = emu->x86.R_ESI;
2286 1.1 joerg emu->x86.R_ESI = tmp;
2287 1.1 joerg } else {
2288 1.1 joerg tmp = emu->x86.R_AX;
2289 1.1 joerg emu->x86.R_AX = emu->x86.R_SI;
2290 1.1 joerg emu->x86.R_SI = (uint16_t) tmp;
2291 1.1 joerg }
2292 1.1 joerg }
2293 1.1 joerg /****************************************************************************
2294 1.1 joerg REMARKS:
2295 1.1 joerg Handles opcode 0x97
2296 1.1 joerg ****************************************************************************/
2297 1.1 joerg static void
2298 1.1 joerg x86emuOp_xchg_word_AX_DI(struct X86EMU *emu)
2299 1.1 joerg {
2300 1.1 joerg uint32_t tmp;
2301 1.1 joerg
2302 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2303 1.1 joerg tmp = emu->x86.R_EAX;
2304 1.1 joerg emu->x86.R_EAX = emu->x86.R_EDI;
2305 1.1 joerg emu->x86.R_EDI = tmp;
2306 1.1 joerg } else {
2307 1.1 joerg tmp = emu->x86.R_AX;
2308 1.1 joerg emu->x86.R_AX = emu->x86.R_DI;
2309 1.1 joerg emu->x86.R_DI = (uint16_t) tmp;
2310 1.1 joerg }
2311 1.1 joerg }
2312 1.1 joerg /****************************************************************************
2313 1.1 joerg REMARKS:
2314 1.1 joerg Handles opcode 0x98
2315 1.1 joerg ****************************************************************************/
2316 1.1 joerg static void
2317 1.1 joerg x86emuOp_cbw(struct X86EMU *emu)
2318 1.1 joerg {
2319 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2320 1.1 joerg if (emu->x86.R_AX & 0x8000) {
2321 1.1 joerg emu->x86.R_EAX |= 0xffff0000;
2322 1.1 joerg } else {
2323 1.1 joerg emu->x86.R_EAX &= 0x0000ffff;
2324 1.1 joerg }
2325 1.1 joerg } else {
2326 1.1 joerg if (emu->x86.R_AL & 0x80) {
2327 1.1 joerg emu->x86.R_AH = 0xff;
2328 1.1 joerg } else {
2329 1.1 joerg emu->x86.R_AH = 0x0;
2330 1.1 joerg }
2331 1.1 joerg }
2332 1.1 joerg }
2333 1.1 joerg /****************************************************************************
2334 1.1 joerg REMARKS:
2335 1.1 joerg Handles opcode 0x99
2336 1.1 joerg ****************************************************************************/
2337 1.1 joerg static void
2338 1.1 joerg x86emuOp_cwd(struct X86EMU *emu)
2339 1.1 joerg {
2340 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2341 1.1 joerg if (emu->x86.R_EAX & 0x80000000) {
2342 1.1 joerg emu->x86.R_EDX = 0xffffffff;
2343 1.1 joerg } else {
2344 1.1 joerg emu->x86.R_EDX = 0x0;
2345 1.1 joerg }
2346 1.1 joerg } else {
2347 1.1 joerg if (emu->x86.R_AX & 0x8000) {
2348 1.1 joerg emu->x86.R_DX = 0xffff;
2349 1.1 joerg } else {
2350 1.1 joerg emu->x86.R_DX = 0x0;
2351 1.1 joerg }
2352 1.1 joerg }
2353 1.1 joerg }
2354 1.1 joerg /****************************************************************************
2355 1.1 joerg REMARKS:
2356 1.1 joerg Handles opcode 0x9a
2357 1.1 joerg ****************************************************************************/
2358 1.1 joerg static void
2359 1.1 joerg x86emuOp_call_far_IMM(struct X86EMU *emu)
2360 1.1 joerg {
2361 1.1 joerg uint16_t farseg, faroff;
2362 1.1 joerg
2363 1.1 joerg faroff = fetch_word_imm(emu);
2364 1.1 joerg farseg = fetch_word_imm(emu);
2365 1.1 joerg /* XXX
2366 1.1 joerg *
2367 1.1 joerg * Hooked interrupt vectors calling into our "BIOS" will cause problems
2368 1.1 joerg * unless all intersegment stuff is checked for BIOS access. Check
2369 1.1 joerg * needed here. For moment, let it alone. */
2370 1.1 joerg push_word(emu, emu->x86.R_CS);
2371 1.1 joerg emu->x86.R_CS = farseg;
2372 1.1 joerg push_word(emu, emu->x86.R_IP);
2373 1.1 joerg emu->x86.R_IP = faroff;
2374 1.1 joerg }
2375 1.1 joerg /****************************************************************************
2376 1.1 joerg REMARKS:
2377 1.1 joerg Handles opcode 0x9c
2378 1.1 joerg ****************************************************************************/
2379 1.1 joerg static void
2380 1.1 joerg x86emuOp_pushf_word(struct X86EMU *emu)
2381 1.1 joerg {
2382 1.1 joerg uint32_t flags;
2383 1.1 joerg
2384 1.1 joerg /* clear out *all* bits not representing flags, and turn on real bits */
2385 1.1 joerg flags = (emu->x86.R_EFLG & F_MSK) | F_ALWAYS_ON;
2386 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2387 1.1 joerg push_long(emu, flags);
2388 1.1 joerg } else {
2389 1.1 joerg push_word(emu, (uint16_t) flags);
2390 1.1 joerg }
2391 1.1 joerg }
2392 1.1 joerg /****************************************************************************
2393 1.1 joerg REMARKS:
2394 1.1 joerg Handles opcode 0x9d
2395 1.1 joerg ****************************************************************************/
2396 1.1 joerg static void
2397 1.1 joerg x86emuOp_popf_word(struct X86EMU *emu)
2398 1.1 joerg {
2399 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2400 1.1 joerg emu->x86.R_EFLG = pop_long(emu);
2401 1.1 joerg } else {
2402 1.1 joerg emu->x86.R_FLG = pop_word(emu);
2403 1.1 joerg }
2404 1.1 joerg }
2405 1.1 joerg /****************************************************************************
2406 1.1 joerg REMARKS:
2407 1.1 joerg Handles opcode 0x9e
2408 1.1 joerg ****************************************************************************/
2409 1.1 joerg static void
2410 1.1 joerg x86emuOp_sahf(struct X86EMU *emu)
2411 1.1 joerg {
2412 1.1 joerg /* clear the lower bits of the flag register */
2413 1.1 joerg emu->x86.R_FLG &= 0xffffff00;
2414 1.1 joerg /* or in the AH register into the flags register */
2415 1.1 joerg emu->x86.R_FLG |= emu->x86.R_AH;
2416 1.1 joerg }
2417 1.1 joerg /****************************************************************************
2418 1.1 joerg REMARKS:
2419 1.1 joerg Handles opcode 0x9f
2420 1.1 joerg ****************************************************************************/
2421 1.1 joerg static void
2422 1.1 joerg x86emuOp_lahf(struct X86EMU *emu)
2423 1.1 joerg {
2424 1.1 joerg emu->x86.R_AH = (uint8_t) (emu->x86.R_FLG & 0xff);
2425 1.1 joerg /* undocumented TC++ behavior??? Nope. It's documented, but you have
2426 1.1 joerg * too look real hard to notice it. */
2427 1.1 joerg emu->x86.R_AH |= 0x2;
2428 1.1 joerg }
2429 1.1 joerg /****************************************************************************
2430 1.1 joerg REMARKS:
2431 1.1 joerg Handles opcode 0xa0
2432 1.1 joerg ****************************************************************************/
2433 1.1 joerg static void
2434 1.1 joerg x86emuOp_mov_AL_M_IMM(struct X86EMU *emu)
2435 1.1 joerg {
2436 1.1 joerg uint16_t offset;
2437 1.1 joerg
2438 1.1 joerg offset = fetch_word_imm(emu);
2439 1.1 joerg emu->x86.R_AL = fetch_data_byte(emu, offset);
2440 1.1 joerg }
2441 1.1 joerg /****************************************************************************
2442 1.1 joerg REMARKS:
2443 1.1 joerg Handles opcode 0xa1
2444 1.1 joerg ****************************************************************************/
2445 1.1 joerg static void
2446 1.1 joerg x86emuOp_mov_AX_M_IMM(struct X86EMU *emu)
2447 1.1 joerg {
2448 1.1 joerg uint16_t offset;
2449 1.1 joerg
2450 1.1 joerg offset = fetch_word_imm(emu);
2451 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2452 1.1 joerg emu->x86.R_EAX = fetch_data_long(emu, offset);
2453 1.1 joerg } else {
2454 1.1 joerg emu->x86.R_AX = fetch_data_word(emu, offset);
2455 1.1 joerg }
2456 1.1 joerg }
2457 1.1 joerg /****************************************************************************
2458 1.1 joerg REMARKS:
2459 1.1 joerg Handles opcode 0xa2
2460 1.1 joerg ****************************************************************************/
2461 1.1 joerg static void
2462 1.1 joerg x86emuOp_mov_M_AL_IMM(struct X86EMU *emu)
2463 1.1 joerg {
2464 1.1 joerg uint16_t offset;
2465 1.1 joerg
2466 1.1 joerg offset = fetch_word_imm(emu);
2467 1.1 joerg store_data_byte(emu, offset, emu->x86.R_AL);
2468 1.1 joerg }
2469 1.1 joerg /****************************************************************************
2470 1.1 joerg REMARKS:
2471 1.1 joerg Handles opcode 0xa3
2472 1.1 joerg ****************************************************************************/
2473 1.1 joerg static void
2474 1.1 joerg x86emuOp_mov_M_AX_IMM(struct X86EMU *emu)
2475 1.1 joerg {
2476 1.1 joerg uint16_t offset;
2477 1.1 joerg
2478 1.1 joerg offset = fetch_word_imm(emu);
2479 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2480 1.1 joerg store_data_long(emu, offset, emu->x86.R_EAX);
2481 1.1 joerg } else {
2482 1.1 joerg store_data_word(emu, offset, emu->x86.R_AX);
2483 1.1 joerg }
2484 1.1 joerg }
2485 1.1 joerg /****************************************************************************
2486 1.1 joerg REMARKS:
2487 1.1 joerg Handles opcode 0xa4
2488 1.1 joerg ****************************************************************************/
2489 1.1 joerg static void
2490 1.1 joerg x86emuOp_movs_byte(struct X86EMU *emu)
2491 1.1 joerg {
2492 1.1 joerg uint8_t val;
2493 1.1 joerg uint32_t count;
2494 1.1 joerg int inc;
2495 1.1 joerg
2496 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2497 1.1 joerg inc = -1;
2498 1.1 joerg else
2499 1.1 joerg inc = 1;
2500 1.1 joerg count = 1;
2501 1.1 joerg if (emu->x86.mode & (SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE)) {
2502 1.1 joerg /* dont care whether REPE or REPNE */
2503 1.1 joerg /* move them until CX is ZERO. */
2504 1.1 joerg count = emu->x86.R_CX;
2505 1.1 joerg emu->x86.R_CX = 0;
2506 1.1 joerg emu->x86.mode &= ~(SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE);
2507 1.1 joerg }
2508 1.1 joerg while (count--) {
2509 1.1 joerg val = fetch_data_byte(emu, emu->x86.R_SI);
2510 1.1 joerg store_byte(emu, emu->x86.R_ES, emu->x86.R_DI, val);
2511 1.1 joerg emu->x86.R_SI += inc;
2512 1.1 joerg emu->x86.R_DI += inc;
2513 1.1 joerg }
2514 1.1 joerg }
2515 1.1 joerg /****************************************************************************
2516 1.1 joerg REMARKS:
2517 1.1 joerg Handles opcode 0xa5
2518 1.1 joerg ****************************************************************************/
2519 1.1 joerg static void
2520 1.1 joerg x86emuOp_movs_word(struct X86EMU *emu)
2521 1.1 joerg {
2522 1.1 joerg uint32_t val;
2523 1.1 joerg int inc;
2524 1.1 joerg uint32_t count;
2525 1.1 joerg
2526 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2527 1.1 joerg inc = 4;
2528 1.1 joerg else
2529 1.1 joerg inc = 2;
2530 1.1 joerg
2531 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2532 1.1 joerg inc = -inc;
2533 1.1 joerg
2534 1.1 joerg count = 1;
2535 1.1 joerg if (emu->x86.mode & (SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE)) {
2536 1.1 joerg /* dont care whether REPE or REPNE */
2537 1.1 joerg /* move them until CX is ZERO. */
2538 1.1 joerg count = emu->x86.R_CX;
2539 1.1 joerg emu->x86.R_CX = 0;
2540 1.1 joerg emu->x86.mode &= ~(SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE);
2541 1.1 joerg }
2542 1.1 joerg while (count--) {
2543 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2544 1.1 joerg val = fetch_data_long(emu, emu->x86.R_SI);
2545 1.1 joerg store_long(emu, emu->x86.R_ES, emu->x86.R_DI, val);
2546 1.1 joerg } else {
2547 1.1 joerg val = fetch_data_word(emu, emu->x86.R_SI);
2548 1.1 joerg store_word(emu, emu->x86.R_ES, emu->x86.R_DI, (uint16_t) val);
2549 1.1 joerg }
2550 1.1 joerg emu->x86.R_SI += inc;
2551 1.1 joerg emu->x86.R_DI += inc;
2552 1.1 joerg }
2553 1.1 joerg }
2554 1.1 joerg /****************************************************************************
2555 1.1 joerg REMARKS:
2556 1.1 joerg Handles opcode 0xa6
2557 1.1 joerg ****************************************************************************/
2558 1.1 joerg static void
2559 1.1 joerg x86emuOp_cmps_byte(struct X86EMU *emu)
2560 1.1 joerg {
2561 1.1 joerg int8_t val1, val2;
2562 1.1 joerg int inc;
2563 1.1 joerg
2564 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2565 1.1 joerg inc = -1;
2566 1.1 joerg else
2567 1.1 joerg inc = 1;
2568 1.1 joerg
2569 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_REPE) {
2570 1.1 joerg /* REPE */
2571 1.1 joerg /* move them until CX is ZERO. */
2572 1.1 joerg while (emu->x86.R_CX != 0) {
2573 1.1 joerg val1 = fetch_data_byte(emu, emu->x86.R_SI);
2574 1.1 joerg val2 = fetch_byte(emu, emu->x86.R_ES, emu->x86.R_DI);
2575 1.1 joerg cmp_byte(emu, val1, val2);
2576 1.1 joerg emu->x86.R_CX -= 1;
2577 1.1 joerg emu->x86.R_SI += inc;
2578 1.1 joerg emu->x86.R_DI += inc;
2579 1.1 joerg if (ACCESS_FLAG(F_ZF) == 0)
2580 1.1 joerg break;
2581 1.1 joerg }
2582 1.1 joerg emu->x86.mode &= ~SYSMODE_PREFIX_REPE;
2583 1.1 joerg } else if (emu->x86.mode & SYSMODE_PREFIX_REPNE) {
2584 1.1 joerg /* REPNE */
2585 1.1 joerg /* move them until CX is ZERO. */
2586 1.1 joerg while (emu->x86.R_CX != 0) {
2587 1.1 joerg val1 = fetch_data_byte(emu, emu->x86.R_SI);
2588 1.1 joerg val2 = fetch_byte(emu, emu->x86.R_ES, emu->x86.R_DI);
2589 1.1 joerg cmp_byte(emu, val1, val2);
2590 1.1 joerg emu->x86.R_CX -= 1;
2591 1.1 joerg emu->x86.R_SI += inc;
2592 1.1 joerg emu->x86.R_DI += inc;
2593 1.1 joerg if (ACCESS_FLAG(F_ZF))
2594 1.1 joerg break; /* zero flag set means equal */
2595 1.1 joerg }
2596 1.1 joerg emu->x86.mode &= ~SYSMODE_PREFIX_REPNE;
2597 1.1 joerg } else {
2598 1.1 joerg val1 = fetch_data_byte(emu, emu->x86.R_SI);
2599 1.1 joerg val2 = fetch_byte(emu, emu->x86.R_ES, emu->x86.R_DI);
2600 1.1 joerg cmp_byte(emu, val1, val2);
2601 1.1 joerg emu->x86.R_SI += inc;
2602 1.1 joerg emu->x86.R_DI += inc;
2603 1.1 joerg }
2604 1.1 joerg }
2605 1.1 joerg /****************************************************************************
2606 1.1 joerg REMARKS:
2607 1.1 joerg Handles opcode 0xa7
2608 1.1 joerg ****************************************************************************/
2609 1.1 joerg static void
2610 1.1 joerg x86emuOp_cmps_word(struct X86EMU *emu)
2611 1.1 joerg {
2612 1.1 joerg uint32_t val1, val2;
2613 1.1 joerg int inc;
2614 1.1 joerg
2615 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2616 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2617 1.1 joerg inc = -4;
2618 1.1 joerg else
2619 1.1 joerg inc = 4;
2620 1.1 joerg } else {
2621 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2622 1.1 joerg inc = -2;
2623 1.1 joerg else
2624 1.1 joerg inc = 2;
2625 1.1 joerg }
2626 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_REPE) {
2627 1.1 joerg /* REPE */
2628 1.1 joerg /* move them until CX is ZERO. */
2629 1.1 joerg while (emu->x86.R_CX != 0) {
2630 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2631 1.1 joerg val1 = fetch_data_long(emu, emu->x86.R_SI);
2632 1.1 joerg val2 = fetch_long(emu, emu->x86.R_ES, emu->x86.R_DI);
2633 1.1 joerg cmp_long(emu, val1, val2);
2634 1.1 joerg } else {
2635 1.1 joerg val1 = fetch_data_word(emu, emu->x86.R_SI);
2636 1.1 joerg val2 = fetch_word(emu, emu->x86.R_ES, emu->x86.R_DI);
2637 1.1 joerg cmp_word(emu, (uint16_t) val1, (uint16_t) val2);
2638 1.1 joerg }
2639 1.1 joerg emu->x86.R_CX -= 1;
2640 1.1 joerg emu->x86.R_SI += inc;
2641 1.1 joerg emu->x86.R_DI += inc;
2642 1.1 joerg if (ACCESS_FLAG(F_ZF) == 0)
2643 1.1 joerg break;
2644 1.1 joerg }
2645 1.1 joerg emu->x86.mode &= ~SYSMODE_PREFIX_REPE;
2646 1.1 joerg } else if (emu->x86.mode & SYSMODE_PREFIX_REPNE) {
2647 1.1 joerg /* REPNE */
2648 1.1 joerg /* move them until CX is ZERO. */
2649 1.1 joerg while (emu->x86.R_CX != 0) {
2650 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2651 1.1 joerg val1 = fetch_data_long(emu, emu->x86.R_SI);
2652 1.1 joerg val2 = fetch_long(emu, emu->x86.R_ES, emu->x86.R_DI);
2653 1.1 joerg cmp_long(emu, val1, val2);
2654 1.1 joerg } else {
2655 1.1 joerg val1 = fetch_data_word(emu, emu->x86.R_SI);
2656 1.1 joerg val2 = fetch_word(emu, emu->x86.R_ES, emu->x86.R_DI);
2657 1.1 joerg cmp_word(emu, (uint16_t) val1, (uint16_t) val2);
2658 1.1 joerg }
2659 1.1 joerg emu->x86.R_CX -= 1;
2660 1.1 joerg emu->x86.R_SI += inc;
2661 1.1 joerg emu->x86.R_DI += inc;
2662 1.1 joerg if (ACCESS_FLAG(F_ZF))
2663 1.1 joerg break; /* zero flag set means equal */
2664 1.1 joerg }
2665 1.1 joerg emu->x86.mode &= ~SYSMODE_PREFIX_REPNE;
2666 1.1 joerg } else {
2667 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2668 1.1 joerg val1 = fetch_data_long(emu, emu->x86.R_SI);
2669 1.1 joerg val2 = fetch_long(emu, emu->x86.R_ES, emu->x86.R_DI);
2670 1.1 joerg cmp_long(emu, val1, val2);
2671 1.1 joerg } else {
2672 1.1 joerg val1 = fetch_data_word(emu, emu->x86.R_SI);
2673 1.1 joerg val2 = fetch_word(emu, emu->x86.R_ES, emu->x86.R_DI);
2674 1.1 joerg cmp_word(emu, (uint16_t) val1, (uint16_t) val2);
2675 1.1 joerg }
2676 1.1 joerg emu->x86.R_SI += inc;
2677 1.1 joerg emu->x86.R_DI += inc;
2678 1.1 joerg }
2679 1.1 joerg }
2680 1.1 joerg /****************************************************************************
2681 1.1 joerg REMARKS:
2682 1.1 joerg Handles opcode 0xa9
2683 1.1 joerg ****************************************************************************/
2684 1.1 joerg static void
2685 1.1 joerg x86emuOp_test_AX_IMM(struct X86EMU *emu)
2686 1.1 joerg {
2687 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2688 1.1 joerg test_long(emu, emu->x86.R_EAX, fetch_long_imm(emu));
2689 1.1 joerg } else {
2690 1.1 joerg test_word(emu, emu->x86.R_AX, fetch_word_imm(emu));
2691 1.1 joerg }
2692 1.1 joerg }
2693 1.1 joerg /****************************************************************************
2694 1.1 joerg REMARKS:
2695 1.1 joerg Handles opcode 0xaa
2696 1.1 joerg ****************************************************************************/
2697 1.1 joerg static void
2698 1.1 joerg x86emuOp_stos_byte(struct X86EMU *emu)
2699 1.1 joerg {
2700 1.1 joerg int inc;
2701 1.1 joerg
2702 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2703 1.1 joerg inc = -1;
2704 1.1 joerg else
2705 1.1 joerg inc = 1;
2706 1.1 joerg if (emu->x86.mode & (SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE)) {
2707 1.1 joerg /* dont care whether REPE or REPNE */
2708 1.1 joerg /* move them until CX is ZERO. */
2709 1.1 joerg while (emu->x86.R_CX != 0) {
2710 1.1 joerg store_byte(emu, emu->x86.R_ES, emu->x86.R_DI, emu->x86.R_AL);
2711 1.1 joerg emu->x86.R_CX -= 1;
2712 1.1 joerg emu->x86.R_DI += inc;
2713 1.1 joerg }
2714 1.1 joerg emu->x86.mode &= ~(SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE);
2715 1.1 joerg } else {
2716 1.1 joerg store_byte(emu, emu->x86.R_ES, emu->x86.R_DI, emu->x86.R_AL);
2717 1.1 joerg emu->x86.R_DI += inc;
2718 1.1 joerg }
2719 1.1 joerg }
2720 1.1 joerg /****************************************************************************
2721 1.1 joerg REMARKS:
2722 1.1 joerg Handles opcode 0xab
2723 1.1 joerg ****************************************************************************/
2724 1.1 joerg static void
2725 1.1 joerg x86emuOp_stos_word(struct X86EMU *emu)
2726 1.1 joerg {
2727 1.1 joerg int inc;
2728 1.1 joerg uint32_t count;
2729 1.1 joerg
2730 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2731 1.1 joerg inc = 4;
2732 1.1 joerg else
2733 1.1 joerg inc = 2;
2734 1.1 joerg
2735 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2736 1.1 joerg inc = -inc;
2737 1.1 joerg
2738 1.1 joerg count = 1;
2739 1.1 joerg if (emu->x86.mode & (SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE)) {
2740 1.1 joerg /* dont care whether REPE or REPNE */
2741 1.1 joerg /* move them until CX is ZERO. */
2742 1.1 joerg count = emu->x86.R_CX;
2743 1.1 joerg emu->x86.R_CX = 0;
2744 1.1 joerg emu->x86.mode &= ~(SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE);
2745 1.1 joerg }
2746 1.1 joerg while (count--) {
2747 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2748 1.1 joerg store_long(emu, emu->x86.R_ES, emu->x86.R_DI, emu->x86.R_EAX);
2749 1.1 joerg } else {
2750 1.1 joerg store_word(emu, emu->x86.R_ES, emu->x86.R_DI, emu->x86.R_AX);
2751 1.1 joerg }
2752 1.1 joerg emu->x86.R_DI += inc;
2753 1.1 joerg }
2754 1.1 joerg }
2755 1.1 joerg /****************************************************************************
2756 1.1 joerg REMARKS:
2757 1.1 joerg Handles opcode 0xac
2758 1.1 joerg ****************************************************************************/
2759 1.1 joerg static void
2760 1.1 joerg x86emuOp_lods_byte(struct X86EMU *emu)
2761 1.1 joerg {
2762 1.1 joerg int inc;
2763 1.1 joerg
2764 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2765 1.1 joerg inc = -1;
2766 1.1 joerg else
2767 1.1 joerg inc = 1;
2768 1.1 joerg if (emu->x86.mode & (SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE)) {
2769 1.1 joerg /* dont care whether REPE or REPNE */
2770 1.1 joerg /* move them until CX is ZERO. */
2771 1.1 joerg while (emu->x86.R_CX != 0) {
2772 1.1 joerg emu->x86.R_AL = fetch_data_byte(emu, emu->x86.R_SI);
2773 1.1 joerg emu->x86.R_CX -= 1;
2774 1.1 joerg emu->x86.R_SI += inc;
2775 1.1 joerg }
2776 1.1 joerg emu->x86.mode &= ~(SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE);
2777 1.1 joerg } else {
2778 1.1 joerg emu->x86.R_AL = fetch_data_byte(emu, emu->x86.R_SI);
2779 1.1 joerg emu->x86.R_SI += inc;
2780 1.1 joerg }
2781 1.1 joerg }
2782 1.1 joerg /****************************************************************************
2783 1.1 joerg REMARKS:
2784 1.1 joerg Handles opcode 0xad
2785 1.1 joerg ****************************************************************************/
2786 1.1 joerg static void
2787 1.1 joerg x86emuOp_lods_word(struct X86EMU *emu)
2788 1.1 joerg {
2789 1.1 joerg int inc;
2790 1.1 joerg uint32_t count;
2791 1.1 joerg
2792 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2793 1.1 joerg inc = 4;
2794 1.1 joerg else
2795 1.1 joerg inc = 2;
2796 1.1 joerg
2797 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2798 1.1 joerg inc = -inc;
2799 1.1 joerg
2800 1.1 joerg count = 1;
2801 1.1 joerg if (emu->x86.mode & (SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE)) {
2802 1.1 joerg /* dont care whether REPE or REPNE */
2803 1.1 joerg /* move them until CX is ZERO. */
2804 1.1 joerg count = emu->x86.R_CX;
2805 1.1 joerg emu->x86.R_CX = 0;
2806 1.1 joerg emu->x86.mode &= ~(SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE);
2807 1.1 joerg }
2808 1.1 joerg while (count--) {
2809 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2810 1.1 joerg emu->x86.R_EAX = fetch_data_long(emu, emu->x86.R_SI);
2811 1.1 joerg } else {
2812 1.1 joerg emu->x86.R_AX = fetch_data_word(emu, emu->x86.R_SI);
2813 1.1 joerg }
2814 1.1 joerg emu->x86.R_SI += inc;
2815 1.1 joerg }
2816 1.1 joerg }
2817 1.1 joerg /****************************************************************************
2818 1.1 joerg REMARKS:
2819 1.1 joerg Handles opcode 0xae
2820 1.1 joerg ****************************************************************************/
2821 1.1 joerg static void
2822 1.1 joerg x86emuOp_scas_byte(struct X86EMU *emu)
2823 1.1 joerg {
2824 1.1 joerg int8_t val2;
2825 1.1 joerg int inc;
2826 1.1 joerg
2827 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2828 1.1 joerg inc = -1;
2829 1.1 joerg else
2830 1.1 joerg inc = 1;
2831 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_REPE) {
2832 1.1 joerg /* REPE */
2833 1.1 joerg /* move them until CX is ZERO. */
2834 1.1 joerg while (emu->x86.R_CX != 0) {
2835 1.1 joerg val2 = fetch_byte(emu, emu->x86.R_ES, emu->x86.R_DI);
2836 1.1 joerg cmp_byte(emu, emu->x86.R_AL, val2);
2837 1.1 joerg emu->x86.R_CX -= 1;
2838 1.1 joerg emu->x86.R_DI += inc;
2839 1.1 joerg if (ACCESS_FLAG(F_ZF) == 0)
2840 1.1 joerg break;
2841 1.1 joerg }
2842 1.1 joerg emu->x86.mode &= ~SYSMODE_PREFIX_REPE;
2843 1.1 joerg } else if (emu->x86.mode & SYSMODE_PREFIX_REPNE) {
2844 1.1 joerg /* REPNE */
2845 1.1 joerg /* move them until CX is ZERO. */
2846 1.1 joerg while (emu->x86.R_CX != 0) {
2847 1.1 joerg val2 = fetch_byte(emu, emu->x86.R_ES, emu->x86.R_DI);
2848 1.1 joerg cmp_byte(emu, emu->x86.R_AL, val2);
2849 1.1 joerg emu->x86.R_CX -= 1;
2850 1.1 joerg emu->x86.R_DI += inc;
2851 1.1 joerg if (ACCESS_FLAG(F_ZF))
2852 1.1 joerg break; /* zero flag set means equal */
2853 1.1 joerg }
2854 1.1 joerg emu->x86.mode &= ~SYSMODE_PREFIX_REPNE;
2855 1.1 joerg } else {
2856 1.1 joerg val2 = fetch_byte(emu, emu->x86.R_ES, emu->x86.R_DI);
2857 1.1 joerg cmp_byte(emu, emu->x86.R_AL, val2);
2858 1.1 joerg emu->x86.R_DI += inc;
2859 1.1 joerg }
2860 1.1 joerg }
2861 1.1 joerg /****************************************************************************
2862 1.1 joerg REMARKS:
2863 1.1 joerg Handles opcode 0xaf
2864 1.1 joerg ****************************************************************************/
2865 1.1 joerg static void
2866 1.1 joerg x86emuOp_scas_word(struct X86EMU *emu)
2867 1.1 joerg {
2868 1.1 joerg int inc;
2869 1.1 joerg uint32_t val;
2870 1.1 joerg
2871 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2872 1.1 joerg inc = 4;
2873 1.1 joerg else
2874 1.1 joerg inc = 2;
2875 1.1 joerg
2876 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2877 1.1 joerg inc = -inc;
2878 1.1 joerg
2879 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_REPE) {
2880 1.1 joerg /* REPE */
2881 1.1 joerg /* move them until CX is ZERO. */
2882 1.1 joerg while (emu->x86.R_CX != 0) {
2883 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2884 1.1 joerg val = fetch_long(emu, emu->x86.R_ES, emu->x86.R_DI);
2885 1.1 joerg cmp_long(emu, emu->x86.R_EAX, val);
2886 1.1 joerg } else {
2887 1.1 joerg val = fetch_word(emu, emu->x86.R_ES, emu->x86.R_DI);
2888 1.1 joerg cmp_word(emu, emu->x86.R_AX, (uint16_t) val);
2889 1.1 joerg }
2890 1.1 joerg emu->x86.R_CX -= 1;
2891 1.1 joerg emu->x86.R_DI += inc;
2892 1.1 joerg if (ACCESS_FLAG(F_ZF) == 0)
2893 1.1 joerg break;
2894 1.1 joerg }
2895 1.1 joerg emu->x86.mode &= ~SYSMODE_PREFIX_REPE;
2896 1.1 joerg } else if (emu->x86.mode & SYSMODE_PREFIX_REPNE) {
2897 1.1 joerg /* REPNE */
2898 1.1 joerg /* move them until CX is ZERO. */
2899 1.1 joerg while (emu->x86.R_CX != 0) {
2900 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2901 1.1 joerg val = fetch_long(emu, emu->x86.R_ES, emu->x86.R_DI);
2902 1.1 joerg cmp_long(emu, emu->x86.R_EAX, val);
2903 1.1 joerg } else {
2904 1.1 joerg val = fetch_word(emu, emu->x86.R_ES, emu->x86.R_DI);
2905 1.1 joerg cmp_word(emu, emu->x86.R_AX, (uint16_t) val);
2906 1.1 joerg }
2907 1.1 joerg emu->x86.R_CX -= 1;
2908 1.1 joerg emu->x86.R_DI += inc;
2909 1.1 joerg if (ACCESS_FLAG(F_ZF))
2910 1.1 joerg break; /* zero flag set means equal */
2911 1.1 joerg }
2912 1.1 joerg emu->x86.mode &= ~SYSMODE_PREFIX_REPNE;
2913 1.1 joerg } else {
2914 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2915 1.1 joerg val = fetch_long(emu, emu->x86.R_ES, emu->x86.R_DI);
2916 1.1 joerg cmp_long(emu, emu->x86.R_EAX, val);
2917 1.1 joerg } else {
2918 1.1 joerg val = fetch_word(emu, emu->x86.R_ES, emu->x86.R_DI);
2919 1.1 joerg cmp_word(emu, emu->x86.R_AX, (uint16_t) val);
2920 1.1 joerg }
2921 1.1 joerg emu->x86.R_DI += inc;
2922 1.1 joerg }
2923 1.1 joerg }
2924 1.1 joerg /****************************************************************************
2925 1.1 joerg REMARKS:
2926 1.1 joerg Handles opcode 0xb8
2927 1.1 joerg ****************************************************************************/
2928 1.1 joerg static void
2929 1.1 joerg x86emuOp_mov_word_AX_IMM(struct X86EMU *emu)
2930 1.1 joerg {
2931 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2932 1.1 joerg emu->x86.R_EAX = fetch_long_imm(emu);
2933 1.1 joerg else
2934 1.1 joerg emu->x86.R_AX = fetch_word_imm(emu);
2935 1.1 joerg }
2936 1.1 joerg /****************************************************************************
2937 1.1 joerg REMARKS:
2938 1.1 joerg Handles opcode 0xb9
2939 1.1 joerg ****************************************************************************/
2940 1.1 joerg static void
2941 1.1 joerg x86emuOp_mov_word_CX_IMM(struct X86EMU *emu)
2942 1.1 joerg {
2943 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2944 1.1 joerg emu->x86.R_ECX = fetch_long_imm(emu);
2945 1.1 joerg else
2946 1.1 joerg emu->x86.R_CX = fetch_word_imm(emu);
2947 1.1 joerg }
2948 1.1 joerg /****************************************************************************
2949 1.1 joerg REMARKS:
2950 1.1 joerg Handles opcode 0xba
2951 1.1 joerg ****************************************************************************/
2952 1.1 joerg static void
2953 1.1 joerg x86emuOp_mov_word_DX_IMM(struct X86EMU *emu)
2954 1.1 joerg {
2955 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2956 1.1 joerg emu->x86.R_EDX = fetch_long_imm(emu);
2957 1.1 joerg else
2958 1.1 joerg emu->x86.R_DX = fetch_word_imm(emu);
2959 1.1 joerg }
2960 1.1 joerg /****************************************************************************
2961 1.1 joerg REMARKS:
2962 1.1 joerg Handles opcode 0xbb
2963 1.1 joerg ****************************************************************************/
2964 1.1 joerg static void
2965 1.1 joerg x86emuOp_mov_word_BX_IMM(struct X86EMU *emu)
2966 1.1 joerg {
2967 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2968 1.1 joerg emu->x86.R_EBX = fetch_long_imm(emu);
2969 1.1 joerg else
2970 1.1 joerg emu->x86.R_BX = fetch_word_imm(emu);
2971 1.1 joerg }
2972 1.1 joerg /****************************************************************************
2973 1.1 joerg REMARKS:
2974 1.1 joerg Handles opcode 0xbc
2975 1.1 joerg ****************************************************************************/
2976 1.1 joerg static void
2977 1.1 joerg x86emuOp_mov_word_SP_IMM(struct X86EMU *emu)
2978 1.1 joerg {
2979 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2980 1.1 joerg emu->x86.R_ESP = fetch_long_imm(emu);
2981 1.1 joerg else
2982 1.1 joerg emu->x86.R_SP = fetch_word_imm(emu);
2983 1.1 joerg }
2984 1.1 joerg /****************************************************************************
2985 1.1 joerg REMARKS:
2986 1.1 joerg Handles opcode 0xbd
2987 1.1 joerg ****************************************************************************/
2988 1.1 joerg static void
2989 1.1 joerg x86emuOp_mov_word_BP_IMM(struct X86EMU *emu)
2990 1.1 joerg {
2991 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2992 1.1 joerg emu->x86.R_EBP = fetch_long_imm(emu);
2993 1.1 joerg else
2994 1.1 joerg emu->x86.R_BP = fetch_word_imm(emu);
2995 1.1 joerg }
2996 1.1 joerg /****************************************************************************
2997 1.1 joerg REMARKS:
2998 1.1 joerg Handles opcode 0xbe
2999 1.1 joerg ****************************************************************************/
3000 1.1 joerg static void
3001 1.1 joerg x86emuOp_mov_word_SI_IMM(struct X86EMU *emu)
3002 1.1 joerg {
3003 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
3004 1.1 joerg emu->x86.R_ESI = fetch_long_imm(emu);
3005 1.1 joerg else
3006 1.1 joerg emu->x86.R_SI = fetch_word_imm(emu);
3007 1.1 joerg }
3008 1.1 joerg /****************************************************************************
3009 1.1 joerg REMARKS:
3010 1.1 joerg Handles opcode 0xbf
3011 1.1 joerg ****************************************************************************/
3012 1.1 joerg static void
3013 1.1 joerg x86emuOp_mov_word_DI_IMM(struct X86EMU *emu)
3014 1.1 joerg {
3015 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
3016 1.1 joerg emu->x86.R_EDI = fetch_long_imm(emu);
3017 1.1 joerg else
3018 1.1 joerg emu->x86.R_DI = fetch_word_imm(emu);
3019 1.1 joerg }
3020 1.1 joerg /* used by opcodes c0, d0, and d2. */
3021 1.1 joerg static
3022 1.1 joerg uint8_t(* const opcD0_byte_operation[]) (struct X86EMU *, uint8_t d, uint8_t s) =
3023 1.1 joerg {
3024 1.1 joerg rol_byte,
3025 1.1 joerg ror_byte,
3026 1.1 joerg rcl_byte,
3027 1.1 joerg rcr_byte,
3028 1.1 joerg shl_byte,
3029 1.1 joerg shr_byte,
3030 1.1 joerg shl_byte, /* sal_byte === shl_byte by definition */
3031 1.1 joerg sar_byte,
3032 1.1 joerg };
3033 1.1 joerg /****************************************************************************
3034 1.1 joerg REMARKS:
3035 1.1 joerg Handles opcode 0xc0
3036 1.1 joerg ****************************************************************************/
3037 1.1 joerg static void
3038 1.1 joerg x86emuOp_opcC0_byte_RM_MEM(struct X86EMU *emu)
3039 1.1 joerg {
3040 1.1 joerg uint8_t destval, amt;
3041 1.1 joerg
3042 1.1 joerg /*
3043 1.1 joerg * Yet another weirdo special case instruction format. Part of
3044 1.1 joerg * the opcode held below in "RH". Doubly nested case would
3045 1.1 joerg * result, except that the decoded instruction
3046 1.1 joerg */
3047 1.1 joerg fetch_decode_modrm(emu);
3048 1.1 joerg /* know operation, decode the mod byte to find the addressing mode. */
3049 1.1 joerg destval = decode_and_fetch_byte_imm8(emu, &amt);
3050 1.1 joerg destval = (*opcD0_byte_operation[emu->cur_rh]) (emu, destval, amt);
3051 1.1 joerg write_back_byte(emu, destval);
3052 1.1 joerg }
3053 1.1 joerg /* used by opcodes c1, d1, and d3. */
3054 1.1 joerg static
3055 1.1 joerg uint16_t(* const opcD1_word_operation[]) (struct X86EMU *, uint16_t s, uint8_t d) =
3056 1.1 joerg {
3057 1.1 joerg rol_word,
3058 1.1 joerg ror_word,
3059 1.1 joerg rcl_word,
3060 1.1 joerg rcr_word,
3061 1.1 joerg shl_word,
3062 1.1 joerg shr_word,
3063 1.1 joerg shl_word, /* sal_byte === shl_byte by definition */
3064 1.1 joerg sar_word,
3065 1.1 joerg };
3066 1.1 joerg /* used by opcodes c1, d1, and d3. */
3067 1.1 joerg static
3068 1.1 joerg uint32_t(* const opcD1_long_operation[]) (struct X86EMU *, uint32_t s, uint8_t d) =
3069 1.1 joerg {
3070 1.1 joerg rol_long,
3071 1.1 joerg ror_long,
3072 1.1 joerg rcl_long,
3073 1.1 joerg rcr_long,
3074 1.1 joerg shl_long,
3075 1.1 joerg shr_long,
3076 1.1 joerg shl_long, /* sal_byte === shl_byte by definition */
3077 1.1 joerg sar_long,
3078 1.1 joerg };
3079 1.1 joerg /****************************************************************************
3080 1.1 joerg REMARKS:
3081 1.1 joerg Handles opcode 0xc1
3082 1.1 joerg ****************************************************************************/
3083 1.1 joerg static void
3084 1.1 joerg x86emuOp_opcC1_word_RM_MEM(struct X86EMU *emu)
3085 1.1 joerg {
3086 1.1 joerg uint8_t amt;
3087 1.1 joerg
3088 1.1 joerg /*
3089 1.1 joerg * Yet another weirdo special case instruction format. Part of
3090 1.1 joerg * the opcode held below in "RH". Doubly nested case would
3091 1.1 joerg * result, except that the decoded instruction
3092 1.1 joerg */
3093 1.1 joerg fetch_decode_modrm(emu);
3094 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
3095 1.1 joerg uint32_t destval;
3096 1.1 joerg
3097 1.1 joerg destval = decode_and_fetch_long_imm8(emu, &amt);
3098 1.1 joerg destval = (*opcD1_long_operation[emu->cur_rh]) (emu, destval, amt);
3099 1.1 joerg write_back_long(emu, destval);
3100 1.1 joerg } else {
3101 1.1 joerg uint16_t destval;
3102 1.1 joerg
3103 1.1 joerg destval = decode_and_fetch_word_imm8(emu, &amt);
3104 1.1 joerg destval = (*opcD1_word_operation[emu->cur_rh]) (emu, destval, amt);
3105 1.1 joerg write_back_word(emu, destval);
3106 1.1 joerg }
3107 1.1 joerg }
3108 1.1 joerg /****************************************************************************
3109 1.1 joerg REMARKS:
3110 1.1 joerg Handles opcode 0xc2
3111 1.1 joerg ****************************************************************************/
3112 1.1 joerg static void
3113 1.1 joerg x86emuOp_ret_near_IMM(struct X86EMU *emu)
3114 1.1 joerg {
3115 1.1 joerg uint16_t imm;
3116 1.1 joerg
3117 1.1 joerg imm = fetch_word_imm(emu);
3118 1.1 joerg emu->x86.R_IP = pop_word(emu);
3119 1.1 joerg emu->x86.R_SP += imm;
3120 1.1 joerg }
3121 1.1 joerg /****************************************************************************
3122 1.1 joerg REMARKS:
3123 1.1 joerg Handles opcode 0xc6
3124 1.1 joerg ****************************************************************************/
3125 1.1 joerg static void
3126 1.1 joerg x86emuOp_mov_byte_RM_IMM(struct X86EMU *emu)
3127 1.1 joerg {
3128 1.1 joerg uint8_t *destreg;
3129 1.1 joerg uint32_t destoffset;
3130 1.1 joerg uint8_t imm;
3131 1.1 joerg
3132 1.1 joerg fetch_decode_modrm(emu);
3133 1.1 joerg if (emu->cur_rh != 0)
3134 1.1 joerg X86EMU_halt_sys(emu);
3135 1.1 joerg if (emu->cur_mod != 3) {
3136 1.1 joerg destoffset = decode_rl_address(emu);
3137 1.1 joerg imm = fetch_byte_imm(emu);
3138 1.1 joerg store_data_byte(emu, destoffset, imm);
3139 1.1 joerg } else {
3140 1.1 joerg destreg = decode_rl_byte_register(emu);
3141 1.1 joerg imm = fetch_byte_imm(emu);
3142 1.1 joerg *destreg = imm;
3143 1.1 joerg }
3144 1.1 joerg }
3145 1.1 joerg /****************************************************************************
3146 1.1 joerg REMARKS:
3147 1.1 joerg Handles opcode 0xc7
3148 1.1 joerg ****************************************************************************/
3149 1.1 joerg static void
3150 1.1 joerg x86emuOp32_mov_word_RM_IMM(struct X86EMU *emu)
3151 1.1 joerg {
3152 1.1 joerg uint32_t destoffset;
3153 1.1 joerg uint32_t imm, *destreg;
3154 1.1 joerg
3155 1.1 joerg fetch_decode_modrm(emu);
3156 1.1 joerg if (emu->cur_rh != 0)
3157 1.1 joerg X86EMU_halt_sys(emu);
3158 1.1 joerg
3159 1.1 joerg if (emu->cur_mod != 3) {
3160 1.1 joerg destoffset = decode_rl_address(emu);
3161 1.1 joerg imm = fetch_long_imm(emu);
3162 1.1 joerg store_data_long(emu, destoffset, imm);
3163 1.1 joerg } else {
3164 1.1 joerg destreg = decode_rl_long_register(emu);
3165 1.1 joerg imm = fetch_long_imm(emu);
3166 1.1 joerg *destreg = imm;
3167 1.1 joerg }
3168 1.1 joerg }
3169 1.1 joerg
3170 1.1 joerg static void
3171 1.1 joerg x86emuOp16_mov_word_RM_IMM(struct X86EMU *emu)
3172 1.1 joerg {
3173 1.1 joerg uint32_t destoffset;
3174 1.1 joerg uint16_t imm, *destreg;
3175 1.1 joerg
3176 1.1 joerg fetch_decode_modrm(emu);
3177 1.1 joerg if (emu->cur_rh != 0)
3178 1.1 joerg X86EMU_halt_sys(emu);
3179 1.1 joerg
3180 1.1 joerg if (emu->cur_mod != 3) {
3181 1.1 joerg destoffset = decode_rl_address(emu);
3182 1.1 joerg imm = fetch_word_imm(emu);
3183 1.1 joerg store_data_word(emu, destoffset, imm);
3184 1.1 joerg } else {
3185 1.1 joerg destreg = decode_rl_word_register(emu);
3186 1.1 joerg imm = fetch_word_imm(emu);
3187 1.1 joerg *destreg = imm;
3188 1.1 joerg }
3189 1.1 joerg }
3190 1.1 joerg
3191 1.1 joerg static void
3192 1.1 joerg x86emuOp_mov_word_RM_IMM(struct X86EMU *emu)
3193 1.1 joerg {
3194 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
3195 1.1 joerg x86emuOp32_mov_word_RM_IMM(emu);
3196 1.1 joerg else
3197 1.1 joerg x86emuOp16_mov_word_RM_IMM(emu);
3198 1.1 joerg }
3199 1.1 joerg /****************************************************************************
3200 1.1 joerg REMARKS:
3201 1.1 joerg Handles opcode 0xc8
3202 1.1 joerg ****************************************************************************/
3203 1.1 joerg static void
3204 1.1 joerg x86emuOp_enter(struct X86EMU *emu)
3205 1.1 joerg {
3206 1.1 joerg uint16_t local, frame_pointer;
3207 1.1 joerg uint8_t nesting;
3208 1.1 joerg int i;
3209 1.1 joerg
3210 1.1 joerg local = fetch_word_imm(emu);
3211 1.1 joerg nesting = fetch_byte_imm(emu);
3212 1.1 joerg push_word(emu, emu->x86.R_BP);
3213 1.1 joerg frame_pointer = emu->x86.R_SP;
3214 1.1 joerg if (nesting > 0) {
3215 1.1 joerg for (i = 1; i < nesting; i++) {
3216 1.1 joerg emu->x86.R_BP -= 2;
3217 1.1 joerg push_word(emu, fetch_word(emu, emu->x86.R_SS, emu->x86.R_BP));
3218 1.1 joerg }
3219 1.1 joerg push_word(emu, frame_pointer);
3220 1.1 joerg }
3221 1.1 joerg emu->x86.R_BP = frame_pointer;
3222 1.1 joerg emu->x86.R_SP = (uint16_t) (emu->x86.R_SP - local);
3223 1.1 joerg }
3224 1.1 joerg /****************************************************************************
3225 1.1 joerg REMARKS:
3226 1.1 joerg Handles opcode 0xc9
3227 1.1 joerg ****************************************************************************/
3228 1.1 joerg static void
3229 1.1 joerg x86emuOp_leave(struct X86EMU *emu)
3230 1.1 joerg {
3231 1.1 joerg emu->x86.R_SP = emu->x86.R_BP;
3232 1.1 joerg emu->x86.R_BP = pop_word(emu);
3233 1.1 joerg }
3234 1.1 joerg /****************************************************************************
3235 1.1 joerg REMARKS:
3236 1.1 joerg Handles opcode 0xca
3237 1.1 joerg ****************************************************************************/
3238 1.1 joerg static void
3239 1.1 joerg x86emuOp_ret_far_IMM(struct X86EMU *emu)
3240 1.1 joerg {
3241 1.1 joerg uint16_t imm;
3242 1.1 joerg
3243 1.1 joerg imm = fetch_word_imm(emu);
3244 1.1 joerg emu->x86.R_IP = pop_word(emu);
3245 1.1 joerg emu->x86.R_CS = pop_word(emu);
3246 1.1 joerg emu->x86.R_SP += imm;
3247 1.1 joerg }
3248 1.1 joerg /****************************************************************************
3249 1.1 joerg REMARKS:
3250 1.1 joerg Handles opcode 0xcb
3251 1.1 joerg ****************************************************************************/
3252 1.1 joerg static void
3253 1.1 joerg x86emuOp_ret_far(struct X86EMU *emu)
3254 1.1 joerg {
3255 1.1 joerg emu->x86.R_IP = pop_word(emu);
3256 1.1 joerg emu->x86.R_CS = pop_word(emu);
3257 1.1 joerg }
3258 1.1 joerg /****************************************************************************
3259 1.1 joerg REMARKS:
3260 1.1 joerg Handles opcode 0xcc
3261 1.1 joerg ****************************************************************************/
3262 1.1 joerg static void
3263 1.1 joerg x86emuOp_int3(struct X86EMU *emu)
3264 1.1 joerg {
3265 1.3 joerg x86emu_intr_dispatch(emu, 3);
3266 1.1 joerg }
3267 1.1 joerg /****************************************************************************
3268 1.1 joerg REMARKS:
3269 1.1 joerg Handles opcode 0xcd
3270 1.1 joerg ****************************************************************************/
3271 1.1 joerg static void
3272 1.1 joerg x86emuOp_int_IMM(struct X86EMU *emu)
3273 1.1 joerg {
3274 1.1 joerg uint8_t intnum;
3275 1.1 joerg
3276 1.1 joerg intnum = fetch_byte_imm(emu);
3277 1.3 joerg x86emu_intr_dispatch(emu, intnum);
3278 1.1 joerg }
3279 1.1 joerg /****************************************************************************
3280 1.1 joerg REMARKS:
3281 1.1 joerg Handles opcode 0xce
3282 1.1 joerg ****************************************************************************/
3283 1.1 joerg static void
3284 1.1 joerg x86emuOp_into(struct X86EMU *emu)
3285 1.1 joerg {
3286 1.3 joerg if (ACCESS_FLAG(F_OF))
3287 1.3 joerg x86emu_intr_dispatch(emu, 4);
3288 1.1 joerg }
3289 1.1 joerg /****************************************************************************
3290 1.1 joerg REMARKS:
3291 1.1 joerg Handles opcode 0xcf
3292 1.1 joerg ****************************************************************************/
3293 1.1 joerg static void
3294 1.1 joerg x86emuOp_iret(struct X86EMU *emu)
3295 1.1 joerg {
3296 1.1 joerg emu->x86.R_IP = pop_word(emu);
3297 1.1 joerg emu->x86.R_CS = pop_word(emu);
3298 1.1 joerg emu->x86.R_FLG = pop_word(emu);
3299 1.1 joerg }
3300 1.1 joerg /****************************************************************************
3301 1.1 joerg REMARKS:
3302 1.1 joerg Handles opcode 0xd0
3303 1.1 joerg ****************************************************************************/
3304 1.1 joerg static void
3305 1.1 joerg x86emuOp_opcD0_byte_RM_1(struct X86EMU *emu)
3306 1.1 joerg {
3307 1.1 joerg uint8_t destval;
3308 1.1 joerg
3309 1.1 joerg fetch_decode_modrm(emu);
3310 1.1 joerg destval = decode_and_fetch_byte(emu);
3311 1.1 joerg destval = (*opcD0_byte_operation[emu->cur_rh]) (emu, destval, 1);
3312 1.1 joerg write_back_byte(emu, destval);
3313 1.1 joerg }
3314 1.1 joerg /****************************************************************************
3315 1.1 joerg REMARKS:
3316 1.1 joerg Handles opcode 0xd1
3317 1.1 joerg ****************************************************************************/
3318 1.1 joerg static void
3319 1.1 joerg x86emuOp_opcD1_word_RM_1(struct X86EMU *emu)
3320 1.1 joerg {
3321 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
3322 1.1 joerg uint32_t destval;
3323 1.1 joerg
3324 1.1 joerg fetch_decode_modrm(emu);
3325 1.1 joerg destval = decode_and_fetch_long(emu);
3326 1.1 joerg destval = (*opcD1_long_operation[emu->cur_rh]) (emu, destval, 1);
3327 1.1 joerg write_back_long(emu, destval);
3328 1.1 joerg } else {
3329 1.1 joerg uint16_t destval;
3330 1.1 joerg
3331 1.1 joerg fetch_decode_modrm(emu);
3332 1.1 joerg destval = decode_and_fetch_word(emu);
3333 1.1 joerg destval = (*opcD1_word_operation[emu->cur_rh]) (emu, destval, 1);
3334 1.1 joerg write_back_word(emu, destval);
3335 1.1 joerg }
3336 1.1 joerg }
3337 1.1 joerg /****************************************************************************
3338 1.1 joerg REMARKS:
3339 1.1 joerg Handles opcode 0xd2
3340 1.1 joerg ****************************************************************************/
3341 1.1 joerg static void
3342 1.1 joerg x86emuOp_opcD2_byte_RM_CL(struct X86EMU *emu)
3343 1.1 joerg {
3344 1.1 joerg uint8_t destval;
3345 1.1 joerg
3346 1.1 joerg fetch_decode_modrm(emu);
3347 1.1 joerg destval = decode_and_fetch_byte(emu);
3348 1.1 joerg destval = (*opcD0_byte_operation[emu->cur_rh]) (emu, destval, emu->x86.R_CL);
3349 1.1 joerg write_back_byte(emu, destval);
3350 1.1 joerg }
3351 1.1 joerg /****************************************************************************
3352 1.1 joerg REMARKS:
3353 1.1 joerg Handles opcode 0xd3
3354 1.1 joerg ****************************************************************************/
3355 1.1 joerg static void
3356 1.1 joerg x86emuOp_opcD3_word_RM_CL(struct X86EMU *emu)
3357 1.1 joerg {
3358 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
3359 1.1 joerg uint32_t destval;
3360 1.1 joerg
3361 1.1 joerg fetch_decode_modrm(emu);
3362 1.1 joerg destval = decode_and_fetch_long(emu);
3363 1.1 joerg destval = (*opcD1_long_operation[emu->cur_rh]) (emu, destval, emu->x86.R_CL);
3364 1.1 joerg write_back_long(emu, destval);
3365 1.1 joerg } else {
3366 1.1 joerg uint16_t destval;
3367 1.1 joerg
3368 1.1 joerg fetch_decode_modrm(emu);
3369 1.1 joerg destval = decode_and_fetch_word(emu);
3370 1.1 joerg destval = (*opcD1_word_operation[emu->cur_rh]) (emu, destval, emu->x86.R_CL);
3371 1.1 joerg write_back_word(emu, destval);
3372 1.1 joerg }
3373 1.1 joerg }
3374 1.1 joerg /****************************************************************************
3375 1.1 joerg REMARKS:
3376 1.1 joerg Handles opcode 0xd4
3377 1.1 joerg ****************************************************************************/
3378 1.1 joerg static void
3379 1.1 joerg x86emuOp_aam(struct X86EMU *emu)
3380 1.1 joerg {
3381 1.1 joerg uint8_t a;
3382 1.1 joerg
3383 1.1 joerg a = fetch_byte_imm(emu); /* this is a stupid encoding. */
3384 1.1 joerg if (a != 10) {
3385 1.1 joerg /* fix: add base decoding aam_word(uint8_t val, int base a) */
3386 1.1 joerg X86EMU_halt_sys(emu);
3387 1.1 joerg }
3388 1.1 joerg /* note the type change here --- returning AL and AH in AX. */
3389 1.1 joerg emu->x86.R_AX = aam_word(emu, emu->x86.R_AL);
3390 1.1 joerg }
3391 1.1 joerg /****************************************************************************
3392 1.1 joerg REMARKS:
3393 1.1 joerg Handles opcode 0xd5
3394 1.1 joerg ****************************************************************************/
3395 1.1 joerg static void
3396 1.1 joerg x86emuOp_aad(struct X86EMU *emu)
3397 1.1 joerg {
3398 1.1 joerg uint8_t a;
3399 1.1 joerg
3400 1.1 joerg a = fetch_byte_imm(emu);
3401 1.1 joerg if (a != 10) {
3402 1.1 joerg /* fix: add base decoding aad_word(uint16_t val, int base a) */
3403 1.1 joerg X86EMU_halt_sys(emu);
3404 1.1 joerg }
3405 1.1 joerg emu->x86.R_AX = aad_word(emu, emu->x86.R_AX);
3406 1.1 joerg }
3407 1.1 joerg /* opcode 0xd6 ILLEGAL OPCODE */
3408 1.1 joerg
3409 1.1 joerg /****************************************************************************
3410 1.1 joerg REMARKS:
3411 1.1 joerg Handles opcode 0xd7
3412 1.1 joerg ****************************************************************************/
3413 1.1 joerg static void
3414 1.1 joerg x86emuOp_xlat(struct X86EMU *emu)
3415 1.1 joerg {
3416 1.1 joerg uint16_t addr;
3417 1.1 joerg
3418 1.1 joerg addr = (uint16_t) (emu->x86.R_BX + (uint8_t) emu->x86.R_AL);
3419 1.1 joerg emu->x86.R_AL = fetch_data_byte(emu, addr);
3420 1.1 joerg }
3421 1.1 joerg
3422 1.1 joerg /* opcode=0xd8 */
3423 1.1 joerg static void
3424 1.1 joerg x86emuOp_esc_coprocess_d8(struct X86EMU *emu)
3425 1.1 joerg {
3426 1.1 joerg }
3427 1.1 joerg /* opcode=0xd9 */
3428 1.1 joerg static void
3429 1.1 joerg x86emuOp_esc_coprocess_d9(struct X86EMU *emu)
3430 1.1 joerg {
3431 1.1 joerg fetch_decode_modrm(emu);
3432 1.1 joerg if (emu->cur_mod != 3)
3433 1.1 joerg decode_rl_address(emu);
3434 1.1 joerg }
3435 1.1 joerg /* opcode=0xda */
3436 1.1 joerg static void
3437 1.1 joerg x86emuOp_esc_coprocess_da(struct X86EMU *emu)
3438 1.1 joerg {
3439 1.1 joerg fetch_decode_modrm(emu);
3440 1.1 joerg if (emu->cur_mod != 3)
3441 1.1 joerg decode_rl_address(emu);
3442 1.1 joerg }
3443 1.1 joerg /* opcode=0xdb */
3444 1.1 joerg static void
3445 1.1 joerg x86emuOp_esc_coprocess_db(struct X86EMU *emu)
3446 1.1 joerg {
3447 1.1 joerg fetch_decode_modrm(emu);
3448 1.1 joerg if (emu->cur_mod != 3)
3449 1.1 joerg decode_rl_address(emu);
3450 1.1 joerg }
3451 1.1 joerg /* opcode=0xdc */
3452 1.1 joerg static void
3453 1.1 joerg x86emuOp_esc_coprocess_dc(struct X86EMU *emu)
3454 1.1 joerg {
3455 1.1 joerg fetch_decode_modrm(emu);
3456 1.1 joerg if (emu->cur_mod != 3)
3457 1.1 joerg decode_rl_address(emu);
3458 1.1 joerg }
3459 1.1 joerg /* opcode=0xdd */
3460 1.1 joerg static void
3461 1.1 joerg x86emuOp_esc_coprocess_dd(struct X86EMU *emu)
3462 1.1 joerg {
3463 1.1 joerg fetch_decode_modrm(emu);
3464 1.1 joerg if (emu->cur_mod != 3)
3465 1.1 joerg decode_rl_address(emu);
3466 1.1 joerg }
3467 1.1 joerg /* opcode=0xde */
3468 1.1 joerg static void
3469 1.1 joerg x86emuOp_esc_coprocess_de(struct X86EMU *emu)
3470 1.1 joerg {
3471 1.1 joerg fetch_decode_modrm(emu);
3472 1.1 joerg if (emu->cur_mod != 3)
3473 1.1 joerg decode_rl_address(emu);
3474 1.1 joerg }
3475 1.1 joerg /* opcode=0xdf */
3476 1.1 joerg static void
3477 1.1 joerg x86emuOp_esc_coprocess_df(struct X86EMU *emu)
3478 1.1 joerg {
3479 1.1 joerg fetch_decode_modrm(emu);
3480 1.1 joerg if (emu->cur_mod != 3)
3481 1.1 joerg decode_rl_address(emu);
3482 1.1 joerg }
3483 1.1 joerg
3484 1.1 joerg /****************************************************************************
3485 1.1 joerg REMARKS:
3486 1.1 joerg Handles opcode 0xe0
3487 1.1 joerg ****************************************************************************/
3488 1.1 joerg static void
3489 1.1 joerg x86emuOp_loopne(struct X86EMU *emu)
3490 1.1 joerg {
3491 1.1 joerg int16_t ip;
3492 1.1 joerg
3493 1.1 joerg ip = (int8_t) fetch_byte_imm(emu);
3494 1.1 joerg ip += (int16_t) emu->x86.R_IP;
3495 1.1 joerg emu->x86.R_CX -= 1;
3496 1.1 joerg if (emu->x86.R_CX != 0 && !ACCESS_FLAG(F_ZF)) /* CX != 0 and !ZF */
3497 1.1 joerg emu->x86.R_IP = ip;
3498 1.1 joerg }
3499 1.1 joerg /****************************************************************************
3500 1.1 joerg REMARKS:
3501 1.1 joerg Handles opcode 0xe1
3502 1.1 joerg ****************************************************************************/
3503 1.1 joerg static void
3504 1.1 joerg x86emuOp_loope(struct X86EMU *emu)
3505 1.1 joerg {
3506 1.1 joerg int16_t ip;
3507 1.1 joerg
3508 1.1 joerg ip = (int8_t) fetch_byte_imm(emu);
3509 1.1 joerg ip += (int16_t) emu->x86.R_IP;
3510 1.1 joerg emu->x86.R_CX -= 1;
3511 1.1 joerg if (emu->x86.R_CX != 0 && ACCESS_FLAG(F_ZF)) /* CX != 0 and ZF */
3512 1.1 joerg emu->x86.R_IP = ip;
3513 1.1 joerg }
3514 1.1 joerg /****************************************************************************
3515 1.1 joerg REMARKS:
3516 1.1 joerg Handles opcode 0xe2
3517 1.1 joerg ****************************************************************************/
3518 1.1 joerg static void
3519 1.1 joerg x86emuOp_loop(struct X86EMU *emu)
3520 1.1 joerg {
3521 1.1 joerg int16_t ip;
3522 1.1 joerg
3523 1.1 joerg ip = (int8_t) fetch_byte_imm(emu);
3524 1.1 joerg ip += (int16_t) emu->x86.R_IP;
3525 1.1 joerg emu->x86.R_CX -= 1;
3526 1.1 joerg if (emu->x86.R_CX != 0)
3527 1.1 joerg emu->x86.R_IP = ip;
3528 1.1 joerg }
3529 1.1 joerg /****************************************************************************
3530 1.1 joerg REMARKS:
3531 1.1 joerg Handles opcode 0xe3
3532 1.1 joerg ****************************************************************************/
3533 1.1 joerg static void
3534 1.1 joerg x86emuOp_jcxz(struct X86EMU *emu)
3535 1.1 joerg {
3536 1.1 joerg uint16_t target;
3537 1.1 joerg int8_t offset;
3538 1.1 joerg
3539 1.1 joerg /* jump to byte offset if overflow flag is set */
3540 1.1 joerg offset = (int8_t) fetch_byte_imm(emu);
3541 1.1 joerg target = (uint16_t) (emu->x86.R_IP + offset);
3542 1.1 joerg if (emu->x86.R_CX == 0)
3543 1.1 joerg emu->x86.R_IP = target;
3544 1.1 joerg }
3545 1.1 joerg /****************************************************************************
3546 1.1 joerg REMARKS:
3547 1.1 joerg Handles opcode 0xe4
3548 1.1 joerg ****************************************************************************/
3549 1.1 joerg static void
3550 1.1 joerg x86emuOp_in_byte_AL_IMM(struct X86EMU *emu)
3551 1.1 joerg {
3552 1.1 joerg uint8_t port;
3553 1.1 joerg
3554 1.1 joerg port = (uint8_t) fetch_byte_imm(emu);
3555 1.1 joerg emu->x86.R_AL = (*emu->emu_inb) (emu, port);
3556 1.1 joerg }
3557 1.1 joerg /****************************************************************************
3558 1.1 joerg REMARKS:
3559 1.1 joerg Handles opcode 0xe5
3560 1.1 joerg ****************************************************************************/
3561 1.1 joerg static void
3562 1.1 joerg x86emuOp_in_word_AX_IMM(struct X86EMU *emu)
3563 1.1 joerg {
3564 1.1 joerg uint8_t port;
3565 1.1 joerg
3566 1.1 joerg port = (uint8_t) fetch_byte_imm(emu);
3567 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
3568 1.1 joerg emu->x86.R_EAX = (*emu->emu_inl) (emu, port);
3569 1.1 joerg } else {
3570 1.1 joerg emu->x86.R_AX = (*emu->emu_inw) (emu, port);
3571 1.1 joerg }
3572 1.1 joerg }
3573 1.1 joerg /****************************************************************************
3574 1.1 joerg REMARKS:
3575 1.1 joerg Handles opcode 0xe6
3576 1.1 joerg ****************************************************************************/
3577 1.1 joerg static void
3578 1.1 joerg x86emuOp_out_byte_IMM_AL(struct X86EMU *emu)
3579 1.1 joerg {
3580 1.1 joerg uint8_t port;
3581 1.1 joerg
3582 1.1 joerg port = (uint8_t) fetch_byte_imm(emu);
3583 1.1 joerg (*emu->emu_outb) (emu, port, emu->x86.R_AL);
3584 1.1 joerg }
3585 1.1 joerg /****************************************************************************
3586 1.1 joerg REMARKS:
3587 1.1 joerg Handles opcode 0xe7
3588 1.1 joerg ****************************************************************************/
3589 1.1 joerg static void
3590 1.1 joerg x86emuOp_out_word_IMM_AX(struct X86EMU *emu)
3591 1.1 joerg {
3592 1.1 joerg uint8_t port;
3593 1.1 joerg
3594 1.1 joerg port = (uint8_t) fetch_byte_imm(emu);
3595 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
3596 1.1 joerg (*emu->emu_outl) (emu, port, emu->x86.R_EAX);
3597 1.1 joerg } else {
3598 1.1 joerg (*emu->emu_outw) (emu, port, emu->x86.R_AX);
3599 1.1 joerg }
3600 1.1 joerg }
3601 1.1 joerg /****************************************************************************
3602 1.1 joerg REMARKS:
3603 1.1 joerg Handles opcode 0xe8
3604 1.1 joerg ****************************************************************************/
3605 1.1 joerg static void
3606 1.1 joerg x86emuOp_call_near_IMM(struct X86EMU *emu)
3607 1.1 joerg {
3608 1.10 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
3609 1.10 joerg int32_t ip;
3610 1.10 joerg ip = (int32_t) fetch_long_imm(emu);
3611 1.10 joerg ip += (int32_t) emu->x86.R_EIP;
3612 1.10 joerg push_long(emu, emu->x86.R_EIP);
3613 1.10 joerg emu->x86.R_EIP = ip;
3614 1.10 joerg } else {
3615 1.10 joerg int16_t ip;
3616 1.10 joerg ip = (int16_t) fetch_word_imm(emu);
3617 1.10 joerg ip += (int16_t) emu->x86.R_IP; /* CHECK SIGN */
3618 1.10 joerg push_word(emu, emu->x86.R_IP);
3619 1.10 joerg emu->x86.R_IP = ip;
3620 1.10 joerg }
3621 1.1 joerg }
3622 1.1 joerg /****************************************************************************
3623 1.1 joerg REMARKS:
3624 1.1 joerg Handles opcode 0xe9
3625 1.1 joerg ****************************************************************************/
3626 1.1 joerg static void
3627 1.1 joerg x86emuOp_jump_near_IMM(struct X86EMU *emu)
3628 1.1 joerg {
3629 1.1 joerg int ip;
3630 1.1 joerg
3631 1.1 joerg ip = (int16_t) fetch_word_imm(emu);
3632 1.1 joerg ip += (int16_t) emu->x86.R_IP;
3633 1.1 joerg emu->x86.R_IP = (uint16_t) ip;
3634 1.1 joerg }
3635 1.1 joerg /****************************************************************************
3636 1.1 joerg REMARKS:
3637 1.1 joerg Handles opcode 0xea
3638 1.1 joerg ****************************************************************************/
3639 1.1 joerg static void
3640 1.1 joerg x86emuOp_jump_far_IMM(struct X86EMU *emu)
3641 1.1 joerg {
3642 1.1 joerg uint16_t cs, ip;
3643 1.1 joerg
3644 1.1 joerg ip = fetch_word_imm(emu);
3645 1.1 joerg cs = fetch_word_imm(emu);
3646 1.1 joerg emu->x86.R_IP = ip;
3647 1.1 joerg emu->x86.R_CS = cs;
3648 1.1 joerg }
3649 1.1 joerg /****************************************************************************
3650 1.1 joerg REMARKS:
3651 1.1 joerg Handles opcode 0xeb
3652 1.1 joerg ****************************************************************************/
3653 1.1 joerg static void
3654 1.1 joerg x86emuOp_jump_byte_IMM(struct X86EMU *emu)
3655 1.1 joerg {
3656 1.1 joerg uint16_t target;
3657 1.1 joerg int8_t offset;
3658 1.1 joerg
3659 1.1 joerg offset = (int8_t) fetch_byte_imm(emu);
3660 1.1 joerg target = (uint16_t) (emu->x86.R_IP + offset);
3661 1.1 joerg emu->x86.R_IP = target;
3662 1.1 joerg }
3663 1.1 joerg /****************************************************************************
3664 1.1 joerg REMARKS:
3665 1.1 joerg Handles opcode 0xec
3666 1.1 joerg ****************************************************************************/
3667 1.1 joerg static void
3668 1.1 joerg x86emuOp_in_byte_AL_DX(struct X86EMU *emu)
3669 1.1 joerg {
3670 1.1 joerg emu->x86.R_AL = (*emu->emu_inb) (emu, emu->x86.R_DX);
3671 1.1 joerg }
3672 1.1 joerg /****************************************************************************
3673 1.1 joerg REMARKS:
3674 1.1 joerg Handles opcode 0xed
3675 1.1 joerg ****************************************************************************/
3676 1.1 joerg static void
3677 1.1 joerg x86emuOp_in_word_AX_DX(struct X86EMU *emu)
3678 1.1 joerg {
3679 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
3680 1.1 joerg emu->x86.R_EAX = (*emu->emu_inl) (emu, emu->x86.R_DX);
3681 1.1 joerg } else {
3682 1.1 joerg emu->x86.R_AX = (*emu->emu_inw) (emu, emu->x86.R_DX);
3683 1.1 joerg }
3684 1.1 joerg }
3685 1.1 joerg /****************************************************************************
3686 1.1 joerg REMARKS:
3687 1.1 joerg Handles opcode 0xee
3688 1.1 joerg ****************************************************************************/
3689 1.1 joerg static void
3690 1.1 joerg x86emuOp_out_byte_DX_AL(struct X86EMU *emu)
3691 1.1 joerg {
3692 1.1 joerg (*emu->emu_outb) (emu, emu->x86.R_DX, emu->x86.R_AL);
3693 1.1 joerg }
3694 1.1 joerg /****************************************************************************
3695 1.1 joerg REMARKS:
3696 1.1 joerg Handles opcode 0xef
3697 1.1 joerg ****************************************************************************/
3698 1.1 joerg static void
3699 1.1 joerg x86emuOp_out_word_DX_AX(struct X86EMU *emu)
3700 1.1 joerg {
3701 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
3702 1.1 joerg (*emu->emu_outl) (emu, emu->x86.R_DX, emu->x86.R_EAX);
3703 1.1 joerg } else {
3704 1.1 joerg (*emu->emu_outw) (emu, emu->x86.R_DX, emu->x86.R_AX);
3705 1.1 joerg }
3706 1.1 joerg }
3707 1.1 joerg /****************************************************************************
3708 1.1 joerg REMARKS:
3709 1.1 joerg Handles opcode 0xf0
3710 1.1 joerg ****************************************************************************/
3711 1.1 joerg static void
3712 1.1 joerg x86emuOp_lock(struct X86EMU *emu)
3713 1.1 joerg {
3714 1.1 joerg }
3715 1.1 joerg /*opcode 0xf1 ILLEGAL OPERATION */
3716 1.1 joerg
3717 1.1 joerg /****************************************************************************
3718 1.1 joerg REMARKS:
3719 1.1 joerg Handles opcode 0xf5
3720 1.1 joerg ****************************************************************************/
3721 1.1 joerg static void
3722 1.1 joerg x86emuOp_cmc(struct X86EMU *emu)
3723 1.1 joerg {
3724 1.1 joerg if (ACCESS_FLAG(F_CF))
3725 1.1 joerg CLEAR_FLAG(F_CF);
3726 1.1 joerg else
3727 1.1 joerg SET_FLAG(F_CF);
3728 1.1 joerg }
3729 1.1 joerg /****************************************************************************
3730 1.1 joerg REMARKS:
3731 1.1 joerg Handles opcode 0xf6
3732 1.1 joerg ****************************************************************************/
3733 1.1 joerg static void
3734 1.1 joerg x86emuOp_opcF6_byte_RM(struct X86EMU *emu)
3735 1.1 joerg {
3736 1.1 joerg uint8_t destval, srcval;
3737 1.1 joerg
3738 1.1 joerg /* long, drawn out code follows. Double switch for a total of 32
3739 1.1 joerg * cases. */
3740 1.1 joerg fetch_decode_modrm(emu);
3741 1.1 joerg if (emu->cur_rh == 1)
3742 1.1 joerg X86EMU_halt_sys(emu);
3743 1.1 joerg
3744 1.1 joerg if (emu->cur_rh == 0) {
3745 1.1 joerg destval = decode_and_fetch_byte_imm8(emu, &srcval);
3746 1.1 joerg test_byte(emu, destval, srcval);
3747 1.1 joerg return;
3748 1.1 joerg }
3749 1.1 joerg destval = decode_and_fetch_byte(emu);
3750 1.1 joerg switch (emu->cur_rh) {
3751 1.1 joerg case 2:
3752 1.1 joerg destval = ~destval;
3753 1.1 joerg write_back_byte(emu, destval);
3754 1.1 joerg break;
3755 1.1 joerg case 3:
3756 1.1 joerg destval = neg_byte(emu, destval);
3757 1.1 joerg write_back_byte(emu, destval);
3758 1.1 joerg break;
3759 1.1 joerg case 4:
3760 1.1 joerg mul_byte(emu, destval);
3761 1.1 joerg break;
3762 1.1 joerg case 5:
3763 1.1 joerg imul_byte(emu, destval);
3764 1.1 joerg break;
3765 1.1 joerg case 6:
3766 1.1 joerg div_byte(emu, destval);
3767 1.1 joerg break;
3768 1.1 joerg case 7:
3769 1.1 joerg idiv_byte(emu, destval);
3770 1.1 joerg break;
3771 1.1 joerg }
3772 1.1 joerg }
3773 1.1 joerg /****************************************************************************
3774 1.1 joerg REMARKS:
3775 1.1 joerg Handles opcode 0xf7
3776 1.1 joerg ****************************************************************************/
3777 1.1 joerg static void
3778 1.1 joerg x86emuOp32_opcF7_word_RM(struct X86EMU *emu)
3779 1.1 joerg {
3780 1.1 joerg uint32_t destval, srcval;
3781 1.1 joerg
3782 1.1 joerg /* long, drawn out code follows. Double switch for a total of 32
3783 1.1 joerg * cases. */
3784 1.1 joerg fetch_decode_modrm(emu);
3785 1.1 joerg if (emu->cur_rh == 1)
3786 1.1 joerg X86EMU_halt_sys(emu);
3787 1.1 joerg
3788 1.1 joerg if (emu->cur_rh == 0) {
3789 1.1 joerg if (emu->cur_mod != 3) {
3790 1.1 joerg uint32_t destoffset;
3791 1.1 joerg
3792 1.1 joerg destoffset = decode_rl_address(emu);
3793 1.1 joerg srcval = fetch_long_imm(emu);
3794 1.1 joerg destval = fetch_data_long(emu, destoffset);
3795 1.1 joerg } else {
3796 1.1 joerg srcval = fetch_long_imm(emu);
3797 1.1 joerg destval = *decode_rl_long_register(emu);
3798 1.1 joerg }
3799 1.1 joerg test_long(emu, destval, srcval);
3800 1.1 joerg return;
3801 1.1 joerg }
3802 1.1 joerg destval = decode_and_fetch_long(emu);
3803 1.1 joerg switch (emu->cur_rh) {
3804 1.1 joerg case 2:
3805 1.1 joerg destval = ~destval;
3806 1.1 joerg write_back_long(emu, destval);
3807 1.1 joerg break;
3808 1.1 joerg case 3:
3809 1.1 joerg destval = neg_long(emu, destval);
3810 1.1 joerg write_back_long(emu, destval);
3811 1.1 joerg break;
3812 1.1 joerg case 4:
3813 1.1 joerg mul_long(emu, destval);
3814 1.1 joerg break;
3815 1.1 joerg case 5:
3816 1.1 joerg imul_long(emu, destval);
3817 1.1 joerg break;
3818 1.1 joerg case 6:
3819 1.1 joerg div_long(emu, destval);
3820 1.1 joerg break;
3821 1.1 joerg case 7:
3822 1.1 joerg idiv_long(emu, destval);
3823 1.1 joerg break;
3824 1.1 joerg }
3825 1.1 joerg }
3826 1.1 joerg static void
3827 1.1 joerg x86emuOp16_opcF7_word_RM(struct X86EMU *emu)
3828 1.1 joerg {
3829 1.1 joerg uint16_t destval, srcval;
3830 1.1 joerg
3831 1.1 joerg /* long, drawn out code follows. Double switch for a total of 32
3832 1.1 joerg * cases. */
3833 1.1 joerg fetch_decode_modrm(emu);
3834 1.1 joerg if (emu->cur_rh == 1)
3835 1.1 joerg X86EMU_halt_sys(emu);
3836 1.1 joerg
3837 1.1 joerg if (emu->cur_rh == 0) {
3838 1.1 joerg if (emu->cur_mod != 3) {
3839 1.1 joerg uint32_t destoffset;
3840 1.1 joerg
3841 1.1 joerg destoffset = decode_rl_address(emu);
3842 1.1 joerg srcval = fetch_word_imm(emu);
3843 1.1 joerg destval = fetch_data_word(emu, destoffset);
3844 1.1 joerg } else {
3845 1.1 joerg srcval = fetch_word_imm(emu);
3846 1.1 joerg destval = *decode_rl_word_register(emu);
3847 1.1 joerg }
3848 1.1 joerg test_word(emu, destval, srcval);
3849 1.1 joerg return;
3850 1.1 joerg }
3851 1.1 joerg destval = decode_and_fetch_word(emu);
3852 1.1 joerg switch (emu->cur_rh) {
3853 1.1 joerg case 2:
3854 1.1 joerg destval = ~destval;
3855 1.1 joerg write_back_word(emu, destval);
3856 1.1 joerg break;
3857 1.1 joerg case 3:
3858 1.1 joerg destval = neg_word(emu, destval);
3859 1.1 joerg write_back_word(emu, destval);
3860 1.1 joerg break;
3861 1.1 joerg case 4:
3862 1.1 joerg mul_word(emu, destval);
3863 1.1 joerg break;
3864 1.1 joerg case 5:
3865 1.1 joerg imul_word(emu, destval);
3866 1.1 joerg break;
3867 1.1 joerg case 6:
3868 1.1 joerg div_word(emu, destval);
3869 1.1 joerg break;
3870 1.1 joerg case 7:
3871 1.1 joerg idiv_word(emu, destval);
3872 1.1 joerg break;
3873 1.1 joerg }
3874 1.1 joerg }
3875 1.1 joerg static void
3876 1.1 joerg x86emuOp_opcF7_word_RM(struct X86EMU *emu)
3877 1.1 joerg {
3878 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
3879 1.1 joerg x86emuOp32_opcF7_word_RM(emu);
3880 1.1 joerg else
3881 1.1 joerg x86emuOp16_opcF7_word_RM(emu);
3882 1.1 joerg }
3883 1.1 joerg /****************************************************************************
3884 1.1 joerg REMARKS:
3885 1.1 joerg Handles opcode 0xfe
3886 1.1 joerg ****************************************************************************/
3887 1.1 joerg static void
3888 1.1 joerg x86emuOp_opcFE_byte_RM(struct X86EMU *emu)
3889 1.1 joerg {
3890 1.1 joerg uint8_t destval;
3891 1.1 joerg uint32_t destoffset;
3892 1.1 joerg uint8_t *destreg;
3893 1.1 joerg
3894 1.1 joerg /* Yet another special case instruction. */
3895 1.1 joerg fetch_decode_modrm(emu);
3896 1.1 joerg if (emu->cur_mod != 3) {
3897 1.1 joerg destoffset = decode_rl_address(emu);
3898 1.1 joerg switch (emu->cur_rh) {
3899 1.1 joerg case 0: /* inc word ptr ... */
3900 1.1 joerg destval = fetch_data_byte(emu, destoffset);
3901 1.1 joerg destval = inc_byte(emu, destval);
3902 1.1 joerg store_data_byte(emu, destoffset, destval);
3903 1.1 joerg break;
3904 1.1 joerg case 1: /* dec word ptr ... */
3905 1.1 joerg destval = fetch_data_byte(emu, destoffset);
3906 1.1 joerg destval = dec_byte(emu, destval);
3907 1.1 joerg store_data_byte(emu, destoffset, destval);
3908 1.1 joerg break;
3909 1.1 joerg }
3910 1.1 joerg } else {
3911 1.1 joerg destreg = decode_rl_byte_register(emu);
3912 1.1 joerg switch (emu->cur_rh) {
3913 1.1 joerg case 0:
3914 1.1 joerg *destreg = inc_byte(emu, *destreg);
3915 1.1 joerg break;
3916 1.1 joerg case 1:
3917 1.1 joerg *destreg = dec_byte(emu, *destreg);
3918 1.1 joerg break;
3919 1.1 joerg }
3920 1.1 joerg }
3921 1.1 joerg }
3922 1.1 joerg /****************************************************************************
3923 1.1 joerg REMARKS:
3924 1.1 joerg Handles opcode 0xff
3925 1.1 joerg ****************************************************************************/
3926 1.1 joerg static void
3927 1.1 joerg x86emuOp32_opcFF_word_RM(struct X86EMU *emu)
3928 1.1 joerg {
3929 1.1 joerg uint32_t destoffset = 0;
3930 1.1 joerg uint32_t destval, *destreg;
3931 1.1 joerg
3932 1.1 joerg if (emu->cur_mod != 3) {
3933 1.1 joerg destoffset = decode_rl_address(emu);
3934 1.1 joerg destval = fetch_data_long(emu, destoffset);
3935 1.1 joerg switch (emu->cur_rh) {
3936 1.1 joerg case 0: /* inc word ptr ... */
3937 1.1 joerg destval = inc_long(emu, destval);
3938 1.1 joerg store_data_long(emu, destoffset, destval);
3939 1.1 joerg break;
3940 1.1 joerg case 1: /* dec word ptr ... */
3941 1.1 joerg destval = dec_long(emu, destval);
3942 1.1 joerg store_data_long(emu, destoffset, destval);
3943 1.1 joerg break;
3944 1.1 joerg case 6: /* push word ptr ... */
3945 1.1 joerg push_long(emu, destval);
3946 1.1 joerg break;
3947 1.1 joerg }
3948 1.1 joerg } else {
3949 1.1 joerg destreg = decode_rl_long_register(emu);
3950 1.1 joerg switch (emu->cur_rh) {
3951 1.1 joerg case 0:
3952 1.1 joerg *destreg = inc_long(emu, *destreg);
3953 1.1 joerg break;
3954 1.1 joerg case 1:
3955 1.1 joerg *destreg = dec_long(emu, *destreg);
3956 1.1 joerg break;
3957 1.1 joerg case 6:
3958 1.1 joerg push_long(emu, *destreg);
3959 1.1 joerg break;
3960 1.1 joerg }
3961 1.1 joerg }
3962 1.1 joerg }
3963 1.1 joerg
3964 1.1 joerg static void
3965 1.1 joerg x86emuOp16_opcFF_word_RM(struct X86EMU *emu)
3966 1.1 joerg {
3967 1.1 joerg uint32_t destoffset = 0;
3968 1.1 joerg uint16_t *destreg;
3969 1.1 joerg uint16_t destval;
3970 1.1 joerg
3971 1.1 joerg if (emu->cur_mod != 3) {
3972 1.1 joerg destoffset = decode_rl_address(emu);
3973 1.1 joerg destval = fetch_data_word(emu, destoffset);
3974 1.1 joerg switch (emu->cur_rh) {
3975 1.1 joerg case 0:
3976 1.1 joerg destval = inc_word(emu, destval);
3977 1.1 joerg store_data_word(emu, destoffset, destval);
3978 1.1 joerg break;
3979 1.1 joerg case 1: /* dec word ptr ... */
3980 1.1 joerg destval = dec_word(emu, destval);
3981 1.1 joerg store_data_word(emu, destoffset, destval);
3982 1.1 joerg break;
3983 1.1 joerg case 6: /* push word ptr ... */
3984 1.1 joerg push_word(emu, destval);
3985 1.1 joerg break;
3986 1.1 joerg }
3987 1.1 joerg } else {
3988 1.1 joerg destreg = decode_rl_word_register(emu);
3989 1.1 joerg switch (emu->cur_rh) {
3990 1.1 joerg case 0:
3991 1.1 joerg *destreg = inc_word(emu, *destreg);
3992 1.1 joerg break;
3993 1.1 joerg case 1:
3994 1.1 joerg *destreg = dec_word(emu, *destreg);
3995 1.1 joerg break;
3996 1.1 joerg case 6:
3997 1.1 joerg push_word(emu, *destreg);
3998 1.1 joerg break;
3999 1.1 joerg }
4000 1.1 joerg }
4001 1.1 joerg }
4002 1.1 joerg
4003 1.1 joerg static void
4004 1.1 joerg x86emuOp_opcFF_word_RM(struct X86EMU *emu)
4005 1.1 joerg {
4006 1.1 joerg uint32_t destoffset = 0;
4007 1.1 joerg uint16_t destval, destval2;
4008 1.1 joerg
4009 1.1 joerg /* Yet another special case instruction. */
4010 1.1 joerg fetch_decode_modrm(emu);
4011 1.1 joerg if ((emu->cur_mod == 3 && (emu->cur_rh == 3 || emu->cur_rh == 5)) || emu->cur_rh == 7)
4012 1.1 joerg X86EMU_halt_sys(emu);
4013 1.1 joerg if (emu->cur_rh == 0 || emu->cur_rh == 1 || emu->cur_rh == 6) {
4014 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
4015 1.1 joerg x86emuOp32_opcFF_word_RM(emu);
4016 1.1 joerg else
4017 1.1 joerg x86emuOp16_opcFF_word_RM(emu);
4018 1.1 joerg return;
4019 1.1 joerg }
4020 1.1 joerg
4021 1.1 joerg if (emu->cur_mod != 3) {
4022 1.1 joerg destoffset = decode_rl_address(emu);
4023 1.1 joerg destval = fetch_data_word(emu, destoffset);
4024 1.1 joerg switch (emu->cur_rh) {
4025 1.1 joerg case 3: /* call far ptr ... */
4026 1.1 joerg destval2 = fetch_data_word(emu, destoffset + 2);
4027 1.1 joerg push_word(emu, emu->x86.R_CS);
4028 1.1 joerg emu->x86.R_CS = destval2;
4029 1.1 joerg push_word(emu, emu->x86.R_IP);
4030 1.1 joerg emu->x86.R_IP = destval;
4031 1.1 joerg break;
4032 1.1 joerg case 5: /* jmp far ptr ... */
4033 1.1 joerg destval2 = fetch_data_word(emu, destoffset + 2);
4034 1.1 joerg emu->x86.R_IP = destval;
4035 1.1 joerg emu->x86.R_CS = destval2;
4036 1.1 joerg break;
4037 1.1 joerg }
4038 1.1 joerg } else {
4039 1.1 joerg destval = *decode_rl_word_register(emu);
4040 1.1 joerg }
4041 1.1 joerg
4042 1.1 joerg switch (emu->cur_rh) {
4043 1.1 joerg case 2: /* call word ptr */
4044 1.1 joerg push_word(emu, emu->x86.R_IP);
4045 1.1 joerg emu->x86.R_IP = destval;
4046 1.1 joerg break;
4047 1.1 joerg case 4: /* jmp */
4048 1.1 joerg emu->x86.R_IP = destval;
4049 1.1 joerg break;
4050 1.1 joerg }
4051 1.1 joerg }
4052 1.1 joerg /***************************************************************************
4053 1.1 joerg * Single byte operation code table:
4054 1.1 joerg **************************************************************************/
4055 1.1 joerg static void
4056 1.1 joerg X86EMU_exec_one_byte(struct X86EMU * emu)
4057 1.1 joerg {
4058 1.1 joerg uint8_t op1;
4059 1.1 joerg
4060 1.1 joerg op1 = fetch_byte_imm(emu);
4061 1.1 joerg
4062 1.1 joerg switch (op1) {
4063 1.1 joerg case 0x00:
4064 1.1 joerg common_binop_byte_rm_r(emu, add_byte);
4065 1.1 joerg break;
4066 1.1 joerg case 0x01:
4067 1.1 joerg common_binop_word_long_rm_r(emu, add_word, add_long);
4068 1.1 joerg break;
4069 1.1 joerg case 0x02:
4070 1.1 joerg common_binop_byte_r_rm(emu, add_byte);
4071 1.1 joerg break;
4072 1.1 joerg case 0x03:
4073 1.1 joerg common_binop_word_long_r_rm(emu, add_word, add_long);
4074 1.1 joerg break;
4075 1.1 joerg case 0x04:
4076 1.1 joerg common_binop_byte_imm(emu, add_byte);
4077 1.1 joerg break;
4078 1.1 joerg case 0x05:
4079 1.1 joerg common_binop_word_long_imm(emu, add_word, add_long);
4080 1.1 joerg break;
4081 1.1 joerg case 0x06:
4082 1.1 joerg push_word(emu, emu->x86.R_ES);
4083 1.1 joerg break;
4084 1.1 joerg case 0x07:
4085 1.1 joerg emu->x86.R_ES = pop_word(emu);
4086 1.1 joerg break;
4087 1.1 joerg
4088 1.1 joerg case 0x08:
4089 1.1 joerg common_binop_byte_rm_r(emu, or_byte);
4090 1.1 joerg break;
4091 1.1 joerg case 0x09:
4092 1.1 joerg common_binop_word_long_rm_r(emu, or_word, or_long);
4093 1.1 joerg break;
4094 1.1 joerg case 0x0a:
4095 1.1 joerg common_binop_byte_r_rm(emu, or_byte);
4096 1.1 joerg break;
4097 1.1 joerg case 0x0b:
4098 1.1 joerg common_binop_word_long_r_rm(emu, or_word, or_long);
4099 1.1 joerg break;
4100 1.1 joerg case 0x0c:
4101 1.1 joerg common_binop_byte_imm(emu, or_byte);
4102 1.1 joerg break;
4103 1.1 joerg case 0x0d:
4104 1.1 joerg common_binop_word_long_imm(emu, or_word, or_long);
4105 1.1 joerg break;
4106 1.1 joerg case 0x0e:
4107 1.1 joerg push_word(emu, emu->x86.R_CS);
4108 1.1 joerg break;
4109 1.1 joerg case 0x0f:
4110 1.1 joerg X86EMU_exec_two_byte(emu);
4111 1.1 joerg break;
4112 1.1 joerg
4113 1.1 joerg case 0x10:
4114 1.1 joerg common_binop_byte_rm_r(emu, adc_byte);
4115 1.1 joerg break;
4116 1.1 joerg case 0x11:
4117 1.1 joerg common_binop_word_long_rm_r(emu, adc_word, adc_long);
4118 1.1 joerg break;
4119 1.1 joerg case 0x12:
4120 1.1 joerg common_binop_byte_r_rm(emu, adc_byte);
4121 1.1 joerg break;
4122 1.1 joerg case 0x13:
4123 1.1 joerg common_binop_word_long_r_rm(emu, adc_word, adc_long);
4124 1.1 joerg break;
4125 1.1 joerg case 0x14:
4126 1.1 joerg common_binop_byte_imm(emu, adc_byte);
4127 1.1 joerg break;
4128 1.1 joerg case 0x15:
4129 1.1 joerg common_binop_word_long_imm(emu, adc_word, adc_long);
4130 1.1 joerg break;
4131 1.1 joerg case 0x16:
4132 1.1 joerg push_word(emu, emu->x86.R_SS);
4133 1.1 joerg break;
4134 1.1 joerg case 0x17:
4135 1.1 joerg emu->x86.R_SS = pop_word(emu);
4136 1.1 joerg break;
4137 1.1 joerg
4138 1.1 joerg case 0x18:
4139 1.1 joerg common_binop_byte_rm_r(emu, sbb_byte);
4140 1.1 joerg break;
4141 1.1 joerg case 0x19:
4142 1.1 joerg common_binop_word_long_rm_r(emu, sbb_word, sbb_long);
4143 1.1 joerg break;
4144 1.1 joerg case 0x1a:
4145 1.1 joerg common_binop_byte_r_rm(emu, sbb_byte);
4146 1.1 joerg break;
4147 1.1 joerg case 0x1b:
4148 1.1 joerg common_binop_word_long_r_rm(emu, sbb_word, sbb_long);
4149 1.1 joerg break;
4150 1.1 joerg case 0x1c:
4151 1.1 joerg common_binop_byte_imm(emu, sbb_byte);
4152 1.1 joerg break;
4153 1.1 joerg case 0x1d:
4154 1.1 joerg common_binop_word_long_imm(emu, sbb_word, sbb_long);
4155 1.1 joerg break;
4156 1.1 joerg case 0x1e:
4157 1.1 joerg push_word(emu, emu->x86.R_DS);
4158 1.1 joerg break;
4159 1.1 joerg case 0x1f:
4160 1.1 joerg emu->x86.R_DS = pop_word(emu);
4161 1.1 joerg break;
4162 1.1 joerg
4163 1.1 joerg case 0x20:
4164 1.1 joerg common_binop_byte_rm_r(emu, and_byte);
4165 1.1 joerg break;
4166 1.1 joerg case 0x21:
4167 1.1 joerg common_binop_word_long_rm_r(emu, and_word, and_long);
4168 1.1 joerg break;
4169 1.1 joerg case 0x22:
4170 1.1 joerg common_binop_byte_r_rm(emu, and_byte);
4171 1.1 joerg break;
4172 1.1 joerg case 0x23:
4173 1.1 joerg common_binop_word_long_r_rm(emu, and_word, and_long);
4174 1.1 joerg break;
4175 1.1 joerg case 0x24:
4176 1.1 joerg common_binop_byte_imm(emu, and_byte);
4177 1.1 joerg break;
4178 1.1 joerg case 0x25:
4179 1.1 joerg common_binop_word_long_imm(emu, and_word, and_long);
4180 1.1 joerg break;
4181 1.1 joerg case 0x26:
4182 1.1 joerg emu->x86.mode |= SYSMODE_SEGOVR_ES;
4183 1.1 joerg break;
4184 1.1 joerg case 0x27:
4185 1.1 joerg emu->x86.R_AL = daa_byte(emu, emu->x86.R_AL);
4186 1.1 joerg break;
4187 1.1 joerg
4188 1.1 joerg case 0x28:
4189 1.1 joerg common_binop_byte_rm_r(emu, sub_byte);
4190 1.1 joerg break;
4191 1.1 joerg case 0x29:
4192 1.1 joerg common_binop_word_long_rm_r(emu, sub_word, sub_long);
4193 1.1 joerg break;
4194 1.1 joerg case 0x2a:
4195 1.1 joerg common_binop_byte_r_rm(emu, sub_byte);
4196 1.1 joerg break;
4197 1.1 joerg case 0x2b:
4198 1.1 joerg common_binop_word_long_r_rm(emu, sub_word, sub_long);
4199 1.1 joerg break;
4200 1.1 joerg case 0x2c:
4201 1.1 joerg common_binop_byte_imm(emu, sub_byte);
4202 1.1 joerg break;
4203 1.1 joerg case 0x2d:
4204 1.1 joerg common_binop_word_long_imm(emu, sub_word, sub_long);
4205 1.1 joerg break;
4206 1.1 joerg case 0x2e:
4207 1.1 joerg emu->x86.mode |= SYSMODE_SEGOVR_CS;
4208 1.1 joerg break;
4209 1.1 joerg case 0x2f:
4210 1.1 joerg emu->x86.R_AL = das_byte(emu, emu->x86.R_AL);
4211 1.1 joerg break;
4212 1.1 joerg
4213 1.1 joerg case 0x30:
4214 1.1 joerg common_binop_byte_rm_r(emu, xor_byte);
4215 1.1 joerg break;
4216 1.1 joerg case 0x31:
4217 1.1 joerg common_binop_word_long_rm_r(emu, xor_word, xor_long);
4218 1.1 joerg break;
4219 1.1 joerg case 0x32:
4220 1.1 joerg common_binop_byte_r_rm(emu, xor_byte);
4221 1.1 joerg break;
4222 1.1 joerg case 0x33:
4223 1.1 joerg common_binop_word_long_r_rm(emu, xor_word, xor_long);
4224 1.1 joerg break;
4225 1.1 joerg case 0x34:
4226 1.1 joerg common_binop_byte_imm(emu, xor_byte);
4227 1.1 joerg break;
4228 1.1 joerg case 0x35:
4229 1.1 joerg common_binop_word_long_imm(emu, xor_word, xor_long);
4230 1.1 joerg break;
4231 1.1 joerg case 0x36:
4232 1.1 joerg emu->x86.mode |= SYSMODE_SEGOVR_SS;
4233 1.1 joerg break;
4234 1.1 joerg case 0x37:
4235 1.1 joerg emu->x86.R_AX = aaa_word(emu, emu->x86.R_AX);
4236 1.1 joerg break;
4237 1.1 joerg
4238 1.1 joerg case 0x38:
4239 1.1 joerg common_binop_ns_byte_rm_r(emu, cmp_byte_no_return);
4240 1.1 joerg break;
4241 1.1 joerg case 0x39:
4242 1.1 joerg common_binop_ns_word_long_rm_r(emu, cmp_word_no_return,
4243 1.1 joerg cmp_long_no_return);
4244 1.1 joerg break;
4245 1.1 joerg case 0x3a:
4246 1.1 joerg x86emuOp_cmp_byte_R_RM(emu);
4247 1.1 joerg break;
4248 1.1 joerg case 0x3b:
4249 1.1 joerg x86emuOp_cmp_word_R_RM(emu);
4250 1.1 joerg break;
4251 1.1 joerg case 0x3c:
4252 1.1 joerg x86emuOp_cmp_byte_AL_IMM(emu);
4253 1.1 joerg break;
4254 1.1 joerg case 0x3d:
4255 1.1 joerg x86emuOp_cmp_word_AX_IMM(emu);
4256 1.1 joerg break;
4257 1.1 joerg case 0x3e:
4258 1.1 joerg emu->x86.mode |= SYSMODE_SEGOVR_DS;
4259 1.1 joerg break;
4260 1.1 joerg case 0x3f:
4261 1.1 joerg emu->x86.R_AX = aas_word(emu, emu->x86.R_AX);
4262 1.1 joerg break;
4263 1.1 joerg
4264 1.1 joerg case 0x40:
4265 1.1 joerg common_inc_word_long(emu, &emu->x86.register_a);
4266 1.1 joerg break;
4267 1.1 joerg case 0x41:
4268 1.1 joerg common_inc_word_long(emu, &emu->x86.register_c);
4269 1.1 joerg break;
4270 1.1 joerg case 0x42:
4271 1.1 joerg common_inc_word_long(emu, &emu->x86.register_d);
4272 1.1 joerg break;
4273 1.1 joerg case 0x43:
4274 1.1 joerg common_inc_word_long(emu, &emu->x86.register_b);
4275 1.1 joerg break;
4276 1.1 joerg case 0x44:
4277 1.1 joerg common_inc_word_long(emu, &emu->x86.register_sp);
4278 1.1 joerg break;
4279 1.1 joerg case 0x45:
4280 1.1 joerg common_inc_word_long(emu, &emu->x86.register_bp);
4281 1.1 joerg break;
4282 1.1 joerg case 0x46:
4283 1.1 joerg common_inc_word_long(emu, &emu->x86.register_si);
4284 1.1 joerg break;
4285 1.1 joerg case 0x47:
4286 1.1 joerg common_inc_word_long(emu, &emu->x86.register_di);
4287 1.1 joerg break;
4288 1.1 joerg
4289 1.1 joerg case 0x48:
4290 1.1 joerg common_dec_word_long(emu, &emu->x86.register_a);
4291 1.1 joerg break;
4292 1.1 joerg case 0x49:
4293 1.1 joerg common_dec_word_long(emu, &emu->x86.register_c);
4294 1.1 joerg break;
4295 1.1 joerg case 0x4a:
4296 1.1 joerg common_dec_word_long(emu, &emu->x86.register_d);
4297 1.1 joerg break;
4298 1.1 joerg case 0x4b:
4299 1.1 joerg common_dec_word_long(emu, &emu->x86.register_b);
4300 1.1 joerg break;
4301 1.1 joerg case 0x4c:
4302 1.1 joerg common_dec_word_long(emu, &emu->x86.register_sp);
4303 1.1 joerg break;
4304 1.1 joerg case 0x4d:
4305 1.1 joerg common_dec_word_long(emu, &emu->x86.register_bp);
4306 1.1 joerg break;
4307 1.1 joerg case 0x4e:
4308 1.1 joerg common_dec_word_long(emu, &emu->x86.register_si);
4309 1.1 joerg break;
4310 1.1 joerg case 0x4f:
4311 1.1 joerg common_dec_word_long(emu, &emu->x86.register_di);
4312 1.1 joerg break;
4313 1.1 joerg
4314 1.1 joerg case 0x50:
4315 1.1 joerg common_push_word_long(emu, &emu->x86.register_a);
4316 1.1 joerg break;
4317 1.1 joerg case 0x51:
4318 1.1 joerg common_push_word_long(emu, &emu->x86.register_c);
4319 1.1 joerg break;
4320 1.1 joerg case 0x52:
4321 1.1 joerg common_push_word_long(emu, &emu->x86.register_d);
4322 1.1 joerg break;
4323 1.1 joerg case 0x53:
4324 1.1 joerg common_push_word_long(emu, &emu->x86.register_b);
4325 1.1 joerg break;
4326 1.1 joerg case 0x54:
4327 1.1 joerg common_push_word_long(emu, &emu->x86.register_sp);
4328 1.1 joerg break;
4329 1.1 joerg case 0x55:
4330 1.1 joerg common_push_word_long(emu, &emu->x86.register_bp);
4331 1.1 joerg break;
4332 1.1 joerg case 0x56:
4333 1.1 joerg common_push_word_long(emu, &emu->x86.register_si);
4334 1.1 joerg break;
4335 1.1 joerg case 0x57:
4336 1.1 joerg common_push_word_long(emu, &emu->x86.register_di);
4337 1.1 joerg break;
4338 1.1 joerg
4339 1.1 joerg case 0x58:
4340 1.1 joerg common_pop_word_long(emu, &emu->x86.register_a);
4341 1.1 joerg break;
4342 1.1 joerg case 0x59:
4343 1.1 joerg common_pop_word_long(emu, &emu->x86.register_c);
4344 1.1 joerg break;
4345 1.1 joerg case 0x5a:
4346 1.1 joerg common_pop_word_long(emu, &emu->x86.register_d);
4347 1.1 joerg break;
4348 1.1 joerg case 0x5b:
4349 1.1 joerg common_pop_word_long(emu, &emu->x86.register_b);
4350 1.1 joerg break;
4351 1.1 joerg case 0x5c:
4352 1.1 joerg common_pop_word_long(emu, &emu->x86.register_sp);
4353 1.1 joerg break;
4354 1.1 joerg case 0x5d:
4355 1.1 joerg common_pop_word_long(emu, &emu->x86.register_bp);
4356 1.1 joerg break;
4357 1.1 joerg case 0x5e:
4358 1.1 joerg common_pop_word_long(emu, &emu->x86.register_si);
4359 1.1 joerg break;
4360 1.1 joerg case 0x5f:
4361 1.1 joerg common_pop_word_long(emu, &emu->x86.register_di);
4362 1.1 joerg break;
4363 1.1 joerg
4364 1.1 joerg case 0x60:
4365 1.1 joerg x86emuOp_push_all(emu);
4366 1.1 joerg break;
4367 1.1 joerg case 0x61:
4368 1.1 joerg x86emuOp_pop_all(emu);
4369 1.1 joerg break;
4370 1.1 joerg /* 0x62 bound */
4371 1.1 joerg /* 0x63 arpl */
4372 1.1 joerg case 0x64:
4373 1.1 joerg emu->x86.mode |= SYSMODE_SEGOVR_FS;
4374 1.1 joerg break;
4375 1.1 joerg case 0x65:
4376 1.1 joerg emu->x86.mode |= SYSMODE_SEGOVR_GS;
4377 1.1 joerg break;
4378 1.1 joerg case 0x66:
4379 1.1 joerg emu->x86.mode |= SYSMODE_PREFIX_DATA;
4380 1.1 joerg break;
4381 1.1 joerg case 0x67:
4382 1.1 joerg emu->x86.mode |= SYSMODE_PREFIX_ADDR;
4383 1.1 joerg break;
4384 1.1 joerg
4385 1.1 joerg case 0x68:
4386 1.1 joerg x86emuOp_push_word_IMM(emu);
4387 1.1 joerg break;
4388 1.1 joerg case 0x69:
4389 1.1 joerg common_imul_imm(emu, false);
4390 1.1 joerg break;
4391 1.1 joerg case 0x6a:
4392 1.1 joerg x86emuOp_push_byte_IMM(emu);
4393 1.1 joerg break;
4394 1.1 joerg case 0x6b:
4395 1.1 joerg common_imul_imm(emu, true);
4396 1.1 joerg break;
4397 1.1 joerg case 0x6c:
4398 1.1 joerg ins(emu, 1);
4399 1.1 joerg break;
4400 1.1 joerg case 0x6d:
4401 1.1 joerg x86emuOp_ins_word(emu);
4402 1.1 joerg break;
4403 1.1 joerg case 0x6e:
4404 1.1 joerg outs(emu, 1);
4405 1.1 joerg break;
4406 1.1 joerg case 0x6f:
4407 1.1 joerg x86emuOp_outs_word(emu);
4408 1.1 joerg break;
4409 1.1 joerg
4410 1.1 joerg case 0x70:
4411 1.1 joerg common_jmp_near(emu, ACCESS_FLAG(F_OF));
4412 1.1 joerg break;
4413 1.1 joerg case 0x71:
4414 1.1 joerg common_jmp_near(emu, !ACCESS_FLAG(F_OF));
4415 1.1 joerg break;
4416 1.1 joerg case 0x72:
4417 1.1 joerg common_jmp_near(emu, ACCESS_FLAG(F_CF));
4418 1.1 joerg break;
4419 1.1 joerg case 0x73:
4420 1.1 joerg common_jmp_near(emu, !ACCESS_FLAG(F_CF));
4421 1.1 joerg break;
4422 1.1 joerg case 0x74:
4423 1.1 joerg common_jmp_near(emu, ACCESS_FLAG(F_ZF));
4424 1.1 joerg break;
4425 1.1 joerg case 0x75:
4426 1.1 joerg common_jmp_near(emu, !ACCESS_FLAG(F_ZF));
4427 1.1 joerg break;
4428 1.1 joerg case 0x76:
4429 1.1 joerg common_jmp_near(emu, ACCESS_FLAG(F_CF) || ACCESS_FLAG(F_ZF));
4430 1.1 joerg break;
4431 1.1 joerg case 0x77:
4432 1.1 joerg common_jmp_near(emu, !ACCESS_FLAG(F_CF) && !ACCESS_FLAG(F_ZF));
4433 1.1 joerg break;
4434 1.1 joerg
4435 1.1 joerg case 0x78:
4436 1.1 joerg common_jmp_near(emu, ACCESS_FLAG(F_SF));
4437 1.1 joerg break;
4438 1.1 joerg case 0x79:
4439 1.1 joerg common_jmp_near(emu, !ACCESS_FLAG(F_SF));
4440 1.1 joerg break;
4441 1.1 joerg case 0x7a:
4442 1.1 joerg common_jmp_near(emu, ACCESS_FLAG(F_PF));
4443 1.1 joerg break;
4444 1.1 joerg case 0x7b:
4445 1.1 joerg common_jmp_near(emu, !ACCESS_FLAG(F_PF));
4446 1.1 joerg break;
4447 1.1 joerg case 0x7c:
4448 1.1 joerg x86emuOp_jump_near_L(emu);
4449 1.1 joerg break;
4450 1.1 joerg case 0x7d:
4451 1.1 joerg x86emuOp_jump_near_NL(emu);
4452 1.1 joerg break;
4453 1.1 joerg case 0x7e:
4454 1.1 joerg x86emuOp_jump_near_LE(emu);
4455 1.1 joerg break;
4456 1.1 joerg case 0x7f:
4457 1.1 joerg x86emuOp_jump_near_NLE(emu);
4458 1.1 joerg break;
4459 1.1 joerg
4460 1.1 joerg case 0x80:
4461 1.1 joerg x86emuOp_opc80_byte_RM_IMM(emu);
4462 1.1 joerg break;
4463 1.1 joerg case 0x81:
4464 1.1 joerg x86emuOp_opc81_word_RM_IMM(emu);
4465 1.1 joerg break;
4466 1.1 joerg case 0x82:
4467 1.1 joerg x86emuOp_opc82_byte_RM_IMM(emu);
4468 1.1 joerg break;
4469 1.1 joerg case 0x83:
4470 1.1 joerg x86emuOp_opc83_word_RM_IMM(emu);
4471 1.1 joerg break;
4472 1.1 joerg case 0x84:
4473 1.1 joerg common_binop_ns_byte_rm_r(emu, test_byte);
4474 1.1 joerg break;
4475 1.1 joerg case 0x85:
4476 1.1 joerg common_binop_ns_word_long_rm_r(emu, test_word, test_long);
4477 1.1 joerg break;
4478 1.1 joerg case 0x86:
4479 1.1 joerg x86emuOp_xchg_byte_RM_R(emu);
4480 1.1 joerg break;
4481 1.1 joerg case 0x87:
4482 1.1 joerg x86emuOp_xchg_word_RM_R(emu);
4483 1.1 joerg break;
4484 1.1 joerg
4485 1.1 joerg case 0x88:
4486 1.1 joerg x86emuOp_mov_byte_RM_R(emu);
4487 1.1 joerg break;
4488 1.1 joerg case 0x89:
4489 1.1 joerg x86emuOp_mov_word_RM_R(emu);
4490 1.1 joerg break;
4491 1.1 joerg case 0x8a:
4492 1.1 joerg x86emuOp_mov_byte_R_RM(emu);
4493 1.1 joerg break;
4494 1.1 joerg case 0x8b:
4495 1.1 joerg x86emuOp_mov_word_R_RM(emu);
4496 1.1 joerg break;
4497 1.1 joerg case 0x8c:
4498 1.1 joerg x86emuOp_mov_word_RM_SR(emu);
4499 1.1 joerg break;
4500 1.1 joerg case 0x8d:
4501 1.1 joerg x86emuOp_lea_word_R_M(emu);
4502 1.1 joerg break;
4503 1.1 joerg case 0x8e:
4504 1.1 joerg x86emuOp_mov_word_SR_RM(emu);
4505 1.1 joerg break;
4506 1.1 joerg case 0x8f:
4507 1.1 joerg x86emuOp_pop_RM(emu);
4508 1.1 joerg break;
4509 1.1 joerg
4510 1.1 joerg case 0x90:
4511 1.1 joerg /* nop */
4512 1.1 joerg break;
4513 1.1 joerg case 0x91:
4514 1.1 joerg x86emuOp_xchg_word_AX_CX(emu);
4515 1.1 joerg break;
4516 1.1 joerg case 0x92:
4517 1.1 joerg x86emuOp_xchg_word_AX_DX(emu);
4518 1.1 joerg break;
4519 1.1 joerg case 0x93:
4520 1.1 joerg x86emuOp_xchg_word_AX_BX(emu);
4521 1.1 joerg break;
4522 1.1 joerg case 0x94:
4523 1.1 joerg x86emuOp_xchg_word_AX_SP(emu);
4524 1.1 joerg break;
4525 1.1 joerg case 0x95:
4526 1.1 joerg x86emuOp_xchg_word_AX_BP(emu);
4527 1.1 joerg break;
4528 1.1 joerg case 0x96:
4529 1.1 joerg x86emuOp_xchg_word_AX_SI(emu);
4530 1.1 joerg break;
4531 1.1 joerg case 0x97:
4532 1.1 joerg x86emuOp_xchg_word_AX_DI(emu);
4533 1.1 joerg break;
4534 1.1 joerg
4535 1.1 joerg case 0x98:
4536 1.1 joerg x86emuOp_cbw(emu);
4537 1.1 joerg break;
4538 1.1 joerg case 0x99:
4539 1.1 joerg x86emuOp_cwd(emu);
4540 1.1 joerg break;
4541 1.1 joerg case 0x9a:
4542 1.1 joerg x86emuOp_call_far_IMM(emu);
4543 1.1 joerg break;
4544 1.1 joerg case 0x9b:
4545 1.1 joerg /* wait */
4546 1.1 joerg break;
4547 1.1 joerg case 0x9c:
4548 1.1 joerg x86emuOp_pushf_word(emu);
4549 1.1 joerg break;
4550 1.1 joerg case 0x9d:
4551 1.1 joerg x86emuOp_popf_word(emu);
4552 1.1 joerg break;
4553 1.1 joerg case 0x9e:
4554 1.1 joerg x86emuOp_sahf(emu);
4555 1.1 joerg break;
4556 1.1 joerg case 0x9f:
4557 1.1 joerg x86emuOp_lahf(emu);
4558 1.1 joerg break;
4559 1.1 joerg
4560 1.1 joerg case 0xa0:
4561 1.1 joerg x86emuOp_mov_AL_M_IMM(emu);
4562 1.1 joerg break;
4563 1.1 joerg case 0xa1:
4564 1.1 joerg x86emuOp_mov_AX_M_IMM(emu);
4565 1.1 joerg break;
4566 1.1 joerg case 0xa2:
4567 1.1 joerg x86emuOp_mov_M_AL_IMM(emu);
4568 1.1 joerg break;
4569 1.1 joerg case 0xa3:
4570 1.1 joerg x86emuOp_mov_M_AX_IMM(emu);
4571 1.1 joerg break;
4572 1.1 joerg case 0xa4:
4573 1.1 joerg x86emuOp_movs_byte(emu);
4574 1.1 joerg break;
4575 1.1 joerg case 0xa5:
4576 1.1 joerg x86emuOp_movs_word(emu);
4577 1.1 joerg break;
4578 1.1 joerg case 0xa6:
4579 1.1 joerg x86emuOp_cmps_byte(emu);
4580 1.1 joerg break;
4581 1.1 joerg case 0xa7:
4582 1.1 joerg x86emuOp_cmps_word(emu);
4583 1.1 joerg break;
4584 1.1 joerg
4585 1.1 joerg case 0xa8:
4586 1.1 joerg test_byte(emu, emu->x86.R_AL, fetch_byte_imm(emu));
4587 1.1 joerg break;
4588 1.1 joerg case 0xa9:
4589 1.1 joerg x86emuOp_test_AX_IMM(emu);
4590 1.1 joerg break;
4591 1.1 joerg case 0xaa:
4592 1.1 joerg x86emuOp_stos_byte(emu);
4593 1.1 joerg break;
4594 1.1 joerg case 0xab:
4595 1.1 joerg x86emuOp_stos_word(emu);
4596 1.1 joerg break;
4597 1.1 joerg case 0xac:
4598 1.1 joerg x86emuOp_lods_byte(emu);
4599 1.1 joerg break;
4600 1.1 joerg case 0xad:
4601 1.1 joerg x86emuOp_lods_word(emu);
4602 1.1 joerg break;
4603 1.1 joerg case 0xae:
4604 1.1 joerg x86emuOp_scas_byte(emu);
4605 1.1 joerg break;
4606 1.1 joerg case 0xaf:
4607 1.1 joerg x86emuOp_scas_word(emu);
4608 1.1 joerg break;
4609 1.1 joerg
4610 1.1 joerg case 0xb0:
4611 1.1 joerg emu->x86.R_AL = fetch_byte_imm(emu);
4612 1.1 joerg break;
4613 1.1 joerg case 0xb1:
4614 1.1 joerg emu->x86.R_CL = fetch_byte_imm(emu);
4615 1.1 joerg break;
4616 1.1 joerg case 0xb2:
4617 1.1 joerg emu->x86.R_DL = fetch_byte_imm(emu);
4618 1.1 joerg break;
4619 1.1 joerg case 0xb3:
4620 1.1 joerg emu->x86.R_BL = fetch_byte_imm(emu);
4621 1.1 joerg break;
4622 1.1 joerg case 0xb4:
4623 1.1 joerg emu->x86.R_AH = fetch_byte_imm(emu);
4624 1.1 joerg break;
4625 1.1 joerg case 0xb5:
4626 1.1 joerg emu->x86.R_CH = fetch_byte_imm(emu);
4627 1.1 joerg break;
4628 1.1 joerg case 0xb6:
4629 1.1 joerg emu->x86.R_DH = fetch_byte_imm(emu);
4630 1.1 joerg break;
4631 1.1 joerg case 0xb7:
4632 1.1 joerg emu->x86.R_BH = fetch_byte_imm(emu);
4633 1.1 joerg break;
4634 1.1 joerg
4635 1.1 joerg case 0xb8:
4636 1.1 joerg x86emuOp_mov_word_AX_IMM(emu);
4637 1.1 joerg break;
4638 1.1 joerg case 0xb9:
4639 1.1 joerg x86emuOp_mov_word_CX_IMM(emu);
4640 1.1 joerg break;
4641 1.1 joerg case 0xba:
4642 1.1 joerg x86emuOp_mov_word_DX_IMM(emu);
4643 1.1 joerg break;
4644 1.1 joerg case 0xbb:
4645 1.1 joerg x86emuOp_mov_word_BX_IMM(emu);
4646 1.1 joerg break;
4647 1.1 joerg case 0xbc:
4648 1.1 joerg x86emuOp_mov_word_SP_IMM(emu);
4649 1.1 joerg break;
4650 1.1 joerg case 0xbd:
4651 1.1 joerg x86emuOp_mov_word_BP_IMM(emu);
4652 1.1 joerg break;
4653 1.1 joerg case 0xbe:
4654 1.1 joerg x86emuOp_mov_word_SI_IMM(emu);
4655 1.1 joerg break;
4656 1.1 joerg case 0xbf:
4657 1.1 joerg x86emuOp_mov_word_DI_IMM(emu);
4658 1.1 joerg break;
4659 1.1 joerg
4660 1.1 joerg case 0xc0:
4661 1.1 joerg x86emuOp_opcC0_byte_RM_MEM(emu);
4662 1.1 joerg break;
4663 1.1 joerg case 0xc1:
4664 1.1 joerg x86emuOp_opcC1_word_RM_MEM(emu);
4665 1.1 joerg break;
4666 1.1 joerg case 0xc2:
4667 1.1 joerg x86emuOp_ret_near_IMM(emu);
4668 1.1 joerg break;
4669 1.1 joerg case 0xc3:
4670 1.1 joerg emu->x86.R_IP = pop_word(emu);
4671 1.1 joerg break;
4672 1.1 joerg case 0xc4:
4673 1.1 joerg common_load_far_pointer(emu, &emu->x86.R_ES);
4674 1.1 joerg break;
4675 1.1 joerg case 0xc5:
4676 1.1 joerg common_load_far_pointer(emu, &emu->x86.R_DS);
4677 1.1 joerg break;
4678 1.1 joerg case 0xc6:
4679 1.1 joerg x86emuOp_mov_byte_RM_IMM(emu);
4680 1.1 joerg break;
4681 1.1 joerg case 0xc7:
4682 1.1 joerg x86emuOp_mov_word_RM_IMM(emu);
4683 1.1 joerg break;
4684 1.1 joerg case 0xc8:
4685 1.1 joerg x86emuOp_enter(emu);
4686 1.1 joerg break;
4687 1.1 joerg case 0xc9:
4688 1.1 joerg x86emuOp_leave(emu);
4689 1.1 joerg break;
4690 1.1 joerg case 0xca:
4691 1.1 joerg x86emuOp_ret_far_IMM(emu);
4692 1.1 joerg break;
4693 1.1 joerg case 0xcb:
4694 1.1 joerg x86emuOp_ret_far(emu);
4695 1.1 joerg break;
4696 1.1 joerg case 0xcc:
4697 1.1 joerg x86emuOp_int3(emu);
4698 1.1 joerg break;
4699 1.1 joerg case 0xcd:
4700 1.1 joerg x86emuOp_int_IMM(emu);
4701 1.1 joerg break;
4702 1.1 joerg case 0xce:
4703 1.1 joerg x86emuOp_into(emu);
4704 1.1 joerg break;
4705 1.1 joerg case 0xcf:
4706 1.1 joerg x86emuOp_iret(emu);
4707 1.1 joerg break;
4708 1.1 joerg
4709 1.1 joerg case 0xd0:
4710 1.1 joerg x86emuOp_opcD0_byte_RM_1(emu);
4711 1.1 joerg break;
4712 1.1 joerg case 0xd1:
4713 1.1 joerg x86emuOp_opcD1_word_RM_1(emu);
4714 1.1 joerg break;
4715 1.1 joerg case 0xd2:
4716 1.1 joerg x86emuOp_opcD2_byte_RM_CL(emu);
4717 1.1 joerg break;
4718 1.1 joerg case 0xd3:
4719 1.1 joerg x86emuOp_opcD3_word_RM_CL(emu);
4720 1.1 joerg break;
4721 1.1 joerg case 0xd4:
4722 1.1 joerg x86emuOp_aam(emu);
4723 1.1 joerg break;
4724 1.1 joerg case 0xd5:
4725 1.1 joerg x86emuOp_aad(emu);
4726 1.1 joerg break;
4727 1.1 joerg /* 0xd6 Undocumented SETALC instruction */
4728 1.1 joerg case 0xd7:
4729 1.1 joerg x86emuOp_xlat(emu);
4730 1.1 joerg break;
4731 1.1 joerg case 0xd8:
4732 1.1 joerg x86emuOp_esc_coprocess_d8(emu);
4733 1.1 joerg break;
4734 1.1 joerg case 0xd9:
4735 1.1 joerg x86emuOp_esc_coprocess_d9(emu);
4736 1.1 joerg break;
4737 1.1 joerg case 0xda:
4738 1.1 joerg x86emuOp_esc_coprocess_da(emu);
4739 1.1 joerg break;
4740 1.1 joerg case 0xdb:
4741 1.1 joerg x86emuOp_esc_coprocess_db(emu);
4742 1.1 joerg break;
4743 1.1 joerg case 0xdc:
4744 1.1 joerg x86emuOp_esc_coprocess_dc(emu);
4745 1.1 joerg break;
4746 1.1 joerg case 0xdd:
4747 1.1 joerg x86emuOp_esc_coprocess_dd(emu);
4748 1.1 joerg break;
4749 1.1 joerg case 0xde:
4750 1.1 joerg x86emuOp_esc_coprocess_de(emu);
4751 1.1 joerg break;
4752 1.1 joerg case 0xdf:
4753 1.1 joerg x86emuOp_esc_coprocess_df(emu);
4754 1.1 joerg break;
4755 1.1 joerg
4756 1.1 joerg case 0xe0:
4757 1.1 joerg x86emuOp_loopne(emu);
4758 1.1 joerg break;
4759 1.1 joerg case 0xe1:
4760 1.1 joerg x86emuOp_loope(emu);
4761 1.1 joerg break;
4762 1.1 joerg case 0xe2:
4763 1.1 joerg x86emuOp_loop(emu);
4764 1.1 joerg break;
4765 1.1 joerg case 0xe3:
4766 1.1 joerg x86emuOp_jcxz(emu);
4767 1.1 joerg break;
4768 1.1 joerg case 0xe4:
4769 1.1 joerg x86emuOp_in_byte_AL_IMM(emu);
4770 1.1 joerg break;
4771 1.1 joerg case 0xe5:
4772 1.1 joerg x86emuOp_in_word_AX_IMM(emu);
4773 1.1 joerg break;
4774 1.1 joerg case 0xe6:
4775 1.1 joerg x86emuOp_out_byte_IMM_AL(emu);
4776 1.1 joerg break;
4777 1.1 joerg case 0xe7:
4778 1.1 joerg x86emuOp_out_word_IMM_AX(emu);
4779 1.1 joerg break;
4780 1.1 joerg
4781 1.1 joerg case 0xe8:
4782 1.1 joerg x86emuOp_call_near_IMM(emu);
4783 1.1 joerg break;
4784 1.1 joerg case 0xe9:
4785 1.1 joerg x86emuOp_jump_near_IMM(emu);
4786 1.1 joerg break;
4787 1.1 joerg case 0xea:
4788 1.1 joerg x86emuOp_jump_far_IMM(emu);
4789 1.1 joerg break;
4790 1.1 joerg case 0xeb:
4791 1.1 joerg x86emuOp_jump_byte_IMM(emu);
4792 1.1 joerg break;
4793 1.1 joerg case 0xec:
4794 1.1 joerg x86emuOp_in_byte_AL_DX(emu);
4795 1.1 joerg break;
4796 1.1 joerg case 0xed:
4797 1.1 joerg x86emuOp_in_word_AX_DX(emu);
4798 1.1 joerg break;
4799 1.1 joerg case 0xee:
4800 1.1 joerg x86emuOp_out_byte_DX_AL(emu);
4801 1.1 joerg break;
4802 1.1 joerg case 0xef:
4803 1.1 joerg x86emuOp_out_word_DX_AX(emu);
4804 1.1 joerg break;
4805 1.1 joerg
4806 1.1 joerg case 0xf0:
4807 1.1 joerg x86emuOp_lock(emu);
4808 1.1 joerg break;
4809 1.1 joerg case 0xf2:
4810 1.1 joerg emu->x86.mode |= SYSMODE_PREFIX_REPNE;
4811 1.1 joerg break;
4812 1.1 joerg case 0xf3:
4813 1.1 joerg emu->x86.mode |= SYSMODE_PREFIX_REPE;
4814 1.1 joerg break;
4815 1.1 joerg case 0xf4:
4816 1.1 joerg X86EMU_halt_sys(emu);
4817 1.1 joerg break;
4818 1.1 joerg case 0xf5:
4819 1.1 joerg x86emuOp_cmc(emu);
4820 1.1 joerg break;
4821 1.1 joerg case 0xf6:
4822 1.1 joerg x86emuOp_opcF6_byte_RM(emu);
4823 1.1 joerg break;
4824 1.1 joerg case 0xf7:
4825 1.1 joerg x86emuOp_opcF7_word_RM(emu);
4826 1.1 joerg break;
4827 1.1 joerg
4828 1.1 joerg case 0xf8:
4829 1.1 joerg CLEAR_FLAG(F_CF);
4830 1.1 joerg break;
4831 1.1 joerg case 0xf9:
4832 1.1 joerg SET_FLAG(F_CF);
4833 1.1 joerg break;
4834 1.1 joerg case 0xfa:
4835 1.1 joerg CLEAR_FLAG(F_IF);
4836 1.1 joerg break;
4837 1.1 joerg case 0xfb:
4838 1.1 joerg SET_FLAG(F_IF);
4839 1.1 joerg break;
4840 1.1 joerg case 0xfc:
4841 1.1 joerg CLEAR_FLAG(F_DF);
4842 1.1 joerg break;
4843 1.1 joerg case 0xfd:
4844 1.1 joerg SET_FLAG(F_DF);
4845 1.1 joerg break;
4846 1.1 joerg case 0xfe:
4847 1.1 joerg x86emuOp_opcFE_byte_RM(emu);
4848 1.1 joerg break;
4849 1.1 joerg case 0xff:
4850 1.1 joerg x86emuOp_opcFF_word_RM(emu);
4851 1.1 joerg break;
4852 1.1 joerg default:
4853 1.1 joerg X86EMU_halt_sys(emu);
4854 1.1 joerg break;
4855 1.1 joerg }
4856 1.1 joerg if (op1 != 0x26 && op1 != 0x2e && op1 != 0x36 && op1 != 0x3e &&
4857 1.1 joerg (op1 | 3) != 0x67)
4858 1.1 joerg emu->x86.mode &= ~SYSMODE_CLRMASK;
4859 1.1 joerg }
4860 1.1 joerg
4861 1.1 joerg static void
4862 1.1 joerg common_jmp_long(struct X86EMU *emu, bool cond)
4863 1.1 joerg {
4864 1.1 joerg int16_t target;
4865 1.1 joerg
4866 1.1 joerg target = (int16_t) fetch_word_imm(emu);
4867 1.1 joerg target += (int16_t) emu->x86.R_IP;
4868 1.1 joerg if (cond)
4869 1.1 joerg emu->x86.R_IP = (uint16_t) target;
4870 1.1 joerg }
4871 1.1 joerg
4872 1.1 joerg static void
4873 1.1 joerg common_set_byte(struct X86EMU *emu, bool cond)
4874 1.1 joerg {
4875 1.1 joerg uint32_t destoffset;
4876 1.1 joerg uint8_t *destreg, destval;
4877 1.1 joerg
4878 1.1 joerg fetch_decode_modrm(emu);
4879 1.1 joerg destval = cond ? 0x01 : 0x00;
4880 1.1 joerg if (emu->cur_mod != 3) {
4881 1.1 joerg destoffset = decode_rl_address(emu);
4882 1.1 joerg store_data_byte(emu, destoffset, destval);
4883 1.1 joerg } else {
4884 1.1 joerg destreg = decode_rl_byte_register(emu);
4885 1.1 joerg *destreg = destval;
4886 1.1 joerg }
4887 1.1 joerg }
4888 1.1 joerg
4889 1.1 joerg static void
4890 1.1 joerg common_bitstring32(struct X86EMU *emu, int op)
4891 1.1 joerg {
4892 1.1 joerg int bit;
4893 1.1 joerg uint32_t srcval, *shiftreg, mask;
4894 1.1 joerg
4895 1.1 joerg fetch_decode_modrm(emu);
4896 1.1 joerg shiftreg = decode_rh_long_register(emu);
4897 1.1 joerg srcval = decode_and_fetch_long_disp(emu, (int16_t) *shiftreg >> 5);
4898 1.1 joerg bit = *shiftreg & 0x1F;
4899 1.1 joerg mask = 0x1 << bit;
4900 1.1 joerg CONDITIONAL_SET_FLAG(srcval & mask, F_CF);
4901 1.1 joerg
4902 1.1 joerg switch (op) {
4903 1.1 joerg case 0:
4904 1.1 joerg break;
4905 1.1 joerg case 1:
4906 1.1 joerg write_back_long(emu, srcval | mask);
4907 1.1 joerg break;
4908 1.1 joerg case 2:
4909 1.1 joerg write_back_long(emu, srcval & ~mask);
4910 1.1 joerg break;
4911 1.1 joerg case 3:
4912 1.1 joerg write_back_long(emu, srcval ^ mask);
4913 1.1 joerg break;
4914 1.1 joerg }
4915 1.1 joerg }
4916 1.1 joerg
4917 1.1 joerg static void
4918 1.1 joerg common_bitstring16(struct X86EMU *emu, int op)
4919 1.1 joerg {
4920 1.1 joerg int bit;
4921 1.1 joerg uint16_t srcval, *shiftreg, mask;
4922 1.1 joerg
4923 1.1 joerg fetch_decode_modrm(emu);
4924 1.1 joerg shiftreg = decode_rh_word_register(emu);
4925 1.1 joerg srcval = decode_and_fetch_word_disp(emu, (int16_t) *shiftreg >> 4);
4926 1.1 joerg bit = *shiftreg & 0xF;
4927 1.1 joerg mask = 0x1 << bit;
4928 1.1 joerg CONDITIONAL_SET_FLAG(srcval & mask, F_CF);
4929 1.1 joerg
4930 1.1 joerg switch (op) {
4931 1.1 joerg case 0:
4932 1.1 joerg break;
4933 1.1 joerg case 1:
4934 1.1 joerg write_back_word(emu, srcval | mask);
4935 1.1 joerg break;
4936 1.1 joerg case 2:
4937 1.1 joerg write_back_word(emu, srcval & ~mask);
4938 1.1 joerg break;
4939 1.1 joerg case 3:
4940 1.1 joerg write_back_word(emu, srcval ^ mask);
4941 1.1 joerg break;
4942 1.1 joerg }
4943 1.1 joerg }
4944 1.1 joerg
4945 1.1 joerg static void
4946 1.1 joerg common_bitstring(struct X86EMU *emu, int op)
4947 1.1 joerg {
4948 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
4949 1.1 joerg common_bitstring32(emu, op);
4950 1.1 joerg else
4951 1.1 joerg common_bitstring16(emu, op);
4952 1.1 joerg }
4953 1.1 joerg
4954 1.1 joerg static void
4955 1.1 joerg common_bitsearch32(struct X86EMU *emu, int diff)
4956 1.1 joerg {
4957 1.1 joerg uint32_t srcval, *dstreg;
4958 1.1 joerg
4959 1.1 joerg fetch_decode_modrm(emu);
4960 1.1 joerg dstreg = decode_rh_long_register(emu);
4961 1.1 joerg srcval = decode_and_fetch_long(emu);
4962 1.1 joerg CONDITIONAL_SET_FLAG(srcval == 0, F_ZF);
4963 1.1 joerg for (*dstreg = 0; *dstreg < 32; *dstreg += diff) {
4964 1.1 joerg if ((srcval >> *dstreg) & 1)
4965 1.1 joerg break;
4966 1.1 joerg }
4967 1.1 joerg }
4968 1.1 joerg
4969 1.1 joerg static void
4970 1.1 joerg common_bitsearch16(struct X86EMU *emu, int diff)
4971 1.1 joerg {
4972 1.1 joerg uint16_t srcval, *dstreg;
4973 1.1 joerg
4974 1.1 joerg fetch_decode_modrm(emu);
4975 1.1 joerg dstreg = decode_rh_word_register(emu);
4976 1.1 joerg srcval = decode_and_fetch_word(emu);
4977 1.1 joerg CONDITIONAL_SET_FLAG(srcval == 0, F_ZF);
4978 1.1 joerg for (*dstreg = 0; *dstreg < 16; *dstreg += diff) {
4979 1.1 joerg if ((srcval >> *dstreg) & 1)
4980 1.1 joerg break;
4981 1.1 joerg }
4982 1.1 joerg }
4983 1.1 joerg
4984 1.1 joerg static void
4985 1.1 joerg common_bitsearch(struct X86EMU *emu, int diff)
4986 1.1 joerg {
4987 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
4988 1.1 joerg common_bitsearch32(emu, diff);
4989 1.1 joerg else
4990 1.1 joerg common_bitsearch16(emu, diff);
4991 1.1 joerg }
4992 1.1 joerg
4993 1.1 joerg static void
4994 1.1 joerg common_shift32(struct X86EMU *emu, bool shift_left, bool use_cl)
4995 1.1 joerg {
4996 1.1 joerg uint8_t shift;
4997 1.1 joerg uint32_t destval, *shiftreg;
4998 1.1 joerg
4999 1.1 joerg fetch_decode_modrm(emu);
5000 1.1 joerg shiftreg = decode_rh_long_register(emu);
5001 1.1 joerg if (use_cl) {
5002 1.1 joerg destval = decode_and_fetch_long(emu);
5003 1.1 joerg shift = emu->x86.R_CL;
5004 1.1 joerg } else {
5005 1.1 joerg destval = decode_and_fetch_long_imm8(emu, &shift);
5006 1.1 joerg }
5007 1.1 joerg if (shift_left)
5008 1.1 joerg destval = shld_long(emu, destval, *shiftreg, shift);
5009 1.1 joerg else
5010 1.1 joerg destval = shrd_long(emu, destval, *shiftreg, shift);
5011 1.1 joerg write_back_long(emu, destval);
5012 1.1 joerg }
5013 1.1 joerg
5014 1.1 joerg static void
5015 1.1 joerg common_shift16(struct X86EMU *emu, bool shift_left, bool use_cl)
5016 1.1 joerg {
5017 1.1 joerg uint8_t shift;
5018 1.1 joerg uint16_t destval, *shiftreg;
5019 1.1 joerg
5020 1.1 joerg fetch_decode_modrm(emu);
5021 1.1 joerg shiftreg = decode_rh_word_register(emu);
5022 1.1 joerg if (use_cl) {
5023 1.1 joerg destval = decode_and_fetch_word(emu);
5024 1.1 joerg shift = emu->x86.R_CL;
5025 1.1 joerg } else {
5026 1.1 joerg destval = decode_and_fetch_word_imm8(emu, &shift);
5027 1.1 joerg }
5028 1.1 joerg if (shift_left)
5029 1.1 joerg destval = shld_word(emu, destval, *shiftreg, shift);
5030 1.1 joerg else
5031 1.1 joerg destval = shrd_word(emu, destval, *shiftreg, shift);
5032 1.1 joerg write_back_word(emu, destval);
5033 1.1 joerg }
5034 1.1 joerg
5035 1.1 joerg static void
5036 1.1 joerg common_shift(struct X86EMU *emu, bool shift_left, bool use_cl)
5037 1.1 joerg {
5038 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
5039 1.1 joerg common_shift32(emu, shift_left, use_cl);
5040 1.1 joerg else
5041 1.1 joerg common_shift16(emu, shift_left, use_cl);
5042 1.1 joerg }
5043 1.1 joerg
5044 1.1 joerg /*----------------------------- Implementation ----------------------------*/
5045 1.1 joerg #define xorl(a,b) ((a) && !(b)) || (!(a) && (b))
5046 1.1 joerg
5047 1.1 joerg /****************************************************************************
5048 1.1 joerg REMARKS:
5049 1.1 joerg Handles opcode 0x0f,0x31
5050 1.1 joerg ****************************************************************************/
5051 1.1 joerg static void
5052 1.1 joerg x86emuOp2_rdtsc(struct X86EMU *emu)
5053 1.1 joerg {
5054 1.1 joerg emu->x86.R_EAX = emu->cur_cycles & 0xffffffff;
5055 1.1 joerg emu->x86.R_EDX = emu->cur_cycles >> 32;
5056 1.1 joerg }
5057 1.1 joerg /****************************************************************************
5058 1.1 joerg REMARKS:
5059 1.1 joerg Handles opcode 0x0f,0xa0
5060 1.1 joerg ****************************************************************************/
5061 1.1 joerg static void
5062 1.1 joerg x86emuOp2_push_FS(struct X86EMU *emu)
5063 1.1 joerg {
5064 1.1 joerg push_word(emu, emu->x86.R_FS);
5065 1.1 joerg }
5066 1.1 joerg /****************************************************************************
5067 1.1 joerg REMARKS:
5068 1.1 joerg Handles opcode 0x0f,0xa1
5069 1.1 joerg ****************************************************************************/
5070 1.1 joerg static void
5071 1.1 joerg x86emuOp2_pop_FS(struct X86EMU *emu)
5072 1.1 joerg {
5073 1.1 joerg emu->x86.R_FS = pop_word(emu);
5074 1.1 joerg }
5075 1.1 joerg /****************************************************************************
5076 1.1 joerg REMARKS:
5077 1.4 jmcneill Handles opcode 0x0f,0xa1
5078 1.4 jmcneill ****************************************************************************/
5079 1.4 jmcneill #if defined(__i386__) || defined(__amd64__)
5080 1.4 jmcneill static void
5081 1.4 jmcneill hw_cpuid(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d)
5082 1.4 jmcneill {
5083 1.4 jmcneill __asm__ __volatile__("cpuid"
5084 1.4 jmcneill : "=a" (*a), "=b" (*b),
5085 1.4 jmcneill "=c" (*c), "=d" (*d)
5086 1.4 jmcneill : "a" (*a), "c" (*c)
5087 1.4 jmcneill : "cc");
5088 1.4 jmcneill }
5089 1.4 jmcneill #endif
5090 1.4 jmcneill static void
5091 1.4 jmcneill x86emuOp2_cpuid(struct X86EMU *emu)
5092 1.4 jmcneill {
5093 1.4 jmcneill #if defined(__i386__) || defined(__amd64__)
5094 1.4 jmcneill hw_cpuid(&emu->x86.R_EAX, &emu->x86.R_EBX, &emu->x86.R_ECX,
5095 1.4 jmcneill &emu->x86.R_EDX);
5096 1.4 jmcneill #endif
5097 1.4 jmcneill switch (emu->x86.R_EAX) {
5098 1.4 jmcneill case 0:
5099 1.4 jmcneill emu->x86.R_EAX = 1;
5100 1.4 jmcneill #if !defined(__i386__) && !defined(__amd64__)
5101 1.4 jmcneill /* "GenuineIntel" */
5102 1.4 jmcneill emu->x86.R_EBX = 0x756e6547;
5103 1.4 jmcneill emu->x86.R_EDX = 0x49656e69;
5104 1.4 jmcneill emu->x86.R_ECX = 0x6c65746e;
5105 1.4 jmcneill #endif
5106 1.4 jmcneill break;
5107 1.4 jmcneill case 1:
5108 1.4 jmcneill #if !defined(__i386__) && !defined(__amd64__)
5109 1.4 jmcneill emu->x86.R_EAX = 0x00000480;
5110 1.4 jmcneill emu->x86.R_EBX = emu->x86.R_ECX = 0;
5111 1.4 jmcneill emu->x86.R_EDX = 0x00000002;
5112 1.4 jmcneill #else
5113 1.4 jmcneill emu->x86.R_EDX &= 0x00000012;
5114 1.4 jmcneill #endif
5115 1.4 jmcneill break;
5116 1.4 jmcneill default:
5117 1.4 jmcneill emu->x86.R_EAX = emu->x86.R_EBX = emu->x86.R_ECX =
5118 1.4 jmcneill emu->x86.R_EDX = 0;
5119 1.4 jmcneill break;
5120 1.4 jmcneill }
5121 1.4 jmcneill }
5122 1.4 jmcneill /****************************************************************************
5123 1.4 jmcneill REMARKS:
5124 1.1 joerg Handles opcode 0x0f,0xa3
5125 1.1 joerg ****************************************************************************/
5126 1.1 joerg static void
5127 1.1 joerg x86emuOp2_bt_R(struct X86EMU *emu)
5128 1.1 joerg {
5129 1.1 joerg common_bitstring(emu, 0);
5130 1.1 joerg }
5131 1.1 joerg /****************************************************************************
5132 1.1 joerg REMARKS:
5133 1.1 joerg Handles opcode 0x0f,0xa4
5134 1.1 joerg ****************************************************************************/
5135 1.1 joerg static void
5136 1.1 joerg x86emuOp2_shld_IMM(struct X86EMU *emu)
5137 1.1 joerg {
5138 1.1 joerg common_shift(emu, true, false);
5139 1.1 joerg }
5140 1.1 joerg /****************************************************************************
5141 1.1 joerg REMARKS:
5142 1.1 joerg Handles opcode 0x0f,0xa5
5143 1.1 joerg ****************************************************************************/
5144 1.1 joerg static void
5145 1.1 joerg x86emuOp2_shld_CL(struct X86EMU *emu)
5146 1.1 joerg {
5147 1.1 joerg common_shift(emu, true, true);
5148 1.1 joerg }
5149 1.1 joerg /****************************************************************************
5150 1.1 joerg REMARKS:
5151 1.1 joerg Handles opcode 0x0f,0xa8
5152 1.1 joerg ****************************************************************************/
5153 1.1 joerg static void
5154 1.1 joerg x86emuOp2_push_GS(struct X86EMU *emu)
5155 1.1 joerg {
5156 1.1 joerg push_word(emu, emu->x86.R_GS);
5157 1.1 joerg }
5158 1.1 joerg /****************************************************************************
5159 1.1 joerg REMARKS:
5160 1.1 joerg Handles opcode 0x0f,0xa9
5161 1.1 joerg ****************************************************************************/
5162 1.1 joerg static void
5163 1.1 joerg x86emuOp2_pop_GS(struct X86EMU *emu)
5164 1.1 joerg {
5165 1.1 joerg emu->x86.R_GS = pop_word(emu);
5166 1.1 joerg }
5167 1.1 joerg /****************************************************************************
5168 1.1 joerg REMARKS:
5169 1.1 joerg Handles opcode 0x0f,0xab
5170 1.1 joerg ****************************************************************************/
5171 1.1 joerg static void
5172 1.1 joerg x86emuOp2_bts_R(struct X86EMU *emu)
5173 1.1 joerg {
5174 1.1 joerg common_bitstring(emu, 1);
5175 1.1 joerg }
5176 1.1 joerg /****************************************************************************
5177 1.1 joerg REMARKS:
5178 1.1 joerg Handles opcode 0x0f,0xac
5179 1.1 joerg ****************************************************************************/
5180 1.1 joerg static void
5181 1.1 joerg x86emuOp2_shrd_IMM(struct X86EMU *emu)
5182 1.1 joerg {
5183 1.1 joerg common_shift(emu, false, false);
5184 1.1 joerg }
5185 1.1 joerg /****************************************************************************
5186 1.1 joerg REMARKS:
5187 1.1 joerg Handles opcode 0x0f,0xad
5188 1.1 joerg ****************************************************************************/
5189 1.1 joerg static void
5190 1.1 joerg x86emuOp2_shrd_CL(struct X86EMU *emu)
5191 1.1 joerg {
5192 1.1 joerg common_shift(emu, false, true);
5193 1.1 joerg }
5194 1.1 joerg /****************************************************************************
5195 1.1 joerg REMARKS:
5196 1.1 joerg Handles opcode 0x0f,0xaf
5197 1.1 joerg ****************************************************************************/
5198 1.1 joerg static void
5199 1.1 joerg x86emuOp2_32_imul_R_RM(struct X86EMU *emu)
5200 1.1 joerg {
5201 1.1 joerg uint32_t *destreg, srcval;
5202 1.1 joerg uint64_t res;
5203 1.1 joerg
5204 1.1 joerg fetch_decode_modrm(emu);
5205 1.1 joerg destreg = decode_rh_long_register(emu);
5206 1.1 joerg srcval = decode_and_fetch_long(emu);
5207 1.1 joerg res = (int32_t) *destreg * (int32_t)srcval;
5208 1.1 joerg if (res > 0xffffffff) {
5209 1.1 joerg SET_FLAG(F_CF);
5210 1.1 joerg SET_FLAG(F_OF);
5211 1.1 joerg } else {
5212 1.1 joerg CLEAR_FLAG(F_CF);
5213 1.1 joerg CLEAR_FLAG(F_OF);
5214 1.1 joerg }
5215 1.1 joerg *destreg = (uint32_t) res;
5216 1.1 joerg }
5217 1.1 joerg
5218 1.1 joerg static void
5219 1.1 joerg x86emuOp2_16_imul_R_RM(struct X86EMU *emu)
5220 1.1 joerg {
5221 1.1 joerg uint16_t *destreg, srcval;
5222 1.1 joerg uint32_t res;
5223 1.1 joerg
5224 1.1 joerg fetch_decode_modrm(emu);
5225 1.1 joerg destreg = decode_rh_word_register(emu);
5226 1.1 joerg srcval = decode_and_fetch_word(emu);
5227 1.1 joerg res = (int16_t) * destreg * (int16_t)srcval;
5228 1.1 joerg if (res > 0xFFFF) {
5229 1.1 joerg SET_FLAG(F_CF);
5230 1.1 joerg SET_FLAG(F_OF);
5231 1.1 joerg } else {
5232 1.1 joerg CLEAR_FLAG(F_CF);
5233 1.1 joerg CLEAR_FLAG(F_OF);
5234 1.1 joerg }
5235 1.1 joerg *destreg = (uint16_t) res;
5236 1.1 joerg }
5237 1.1 joerg
5238 1.1 joerg static void
5239 1.1 joerg x86emuOp2_imul_R_RM(struct X86EMU *emu)
5240 1.1 joerg {
5241 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
5242 1.1 joerg x86emuOp2_32_imul_R_RM(emu);
5243 1.1 joerg else
5244 1.1 joerg x86emuOp2_16_imul_R_RM(emu);
5245 1.1 joerg }
5246 1.1 joerg /****************************************************************************
5247 1.1 joerg REMARKS:
5248 1.1 joerg Handles opcode 0x0f,0xb2
5249 1.1 joerg ****************************************************************************/
5250 1.1 joerg static void
5251 1.1 joerg x86emuOp2_lss_R_IMM(struct X86EMU *emu)
5252 1.1 joerg {
5253 1.1 joerg common_load_far_pointer(emu, &emu->x86.R_SS);
5254 1.1 joerg }
5255 1.1 joerg /****************************************************************************
5256 1.1 joerg REMARKS:
5257 1.1 joerg Handles opcode 0x0f,0xb3
5258 1.1 joerg ****************************************************************************/
5259 1.1 joerg static void
5260 1.1 joerg x86emuOp2_btr_R(struct X86EMU *emu)
5261 1.1 joerg {
5262 1.1 joerg common_bitstring(emu, 2);
5263 1.1 joerg }
5264 1.1 joerg /****************************************************************************
5265 1.1 joerg REMARKS:
5266 1.1 joerg Handles opcode 0x0f,0xb4
5267 1.1 joerg ****************************************************************************/
5268 1.1 joerg static void
5269 1.1 joerg x86emuOp2_lfs_R_IMM(struct X86EMU *emu)
5270 1.1 joerg {
5271 1.1 joerg common_load_far_pointer(emu, &emu->x86.R_FS);
5272 1.1 joerg }
5273 1.1 joerg /****************************************************************************
5274 1.1 joerg REMARKS:
5275 1.1 joerg Handles opcode 0x0f,0xb5
5276 1.1 joerg ****************************************************************************/
5277 1.1 joerg static void
5278 1.1 joerg x86emuOp2_lgs_R_IMM(struct X86EMU *emu)
5279 1.1 joerg {
5280 1.1 joerg common_load_far_pointer(emu, &emu->x86.R_GS);
5281 1.1 joerg }
5282 1.1 joerg /****************************************************************************
5283 1.1 joerg REMARKS:
5284 1.1 joerg Handles opcode 0x0f,0xb6
5285 1.1 joerg ****************************************************************************/
5286 1.1 joerg static void
5287 1.1 joerg x86emuOp2_32_movzx_byte_R_RM(struct X86EMU *emu)
5288 1.1 joerg {
5289 1.1 joerg uint32_t *destreg;
5290 1.1 joerg
5291 1.1 joerg fetch_decode_modrm(emu);
5292 1.1 joerg destreg = decode_rh_long_register(emu);
5293 1.1 joerg *destreg = decode_and_fetch_byte(emu);
5294 1.1 joerg }
5295 1.1 joerg
5296 1.1 joerg static void
5297 1.1 joerg x86emuOp2_16_movzx_byte_R_RM(struct X86EMU *emu)
5298 1.1 joerg {
5299 1.1 joerg uint16_t *destreg;
5300 1.1 joerg
5301 1.1 joerg fetch_decode_modrm(emu);
5302 1.1 joerg destreg = decode_rh_word_register(emu);
5303 1.1 joerg *destreg = decode_and_fetch_byte(emu);
5304 1.1 joerg }
5305 1.1 joerg
5306 1.1 joerg static void
5307 1.1 joerg x86emuOp2_movzx_byte_R_RM(struct X86EMU *emu)
5308 1.1 joerg {
5309 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
5310 1.1 joerg x86emuOp2_32_movzx_byte_R_RM(emu);
5311 1.1 joerg else
5312 1.1 joerg x86emuOp2_16_movzx_byte_R_RM(emu);
5313 1.1 joerg }
5314 1.1 joerg /****************************************************************************
5315 1.1 joerg REMARKS:
5316 1.1 joerg Handles opcode 0x0f,0xb7
5317 1.1 joerg ****************************************************************************/
5318 1.1 joerg static void
5319 1.1 joerg x86emuOp2_movzx_word_R_RM(struct X86EMU *emu)
5320 1.1 joerg {
5321 1.1 joerg uint32_t *destreg;
5322 1.1 joerg
5323 1.1 joerg fetch_decode_modrm(emu);
5324 1.1 joerg destreg = decode_rh_long_register(emu);
5325 1.1 joerg *destreg = decode_and_fetch_word(emu);
5326 1.1 joerg }
5327 1.1 joerg /****************************************************************************
5328 1.1 joerg REMARKS:
5329 1.1 joerg Handles opcode 0x0f,0xba
5330 1.1 joerg ****************************************************************************/
5331 1.1 joerg static void
5332 1.1 joerg x86emuOp2_32_btX_I(struct X86EMU *emu)
5333 1.1 joerg {
5334 1.1 joerg int bit;
5335 1.1 joerg uint32_t srcval, mask;
5336 1.1 joerg uint8_t shift;
5337 1.1 joerg
5338 1.1 joerg fetch_decode_modrm(emu);
5339 1.1 joerg if (emu->cur_rh < 4)
5340 1.1 joerg X86EMU_halt_sys(emu);
5341 1.1 joerg
5342 1.1 joerg srcval = decode_and_fetch_long_imm8(emu, &shift);
5343 1.1 joerg bit = shift & 0x1F;
5344 1.1 joerg mask = (0x1 << bit);
5345 1.1 joerg
5346 1.1 joerg switch (emu->cur_rh) {
5347 1.1 joerg case 5:
5348 1.1 joerg write_back_long(emu, srcval | mask);
5349 1.1 joerg break;
5350 1.1 joerg case 6:
5351 1.1 joerg write_back_long(emu, srcval & ~mask);
5352 1.1 joerg break;
5353 1.1 joerg case 7:
5354 1.1 joerg write_back_long(emu, srcval ^ mask);
5355 1.1 joerg break;
5356 1.1 joerg }
5357 1.1 joerg CONDITIONAL_SET_FLAG(srcval & mask, F_CF);
5358 1.1 joerg }
5359 1.1 joerg
5360 1.1 joerg static void
5361 1.1 joerg x86emuOp2_16_btX_I(struct X86EMU *emu)
5362 1.1 joerg {
5363 1.1 joerg int bit;
5364 1.1 joerg
5365 1.1 joerg uint16_t srcval, mask;
5366 1.1 joerg uint8_t shift;
5367 1.1 joerg
5368 1.1 joerg fetch_decode_modrm(emu);
5369 1.1 joerg if (emu->cur_rh < 4)
5370 1.1 joerg X86EMU_halt_sys(emu);
5371 1.1 joerg
5372 1.1 joerg srcval = decode_and_fetch_word_imm8(emu, &shift);
5373 1.1 joerg bit = shift & 0xF;
5374 1.1 joerg mask = (0x1 << bit);
5375 1.1 joerg switch (emu->cur_rh) {
5376 1.1 joerg case 5:
5377 1.1 joerg write_back_word(emu, srcval | mask);
5378 1.1 joerg break;
5379 1.1 joerg case 6:
5380 1.1 joerg write_back_word(emu, srcval & ~mask);
5381 1.1 joerg break;
5382 1.1 joerg case 7:
5383 1.1 joerg write_back_word(emu, srcval ^ mask);
5384 1.1 joerg break;
5385 1.1 joerg }
5386 1.1 joerg CONDITIONAL_SET_FLAG(srcval & mask, F_CF);
5387 1.1 joerg }
5388 1.1 joerg
5389 1.1 joerg static void
5390 1.1 joerg x86emuOp2_btX_I(struct X86EMU *emu)
5391 1.1 joerg {
5392 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
5393 1.1 joerg x86emuOp2_32_btX_I(emu);
5394 1.1 joerg else
5395 1.1 joerg x86emuOp2_16_btX_I(emu);
5396 1.1 joerg }
5397 1.1 joerg /****************************************************************************
5398 1.1 joerg REMARKS:
5399 1.1 joerg Handles opcode 0x0f,0xbb
5400 1.1 joerg ****************************************************************************/
5401 1.1 joerg static void
5402 1.1 joerg x86emuOp2_btc_R(struct X86EMU *emu)
5403 1.1 joerg {
5404 1.1 joerg common_bitstring(emu, 3);
5405 1.1 joerg }
5406 1.1 joerg /****************************************************************************
5407 1.1 joerg REMARKS:
5408 1.1 joerg Handles opcode 0x0f,0xbc
5409 1.1 joerg ****************************************************************************/
5410 1.1 joerg static void
5411 1.1 joerg x86emuOp2_bsf(struct X86EMU *emu)
5412 1.1 joerg {
5413 1.1 joerg common_bitsearch(emu, +1);
5414 1.1 joerg }
5415 1.1 joerg /****************************************************************************
5416 1.1 joerg REMARKS:
5417 1.1 joerg Handles opcode 0x0f,0xbd
5418 1.1 joerg ****************************************************************************/
5419 1.1 joerg static void
5420 1.1 joerg x86emuOp2_bsr(struct X86EMU *emu)
5421 1.1 joerg {
5422 1.1 joerg common_bitsearch(emu, -1);
5423 1.1 joerg }
5424 1.1 joerg /****************************************************************************
5425 1.1 joerg REMARKS:
5426 1.1 joerg Handles opcode 0x0f,0xbe
5427 1.1 joerg ****************************************************************************/
5428 1.1 joerg static void
5429 1.1 joerg x86emuOp2_32_movsx_byte_R_RM(struct X86EMU *emu)
5430 1.1 joerg {
5431 1.1 joerg uint32_t *destreg;
5432 1.1 joerg
5433 1.8 joerg fetch_decode_modrm(emu);
5434 1.1 joerg destreg = decode_rh_long_register(emu);
5435 1.1 joerg *destreg = (int32_t)(int8_t)decode_and_fetch_byte(emu);
5436 1.1 joerg }
5437 1.1 joerg
5438 1.1 joerg static void
5439 1.1 joerg x86emuOp2_16_movsx_byte_R_RM(struct X86EMU *emu)
5440 1.1 joerg {
5441 1.1 joerg uint16_t *destreg;
5442 1.1 joerg
5443 1.1 joerg fetch_decode_modrm(emu);
5444 1.1 joerg destreg = decode_rh_word_register(emu);
5445 1.1 joerg *destreg = (int16_t)(int8_t)decode_and_fetch_byte(emu);
5446 1.1 joerg }
5447 1.1 joerg
5448 1.1 joerg static void
5449 1.1 joerg x86emuOp2_movsx_byte_R_RM(struct X86EMU *emu)
5450 1.1 joerg {
5451 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
5452 1.1 joerg x86emuOp2_32_movsx_byte_R_RM(emu);
5453 1.1 joerg else
5454 1.1 joerg x86emuOp2_16_movsx_byte_R_RM(emu);
5455 1.1 joerg }
5456 1.1 joerg /****************************************************************************
5457 1.1 joerg REMARKS:
5458 1.1 joerg Handles opcode 0x0f,0xbf
5459 1.1 joerg ****************************************************************************/
5460 1.1 joerg static void
5461 1.1 joerg x86emuOp2_movsx_word_R_RM(struct X86EMU *emu)
5462 1.1 joerg {
5463 1.1 joerg uint32_t *destreg;
5464 1.1 joerg
5465 1.1 joerg fetch_decode_modrm(emu);
5466 1.1 joerg destreg = decode_rh_long_register(emu);
5467 1.1 joerg *destreg = (int32_t)(int16_t)decode_and_fetch_word(emu);
5468 1.1 joerg }
5469 1.1 joerg
5470 1.1 joerg static void
5471 1.1 joerg X86EMU_exec_two_byte(struct X86EMU * emu)
5472 1.1 joerg {
5473 1.1 joerg uint8_t op2;
5474 1.1 joerg
5475 1.1 joerg op2 = fetch_byte_imm(emu);
5476 1.1 joerg
5477 1.1 joerg switch (op2) {
5478 1.1 joerg /* 0x00 Group F (ring 0 PM) */
5479 1.1 joerg /* 0x01 Group G (ring 0 PM) */
5480 1.1 joerg /* 0x02 lar (ring 0 PM) */
5481 1.1 joerg /* 0x03 lsl (ring 0 PM) */
5482 1.1 joerg /* 0x05 loadall (undocumented) */
5483 1.1 joerg /* 0x06 clts (ring 0 PM) */
5484 1.1 joerg /* 0x07 loadall (undocumented) */
5485 1.1 joerg /* 0x08 invd (ring 0 PM) */
5486 1.1 joerg /* 0x09 wbinvd (ring 0 PM) */
5487 1.1 joerg
5488 1.1 joerg /* 0x20 mov reg32(op2); break;creg (ring 0 PM) */
5489 1.1 joerg /* 0x21 mov reg32(op2); break;dreg (ring 0 PM) */
5490 1.1 joerg /* 0x22 mov creg(op2); break;reg32 (ring 0 PM) */
5491 1.1 joerg /* 0x23 mov dreg(op2); break;reg32 (ring 0 PM) */
5492 1.1 joerg /* 0x24 mov reg32(op2); break;treg (ring 0 PM) */
5493 1.1 joerg /* 0x26 mov treg(op2); break;reg32 (ring 0 PM) */
5494 1.1 joerg
5495 1.1 joerg case 0x31:
5496 1.1 joerg x86emuOp2_rdtsc(emu);
5497 1.1 joerg break;
5498 1.1 joerg
5499 1.1 joerg case 0x80:
5500 1.1 joerg common_jmp_long(emu, ACCESS_FLAG(F_OF));
5501 1.1 joerg break;
5502 1.1 joerg case 0x81:
5503 1.1 joerg common_jmp_long(emu, !ACCESS_FLAG(F_OF));
5504 1.1 joerg break;
5505 1.1 joerg case 0x82:
5506 1.1 joerg common_jmp_long(emu, ACCESS_FLAG(F_CF));
5507 1.1 joerg break;
5508 1.1 joerg case 0x83:
5509 1.1 joerg common_jmp_long(emu, !ACCESS_FLAG(F_CF));
5510 1.1 joerg break;
5511 1.1 joerg case 0x84:
5512 1.1 joerg common_jmp_long(emu, ACCESS_FLAG(F_ZF));
5513 1.1 joerg break;
5514 1.1 joerg case 0x85:
5515 1.1 joerg common_jmp_long(emu, !ACCESS_FLAG(F_ZF));
5516 1.1 joerg break;
5517 1.1 joerg case 0x86:
5518 1.1 joerg common_jmp_long(emu, ACCESS_FLAG(F_CF) || ACCESS_FLAG(F_ZF));
5519 1.1 joerg break;
5520 1.1 joerg case 0x87:
5521 1.1 joerg common_jmp_long(emu, !(ACCESS_FLAG(F_CF) || ACCESS_FLAG(F_ZF)));
5522 1.1 joerg break;
5523 1.1 joerg case 0x88:
5524 1.1 joerg common_jmp_long(emu, ACCESS_FLAG(F_SF));
5525 1.1 joerg break;
5526 1.1 joerg case 0x89:
5527 1.1 joerg common_jmp_long(emu, !ACCESS_FLAG(F_SF));
5528 1.1 joerg break;
5529 1.1 joerg case 0x8a:
5530 1.1 joerg common_jmp_long(emu, ACCESS_FLAG(F_PF));
5531 1.1 joerg break;
5532 1.1 joerg case 0x8b:
5533 1.1 joerg common_jmp_long(emu, !ACCESS_FLAG(F_PF));
5534 1.1 joerg break;
5535 1.1 joerg case 0x8c:
5536 1.1 joerg common_jmp_long(emu, xorl(ACCESS_FLAG(F_SF), ACCESS_FLAG(F_OF)));
5537 1.1 joerg break;
5538 1.1 joerg case 0x8d:
5539 1.1 joerg common_jmp_long(emu, !(xorl(ACCESS_FLAG(F_SF), ACCESS_FLAG(F_OF))));
5540 1.1 joerg break;
5541 1.1 joerg case 0x8e:
5542 1.1 joerg common_jmp_long(emu,
5543 1.1 joerg (xorl(ACCESS_FLAG(F_SF), ACCESS_FLAG(F_OF)) || ACCESS_FLAG(F_ZF)));
5544 1.1 joerg break;
5545 1.1 joerg case 0x8f:
5546 1.1 joerg common_jmp_long(emu,
5547 1.1 joerg !(xorl(ACCESS_FLAG(F_SF), ACCESS_FLAG(F_OF)) || ACCESS_FLAG(F_ZF)));
5548 1.1 joerg break;
5549 1.1 joerg
5550 1.1 joerg case 0x90:
5551 1.1 joerg common_set_byte(emu, ACCESS_FLAG(F_OF));
5552 1.1 joerg break;
5553 1.1 joerg case 0x91:
5554 1.1 joerg common_set_byte(emu, !ACCESS_FLAG(F_OF));
5555 1.1 joerg break;
5556 1.1 joerg case 0x92:
5557 1.1 joerg common_set_byte(emu, ACCESS_FLAG(F_CF));
5558 1.1 joerg break;
5559 1.1 joerg case 0x93:
5560 1.1 joerg common_set_byte(emu, !ACCESS_FLAG(F_CF));
5561 1.1 joerg break;
5562 1.1 joerg case 0x94:
5563 1.1 joerg common_set_byte(emu, ACCESS_FLAG(F_ZF));
5564 1.1 joerg break;
5565 1.1 joerg case 0x95:
5566 1.1 joerg common_set_byte(emu, !ACCESS_FLAG(F_ZF));
5567 1.1 joerg break;
5568 1.1 joerg case 0x96:
5569 1.1 joerg common_set_byte(emu, ACCESS_FLAG(F_CF) || ACCESS_FLAG(F_ZF));
5570 1.1 joerg break;
5571 1.1 joerg case 0x97:
5572 1.1 joerg common_set_byte(emu, !(ACCESS_FLAG(F_CF) || ACCESS_FLAG(F_ZF)));
5573 1.1 joerg break;
5574 1.1 joerg case 0x98:
5575 1.1 joerg common_set_byte(emu, ACCESS_FLAG(F_SF));
5576 1.1 joerg break;
5577 1.1 joerg case 0x99:
5578 1.1 joerg common_set_byte(emu, !ACCESS_FLAG(F_SF));
5579 1.1 joerg break;
5580 1.1 joerg case 0x9a:
5581 1.1 joerg common_set_byte(emu, ACCESS_FLAG(F_PF));
5582 1.1 joerg break;
5583 1.1 joerg case 0x9b:
5584 1.1 joerg common_set_byte(emu, !ACCESS_FLAG(F_PF));
5585 1.1 joerg break;
5586 1.1 joerg case 0x9c:
5587 1.1 joerg common_set_byte(emu, xorl(ACCESS_FLAG(F_SF), ACCESS_FLAG(F_OF)));
5588 1.1 joerg break;
5589 1.1 joerg case 0x9d:
5590 1.1 joerg common_set_byte(emu, xorl(ACCESS_FLAG(F_SF), ACCESS_FLAG(F_OF)));
5591 1.1 joerg break;
5592 1.1 joerg case 0x9e:
5593 1.1 joerg common_set_byte(emu,
5594 1.1 joerg (xorl(ACCESS_FLAG(F_SF), ACCESS_FLAG(F_OF)) ||
5595 1.1 joerg ACCESS_FLAG(F_ZF)));
5596 1.1 joerg break;
5597 1.1 joerg case 0x9f:
5598 1.1 joerg common_set_byte(emu,
5599 1.1 joerg !(xorl(ACCESS_FLAG(F_SF), ACCESS_FLAG(F_OF)) ||
5600 1.1 joerg ACCESS_FLAG(F_ZF)));
5601 1.1 joerg break;
5602 1.1 joerg
5603 1.1 joerg case 0xa0:
5604 1.1 joerg x86emuOp2_push_FS(emu);
5605 1.1 joerg break;
5606 1.1 joerg case 0xa1:
5607 1.1 joerg x86emuOp2_pop_FS(emu);
5608 1.1 joerg break;
5609 1.4 jmcneill case 0xa2:
5610 1.4 jmcneill x86emuOp2_cpuid(emu);
5611 1.4 jmcneill break;
5612 1.1 joerg case 0xa3:
5613 1.1 joerg x86emuOp2_bt_R(emu);
5614 1.1 joerg break;
5615 1.1 joerg case 0xa4:
5616 1.1 joerg x86emuOp2_shld_IMM(emu);
5617 1.1 joerg break;
5618 1.1 joerg case 0xa5:
5619 1.1 joerg x86emuOp2_shld_CL(emu);
5620 1.1 joerg break;
5621 1.1 joerg case 0xa8:
5622 1.1 joerg x86emuOp2_push_GS(emu);
5623 1.1 joerg break;
5624 1.1 joerg case 0xa9:
5625 1.1 joerg x86emuOp2_pop_GS(emu);
5626 1.1 joerg break;
5627 1.1 joerg case 0xab:
5628 1.1 joerg x86emuOp2_bts_R(emu);
5629 1.1 joerg break;
5630 1.1 joerg case 0xac:
5631 1.1 joerg x86emuOp2_shrd_IMM(emu);
5632 1.1 joerg break;
5633 1.1 joerg case 0xad:
5634 1.1 joerg x86emuOp2_shrd_CL(emu);
5635 1.1 joerg break;
5636 1.1 joerg case 0xaf:
5637 1.1 joerg x86emuOp2_imul_R_RM(emu);
5638 1.1 joerg break;
5639 1.1 joerg
5640 1.1 joerg /* 0xb0 TODO: cmpxchg */
5641 1.1 joerg /* 0xb1 TODO: cmpxchg */
5642 1.1 joerg case 0xb2:
5643 1.1 joerg x86emuOp2_lss_R_IMM(emu);
5644 1.1 joerg break;
5645 1.1 joerg case 0xb3:
5646 1.1 joerg x86emuOp2_btr_R(emu);
5647 1.1 joerg break;
5648 1.1 joerg case 0xb4:
5649 1.1 joerg x86emuOp2_lfs_R_IMM(emu);
5650 1.1 joerg break;
5651 1.1 joerg case 0xb5:
5652 1.1 joerg x86emuOp2_lgs_R_IMM(emu);
5653 1.1 joerg break;
5654 1.1 joerg case 0xb6:
5655 1.1 joerg x86emuOp2_movzx_byte_R_RM(emu);
5656 1.1 joerg break;
5657 1.1 joerg case 0xb7:
5658 1.1 joerg x86emuOp2_movzx_word_R_RM(emu);
5659 1.1 joerg break;
5660 1.1 joerg case 0xba:
5661 1.1 joerg x86emuOp2_btX_I(emu);
5662 1.1 joerg break;
5663 1.1 joerg case 0xbb:
5664 1.1 joerg x86emuOp2_btc_R(emu);
5665 1.1 joerg break;
5666 1.1 joerg case 0xbc:
5667 1.1 joerg x86emuOp2_bsf(emu);
5668 1.1 joerg break;
5669 1.1 joerg case 0xbd:
5670 1.1 joerg x86emuOp2_bsr(emu);
5671 1.1 joerg break;
5672 1.1 joerg case 0xbe:
5673 1.1 joerg x86emuOp2_movsx_byte_R_RM(emu);
5674 1.1 joerg break;
5675 1.1 joerg case 0xbf:
5676 1.1 joerg x86emuOp2_movsx_word_R_RM(emu);
5677 1.1 joerg break;
5678 1.1 joerg
5679 1.1 joerg /* 0xc0 TODO: xadd */
5680 1.1 joerg /* 0xc1 TODO: xadd */
5681 1.1 joerg /* 0xc8 TODO: bswap */
5682 1.1 joerg /* 0xc9 TODO: bswap */
5683 1.1 joerg /* 0xca TODO: bswap */
5684 1.1 joerg /* 0xcb TODO: bswap */
5685 1.1 joerg /* 0xcc TODO: bswap */
5686 1.1 joerg /* 0xcd TODO: bswap */
5687 1.1 joerg /* 0xce TODO: bswap */
5688 1.1 joerg /* 0xcf TODO: bswap */
5689 1.1 joerg
5690 1.1 joerg default:
5691 1.1 joerg X86EMU_halt_sys(emu);
5692 1.1 joerg break;
5693 1.1 joerg }
5694 1.1 joerg }
5695 1.1 joerg
5696 1.1 joerg /*
5697 1.1 joerg * Carry Chain Calculation
5698 1.1 joerg *
5699 1.1 joerg * This represents a somewhat expensive calculation which is
5700 1.1 joerg * apparently required to emulate the setting of the OF and AF flag.
5701 1.1 joerg * The latter is not so important, but the former is. The overflow
5702 1.1 joerg * flag is the XOR of the top two bits of the carry chain for an
5703 1.1 joerg * addition (similar for subtraction). Since we do not want to
5704 1.1 joerg * simulate the addition in a bitwise manner, we try to calculate the
5705 1.1 joerg * carry chain given the two operands and the result.
5706 1.1 joerg *
5707 1.1 joerg * So, given the following table, which represents the addition of two
5708 1.1 joerg * bits, we can derive a formula for the carry chain.
5709 1.1 joerg *
5710 1.1 joerg * a b cin r cout
5711 1.1 joerg * 0 0 0 0 0
5712 1.1 joerg * 0 0 1 1 0
5713 1.1 joerg * 0 1 0 1 0
5714 1.1 joerg * 0 1 1 0 1
5715 1.1 joerg * 1 0 0 1 0
5716 1.1 joerg * 1 0 1 0 1
5717 1.1 joerg * 1 1 0 0 1
5718 1.1 joerg * 1 1 1 1 1
5719 1.1 joerg *
5720 1.1 joerg * Construction of table for cout:
5721 1.1 joerg *
5722 1.1 joerg * ab
5723 1.1 joerg * r \ 00 01 11 10
5724 1.1 joerg * |------------------
5725 1.1 joerg * 0 | 0 1 1 1
5726 1.1 joerg * 1 | 0 0 1 0
5727 1.1 joerg *
5728 1.1 joerg * By inspection, one gets: cc = ab + r'(a + b)
5729 1.1 joerg *
5730 1.1 joerg * That represents alot of operations, but NO CHOICE....
5731 1.1 joerg *
5732 1.1 joerg * Borrow Chain Calculation.
5733 1.1 joerg *
5734 1.1 joerg * The following table represents the subtraction of two bits, from
5735 1.1 joerg * which we can derive a formula for the borrow chain.
5736 1.1 joerg *
5737 1.1 joerg * a b bin r bout
5738 1.1 joerg * 0 0 0 0 0
5739 1.1 joerg * 0 0 1 1 1
5740 1.1 joerg * 0 1 0 1 1
5741 1.1 joerg * 0 1 1 0 1
5742 1.1 joerg * 1 0 0 1 0
5743 1.1 joerg * 1 0 1 0 0
5744 1.1 joerg * 1 1 0 0 0
5745 1.1 joerg * 1 1 1 1 1
5746 1.1 joerg *
5747 1.1 joerg * Construction of table for cout:
5748 1.1 joerg *
5749 1.1 joerg * ab
5750 1.1 joerg * r \ 00 01 11 10
5751 1.1 joerg * |------------------
5752 1.1 joerg * 0 | 0 1 0 0
5753 1.1 joerg * 1 | 1 1 1 0
5754 1.1 joerg *
5755 1.1 joerg * By inspection, one gets: bc = a'b + r(a' + b)
5756 1.1 joerg *
5757 1.1 joerg ****************************************************************************/
5758 1.1 joerg
5759 1.1 joerg /*------------------------- Global Variables ------------------------------*/
5760 1.1 joerg
5761 1.1 joerg static uint32_t x86emu_parity_tab[8] =
5762 1.1 joerg {
5763 1.1 joerg 0x96696996,
5764 1.1 joerg 0x69969669,
5765 1.1 joerg 0x69969669,
5766 1.1 joerg 0x96696996,
5767 1.1 joerg 0x69969669,
5768 1.1 joerg 0x96696996,
5769 1.1 joerg 0x96696996,
5770 1.1 joerg 0x69969669,
5771 1.1 joerg };
5772 1.1 joerg #define PARITY(x) (((x86emu_parity_tab[(x) / 32] >> ((x) % 32)) & 1) == 0)
5773 1.1 joerg #define XOR2(x) (((x) ^ ((x)>>1)) & 0x1)
5774 1.1 joerg
5775 1.1 joerg /****************************************************************************
5776 1.1 joerg REMARKS:
5777 1.1 joerg Implements the AAA instruction and side effects.
5778 1.1 joerg ****************************************************************************/
5779 1.1 joerg static uint16_t
5780 1.1 joerg aaa_word(struct X86EMU *emu, uint16_t d)
5781 1.1 joerg {
5782 1.1 joerg uint16_t res;
5783 1.1 joerg if ((d & 0xf) > 0x9 || ACCESS_FLAG(F_AF)) {
5784 1.1 joerg d += 0x6;
5785 1.1 joerg d += 0x100;
5786 1.1 joerg SET_FLAG(F_AF);
5787 1.1 joerg SET_FLAG(F_CF);
5788 1.1 joerg } else {
5789 1.1 joerg CLEAR_FLAG(F_CF);
5790 1.1 joerg CLEAR_FLAG(F_AF);
5791 1.1 joerg }
5792 1.1 joerg res = (uint16_t) (d & 0xFF0F);
5793 1.1 joerg CLEAR_FLAG(F_SF);
5794 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
5795 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
5796 1.1 joerg return res;
5797 1.1 joerg }
5798 1.1 joerg /****************************************************************************
5799 1.1 joerg REMARKS:
5800 1.1 joerg Implements the AAA instruction and side effects.
5801 1.1 joerg ****************************************************************************/
5802 1.1 joerg static uint16_t
5803 1.1 joerg aas_word(struct X86EMU *emu, uint16_t d)
5804 1.1 joerg {
5805 1.1 joerg uint16_t res;
5806 1.1 joerg if ((d & 0xf) > 0x9 || ACCESS_FLAG(F_AF)) {
5807 1.1 joerg d -= 0x6;
5808 1.1 joerg d -= 0x100;
5809 1.1 joerg SET_FLAG(F_AF);
5810 1.1 joerg SET_FLAG(F_CF);
5811 1.1 joerg } else {
5812 1.1 joerg CLEAR_FLAG(F_CF);
5813 1.1 joerg CLEAR_FLAG(F_AF);
5814 1.1 joerg }
5815 1.1 joerg res = (uint16_t) (d & 0xFF0F);
5816 1.1 joerg CLEAR_FLAG(F_SF);
5817 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
5818 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
5819 1.1 joerg return res;
5820 1.1 joerg }
5821 1.1 joerg /****************************************************************************
5822 1.1 joerg REMARKS:
5823 1.1 joerg Implements the AAD instruction and side effects.
5824 1.1 joerg ****************************************************************************/
5825 1.1 joerg static uint16_t
5826 1.1 joerg aad_word(struct X86EMU *emu, uint16_t d)
5827 1.1 joerg {
5828 1.1 joerg uint16_t l;
5829 1.1 joerg uint8_t hb, lb;
5830 1.1 joerg
5831 1.1 joerg hb = (uint8_t) ((d >> 8) & 0xff);
5832 1.1 joerg lb = (uint8_t) ((d & 0xff));
5833 1.1 joerg l = (uint16_t) ((lb + 10 * hb) & 0xFF);
5834 1.1 joerg
5835 1.1 joerg CLEAR_FLAG(F_CF);
5836 1.1 joerg CLEAR_FLAG(F_AF);
5837 1.1 joerg CLEAR_FLAG(F_OF);
5838 1.1 joerg CONDITIONAL_SET_FLAG(l & 0x80, F_SF);
5839 1.1 joerg CONDITIONAL_SET_FLAG(l == 0, F_ZF);
5840 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(l & 0xff), F_PF);
5841 1.1 joerg return l;
5842 1.1 joerg }
5843 1.1 joerg /****************************************************************************
5844 1.1 joerg REMARKS:
5845 1.1 joerg Implements the AAM instruction and side effects.
5846 1.1 joerg ****************************************************************************/
5847 1.1 joerg static uint16_t
5848 1.1 joerg aam_word(struct X86EMU *emu, uint8_t d)
5849 1.1 joerg {
5850 1.1 joerg uint16_t h, l;
5851 1.1 joerg
5852 1.1 joerg h = (uint16_t) (d / 10);
5853 1.1 joerg l = (uint16_t) (d % 10);
5854 1.1 joerg l |= (uint16_t) (h << 8);
5855 1.1 joerg
5856 1.1 joerg CLEAR_FLAG(F_CF);
5857 1.1 joerg CLEAR_FLAG(F_AF);
5858 1.1 joerg CLEAR_FLAG(F_OF);
5859 1.1 joerg CONDITIONAL_SET_FLAG(l & 0x80, F_SF);
5860 1.1 joerg CONDITIONAL_SET_FLAG(l == 0, F_ZF);
5861 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(l & 0xff), F_PF);
5862 1.1 joerg return l;
5863 1.1 joerg }
5864 1.1 joerg /****************************************************************************
5865 1.1 joerg REMARKS:
5866 1.1 joerg Implements the ADC instruction and side effects.
5867 1.1 joerg ****************************************************************************/
5868 1.1 joerg static uint8_t
5869 1.1 joerg adc_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
5870 1.1 joerg {
5871 1.1 joerg uint32_t res; /* all operands in native machine order */
5872 1.1 joerg uint32_t cc;
5873 1.1 joerg
5874 1.1 joerg if (ACCESS_FLAG(F_CF))
5875 1.1 joerg res = 1 + d + s;
5876 1.1 joerg else
5877 1.1 joerg res = d + s;
5878 1.1 joerg
5879 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x100, F_CF);
5880 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
5881 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
5882 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
5883 1.1 joerg
5884 1.1 joerg /* calculate the carry chain SEE NOTE AT TOP. */
5885 1.1 joerg cc = (s & d) | ((~res) & (s | d));
5886 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(cc >> 6), F_OF);
5887 1.1 joerg CONDITIONAL_SET_FLAG(cc & 0x8, F_AF);
5888 1.1 joerg return (uint8_t) res;
5889 1.1 joerg }
5890 1.1 joerg /****************************************************************************
5891 1.1 joerg REMARKS:
5892 1.1 joerg Implements the ADC instruction and side effects.
5893 1.1 joerg ****************************************************************************/
5894 1.1 joerg static uint16_t
5895 1.1 joerg adc_word(struct X86EMU *emu, uint16_t d, uint16_t s)
5896 1.1 joerg {
5897 1.1 joerg uint32_t res; /* all operands in native machine order */
5898 1.1 joerg uint32_t cc;
5899 1.1 joerg
5900 1.1 joerg if (ACCESS_FLAG(F_CF))
5901 1.1 joerg res = 1 + d + s;
5902 1.1 joerg else
5903 1.1 joerg res = d + s;
5904 1.1 joerg
5905 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x10000, F_CF);
5906 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
5907 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
5908 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
5909 1.1 joerg
5910 1.1 joerg /* calculate the carry chain SEE NOTE AT TOP. */
5911 1.1 joerg cc = (s & d) | ((~res) & (s | d));
5912 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(cc >> 14), F_OF);
5913 1.1 joerg CONDITIONAL_SET_FLAG(cc & 0x8, F_AF);
5914 1.1 joerg return (uint16_t) res;
5915 1.1 joerg }
5916 1.1 joerg /****************************************************************************
5917 1.1 joerg REMARKS:
5918 1.1 joerg Implements the ADC instruction and side effects.
5919 1.1 joerg ****************************************************************************/
5920 1.1 joerg static uint32_t
5921 1.1 joerg adc_long(struct X86EMU *emu, uint32_t d, uint32_t s)
5922 1.1 joerg {
5923 1.1 joerg uint32_t lo; /* all operands in native machine order */
5924 1.1 joerg uint32_t hi;
5925 1.1 joerg uint32_t res;
5926 1.1 joerg uint32_t cc;
5927 1.1 joerg
5928 1.1 joerg if (ACCESS_FLAG(F_CF)) {
5929 1.1 joerg lo = 1 + (d & 0xFFFF) + (s & 0xFFFF);
5930 1.1 joerg res = 1 + d + s;
5931 1.1 joerg } else {
5932 1.1 joerg lo = (d & 0xFFFF) + (s & 0xFFFF);
5933 1.1 joerg res = d + s;
5934 1.1 joerg }
5935 1.1 joerg hi = (lo >> 16) + (d >> 16) + (s >> 16);
5936 1.1 joerg
5937 1.1 joerg CONDITIONAL_SET_FLAG(hi & 0x10000, F_CF);
5938 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
5939 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
5940 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
5941 1.1 joerg
5942 1.1 joerg /* calculate the carry chain SEE NOTE AT TOP. */
5943 1.1 joerg cc = (s & d) | ((~res) & (s | d));
5944 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(cc >> 30), F_OF);
5945 1.1 joerg CONDITIONAL_SET_FLAG(cc & 0x8, F_AF);
5946 1.1 joerg return res;
5947 1.1 joerg }
5948 1.1 joerg /****************************************************************************
5949 1.1 joerg REMARKS:
5950 1.1 joerg Implements the ADD instruction and side effects.
5951 1.1 joerg ****************************************************************************/
5952 1.1 joerg static uint8_t
5953 1.1 joerg add_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
5954 1.1 joerg {
5955 1.1 joerg uint32_t res; /* all operands in native machine order */
5956 1.1 joerg uint32_t cc;
5957 1.1 joerg
5958 1.1 joerg res = d + s;
5959 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x100, F_CF);
5960 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
5961 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
5962 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
5963 1.1 joerg
5964 1.1 joerg /* calculate the carry chain SEE NOTE AT TOP. */
5965 1.1 joerg cc = (s & d) | ((~res) & (s | d));
5966 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(cc >> 6), F_OF);
5967 1.1 joerg CONDITIONAL_SET_FLAG(cc & 0x8, F_AF);
5968 1.1 joerg return (uint8_t) res;
5969 1.1 joerg }
5970 1.1 joerg /****************************************************************************
5971 1.1 joerg REMARKS:
5972 1.1 joerg Implements the ADD instruction and side effects.
5973 1.1 joerg ****************************************************************************/
5974 1.1 joerg static uint16_t
5975 1.1 joerg add_word(struct X86EMU *emu, uint16_t d, uint16_t s)
5976 1.1 joerg {
5977 1.1 joerg uint32_t res; /* all operands in native machine order */
5978 1.1 joerg uint32_t cc;
5979 1.1 joerg
5980 1.1 joerg res = d + s;
5981 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x10000, F_CF);
5982 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
5983 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
5984 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
5985 1.1 joerg
5986 1.1 joerg /* calculate the carry chain SEE NOTE AT TOP. */
5987 1.1 joerg cc = (s & d) | ((~res) & (s | d));
5988 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(cc >> 14), F_OF);
5989 1.1 joerg CONDITIONAL_SET_FLAG(cc & 0x8, F_AF);
5990 1.1 joerg return (uint16_t) res;
5991 1.1 joerg }
5992 1.1 joerg /****************************************************************************
5993 1.1 joerg REMARKS:
5994 1.1 joerg Implements the ADD instruction and side effects.
5995 1.1 joerg ****************************************************************************/
5996 1.1 joerg static uint32_t
5997 1.1 joerg add_long(struct X86EMU *emu, uint32_t d, uint32_t s)
5998 1.1 joerg {
5999 1.1 joerg uint32_t lo; /* all operands in native machine order */
6000 1.1 joerg uint32_t hi;
6001 1.1 joerg uint32_t res;
6002 1.1 joerg uint32_t cc;
6003 1.1 joerg
6004 1.1 joerg lo = (d & 0xFFFF) + (s & 0xFFFF);
6005 1.1 joerg res = d + s;
6006 1.1 joerg hi = (lo >> 16) + (d >> 16) + (s >> 16);
6007 1.1 joerg
6008 1.1 joerg CONDITIONAL_SET_FLAG(hi & 0x10000, F_CF);
6009 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
6010 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
6011 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6012 1.1 joerg
6013 1.1 joerg /* calculate the carry chain SEE NOTE AT TOP. */
6014 1.1 joerg cc = (s & d) | ((~res) & (s | d));
6015 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(cc >> 30), F_OF);
6016 1.1 joerg CONDITIONAL_SET_FLAG(cc & 0x8, F_AF);
6017 1.1 joerg
6018 1.1 joerg return res;
6019 1.1 joerg }
6020 1.1 joerg /****************************************************************************
6021 1.1 joerg REMARKS:
6022 1.1 joerg Implements the AND instruction and side effects.
6023 1.1 joerg ****************************************************************************/
6024 1.1 joerg static uint8_t
6025 1.1 joerg and_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
6026 1.1 joerg {
6027 1.1 joerg uint8_t res; /* all operands in native machine order */
6028 1.1 joerg
6029 1.1 joerg res = d & s;
6030 1.1 joerg
6031 1.1 joerg /* set the flags */
6032 1.1 joerg CLEAR_FLAG(F_OF);
6033 1.1 joerg CLEAR_FLAG(F_CF);
6034 1.1 joerg CLEAR_FLAG(F_AF);
6035 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
6036 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
6037 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res), F_PF);
6038 1.1 joerg return res;
6039 1.1 joerg }
6040 1.1 joerg /****************************************************************************
6041 1.1 joerg REMARKS:
6042 1.1 joerg Implements the AND instruction and side effects.
6043 1.1 joerg ****************************************************************************/
6044 1.1 joerg static uint16_t
6045 1.1 joerg and_word(struct X86EMU *emu, uint16_t d, uint16_t s)
6046 1.1 joerg {
6047 1.1 joerg uint16_t res; /* all operands in native machine order */
6048 1.1 joerg
6049 1.1 joerg res = d & s;
6050 1.1 joerg
6051 1.1 joerg /* set the flags */
6052 1.1 joerg CLEAR_FLAG(F_OF);
6053 1.1 joerg CLEAR_FLAG(F_CF);
6054 1.1 joerg CLEAR_FLAG(F_AF);
6055 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
6056 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
6057 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6058 1.1 joerg return res;
6059 1.1 joerg }
6060 1.1 joerg /****************************************************************************
6061 1.1 joerg REMARKS:
6062 1.1 joerg Implements the AND instruction and side effects.
6063 1.1 joerg ****************************************************************************/
6064 1.1 joerg static uint32_t
6065 1.1 joerg and_long(struct X86EMU *emu, uint32_t d, uint32_t s)
6066 1.1 joerg {
6067 1.1 joerg uint32_t res; /* all operands in native machine order */
6068 1.1 joerg
6069 1.1 joerg res = d & s;
6070 1.1 joerg
6071 1.1 joerg /* set the flags */
6072 1.1 joerg CLEAR_FLAG(F_OF);
6073 1.1 joerg CLEAR_FLAG(F_CF);
6074 1.1 joerg CLEAR_FLAG(F_AF);
6075 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
6076 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
6077 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6078 1.1 joerg return res;
6079 1.1 joerg }
6080 1.1 joerg /****************************************************************************
6081 1.1 joerg REMARKS:
6082 1.1 joerg Implements the CMP instruction and side effects.
6083 1.1 joerg ****************************************************************************/
6084 1.1 joerg static uint8_t
6085 1.1 joerg cmp_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
6086 1.1 joerg {
6087 1.1 joerg uint32_t res; /* all operands in native machine order */
6088 1.1 joerg uint32_t bc;
6089 1.1 joerg
6090 1.1 joerg res = d - s;
6091 1.1 joerg CLEAR_FLAG(F_CF);
6092 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
6093 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
6094 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6095 1.1 joerg
6096 1.1 joerg /* calculate the borrow chain. See note at top */
6097 1.1 joerg bc = (res & (~d | s)) | (~d & s);
6098 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x80, F_CF);
6099 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 6), F_OF);
6100 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
6101 1.1 joerg return d;
6102 1.1 joerg }
6103 1.1 joerg
6104 1.1 joerg static void
6105 1.1 joerg cmp_byte_no_return(struct X86EMU *emu, uint8_t d, uint8_t s)
6106 1.1 joerg {
6107 1.1 joerg cmp_byte(emu, d, s);
6108 1.1 joerg }
6109 1.1 joerg /****************************************************************************
6110 1.1 joerg REMARKS:
6111 1.1 joerg Implements the CMP instruction and side effects.
6112 1.1 joerg ****************************************************************************/
6113 1.1 joerg static uint16_t
6114 1.1 joerg cmp_word(struct X86EMU *emu, uint16_t d, uint16_t s)
6115 1.1 joerg {
6116 1.1 joerg uint32_t res; /* all operands in native machine order */
6117 1.1 joerg uint32_t bc;
6118 1.1 joerg
6119 1.1 joerg res = d - s;
6120 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
6121 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
6122 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6123 1.1 joerg
6124 1.1 joerg /* calculate the borrow chain. See note at top */
6125 1.1 joerg bc = (res & (~d | s)) | (~d & s);
6126 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8000, F_CF);
6127 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 14), F_OF);
6128 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
6129 1.1 joerg return d;
6130 1.1 joerg }
6131 1.1 joerg
6132 1.1 joerg static void
6133 1.1 joerg cmp_word_no_return(struct X86EMU *emu, uint16_t d, uint16_t s)
6134 1.1 joerg {
6135 1.1 joerg cmp_word(emu, d, s);
6136 1.1 joerg }
6137 1.1 joerg /****************************************************************************
6138 1.1 joerg REMARKS:
6139 1.1 joerg Implements the CMP instruction and side effects.
6140 1.1 joerg ****************************************************************************/
6141 1.1 joerg static uint32_t
6142 1.1 joerg cmp_long(struct X86EMU *emu, uint32_t d, uint32_t s)
6143 1.1 joerg {
6144 1.1 joerg uint32_t res; /* all operands in native machine order */
6145 1.1 joerg uint32_t bc;
6146 1.1 joerg
6147 1.1 joerg res = d - s;
6148 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
6149 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
6150 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6151 1.1 joerg
6152 1.1 joerg /* calculate the borrow chain. See note at top */
6153 1.1 joerg bc = (res & (~d | s)) | (~d & s);
6154 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x80000000, F_CF);
6155 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 30), F_OF);
6156 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
6157 1.1 joerg return d;
6158 1.1 joerg }
6159 1.1 joerg
6160 1.1 joerg static void
6161 1.1 joerg cmp_long_no_return(struct X86EMU *emu, uint32_t d, uint32_t s)
6162 1.1 joerg {
6163 1.1 joerg cmp_long(emu, d, s);
6164 1.1 joerg }
6165 1.1 joerg /****************************************************************************
6166 1.1 joerg REMARKS:
6167 1.1 joerg Implements the DAA instruction and side effects.
6168 1.1 joerg ****************************************************************************/
6169 1.1 joerg static uint8_t
6170 1.1 joerg daa_byte(struct X86EMU *emu, uint8_t d)
6171 1.1 joerg {
6172 1.1 joerg uint32_t res = d;
6173 1.1 joerg if ((d & 0xf) > 9 || ACCESS_FLAG(F_AF)) {
6174 1.1 joerg res += 6;
6175 1.1 joerg SET_FLAG(F_AF);
6176 1.1 joerg }
6177 1.1 joerg if (res > 0x9F || ACCESS_FLAG(F_CF)) {
6178 1.1 joerg res += 0x60;
6179 1.1 joerg SET_FLAG(F_CF);
6180 1.1 joerg }
6181 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
6182 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xFF) == 0, F_ZF);
6183 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6184 1.1 joerg return (uint8_t) res;
6185 1.1 joerg }
6186 1.1 joerg /****************************************************************************
6187 1.1 joerg REMARKS:
6188 1.1 joerg Implements the DAS instruction and side effects.
6189 1.1 joerg ****************************************************************************/
6190 1.1 joerg static uint8_t
6191 1.1 joerg das_byte(struct X86EMU *emu, uint8_t d)
6192 1.1 joerg {
6193 1.1 joerg if ((d & 0xf) > 9 || ACCESS_FLAG(F_AF)) {
6194 1.1 joerg d -= 6;
6195 1.1 joerg SET_FLAG(F_AF);
6196 1.1 joerg }
6197 1.1 joerg if (d > 0x9F || ACCESS_FLAG(F_CF)) {
6198 1.1 joerg d -= 0x60;
6199 1.1 joerg SET_FLAG(F_CF);
6200 1.1 joerg }
6201 1.1 joerg CONDITIONAL_SET_FLAG(d & 0x80, F_SF);
6202 1.1 joerg CONDITIONAL_SET_FLAG(d == 0, F_ZF);
6203 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(d & 0xff), F_PF);
6204 1.1 joerg return d;
6205 1.1 joerg }
6206 1.1 joerg /****************************************************************************
6207 1.1 joerg REMARKS:
6208 1.1 joerg Implements the DEC instruction and side effects.
6209 1.1 joerg ****************************************************************************/
6210 1.1 joerg static uint8_t
6211 1.1 joerg dec_byte(struct X86EMU *emu, uint8_t d)
6212 1.1 joerg {
6213 1.1 joerg uint32_t res; /* all operands in native machine order */
6214 1.1 joerg uint32_t bc;
6215 1.1 joerg
6216 1.1 joerg res = d - 1;
6217 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
6218 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
6219 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6220 1.1 joerg
6221 1.1 joerg /* calculate the borrow chain. See note at top */
6222 1.1 joerg /* based on sub_byte, uses s==1. */
6223 1.1 joerg bc = (res & (~d | 1)) | (~d & 1);
6224 1.1 joerg /* carry flag unchanged */
6225 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 6), F_OF);
6226 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
6227 1.1 joerg return (uint8_t) res;
6228 1.1 joerg }
6229 1.1 joerg /****************************************************************************
6230 1.1 joerg REMARKS:
6231 1.1 joerg Implements the DEC instruction and side effects.
6232 1.1 joerg ****************************************************************************/
6233 1.1 joerg static uint16_t
6234 1.1 joerg dec_word(struct X86EMU *emu, uint16_t d)
6235 1.1 joerg {
6236 1.1 joerg uint32_t res; /* all operands in native machine order */
6237 1.1 joerg uint32_t bc;
6238 1.1 joerg
6239 1.1 joerg res = d - 1;
6240 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
6241 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
6242 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6243 1.1 joerg
6244 1.1 joerg /* calculate the borrow chain. See note at top */
6245 1.1 joerg /* based on the sub_byte routine, with s==1 */
6246 1.1 joerg bc = (res & (~d | 1)) | (~d & 1);
6247 1.1 joerg /* carry flag unchanged */
6248 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 14), F_OF);
6249 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
6250 1.1 joerg return (uint16_t) res;
6251 1.1 joerg }
6252 1.1 joerg /****************************************************************************
6253 1.1 joerg REMARKS:
6254 1.1 joerg Implements the DEC instruction and side effects.
6255 1.1 joerg ****************************************************************************/
6256 1.1 joerg static uint32_t
6257 1.1 joerg dec_long(struct X86EMU *emu, uint32_t d)
6258 1.1 joerg {
6259 1.1 joerg uint32_t res; /* all operands in native machine order */
6260 1.1 joerg uint32_t bc;
6261 1.1 joerg
6262 1.1 joerg res = d - 1;
6263 1.1 joerg
6264 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
6265 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
6266 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6267 1.1 joerg
6268 1.1 joerg /* calculate the borrow chain. See note at top */
6269 1.1 joerg bc = (res & (~d | 1)) | (~d & 1);
6270 1.1 joerg /* carry flag unchanged */
6271 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 30), F_OF);
6272 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
6273 1.1 joerg return res;
6274 1.1 joerg }
6275 1.1 joerg /****************************************************************************
6276 1.1 joerg REMARKS:
6277 1.1 joerg Implements the INC instruction and side effects.
6278 1.1 joerg ****************************************************************************/
6279 1.1 joerg static uint8_t
6280 1.1 joerg inc_byte(struct X86EMU *emu, uint8_t d)
6281 1.1 joerg {
6282 1.1 joerg uint32_t res; /* all operands in native machine order */
6283 1.1 joerg uint32_t cc;
6284 1.1 joerg
6285 1.1 joerg res = d + 1;
6286 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
6287 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
6288 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6289 1.1 joerg
6290 1.1 joerg /* calculate the carry chain SEE NOTE AT TOP. */
6291 1.1 joerg cc = ((1 & d) | (~res)) & (1 | d);
6292 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(cc >> 6), F_OF);
6293 1.1 joerg CONDITIONAL_SET_FLAG(cc & 0x8, F_AF);
6294 1.1 joerg return (uint8_t) res;
6295 1.1 joerg }
6296 1.1 joerg /****************************************************************************
6297 1.1 joerg REMARKS:
6298 1.1 joerg Implements the INC instruction and side effects.
6299 1.1 joerg ****************************************************************************/
6300 1.1 joerg static uint16_t
6301 1.1 joerg inc_word(struct X86EMU *emu, uint16_t d)
6302 1.1 joerg {
6303 1.1 joerg uint32_t res; /* all operands in native machine order */
6304 1.1 joerg uint32_t cc;
6305 1.1 joerg
6306 1.1 joerg res = d + 1;
6307 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
6308 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
6309 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6310 1.1 joerg
6311 1.1 joerg /* calculate the carry chain SEE NOTE AT TOP. */
6312 1.1 joerg cc = (1 & d) | ((~res) & (1 | d));
6313 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(cc >> 14), F_OF);
6314 1.1 joerg CONDITIONAL_SET_FLAG(cc & 0x8, F_AF);
6315 1.1 joerg return (uint16_t) res;
6316 1.1 joerg }
6317 1.1 joerg /****************************************************************************
6318 1.1 joerg REMARKS:
6319 1.1 joerg Implements the INC instruction and side effects.
6320 1.1 joerg ****************************************************************************/
6321 1.1 joerg static uint32_t
6322 1.1 joerg inc_long(struct X86EMU *emu, uint32_t d)
6323 1.1 joerg {
6324 1.1 joerg uint32_t res; /* all operands in native machine order */
6325 1.1 joerg uint32_t cc;
6326 1.1 joerg
6327 1.1 joerg res = d + 1;
6328 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
6329 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
6330 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6331 1.1 joerg
6332 1.1 joerg /* calculate the carry chain SEE NOTE AT TOP. */
6333 1.1 joerg cc = (1 & d) | ((~res) & (1 | d));
6334 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(cc >> 30), F_OF);
6335 1.1 joerg CONDITIONAL_SET_FLAG(cc & 0x8, F_AF);
6336 1.1 joerg return res;
6337 1.1 joerg }
6338 1.1 joerg /****************************************************************************
6339 1.1 joerg REMARKS:
6340 1.1 joerg Implements the OR instruction and side effects.
6341 1.1 joerg ****************************************************************************/
6342 1.1 joerg static uint8_t
6343 1.1 joerg or_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
6344 1.1 joerg {
6345 1.1 joerg uint8_t res; /* all operands in native machine order */
6346 1.1 joerg
6347 1.1 joerg res = d | s;
6348 1.1 joerg CLEAR_FLAG(F_OF);
6349 1.1 joerg CLEAR_FLAG(F_CF);
6350 1.1 joerg CLEAR_FLAG(F_AF);
6351 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
6352 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
6353 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res), F_PF);
6354 1.1 joerg return res;
6355 1.1 joerg }
6356 1.1 joerg /****************************************************************************
6357 1.1 joerg REMARKS:
6358 1.1 joerg Implements the OR instruction and side effects.
6359 1.1 joerg ****************************************************************************/
6360 1.1 joerg static uint16_t
6361 1.1 joerg or_word(struct X86EMU *emu, uint16_t d, uint16_t s)
6362 1.1 joerg {
6363 1.1 joerg uint16_t res; /* all operands in native machine order */
6364 1.1 joerg
6365 1.1 joerg res = d | s;
6366 1.1 joerg /* set the carry flag to be bit 8 */
6367 1.1 joerg CLEAR_FLAG(F_OF);
6368 1.1 joerg CLEAR_FLAG(F_CF);
6369 1.1 joerg CLEAR_FLAG(F_AF);
6370 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
6371 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
6372 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6373 1.1 joerg return res;
6374 1.1 joerg }
6375 1.1 joerg /****************************************************************************
6376 1.1 joerg REMARKS:
6377 1.1 joerg Implements the OR instruction and side effects.
6378 1.1 joerg ****************************************************************************/
6379 1.1 joerg static uint32_t
6380 1.1 joerg or_long(struct X86EMU *emu, uint32_t d, uint32_t s)
6381 1.1 joerg {
6382 1.1 joerg uint32_t res; /* all operands in native machine order */
6383 1.1 joerg
6384 1.1 joerg res = d | s;
6385 1.1 joerg
6386 1.1 joerg /* set the carry flag to be bit 8 */
6387 1.1 joerg CLEAR_FLAG(F_OF);
6388 1.1 joerg CLEAR_FLAG(F_CF);
6389 1.1 joerg CLEAR_FLAG(F_AF);
6390 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
6391 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
6392 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6393 1.1 joerg return res;
6394 1.1 joerg }
6395 1.1 joerg /****************************************************************************
6396 1.1 joerg REMARKS:
6397 1.1 joerg Implements the OR instruction and side effects.
6398 1.1 joerg ****************************************************************************/
6399 1.1 joerg static uint8_t
6400 1.1 joerg neg_byte(struct X86EMU *emu, uint8_t s)
6401 1.1 joerg {
6402 1.1 joerg uint8_t res;
6403 1.1 joerg uint8_t bc;
6404 1.1 joerg
6405 1.1 joerg CONDITIONAL_SET_FLAG(s != 0, F_CF);
6406 1.1 joerg res = (uint8_t) - s;
6407 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
6408 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
6409 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res), F_PF);
6410 1.1 joerg /* calculate the borrow chain --- modified such that d=0.
6411 1.13 andvar * substituting d=0 into bc= res&(~d|s)|(~d&s); (the one used for
6412 1.1 joerg * sub) and simplifying, since ~d=0xff..., ~d|s == 0xffff..., and
6413 1.1 joerg * res&0xfff... == res. Similarly ~d&s == s. So the simplified
6414 1.1 joerg * result is: */
6415 1.1 joerg bc = res | s;
6416 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 6), F_OF);
6417 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
6418 1.1 joerg return res;
6419 1.1 joerg }
6420 1.1 joerg /****************************************************************************
6421 1.1 joerg REMARKS:
6422 1.1 joerg Implements the OR instruction and side effects.
6423 1.1 joerg ****************************************************************************/
6424 1.1 joerg static uint16_t
6425 1.1 joerg neg_word(struct X86EMU *emu, uint16_t s)
6426 1.1 joerg {
6427 1.1 joerg uint16_t res;
6428 1.1 joerg uint16_t bc;
6429 1.1 joerg
6430 1.1 joerg CONDITIONAL_SET_FLAG(s != 0, F_CF);
6431 1.1 joerg res = (uint16_t) - s;
6432 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
6433 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
6434 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6435 1.1 joerg
6436 1.1 joerg /* calculate the borrow chain --- modified such that d=0.
6437 1.13 andvar * substituting d=0 into bc= res&(~d|s)|(~d&s); (the one used for
6438 1.1 joerg * sub) and simplifying, since ~d=0xff..., ~d|s == 0xffff..., and
6439 1.1 joerg * res&0xfff... == res. Similarly ~d&s == s. So the simplified
6440 1.1 joerg * result is: */
6441 1.1 joerg bc = res | s;
6442 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 14), F_OF);
6443 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
6444 1.1 joerg return res;
6445 1.1 joerg }
6446 1.1 joerg /****************************************************************************
6447 1.1 joerg REMARKS:
6448 1.1 joerg Implements the OR instruction and side effects.
6449 1.1 joerg ****************************************************************************/
6450 1.1 joerg static uint32_t
6451 1.1 joerg neg_long(struct X86EMU *emu, uint32_t s)
6452 1.1 joerg {
6453 1.1 joerg uint32_t res;
6454 1.1 joerg uint32_t bc;
6455 1.1 joerg
6456 1.1 joerg CONDITIONAL_SET_FLAG(s != 0, F_CF);
6457 1.1 joerg res = (uint32_t) - s;
6458 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
6459 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
6460 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6461 1.1 joerg
6462 1.1 joerg /* calculate the borrow chain --- modified such that d=0.
6463 1.13 andvar * substituting d=0 into bc= res&(~d|s)|(~d&s); (the one used for
6464 1.1 joerg * sub) and simplifying, since ~d=0xff..., ~d|s == 0xffff..., and
6465 1.1 joerg * res&0xfff... == res. Similarly ~d&s == s. So the simplified
6466 1.1 joerg * result is: */
6467 1.1 joerg bc = res | s;
6468 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 30), F_OF);
6469 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
6470 1.1 joerg return res;
6471 1.1 joerg }
6472 1.1 joerg /****************************************************************************
6473 1.1 joerg REMARKS:
6474 1.1 joerg Implements the RCL instruction and side effects.
6475 1.1 joerg ****************************************************************************/
6476 1.1 joerg static uint8_t
6477 1.1 joerg rcl_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
6478 1.1 joerg {
6479 1.1 joerg unsigned int res, cnt, mask, cf;
6480 1.1 joerg
6481 1.1 joerg /* s is the rotate distance. It varies from 0 - 8. */
6482 1.1 joerg /* have
6483 1.1 joerg *
6484 1.1 joerg * CF B_7 B_6 B_5 B_4 B_3 B_2 B_1 B_0
6485 1.1 joerg *
6486 1.1 joerg * want to rotate through the carry by "s" bits. We could loop, but
6487 1.1 joerg * that's inefficient. So the width is 9, and we split into three
6488 1.1 joerg * parts:
6489 1.1 joerg *
6490 1.1 joerg * The new carry flag (was B_n) the stuff in B_n-1 .. B_0 the stuff in
6491 1.1 joerg * B_7 .. B_n+1
6492 1.1 joerg *
6493 1.1 joerg * The new rotate is done mod 9, and given this, for a rotation of n bits
6494 1.1 joerg * (mod 9) the new carry flag is then located n bits from the MSB.
6495 1.1 joerg * The low part is then shifted up cnt bits, and the high part is or'd
6496 1.1 joerg * in. Using CAPS for new values, and lowercase for the original
6497 1.1 joerg * values, this can be expressed as:
6498 1.1 joerg *
6499 1.1 joerg * IF n > 0 1) CF <- b_(8-n) 2) B_(7) .. B_(n) <- b_(8-(n+1)) .. b_0
6500 1.1 joerg * 3) B_(n-1) <- cf 4) B_(n-2) .. B_0 <- b_7 .. b_(8-(n-1)) */
6501 1.1 joerg res = d;
6502 1.1 joerg if ((cnt = s % 9) != 0) {
6503 1.1 joerg /* extract the new CARRY FLAG. */
6504 1.1 joerg /* CF <- b_(8-n) */
6505 1.1 joerg cf = (d >> (8 - cnt)) & 0x1;
6506 1.1 joerg
6507 1.1 joerg /* get the low stuff which rotated into the range B_7 .. B_cnt */
6508 1.1 joerg /* B_(7) .. B_(n) <- b_(8-(n+1)) .. b_0 */
6509 1.1 joerg /* note that the right hand side done by the mask */
6510 1.1 joerg res = (d << cnt) & 0xff;
6511 1.1 joerg
6512 1.1 joerg /* now the high stuff which rotated around into the positions
6513 1.1 joerg * B_cnt-2 .. B_0 */
6514 1.1 joerg /* B_(n-2) .. B_0 <- b_7 .. b_(8-(n-1)) */
6515 1.1 joerg /* shift it downward, 7-(n-2) = 9-n positions. and mask off
6516 1.1 joerg * the result before or'ing in. */
6517 1.1 joerg mask = (1 << (cnt - 1)) - 1;
6518 1.1 joerg res |= (d >> (9 - cnt)) & mask;
6519 1.1 joerg
6520 1.1 joerg /* if the carry flag was set, or it in. */
6521 1.1 joerg if (ACCESS_FLAG(F_CF)) { /* carry flag is set */
6522 1.1 joerg /* B_(n-1) <- cf */
6523 1.1 joerg res |= 1 << (cnt - 1);
6524 1.1 joerg }
6525 1.1 joerg /* set the new carry flag, based on the variable "cf" */
6526 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
6527 1.1 joerg /* OVERFLOW is set *IFF* cnt==1, then it is the xor of CF and
6528 1.1 joerg * the most significant bit. Blecck. */
6529 1.1 joerg /* parenthesized this expression since it appears to be
6530 1.1 joerg * causing OF to be misset */
6531 1.1 joerg CONDITIONAL_SET_FLAG(cnt == 1 && XOR2(cf + ((res >> 6) & 0x2)),
6532 1.1 joerg F_OF);
6533 1.1 joerg
6534 1.1 joerg }
6535 1.1 joerg return (uint8_t) res;
6536 1.1 joerg }
6537 1.1 joerg /****************************************************************************
6538 1.1 joerg REMARKS:
6539 1.1 joerg Implements the RCL instruction and side effects.
6540 1.1 joerg ****************************************************************************/
6541 1.1 joerg static uint16_t
6542 1.1 joerg rcl_word(struct X86EMU *emu, uint16_t d, uint8_t s)
6543 1.1 joerg {
6544 1.1 joerg unsigned int res, cnt, mask, cf;
6545 1.1 joerg
6546 1.1 joerg res = d;
6547 1.1 joerg if ((cnt = s % 17) != 0) {
6548 1.1 joerg cf = (d >> (16 - cnt)) & 0x1;
6549 1.1 joerg res = (d << cnt) & 0xffff;
6550 1.1 joerg mask = (1 << (cnt - 1)) - 1;
6551 1.1 joerg res |= (d >> (17 - cnt)) & mask;
6552 1.1 joerg if (ACCESS_FLAG(F_CF)) {
6553 1.1 joerg res |= 1 << (cnt - 1);
6554 1.1 joerg }
6555 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
6556 1.1 joerg CONDITIONAL_SET_FLAG(cnt == 1 && XOR2(cf + ((res >> 14) & 0x2)),
6557 1.1 joerg F_OF);
6558 1.1 joerg }
6559 1.1 joerg return (uint16_t) res;
6560 1.1 joerg }
6561 1.1 joerg /****************************************************************************
6562 1.1 joerg REMARKS:
6563 1.1 joerg Implements the RCL instruction and side effects.
6564 1.1 joerg ****************************************************************************/
6565 1.1 joerg static uint32_t
6566 1.1 joerg rcl_long(struct X86EMU *emu, uint32_t d, uint8_t s)
6567 1.1 joerg {
6568 1.1 joerg uint32_t res, cnt, mask, cf;
6569 1.1 joerg
6570 1.1 joerg res = d;
6571 1.1 joerg if ((cnt = s % 33) != 0) {
6572 1.1 joerg cf = (d >> (32 - cnt)) & 0x1;
6573 1.1 joerg res = (d << cnt) & 0xffffffff;
6574 1.1 joerg mask = (1 << (cnt - 1)) - 1;
6575 1.1 joerg res |= (d >> (33 - cnt)) & mask;
6576 1.1 joerg if (ACCESS_FLAG(F_CF)) { /* carry flag is set */
6577 1.1 joerg res |= 1 << (cnt - 1);
6578 1.1 joerg }
6579 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
6580 1.1 joerg CONDITIONAL_SET_FLAG(cnt == 1 && XOR2(cf + ((res >> 30) & 0x2)),
6581 1.1 joerg F_OF);
6582 1.1 joerg }
6583 1.1 joerg return res;
6584 1.1 joerg }
6585 1.1 joerg /****************************************************************************
6586 1.1 joerg REMARKS:
6587 1.1 joerg Implements the RCR instruction and side effects.
6588 1.1 joerg ****************************************************************************/
6589 1.1 joerg static uint8_t
6590 1.1 joerg rcr_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
6591 1.1 joerg {
6592 1.1 joerg uint32_t res, cnt;
6593 1.1 joerg uint32_t mask, cf, ocf = 0;
6594 1.1 joerg
6595 1.1 joerg /* rotate right through carry */
6596 1.1 joerg /* s is the rotate distance. It varies from 0 - 8. d is the byte
6597 1.1 joerg * object rotated.
6598 1.1 joerg *
6599 1.1 joerg * have
6600 1.1 joerg *
6601 1.1 joerg * CF B_7 B_6 B_5 B_4 B_3 B_2 B_1 B_0
6602 1.1 joerg *
6603 1.1 joerg * The new rotate is done mod 9, and given this, for a rotation of n bits
6604 1.1 joerg * (mod 9) the new carry flag is then located n bits from the LSB.
6605 1.1 joerg * The low part is then shifted up cnt bits, and the high part is or'd
6606 1.1 joerg * in. Using CAPS for new values, and lowercase for the original
6607 1.1 joerg * values, this can be expressed as:
6608 1.1 joerg *
6609 1.1 joerg * IF n > 0 1) CF <- b_(n-1) 2) B_(8-(n+1)) .. B_(0) <- b_(7) .. b_(n)
6610 1.1 joerg * 3) B_(8-n) <- cf 4) B_(7) .. B_(8-(n-1)) <- b_(n-2) .. b_(0) */
6611 1.1 joerg res = d;
6612 1.1 joerg if ((cnt = s % 9) != 0) {
6613 1.1 joerg /* extract the new CARRY FLAG. */
6614 1.1 joerg /* CF <- b_(n-1) */
6615 1.1 joerg if (cnt == 1) {
6616 1.1 joerg cf = d & 0x1;
6617 1.1 joerg /* note hackery here. Access_flag(..) evaluates to
6618 1.1 joerg * either 0 if flag not set non-zero if flag is set.
6619 1.1 joerg * doing access_flag(..) != 0 casts that into either
6620 1.1 joerg * 0..1 in any representation of the flags register
6621 1.1 joerg * (i.e. packed bit array or unpacked.) */
6622 1.1 joerg ocf = ACCESS_FLAG(F_CF) != 0;
6623 1.1 joerg } else
6624 1.1 joerg cf = (d >> (cnt - 1)) & 0x1;
6625 1.1 joerg
6626 1.1 joerg /* B_(8-(n+1)) .. B_(0) <- b_(7) .. b_n */
6627 1.1 joerg /* note that the right hand side done by the mask This is
6628 1.1 joerg * effectively done by shifting the object to the right. The
6629 1.1 joerg * result must be masked, in case the object came in and was
6630 1.1 joerg * treated as a negative number. Needed??? */
6631 1.1 joerg
6632 1.1 joerg mask = (1 << (8 - cnt)) - 1;
6633 1.1 joerg res = (d >> cnt) & mask;
6634 1.1 joerg
6635 1.1 joerg /* now the high stuff which rotated around into the positions
6636 1.1 joerg * B_cnt-2 .. B_0 */
6637 1.1 joerg /* B_(7) .. B_(8-(n-1)) <- b_(n-2) .. b_(0) */
6638 1.1 joerg /* shift it downward, 7-(n-2) = 9-n positions. and mask off
6639 1.1 joerg * the result before or'ing in. */
6640 1.1 joerg res |= (d << (9 - cnt));
6641 1.1 joerg
6642 1.1 joerg /* if the carry flag was set, or it in. */
6643 1.1 joerg if (ACCESS_FLAG(F_CF)) { /* carry flag is set */
6644 1.1 joerg /* B_(8-n) <- cf */
6645 1.1 joerg res |= 1 << (8 - cnt);
6646 1.1 joerg }
6647 1.1 joerg /* set the new carry flag, based on the variable "cf" */
6648 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
6649 1.1 joerg /* OVERFLOW is set *IFF* cnt==1, then it is the xor of CF and
6650 1.1 joerg * the most significant bit. Blecck. */
6651 1.1 joerg /* parenthesized... */
6652 1.1 joerg if (cnt == 1) {
6653 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(ocf + ((d >> 6) & 0x2)),
6654 1.1 joerg F_OF);
6655 1.1 joerg }
6656 1.1 joerg }
6657 1.1 joerg return (uint8_t) res;
6658 1.1 joerg }
6659 1.1 joerg /****************************************************************************
6660 1.1 joerg REMARKS:
6661 1.1 joerg Implements the RCR instruction and side effects.
6662 1.1 joerg ****************************************************************************/
6663 1.1 joerg static uint16_t
6664 1.1 joerg rcr_word(struct X86EMU *emu, uint16_t d, uint8_t s)
6665 1.1 joerg {
6666 1.1 joerg uint32_t res, cnt;
6667 1.1 joerg uint32_t mask, cf, ocf = 0;
6668 1.1 joerg
6669 1.1 joerg /* rotate right through carry */
6670 1.1 joerg res = d;
6671 1.1 joerg if ((cnt = s % 17) != 0) {
6672 1.1 joerg if (cnt == 1) {
6673 1.1 joerg cf = d & 0x1;
6674 1.1 joerg ocf = ACCESS_FLAG(F_CF) != 0;
6675 1.1 joerg } else
6676 1.1 joerg cf = (d >> (cnt - 1)) & 0x1;
6677 1.1 joerg mask = (1 << (16 - cnt)) - 1;
6678 1.1 joerg res = (d >> cnt) & mask;
6679 1.1 joerg res |= (d << (17 - cnt));
6680 1.1 joerg if (ACCESS_FLAG(F_CF)) {
6681 1.1 joerg res |= 1 << (16 - cnt);
6682 1.1 joerg }
6683 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
6684 1.1 joerg if (cnt == 1) {
6685 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(ocf + ((d >> 14) & 0x2)),
6686 1.1 joerg F_OF);
6687 1.1 joerg }
6688 1.1 joerg }
6689 1.1 joerg return (uint16_t) res;
6690 1.1 joerg }
6691 1.1 joerg /****************************************************************************
6692 1.1 joerg REMARKS:
6693 1.1 joerg Implements the RCR instruction and side effects.
6694 1.1 joerg ****************************************************************************/
6695 1.1 joerg static uint32_t
6696 1.1 joerg rcr_long(struct X86EMU *emu, uint32_t d, uint8_t s)
6697 1.1 joerg {
6698 1.1 joerg uint32_t res, cnt;
6699 1.1 joerg uint32_t mask, cf, ocf = 0;
6700 1.1 joerg
6701 1.1 joerg /* rotate right through carry */
6702 1.1 joerg res = d;
6703 1.1 joerg if ((cnt = s % 33) != 0) {
6704 1.1 joerg if (cnt == 1) {
6705 1.1 joerg cf = d & 0x1;
6706 1.1 joerg ocf = ACCESS_FLAG(F_CF) != 0;
6707 1.1 joerg } else
6708 1.1 joerg cf = (d >> (cnt - 1)) & 0x1;
6709 1.1 joerg mask = (1 << (32 - cnt)) - 1;
6710 1.1 joerg res = (d >> cnt) & mask;
6711 1.1 joerg if (cnt != 1)
6712 1.1 joerg res |= (d << (33 - cnt));
6713 1.1 joerg if (ACCESS_FLAG(F_CF)) { /* carry flag is set */
6714 1.1 joerg res |= 1 << (32 - cnt);
6715 1.1 joerg }
6716 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
6717 1.1 joerg if (cnt == 1) {
6718 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(ocf + ((d >> 30) & 0x2)),
6719 1.1 joerg F_OF);
6720 1.1 joerg }
6721 1.1 joerg }
6722 1.1 joerg return res;
6723 1.1 joerg }
6724 1.1 joerg /****************************************************************************
6725 1.1 joerg REMARKS:
6726 1.1 joerg Implements the ROL instruction and side effects.
6727 1.1 joerg ****************************************************************************/
6728 1.1 joerg static uint8_t
6729 1.1 joerg rol_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
6730 1.1 joerg {
6731 1.1 joerg unsigned int res, cnt, mask;
6732 1.1 joerg
6733 1.1 joerg /* rotate left */
6734 1.1 joerg /* s is the rotate distance. It varies from 0 - 8. d is the byte
6735 1.1 joerg * object rotated.
6736 1.1 joerg *
6737 1.1 joerg * have
6738 1.1 joerg *
6739 1.1 joerg * CF B_7 ... B_0
6740 1.1 joerg *
6741 1.1 joerg * The new rotate is done mod 8. Much simpler than the "rcl" or "rcr"
6742 1.1 joerg * operations.
6743 1.1 joerg *
6744 1.1 joerg * IF n > 0 1) B_(7) .. B_(n) <- b_(8-(n+1)) .. b_(0) 2) B_(n-1) ..
6745 1.1 joerg * B_(0) <- b_(7) .. b_(8-n) */
6746 1.1 joerg res = d;
6747 1.1 joerg if ((cnt = s % 8) != 0) {
6748 1.1 joerg /* B_(7) .. B_(n) <- b_(8-(n+1)) .. b_(0) */
6749 1.1 joerg res = (d << cnt);
6750 1.1 joerg
6751 1.1 joerg /* B_(n-1) .. B_(0) <- b_(7) .. b_(8-n) */
6752 1.1 joerg mask = (1 << cnt) - 1;
6753 1.1 joerg res |= (d >> (8 - cnt)) & mask;
6754 1.1 joerg
6755 1.1 joerg /* set the new carry flag, Note that it is the low order bit
6756 1.1 joerg * of the result!!! */
6757 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x1, F_CF);
6758 1.1 joerg /* OVERFLOW is set *IFF* s==1, then it is the xor of CF and
6759 1.1 joerg * the most significant bit. Blecck. */
6760 1.1 joerg CONDITIONAL_SET_FLAG(s == 1 &&
6761 1.1 joerg XOR2((res & 0x1) + ((res >> 6) & 0x2)),
6762 1.1 joerg F_OF);
6763 1.1 joerg } if (s != 0) {
6764 1.1 joerg /* set the new carry flag, Note that it is the low order bit
6765 1.1 joerg * of the result!!! */
6766 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x1, F_CF);
6767 1.1 joerg }
6768 1.1 joerg return (uint8_t) res;
6769 1.1 joerg }
6770 1.1 joerg /****************************************************************************
6771 1.1 joerg REMARKS:
6772 1.1 joerg Implements the ROL instruction and side effects.
6773 1.1 joerg ****************************************************************************/
6774 1.1 joerg static uint16_t
6775 1.1 joerg rol_word(struct X86EMU *emu, uint16_t d, uint8_t s)
6776 1.1 joerg {
6777 1.1 joerg unsigned int res, cnt, mask;
6778 1.1 joerg
6779 1.1 joerg res = d;
6780 1.1 joerg if ((cnt = s % 16) != 0) {
6781 1.1 joerg res = (d << cnt);
6782 1.1 joerg mask = (1 << cnt) - 1;
6783 1.1 joerg res |= (d >> (16 - cnt)) & mask;
6784 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x1, F_CF);
6785 1.1 joerg CONDITIONAL_SET_FLAG(s == 1 &&
6786 1.1 joerg XOR2((res & 0x1) + ((res >> 14) & 0x2)),
6787 1.1 joerg F_OF);
6788 1.1 joerg } if (s != 0) {
6789 1.1 joerg /* set the new carry flag, Note that it is the low order bit
6790 1.1 joerg * of the result!!! */
6791 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x1, F_CF);
6792 1.1 joerg }
6793 1.1 joerg return (uint16_t) res;
6794 1.1 joerg }
6795 1.1 joerg /****************************************************************************
6796 1.1 joerg REMARKS:
6797 1.1 joerg Implements the ROL instruction and side effects.
6798 1.1 joerg ****************************************************************************/
6799 1.1 joerg static uint32_t
6800 1.1 joerg rol_long(struct X86EMU *emu, uint32_t d, uint8_t s)
6801 1.1 joerg {
6802 1.1 joerg uint32_t res, cnt, mask;
6803 1.1 joerg
6804 1.1 joerg res = d;
6805 1.1 joerg if ((cnt = s % 32) != 0) {
6806 1.1 joerg res = (d << cnt);
6807 1.1 joerg mask = (1 << cnt) - 1;
6808 1.1 joerg res |= (d >> (32 - cnt)) & mask;
6809 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x1, F_CF);
6810 1.1 joerg CONDITIONAL_SET_FLAG(s == 1 &&
6811 1.1 joerg XOR2((res & 0x1) + ((res >> 30) & 0x2)),
6812 1.1 joerg F_OF);
6813 1.1 joerg } if (s != 0) {
6814 1.1 joerg /* set the new carry flag, Note that it is the low order bit
6815 1.1 joerg * of the result!!! */
6816 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x1, F_CF);
6817 1.1 joerg }
6818 1.1 joerg return res;
6819 1.1 joerg }
6820 1.1 joerg /****************************************************************************
6821 1.1 joerg REMARKS:
6822 1.1 joerg Implements the ROR instruction and side effects.
6823 1.1 joerg ****************************************************************************/
6824 1.1 joerg static uint8_t
6825 1.1 joerg ror_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
6826 1.1 joerg {
6827 1.1 joerg unsigned int res, cnt, mask;
6828 1.1 joerg
6829 1.1 joerg /* rotate right */
6830 1.1 joerg /* s is the rotate distance. It varies from 0 - 8. d is the byte
6831 1.1 joerg * object rotated.
6832 1.1 joerg *
6833 1.1 joerg * have
6834 1.1 joerg *
6835 1.1 joerg * B_7 ... B_0
6836 1.1 joerg *
6837 1.1 joerg * The rotate is done mod 8.
6838 1.1 joerg *
6839 1.1 joerg * IF n > 0 1) B_(8-(n+1)) .. B_(0) <- b_(7) .. b_(n) 2) B_(7) ..
6840 1.1 joerg * B_(8-n) <- b_(n-1) .. b_(0) */
6841 1.1 joerg res = d;
6842 1.1 joerg if ((cnt = s % 8) != 0) { /* not a typo, do nada if cnt==0 */
6843 1.1 joerg /* B_(7) .. B_(8-n) <- b_(n-1) .. b_(0) */
6844 1.1 joerg res = (d << (8 - cnt));
6845 1.1 joerg
6846 1.1 joerg /* B_(8-(n+1)) .. B_(0) <- b_(7) .. b_(n) */
6847 1.1 joerg mask = (1 << (8 - cnt)) - 1;
6848 1.1 joerg res |= (d >> (cnt)) & mask;
6849 1.1 joerg
6850 1.1 joerg /* set the new carry flag, Note that it is the low order bit
6851 1.1 joerg * of the result!!! */
6852 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_CF);
6853 1.1 joerg /* OVERFLOW is set *IFF* s==1, then it is the xor of the two
6854 1.1 joerg * most significant bits. Blecck. */
6855 1.1 joerg CONDITIONAL_SET_FLAG(s == 1 && XOR2(res >> 6), F_OF);
6856 1.1 joerg } else if (s != 0) {
6857 1.1 joerg /* set the new carry flag, Note that it is the low order bit
6858 1.1 joerg * of the result!!! */
6859 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_CF);
6860 1.1 joerg }
6861 1.1 joerg return (uint8_t) res;
6862 1.1 joerg }
6863 1.1 joerg /****************************************************************************
6864 1.1 joerg REMARKS:
6865 1.1 joerg Implements the ROR instruction and side effects.
6866 1.1 joerg ****************************************************************************/
6867 1.1 joerg static uint16_t
6868 1.1 joerg ror_word(struct X86EMU *emu, uint16_t d, uint8_t s)
6869 1.1 joerg {
6870 1.1 joerg unsigned int res, cnt, mask;
6871 1.1 joerg
6872 1.1 joerg res = d;
6873 1.1 joerg if ((cnt = s % 16) != 0) {
6874 1.1 joerg res = (d << (16 - cnt));
6875 1.1 joerg mask = (1 << (16 - cnt)) - 1;
6876 1.1 joerg res |= (d >> (cnt)) & mask;
6877 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_CF);
6878 1.1 joerg CONDITIONAL_SET_FLAG(s == 1 && XOR2(res >> 14), F_OF);
6879 1.1 joerg } else if (s != 0) {
6880 1.1 joerg /* set the new carry flag, Note that it is the low order bit
6881 1.1 joerg * of the result!!! */
6882 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_CF);
6883 1.1 joerg }
6884 1.1 joerg return (uint16_t) res;
6885 1.1 joerg }
6886 1.1 joerg /****************************************************************************
6887 1.1 joerg REMARKS:
6888 1.1 joerg Implements the ROR instruction and side effects.
6889 1.1 joerg ****************************************************************************/
6890 1.1 joerg static uint32_t
6891 1.1 joerg ror_long(struct X86EMU *emu, uint32_t d, uint8_t s)
6892 1.1 joerg {
6893 1.1 joerg uint32_t res, cnt, mask;
6894 1.1 joerg
6895 1.1 joerg res = d;
6896 1.1 joerg if ((cnt = s % 32) != 0) {
6897 1.1 joerg res = (d << (32 - cnt));
6898 1.1 joerg mask = (1 << (32 - cnt)) - 1;
6899 1.1 joerg res |= (d >> (cnt)) & mask;
6900 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_CF);
6901 1.1 joerg CONDITIONAL_SET_FLAG(s == 1 && XOR2(res >> 30), F_OF);
6902 1.1 joerg } else if (s != 0) {
6903 1.1 joerg /* set the new carry flag, Note that it is the low order bit
6904 1.1 joerg * of the result!!! */
6905 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_CF);
6906 1.1 joerg }
6907 1.1 joerg return res;
6908 1.1 joerg }
6909 1.1 joerg /****************************************************************************
6910 1.1 joerg REMARKS:
6911 1.1 joerg Implements the SHL instruction and side effects.
6912 1.1 joerg ****************************************************************************/
6913 1.1 joerg static uint8_t
6914 1.1 joerg shl_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
6915 1.1 joerg {
6916 1.1 joerg unsigned int cnt, res, cf;
6917 1.1 joerg
6918 1.1 joerg if (s < 8) {
6919 1.1 joerg cnt = s % 8;
6920 1.1 joerg
6921 1.1 joerg /* last bit shifted out goes into carry flag */
6922 1.1 joerg if (cnt > 0) {
6923 1.1 joerg res = d << cnt;
6924 1.1 joerg cf = d & (1 << (8 - cnt));
6925 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
6926 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
6927 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
6928 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6929 1.1 joerg } else {
6930 1.1 joerg res = (uint8_t) d;
6931 1.1 joerg }
6932 1.1 joerg
6933 1.1 joerg if (cnt == 1) {
6934 1.1 joerg /* Needs simplification. */
6935 1.1 joerg CONDITIONAL_SET_FLAG(
6936 1.1 joerg (((res & 0x80) == 0x80) ^
6937 1.1 joerg (ACCESS_FLAG(F_CF) != 0)),
6938 1.1 joerg /* was (emu->x86.R_FLG&F_CF)==F_CF)), */
6939 1.1 joerg F_OF);
6940 1.1 joerg } else {
6941 1.1 joerg CLEAR_FLAG(F_OF);
6942 1.1 joerg }
6943 1.1 joerg } else {
6944 1.1 joerg res = 0;
6945 1.1 joerg CONDITIONAL_SET_FLAG((d << (s - 1)) & 0x80, F_CF);
6946 1.1 joerg CLEAR_FLAG(F_OF);
6947 1.1 joerg CLEAR_FLAG(F_SF);
6948 1.1 joerg SET_FLAG(F_PF);
6949 1.1 joerg SET_FLAG(F_ZF);
6950 1.1 joerg }
6951 1.1 joerg return (uint8_t) res;
6952 1.1 joerg }
6953 1.1 joerg /****************************************************************************
6954 1.1 joerg REMARKS:
6955 1.1 joerg Implements the SHL instruction and side effects.
6956 1.1 joerg ****************************************************************************/
6957 1.1 joerg static uint16_t
6958 1.1 joerg shl_word(struct X86EMU *emu, uint16_t d, uint8_t s)
6959 1.1 joerg {
6960 1.1 joerg unsigned int cnt, res, cf;
6961 1.1 joerg
6962 1.1 joerg if (s < 16) {
6963 1.1 joerg cnt = s % 16;
6964 1.1 joerg if (cnt > 0) {
6965 1.1 joerg res = d << cnt;
6966 1.1 joerg cf = d & (1 << (16 - cnt));
6967 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
6968 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
6969 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
6970 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6971 1.1 joerg } else {
6972 1.1 joerg res = (uint16_t) d;
6973 1.1 joerg }
6974 1.1 joerg
6975 1.1 joerg if (cnt == 1) {
6976 1.1 joerg CONDITIONAL_SET_FLAG(
6977 1.1 joerg (((res & 0x8000) == 0x8000) ^
6978 1.1 joerg (ACCESS_FLAG(F_CF) != 0)),
6979 1.1 joerg F_OF);
6980 1.1 joerg } else {
6981 1.1 joerg CLEAR_FLAG(F_OF);
6982 1.1 joerg }
6983 1.1 joerg } else {
6984 1.1 joerg res = 0;
6985 1.1 joerg CONDITIONAL_SET_FLAG((d << (s - 1)) & 0x8000, F_CF);
6986 1.1 joerg CLEAR_FLAG(F_OF);
6987 1.1 joerg CLEAR_FLAG(F_SF);
6988 1.1 joerg SET_FLAG(F_PF);
6989 1.1 joerg SET_FLAG(F_ZF);
6990 1.1 joerg }
6991 1.1 joerg return (uint16_t) res;
6992 1.1 joerg }
6993 1.1 joerg /****************************************************************************
6994 1.1 joerg REMARKS:
6995 1.1 joerg Implements the SHL instruction and side effects.
6996 1.1 joerg ****************************************************************************/
6997 1.1 joerg static uint32_t
6998 1.1 joerg shl_long(struct X86EMU *emu, uint32_t d, uint8_t s)
6999 1.1 joerg {
7000 1.1 joerg unsigned int cnt, res, cf;
7001 1.1 joerg
7002 1.1 joerg if (s < 32) {
7003 1.1 joerg cnt = s % 32;
7004 1.1 joerg if (cnt > 0) {
7005 1.1 joerg res = d << cnt;
7006 1.1 joerg cf = d & (1 << (32 - cnt));
7007 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
7008 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
7009 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
7010 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7011 1.1 joerg } else {
7012 1.1 joerg res = d;
7013 1.1 joerg }
7014 1.1 joerg if (cnt == 1) {
7015 1.1 joerg CONDITIONAL_SET_FLAG((((res & 0x80000000) == 0x80000000) ^
7016 1.1 joerg (ACCESS_FLAG(F_CF) != 0)), F_OF);
7017 1.1 joerg } else {
7018 1.1 joerg CLEAR_FLAG(F_OF);
7019 1.1 joerg }
7020 1.1 joerg } else {
7021 1.1 joerg res = 0;
7022 1.1 joerg CONDITIONAL_SET_FLAG((d << (s - 1)) & 0x80000000, F_CF);
7023 1.1 joerg CLEAR_FLAG(F_OF);
7024 1.1 joerg CLEAR_FLAG(F_SF);
7025 1.1 joerg SET_FLAG(F_PF);
7026 1.1 joerg SET_FLAG(F_ZF);
7027 1.1 joerg }
7028 1.1 joerg return res;
7029 1.1 joerg }
7030 1.1 joerg /****************************************************************************
7031 1.1 joerg REMARKS:
7032 1.1 joerg Implements the SHR instruction and side effects.
7033 1.1 joerg ****************************************************************************/
7034 1.1 joerg static uint8_t
7035 1.1 joerg shr_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
7036 1.1 joerg {
7037 1.1 joerg unsigned int cnt, res, cf;
7038 1.1 joerg
7039 1.1 joerg if (s < 8) {
7040 1.1 joerg cnt = s % 8;
7041 1.1 joerg if (cnt > 0) {
7042 1.1 joerg cf = d & (1 << (cnt - 1));
7043 1.1 joerg res = d >> cnt;
7044 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
7045 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
7046 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
7047 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7048 1.1 joerg } else {
7049 1.1 joerg res = (uint8_t) d;
7050 1.1 joerg }
7051 1.1 joerg
7052 1.1 joerg if (cnt == 1) {
7053 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(res >> 6), F_OF);
7054 1.1 joerg } else {
7055 1.1 joerg CLEAR_FLAG(F_OF);
7056 1.1 joerg }
7057 1.1 joerg } else {
7058 1.1 joerg res = 0;
7059 1.1 joerg CONDITIONAL_SET_FLAG((d >> (s - 1)) & 0x1, F_CF);
7060 1.1 joerg CLEAR_FLAG(F_OF);
7061 1.1 joerg CLEAR_FLAG(F_SF);
7062 1.1 joerg SET_FLAG(F_PF);
7063 1.1 joerg SET_FLAG(F_ZF);
7064 1.1 joerg }
7065 1.1 joerg return (uint8_t) res;
7066 1.1 joerg }
7067 1.1 joerg /****************************************************************************
7068 1.1 joerg REMARKS:
7069 1.1 joerg Implements the SHR instruction and side effects.
7070 1.1 joerg ****************************************************************************/
7071 1.1 joerg static uint16_t
7072 1.1 joerg shr_word(struct X86EMU *emu, uint16_t d, uint8_t s)
7073 1.1 joerg {
7074 1.1 joerg unsigned int cnt, res, cf;
7075 1.1 joerg
7076 1.1 joerg if (s < 16) {
7077 1.1 joerg cnt = s % 16;
7078 1.1 joerg if (cnt > 0) {
7079 1.1 joerg cf = d & (1 << (cnt - 1));
7080 1.1 joerg res = d >> cnt;
7081 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
7082 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
7083 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
7084 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7085 1.1 joerg } else {
7086 1.1 joerg res = d;
7087 1.1 joerg }
7088 1.1 joerg
7089 1.1 joerg if (cnt == 1) {
7090 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(res >> 14), F_OF);
7091 1.1 joerg } else {
7092 1.1 joerg CLEAR_FLAG(F_OF);
7093 1.1 joerg }
7094 1.1 joerg } else {
7095 1.1 joerg res = 0;
7096 1.1 joerg CLEAR_FLAG(F_CF);
7097 1.1 joerg CLEAR_FLAG(F_OF);
7098 1.1 joerg SET_FLAG(F_ZF);
7099 1.1 joerg CLEAR_FLAG(F_SF);
7100 1.1 joerg CLEAR_FLAG(F_PF);
7101 1.1 joerg }
7102 1.1 joerg return (uint16_t) res;
7103 1.1 joerg }
7104 1.1 joerg /****************************************************************************
7105 1.1 joerg REMARKS:
7106 1.1 joerg Implements the SHR instruction and side effects.
7107 1.1 joerg ****************************************************************************/
7108 1.1 joerg static uint32_t
7109 1.1 joerg shr_long(struct X86EMU *emu, uint32_t d, uint8_t s)
7110 1.1 joerg {
7111 1.1 joerg unsigned int cnt, res, cf;
7112 1.1 joerg
7113 1.1 joerg if (s < 32) {
7114 1.1 joerg cnt = s % 32;
7115 1.1 joerg if (cnt > 0) {
7116 1.1 joerg cf = d & (1 << (cnt - 1));
7117 1.1 joerg res = d >> cnt;
7118 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
7119 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
7120 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
7121 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7122 1.1 joerg } else {
7123 1.1 joerg res = d;
7124 1.1 joerg }
7125 1.1 joerg if (cnt == 1) {
7126 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(res >> 30), F_OF);
7127 1.1 joerg } else {
7128 1.1 joerg CLEAR_FLAG(F_OF);
7129 1.1 joerg }
7130 1.1 joerg } else {
7131 1.1 joerg res = 0;
7132 1.1 joerg CLEAR_FLAG(F_CF);
7133 1.1 joerg CLEAR_FLAG(F_OF);
7134 1.1 joerg SET_FLAG(F_ZF);
7135 1.1 joerg CLEAR_FLAG(F_SF);
7136 1.1 joerg CLEAR_FLAG(F_PF);
7137 1.1 joerg }
7138 1.1 joerg return res;
7139 1.1 joerg }
7140 1.1 joerg /****************************************************************************
7141 1.1 joerg REMARKS:
7142 1.1 joerg Implements the SAR instruction and side effects.
7143 1.1 joerg ****************************************************************************/
7144 1.1 joerg static uint8_t
7145 1.1 joerg sar_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
7146 1.1 joerg {
7147 1.1 joerg unsigned int cnt, res, cf, mask, sf;
7148 1.1 joerg
7149 1.1 joerg res = d;
7150 1.1 joerg sf = d & 0x80;
7151 1.1 joerg cnt = s % 8;
7152 1.1 joerg if (cnt > 0 && cnt < 8) {
7153 1.1 joerg mask = (1 << (8 - cnt)) - 1;
7154 1.1 joerg cf = d & (1 << (cnt - 1));
7155 1.1 joerg res = (d >> cnt) & mask;
7156 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
7157 1.1 joerg if (sf) {
7158 1.1 joerg res |= ~mask;
7159 1.1 joerg }
7160 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
7161 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7162 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
7163 1.1 joerg } else if (cnt >= 8) {
7164 1.1 joerg if (sf) {
7165 1.1 joerg res = 0xff;
7166 1.1 joerg SET_FLAG(F_CF);
7167 1.1 joerg CLEAR_FLAG(F_ZF);
7168 1.1 joerg SET_FLAG(F_SF);
7169 1.1 joerg SET_FLAG(F_PF);
7170 1.1 joerg } else {
7171 1.1 joerg res = 0;
7172 1.1 joerg CLEAR_FLAG(F_CF);
7173 1.1 joerg SET_FLAG(F_ZF);
7174 1.1 joerg CLEAR_FLAG(F_SF);
7175 1.1 joerg CLEAR_FLAG(F_PF);
7176 1.1 joerg }
7177 1.1 joerg }
7178 1.1 joerg return (uint8_t) res;
7179 1.1 joerg }
7180 1.1 joerg /****************************************************************************
7181 1.1 joerg REMARKS:
7182 1.1 joerg Implements the SAR instruction and side effects.
7183 1.1 joerg ****************************************************************************/
7184 1.1 joerg static uint16_t
7185 1.1 joerg sar_word(struct X86EMU *emu, uint16_t d, uint8_t s)
7186 1.1 joerg {
7187 1.1 joerg unsigned int cnt, res, cf, mask, sf;
7188 1.1 joerg
7189 1.1 joerg sf = d & 0x8000;
7190 1.1 joerg cnt = s % 16;
7191 1.1 joerg res = d;
7192 1.1 joerg if (cnt > 0 && cnt < 16) {
7193 1.1 joerg mask = (1 << (16 - cnt)) - 1;
7194 1.1 joerg cf = d & (1 << (cnt - 1));
7195 1.1 joerg res = (d >> cnt) & mask;
7196 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
7197 1.1 joerg if (sf) {
7198 1.1 joerg res |= ~mask;
7199 1.1 joerg }
7200 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
7201 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
7202 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7203 1.1 joerg } else if (cnt >= 16) {
7204 1.1 joerg if (sf) {
7205 1.1 joerg res = 0xffff;
7206 1.1 joerg SET_FLAG(F_CF);
7207 1.1 joerg CLEAR_FLAG(F_ZF);
7208 1.1 joerg SET_FLAG(F_SF);
7209 1.1 joerg SET_FLAG(F_PF);
7210 1.1 joerg } else {
7211 1.1 joerg res = 0;
7212 1.1 joerg CLEAR_FLAG(F_CF);
7213 1.1 joerg SET_FLAG(F_ZF);
7214 1.1 joerg CLEAR_FLAG(F_SF);
7215 1.1 joerg CLEAR_FLAG(F_PF);
7216 1.1 joerg }
7217 1.1 joerg }
7218 1.1 joerg return (uint16_t) res;
7219 1.1 joerg }
7220 1.1 joerg /****************************************************************************
7221 1.1 joerg REMARKS:
7222 1.1 joerg Implements the SAR instruction and side effects.
7223 1.1 joerg ****************************************************************************/
7224 1.1 joerg static uint32_t
7225 1.1 joerg sar_long(struct X86EMU *emu, uint32_t d, uint8_t s)
7226 1.1 joerg {
7227 1.1 joerg uint32_t cnt, res, cf, mask, sf;
7228 1.1 joerg
7229 1.1 joerg sf = d & 0x80000000;
7230 1.1 joerg cnt = s % 32;
7231 1.1 joerg res = d;
7232 1.1 joerg if (cnt > 0 && cnt < 32) {
7233 1.1 joerg mask = (1 << (32 - cnt)) - 1;
7234 1.1 joerg cf = d & (1 << (cnt - 1));
7235 1.1 joerg res = (d >> cnt) & mask;
7236 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
7237 1.1 joerg if (sf) {
7238 1.1 joerg res |= ~mask;
7239 1.1 joerg }
7240 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
7241 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
7242 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7243 1.1 joerg } else if (cnt >= 32) {
7244 1.1 joerg if (sf) {
7245 1.1 joerg res = 0xffffffff;
7246 1.1 joerg SET_FLAG(F_CF);
7247 1.1 joerg CLEAR_FLAG(F_ZF);
7248 1.1 joerg SET_FLAG(F_SF);
7249 1.1 joerg SET_FLAG(F_PF);
7250 1.1 joerg } else {
7251 1.1 joerg res = 0;
7252 1.1 joerg CLEAR_FLAG(F_CF);
7253 1.1 joerg SET_FLAG(F_ZF);
7254 1.1 joerg CLEAR_FLAG(F_SF);
7255 1.1 joerg CLEAR_FLAG(F_PF);
7256 1.1 joerg }
7257 1.1 joerg }
7258 1.1 joerg return res;
7259 1.1 joerg }
7260 1.1 joerg /****************************************************************************
7261 1.1 joerg REMARKS:
7262 1.1 joerg Implements the SHLD instruction and side effects.
7263 1.1 joerg ****************************************************************************/
7264 1.1 joerg static uint16_t
7265 1.1 joerg shld_word(struct X86EMU *emu, uint16_t d, uint16_t fill, uint8_t s)
7266 1.1 joerg {
7267 1.1 joerg unsigned int cnt, res, cf;
7268 1.1 joerg
7269 1.1 joerg if (s < 16) {
7270 1.1 joerg cnt = s % 16;
7271 1.1 joerg if (cnt > 0) {
7272 1.1 joerg res = (d << cnt) | (fill >> (16 - cnt));
7273 1.1 joerg cf = d & (1 << (16 - cnt));
7274 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
7275 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
7276 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
7277 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7278 1.1 joerg } else {
7279 1.1 joerg res = d;
7280 1.1 joerg }
7281 1.1 joerg if (cnt == 1) {
7282 1.1 joerg CONDITIONAL_SET_FLAG((((res & 0x8000) == 0x8000) ^
7283 1.1 joerg (ACCESS_FLAG(F_CF) != 0)), F_OF);
7284 1.1 joerg } else {
7285 1.1 joerg CLEAR_FLAG(F_OF);
7286 1.1 joerg }
7287 1.1 joerg } else {
7288 1.1 joerg res = 0;
7289 1.1 joerg CONDITIONAL_SET_FLAG((d << (s - 1)) & 0x8000, F_CF);
7290 1.1 joerg CLEAR_FLAG(F_OF);
7291 1.1 joerg CLEAR_FLAG(F_SF);
7292 1.1 joerg SET_FLAG(F_PF);
7293 1.1 joerg SET_FLAG(F_ZF);
7294 1.1 joerg }
7295 1.1 joerg return (uint16_t) res;
7296 1.1 joerg }
7297 1.1 joerg /****************************************************************************
7298 1.1 joerg REMARKS:
7299 1.1 joerg Implements the SHLD instruction and side effects.
7300 1.1 joerg ****************************************************************************/
7301 1.1 joerg static uint32_t
7302 1.1 joerg shld_long(struct X86EMU *emu, uint32_t d, uint32_t fill, uint8_t s)
7303 1.1 joerg {
7304 1.1 joerg unsigned int cnt, res, cf;
7305 1.1 joerg
7306 1.1 joerg if (s < 32) {
7307 1.1 joerg cnt = s % 32;
7308 1.1 joerg if (cnt > 0) {
7309 1.1 joerg res = (d << cnt) | (fill >> (32 - cnt));
7310 1.1 joerg cf = d & (1 << (32 - cnt));
7311 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
7312 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
7313 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
7314 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7315 1.1 joerg } else {
7316 1.1 joerg res = d;
7317 1.1 joerg }
7318 1.1 joerg if (cnt == 1) {
7319 1.1 joerg CONDITIONAL_SET_FLAG((((res & 0x80000000) == 0x80000000) ^
7320 1.1 joerg (ACCESS_FLAG(F_CF) != 0)), F_OF);
7321 1.1 joerg } else {
7322 1.1 joerg CLEAR_FLAG(F_OF);
7323 1.1 joerg }
7324 1.1 joerg } else {
7325 1.1 joerg res = 0;
7326 1.1 joerg CONDITIONAL_SET_FLAG((d << (s - 1)) & 0x80000000, F_CF);
7327 1.1 joerg CLEAR_FLAG(F_OF);
7328 1.1 joerg CLEAR_FLAG(F_SF);
7329 1.1 joerg SET_FLAG(F_PF);
7330 1.1 joerg SET_FLAG(F_ZF);
7331 1.1 joerg }
7332 1.1 joerg return res;
7333 1.1 joerg }
7334 1.1 joerg /****************************************************************************
7335 1.1 joerg REMARKS:
7336 1.1 joerg Implements the SHRD instruction and side effects.
7337 1.1 joerg ****************************************************************************/
7338 1.1 joerg static uint16_t
7339 1.1 joerg shrd_word(struct X86EMU *emu, uint16_t d, uint16_t fill, uint8_t s)
7340 1.1 joerg {
7341 1.1 joerg unsigned int cnt, res, cf;
7342 1.1 joerg
7343 1.1 joerg if (s < 16) {
7344 1.1 joerg cnt = s % 16;
7345 1.1 joerg if (cnt > 0) {
7346 1.1 joerg cf = d & (1 << (cnt - 1));
7347 1.1 joerg res = (d >> cnt) | (fill << (16 - cnt));
7348 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
7349 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
7350 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
7351 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7352 1.1 joerg } else {
7353 1.1 joerg res = d;
7354 1.1 joerg }
7355 1.1 joerg
7356 1.1 joerg if (cnt == 1) {
7357 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(res >> 14), F_OF);
7358 1.1 joerg } else {
7359 1.1 joerg CLEAR_FLAG(F_OF);
7360 1.1 joerg }
7361 1.1 joerg } else {
7362 1.1 joerg res = 0;
7363 1.1 joerg CLEAR_FLAG(F_CF);
7364 1.1 joerg CLEAR_FLAG(F_OF);
7365 1.1 joerg SET_FLAG(F_ZF);
7366 1.1 joerg CLEAR_FLAG(F_SF);
7367 1.1 joerg CLEAR_FLAG(F_PF);
7368 1.1 joerg }
7369 1.1 joerg return (uint16_t) res;
7370 1.1 joerg }
7371 1.1 joerg /****************************************************************************
7372 1.1 joerg REMARKS:
7373 1.1 joerg Implements the SHRD instruction and side effects.
7374 1.1 joerg ****************************************************************************/
7375 1.1 joerg static uint32_t
7376 1.1 joerg shrd_long(struct X86EMU *emu, uint32_t d, uint32_t fill, uint8_t s)
7377 1.1 joerg {
7378 1.1 joerg unsigned int cnt, res, cf;
7379 1.1 joerg
7380 1.1 joerg if (s < 32) {
7381 1.1 joerg cnt = s % 32;
7382 1.1 joerg if (cnt > 0) {
7383 1.1 joerg cf = d & (1 << (cnt - 1));
7384 1.1 joerg res = (d >> cnt) | (fill << (32 - cnt));
7385 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
7386 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
7387 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
7388 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7389 1.1 joerg } else {
7390 1.1 joerg res = d;
7391 1.1 joerg }
7392 1.1 joerg if (cnt == 1) {
7393 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(res >> 30), F_OF);
7394 1.1 joerg } else {
7395 1.1 joerg CLEAR_FLAG(F_OF);
7396 1.1 joerg }
7397 1.1 joerg } else {
7398 1.1 joerg res = 0;
7399 1.1 joerg CLEAR_FLAG(F_CF);
7400 1.1 joerg CLEAR_FLAG(F_OF);
7401 1.1 joerg SET_FLAG(F_ZF);
7402 1.1 joerg CLEAR_FLAG(F_SF);
7403 1.1 joerg CLEAR_FLAG(F_PF);
7404 1.1 joerg }
7405 1.1 joerg return res;
7406 1.1 joerg }
7407 1.1 joerg /****************************************************************************
7408 1.1 joerg REMARKS:
7409 1.1 joerg Implements the SBB instruction and side effects.
7410 1.1 joerg ****************************************************************************/
7411 1.1 joerg static uint8_t
7412 1.1 joerg sbb_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
7413 1.1 joerg {
7414 1.1 joerg uint32_t res; /* all operands in native machine order */
7415 1.1 joerg uint32_t bc;
7416 1.1 joerg
7417 1.1 joerg if (ACCESS_FLAG(F_CF))
7418 1.1 joerg res = d - s - 1;
7419 1.1 joerg else
7420 1.1 joerg res = d - s;
7421 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
7422 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
7423 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7424 1.1 joerg
7425 1.1 joerg /* calculate the borrow chain. See note at top */
7426 1.1 joerg bc = (res & (~d | s)) | (~d & s);
7427 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x80, F_CF);
7428 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 6), F_OF);
7429 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
7430 1.1 joerg return (uint8_t) res;
7431 1.1 joerg }
7432 1.1 joerg /****************************************************************************
7433 1.1 joerg REMARKS:
7434 1.1 joerg Implements the SBB instruction and side effects.
7435 1.1 joerg ****************************************************************************/
7436 1.1 joerg static uint16_t
7437 1.1 joerg sbb_word(struct X86EMU *emu, uint16_t d, uint16_t s)
7438 1.1 joerg {
7439 1.1 joerg uint32_t res; /* all operands in native machine order */
7440 1.1 joerg uint32_t bc;
7441 1.1 joerg
7442 1.1 joerg if (ACCESS_FLAG(F_CF))
7443 1.1 joerg res = d - s - 1;
7444 1.1 joerg else
7445 1.1 joerg res = d - s;
7446 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
7447 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
7448 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7449 1.1 joerg
7450 1.1 joerg /* calculate the borrow chain. See note at top */
7451 1.1 joerg bc = (res & (~d | s)) | (~d & s);
7452 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8000, F_CF);
7453 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 14), F_OF);
7454 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
7455 1.1 joerg return (uint16_t) res;
7456 1.1 joerg }
7457 1.1 joerg /****************************************************************************
7458 1.1 joerg REMARKS:
7459 1.1 joerg Implements the SBB instruction and side effects.
7460 1.1 joerg ****************************************************************************/
7461 1.1 joerg static uint32_t
7462 1.1 joerg sbb_long(struct X86EMU *emu, uint32_t d, uint32_t s)
7463 1.1 joerg {
7464 1.1 joerg uint32_t res; /* all operands in native machine order */
7465 1.1 joerg uint32_t bc;
7466 1.1 joerg
7467 1.1 joerg if (ACCESS_FLAG(F_CF))
7468 1.1 joerg res = d - s - 1;
7469 1.1 joerg else
7470 1.1 joerg res = d - s;
7471 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
7472 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
7473 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7474 1.1 joerg
7475 1.1 joerg /* calculate the borrow chain. See note at top */
7476 1.1 joerg bc = (res & (~d | s)) | (~d & s);
7477 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x80000000, F_CF);
7478 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 30), F_OF);
7479 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
7480 1.1 joerg return res;
7481 1.1 joerg }
7482 1.1 joerg /****************************************************************************
7483 1.1 joerg REMARKS:
7484 1.1 joerg Implements the SUB instruction and side effects.
7485 1.1 joerg ****************************************************************************/
7486 1.1 joerg static uint8_t
7487 1.1 joerg sub_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
7488 1.1 joerg {
7489 1.1 joerg uint32_t res; /* all operands in native machine order */
7490 1.1 joerg uint32_t bc;
7491 1.1 joerg
7492 1.1 joerg res = d - s;
7493 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
7494 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
7495 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7496 1.1 joerg
7497 1.1 joerg /* calculate the borrow chain. See note at top */
7498 1.1 joerg bc = (res & (~d | s)) | (~d & s);
7499 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x80, F_CF);
7500 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 6), F_OF);
7501 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
7502 1.1 joerg return (uint8_t) res;
7503 1.1 joerg }
7504 1.1 joerg /****************************************************************************
7505 1.1 joerg REMARKS:
7506 1.1 joerg Implements the SUB instruction and side effects.
7507 1.1 joerg ****************************************************************************/
7508 1.1 joerg static uint16_t
7509 1.1 joerg sub_word(struct X86EMU *emu, uint16_t d, uint16_t s)
7510 1.1 joerg {
7511 1.1 joerg uint32_t res; /* all operands in native machine order */
7512 1.1 joerg uint32_t bc;
7513 1.1 joerg
7514 1.1 joerg res = d - s;
7515 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
7516 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
7517 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7518 1.1 joerg
7519 1.1 joerg /* calculate the borrow chain. See note at top */
7520 1.1 joerg bc = (res & (~d | s)) | (~d & s);
7521 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8000, F_CF);
7522 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 14), F_OF);
7523 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
7524 1.1 joerg return (uint16_t) res;
7525 1.1 joerg }
7526 1.1 joerg /****************************************************************************
7527 1.1 joerg REMARKS:
7528 1.1 joerg Implements the SUB instruction and side effects.
7529 1.1 joerg ****************************************************************************/
7530 1.1 joerg static uint32_t
7531 1.1 joerg sub_long(struct X86EMU *emu, uint32_t d, uint32_t s)
7532 1.1 joerg {
7533 1.1 joerg uint32_t res; /* all operands in native machine order */
7534 1.1 joerg uint32_t bc;
7535 1.1 joerg
7536 1.1 joerg res = d - s;
7537 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
7538 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
7539 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7540 1.1 joerg
7541 1.1 joerg /* calculate the borrow chain. See note at top */
7542 1.1 joerg bc = (res & (~d | s)) | (~d & s);
7543 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x80000000, F_CF);
7544 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 30), F_OF);
7545 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
7546 1.1 joerg return res;
7547 1.1 joerg }
7548 1.1 joerg /****************************************************************************
7549 1.1 joerg REMARKS:
7550 1.1 joerg Implements the TEST instruction and side effects.
7551 1.1 joerg ****************************************************************************/
7552 1.1 joerg static void
7553 1.1 joerg test_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
7554 1.1 joerg {
7555 1.1 joerg uint32_t res; /* all operands in native machine order */
7556 1.1 joerg
7557 1.1 joerg res = d & s;
7558 1.1 joerg
7559 1.1 joerg CLEAR_FLAG(F_OF);
7560 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
7561 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
7562 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7563 1.1 joerg /* AF == dont care */
7564 1.1 joerg CLEAR_FLAG(F_CF);
7565 1.1 joerg }
7566 1.1 joerg /****************************************************************************
7567 1.1 joerg REMARKS:
7568 1.1 joerg Implements the TEST instruction and side effects.
7569 1.1 joerg ****************************************************************************/
7570 1.1 joerg static void
7571 1.1 joerg test_word(struct X86EMU *emu, uint16_t d, uint16_t s)
7572 1.1 joerg {
7573 1.1 joerg uint32_t res; /* all operands in native machine order */
7574 1.1 joerg
7575 1.1 joerg res = d & s;
7576 1.1 joerg
7577 1.1 joerg CLEAR_FLAG(F_OF);
7578 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
7579 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
7580 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7581 1.1 joerg /* AF == dont care */
7582 1.1 joerg CLEAR_FLAG(F_CF);
7583 1.1 joerg }
7584 1.1 joerg /****************************************************************************
7585 1.1 joerg REMARKS:
7586 1.1 joerg Implements the TEST instruction and side effects.
7587 1.1 joerg ****************************************************************************/
7588 1.1 joerg static void
7589 1.1 joerg test_long(struct X86EMU *emu, uint32_t d, uint32_t s)
7590 1.1 joerg {
7591 1.1 joerg uint32_t res; /* all operands in native machine order */
7592 1.1 joerg
7593 1.1 joerg res = d & s;
7594 1.1 joerg
7595 1.1 joerg CLEAR_FLAG(F_OF);
7596 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
7597 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
7598 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7599 1.1 joerg /* AF == dont care */
7600 1.1 joerg CLEAR_FLAG(F_CF);
7601 1.1 joerg }
7602 1.1 joerg /****************************************************************************
7603 1.1 joerg REMARKS:
7604 1.1 joerg Implements the XOR instruction and side effects.
7605 1.1 joerg ****************************************************************************/
7606 1.1 joerg static uint8_t
7607 1.1 joerg xor_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
7608 1.1 joerg {
7609 1.1 joerg uint8_t res; /* all operands in native machine order */
7610 1.1 joerg
7611 1.1 joerg res = d ^ s;
7612 1.1 joerg CLEAR_FLAG(F_OF);
7613 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
7614 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
7615 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res), F_PF);
7616 1.1 joerg CLEAR_FLAG(F_CF);
7617 1.1 joerg CLEAR_FLAG(F_AF);
7618 1.1 joerg return res;
7619 1.1 joerg }
7620 1.1 joerg /****************************************************************************
7621 1.1 joerg REMARKS:
7622 1.1 joerg Implements the XOR instruction and side effects.
7623 1.1 joerg ****************************************************************************/
7624 1.1 joerg static uint16_t
7625 1.1 joerg xor_word(struct X86EMU *emu, uint16_t d, uint16_t s)
7626 1.1 joerg {
7627 1.1 joerg uint16_t res; /* all operands in native machine order */
7628 1.1 joerg
7629 1.1 joerg res = d ^ s;
7630 1.1 joerg CLEAR_FLAG(F_OF);
7631 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
7632 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
7633 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7634 1.1 joerg CLEAR_FLAG(F_CF);
7635 1.1 joerg CLEAR_FLAG(F_AF);
7636 1.1 joerg return res;
7637 1.1 joerg }
7638 1.1 joerg /****************************************************************************
7639 1.1 joerg REMARKS:
7640 1.1 joerg Implements the XOR instruction and side effects.
7641 1.1 joerg ****************************************************************************/
7642 1.1 joerg static uint32_t
7643 1.1 joerg xor_long(struct X86EMU *emu, uint32_t d, uint32_t s)
7644 1.1 joerg {
7645 1.1 joerg uint32_t res; /* all operands in native machine order */
7646 1.1 joerg
7647 1.1 joerg res = d ^ s;
7648 1.1 joerg CLEAR_FLAG(F_OF);
7649 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
7650 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
7651 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7652 1.1 joerg CLEAR_FLAG(F_CF);
7653 1.1 joerg CLEAR_FLAG(F_AF);
7654 1.1 joerg return res;
7655 1.1 joerg }
7656 1.1 joerg /****************************************************************************
7657 1.1 joerg REMARKS:
7658 1.1 joerg Implements the IMUL instruction and side effects.
7659 1.1 joerg ****************************************************************************/
7660 1.1 joerg static void
7661 1.1 joerg imul_byte(struct X86EMU *emu, uint8_t s)
7662 1.1 joerg {
7663 1.1 joerg int16_t res = (int16_t) ((int8_t) emu->x86.R_AL * (int8_t) s);
7664 1.1 joerg
7665 1.1 joerg emu->x86.R_AX = res;
7666 1.1 joerg if (((emu->x86.R_AL & 0x80) == 0 && emu->x86.R_AH == 0x00) ||
7667 1.1 joerg ((emu->x86.R_AL & 0x80) != 0 && emu->x86.R_AH == 0xFF)) {
7668 1.1 joerg CLEAR_FLAG(F_CF);
7669 1.1 joerg CLEAR_FLAG(F_OF);
7670 1.1 joerg } else {
7671 1.1 joerg SET_FLAG(F_CF);
7672 1.1 joerg SET_FLAG(F_OF);
7673 1.1 joerg }
7674 1.1 joerg }
7675 1.1 joerg /****************************************************************************
7676 1.1 joerg REMARKS:
7677 1.1 joerg Implements the IMUL instruction and side effects.
7678 1.1 joerg ****************************************************************************/
7679 1.1 joerg static void
7680 1.1 joerg imul_word(struct X86EMU *emu, uint16_t s)
7681 1.1 joerg {
7682 1.1 joerg int32_t res = (int16_t) emu->x86.R_AX * (int16_t) s;
7683 1.1 joerg
7684 1.1 joerg emu->x86.R_AX = (uint16_t) res;
7685 1.1 joerg emu->x86.R_DX = (uint16_t) (res >> 16);
7686 1.1 joerg if (((emu->x86.R_AX & 0x8000) == 0 && emu->x86.R_DX == 0x00) ||
7687 1.1 joerg ((emu->x86.R_AX & 0x8000) != 0 && emu->x86.R_DX == 0xFF)) {
7688 1.1 joerg CLEAR_FLAG(F_CF);
7689 1.1 joerg CLEAR_FLAG(F_OF);
7690 1.1 joerg } else {
7691 1.1 joerg SET_FLAG(F_CF);
7692 1.1 joerg SET_FLAG(F_OF);
7693 1.1 joerg }
7694 1.1 joerg }
7695 1.1 joerg /****************************************************************************
7696 1.1 joerg REMARKS:
7697 1.1 joerg Implements the IMUL instruction and side effects.
7698 1.1 joerg ****************************************************************************/
7699 1.1 joerg static void
7700 1.1 joerg imul_long(struct X86EMU *emu, uint32_t s)
7701 1.1 joerg {
7702 1.1 joerg int64_t res;
7703 1.1 joerg
7704 1.1 joerg res = (int64_t)(int32_t)emu->x86.R_EAX * (int32_t)s;
7705 1.1 joerg emu->x86.R_EAX = (uint32_t)res;
7706 1.1 joerg emu->x86.R_EDX = ((uint64_t)res) >> 32;
7707 1.1 joerg if (((emu->x86.R_EAX & 0x80000000) == 0 && emu->x86.R_EDX == 0x00) ||
7708 1.1 joerg ((emu->x86.R_EAX & 0x80000000) != 0 && emu->x86.R_EDX == 0xFF)) {
7709 1.1 joerg CLEAR_FLAG(F_CF);
7710 1.1 joerg CLEAR_FLAG(F_OF);
7711 1.1 joerg } else {
7712 1.1 joerg SET_FLAG(F_CF);
7713 1.1 joerg SET_FLAG(F_OF);
7714 1.1 joerg }
7715 1.1 joerg }
7716 1.1 joerg /****************************************************************************
7717 1.1 joerg REMARKS:
7718 1.1 joerg Implements the MUL instruction and side effects.
7719 1.1 joerg ****************************************************************************/
7720 1.1 joerg static void
7721 1.1 joerg mul_byte(struct X86EMU *emu, uint8_t s)
7722 1.1 joerg {
7723 1.1 joerg uint16_t res = (uint16_t) (emu->x86.R_AL * s);
7724 1.1 joerg
7725 1.1 joerg emu->x86.R_AX = res;
7726 1.1 joerg if (emu->x86.R_AH == 0) {
7727 1.1 joerg CLEAR_FLAG(F_CF);
7728 1.1 joerg CLEAR_FLAG(F_OF);
7729 1.1 joerg } else {
7730 1.1 joerg SET_FLAG(F_CF);
7731 1.1 joerg SET_FLAG(F_OF);
7732 1.1 joerg }
7733 1.1 joerg }
7734 1.1 joerg /****************************************************************************
7735 1.1 joerg REMARKS:
7736 1.1 joerg Implements the MUL instruction and side effects.
7737 1.1 joerg ****************************************************************************/
7738 1.1 joerg static void
7739 1.1 joerg mul_word(struct X86EMU *emu, uint16_t s)
7740 1.1 joerg {
7741 1.1 joerg uint32_t res = emu->x86.R_AX * s;
7742 1.1 joerg
7743 1.1 joerg emu->x86.R_AX = (uint16_t) res;
7744 1.1 joerg emu->x86.R_DX = (uint16_t) (res >> 16);
7745 1.1 joerg if (emu->x86.R_DX == 0) {
7746 1.1 joerg CLEAR_FLAG(F_CF);
7747 1.1 joerg CLEAR_FLAG(F_OF);
7748 1.1 joerg } else {
7749 1.1 joerg SET_FLAG(F_CF);
7750 1.1 joerg SET_FLAG(F_OF);
7751 1.1 joerg }
7752 1.1 joerg }
7753 1.1 joerg /****************************************************************************
7754 1.1 joerg REMARKS:
7755 1.1 joerg Implements the MUL instruction and side effects.
7756 1.1 joerg ****************************************************************************/
7757 1.1 joerg static void
7758 1.1 joerg mul_long(struct X86EMU *emu, uint32_t s)
7759 1.1 joerg {
7760 1.1 joerg uint64_t res = (uint64_t) emu->x86.R_EAX * s;
7761 1.1 joerg
7762 1.1 joerg emu->x86.R_EAX = (uint32_t) res;
7763 1.1 joerg emu->x86.R_EDX = (uint32_t) (res >> 32);
7764 1.1 joerg
7765 1.1 joerg if (emu->x86.R_EDX == 0) {
7766 1.1 joerg CLEAR_FLAG(F_CF);
7767 1.1 joerg CLEAR_FLAG(F_OF);
7768 1.1 joerg } else {
7769 1.1 joerg SET_FLAG(F_CF);
7770 1.1 joerg SET_FLAG(F_OF);
7771 1.1 joerg }
7772 1.1 joerg }
7773 1.1 joerg /****************************************************************************
7774 1.1 joerg REMARKS:
7775 1.1 joerg Implements the IDIV instruction and side effects.
7776 1.1 joerg ****************************************************************************/
7777 1.1 joerg static void
7778 1.1 joerg idiv_byte(struct X86EMU *emu, uint8_t s)
7779 1.1 joerg {
7780 1.1 joerg int32_t dvd, div, mod;
7781 1.1 joerg
7782 1.1 joerg dvd = (int16_t) emu->x86.R_AX;
7783 1.1 joerg if (s == 0) {
7784 1.5 joerg x86emu_intr_raise(emu, 8);
7785 1.1 joerg return;
7786 1.1 joerg }
7787 1.1 joerg div = dvd / (int8_t) s;
7788 1.1 joerg mod = dvd % (int8_t) s;
7789 1.1 joerg if (div > 0x7f || div < -0x7f) {
7790 1.5 joerg x86emu_intr_raise(emu, 8);
7791 1.1 joerg return;
7792 1.1 joerg }
7793 1.1 joerg emu->x86.R_AL = (int8_t) div;
7794 1.1 joerg emu->x86.R_AH = (int8_t) mod;
7795 1.1 joerg }
7796 1.1 joerg /****************************************************************************
7797 1.1 joerg REMARKS:
7798 1.1 joerg Implements the IDIV instruction and side effects.
7799 1.1 joerg ****************************************************************************/
7800 1.1 joerg static void
7801 1.1 joerg idiv_word(struct X86EMU *emu, uint16_t s)
7802 1.1 joerg {
7803 1.1 joerg int32_t dvd, div, mod;
7804 1.1 joerg
7805 1.1 joerg dvd = (((int32_t) emu->x86.R_DX) << 16) | emu->x86.R_AX;
7806 1.1 joerg if (s == 0) {
7807 1.5 joerg x86emu_intr_raise(emu, 8);
7808 1.1 joerg return;
7809 1.1 joerg }
7810 1.1 joerg div = dvd / (int16_t) s;
7811 1.1 joerg mod = dvd % (int16_t) s;
7812 1.1 joerg if (div > 0x7fff || div < -0x7fff) {
7813 1.5 joerg x86emu_intr_raise(emu, 8);
7814 1.1 joerg return;
7815 1.1 joerg }
7816 1.1 joerg CLEAR_FLAG(F_CF);
7817 1.1 joerg CLEAR_FLAG(F_SF);
7818 1.1 joerg CONDITIONAL_SET_FLAG(div == 0, F_ZF);
7819 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(mod & 0xff), F_PF);
7820 1.1 joerg
7821 1.1 joerg emu->x86.R_AX = (uint16_t) div;
7822 1.1 joerg emu->x86.R_DX = (uint16_t) mod;
7823 1.1 joerg }
7824 1.1 joerg /****************************************************************************
7825 1.1 joerg REMARKS:
7826 1.1 joerg Implements the IDIV instruction and side effects.
7827 1.1 joerg ****************************************************************************/
7828 1.1 joerg static void
7829 1.1 joerg idiv_long(struct X86EMU *emu, uint32_t s)
7830 1.1 joerg {
7831 1.1 joerg int64_t dvd, div, mod;
7832 1.1 joerg
7833 1.1 joerg dvd = (((int64_t) emu->x86.R_EDX) << 32) | emu->x86.R_EAX;
7834 1.1 joerg if (s == 0) {
7835 1.5 joerg x86emu_intr_raise(emu, 8);
7836 1.1 joerg return;
7837 1.1 joerg }
7838 1.1 joerg div = dvd / (int32_t) s;
7839 1.1 joerg mod = dvd % (int32_t) s;
7840 1.1 joerg if (div > 0x7fffffff || div < -0x7fffffff) {
7841 1.5 joerg x86emu_intr_raise(emu, 8);
7842 1.1 joerg return;
7843 1.1 joerg }
7844 1.1 joerg CLEAR_FLAG(F_CF);
7845 1.1 joerg CLEAR_FLAG(F_AF);
7846 1.1 joerg CLEAR_FLAG(F_SF);
7847 1.1 joerg SET_FLAG(F_ZF);
7848 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(mod & 0xff), F_PF);
7849 1.1 joerg
7850 1.1 joerg emu->x86.R_EAX = (uint32_t) div;
7851 1.1 joerg emu->x86.R_EDX = (uint32_t) mod;
7852 1.1 joerg }
7853 1.1 joerg /****************************************************************************
7854 1.1 joerg REMARKS:
7855 1.1 joerg Implements the DIV instruction and side effects.
7856 1.1 joerg ****************************************************************************/
7857 1.1 joerg static void
7858 1.1 joerg div_byte(struct X86EMU *emu, uint8_t s)
7859 1.1 joerg {
7860 1.1 joerg uint32_t dvd, div, mod;
7861 1.1 joerg
7862 1.1 joerg dvd = emu->x86.R_AX;
7863 1.1 joerg if (s == 0) {
7864 1.5 joerg x86emu_intr_raise(emu, 8);
7865 1.1 joerg return;
7866 1.1 joerg }
7867 1.1 joerg div = dvd / (uint8_t) s;
7868 1.1 joerg mod = dvd % (uint8_t) s;
7869 1.1 joerg if (div > 0xff) {
7870 1.5 joerg x86emu_intr_raise(emu, 8);
7871 1.1 joerg return;
7872 1.1 joerg }
7873 1.1 joerg emu->x86.R_AL = (uint8_t) div;
7874 1.1 joerg emu->x86.R_AH = (uint8_t) mod;
7875 1.1 joerg }
7876 1.1 joerg /****************************************************************************
7877 1.1 joerg REMARKS:
7878 1.1 joerg Implements the DIV instruction and side effects.
7879 1.1 joerg ****************************************************************************/
7880 1.1 joerg static void
7881 1.1 joerg div_word(struct X86EMU *emu, uint16_t s)
7882 1.1 joerg {
7883 1.1 joerg uint32_t dvd, div, mod;
7884 1.1 joerg
7885 1.1 joerg dvd = (((uint32_t) emu->x86.R_DX) << 16) | emu->x86.R_AX;
7886 1.1 joerg if (s == 0) {
7887 1.5 joerg x86emu_intr_raise(emu, 8);
7888 1.1 joerg return;
7889 1.1 joerg }
7890 1.1 joerg div = dvd / (uint16_t) s;
7891 1.1 joerg mod = dvd % (uint16_t) s;
7892 1.1 joerg if (div > 0xffff) {
7893 1.5 joerg x86emu_intr_raise(emu, 8);
7894 1.1 joerg return;
7895 1.1 joerg }
7896 1.1 joerg CLEAR_FLAG(F_CF);
7897 1.1 joerg CLEAR_FLAG(F_SF);
7898 1.1 joerg CONDITIONAL_SET_FLAG(div == 0, F_ZF);
7899 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(mod & 0xff), F_PF);
7900 1.1 joerg
7901 1.1 joerg emu->x86.R_AX = (uint16_t) div;
7902 1.1 joerg emu->x86.R_DX = (uint16_t) mod;
7903 1.1 joerg }
7904 1.1 joerg /****************************************************************************
7905 1.1 joerg REMARKS:
7906 1.1 joerg Implements the DIV instruction and side effects.
7907 1.1 joerg ****************************************************************************/
7908 1.1 joerg static void
7909 1.1 joerg div_long(struct X86EMU *emu, uint32_t s)
7910 1.1 joerg {
7911 1.1 joerg uint64_t dvd, div, mod;
7912 1.1 joerg
7913 1.1 joerg dvd = (((uint64_t) emu->x86.R_EDX) << 32) | emu->x86.R_EAX;
7914 1.1 joerg if (s == 0) {
7915 1.5 joerg x86emu_intr_raise(emu, 8);
7916 1.1 joerg return;
7917 1.1 joerg }
7918 1.1 joerg div = dvd / (uint32_t) s;
7919 1.1 joerg mod = dvd % (uint32_t) s;
7920 1.1 joerg if (div > 0xffffffff) {
7921 1.5 joerg x86emu_intr_raise(emu, 8);
7922 1.1 joerg return;
7923 1.1 joerg }
7924 1.1 joerg CLEAR_FLAG(F_CF);
7925 1.1 joerg CLEAR_FLAG(F_AF);
7926 1.1 joerg CLEAR_FLAG(F_SF);
7927 1.1 joerg SET_FLAG(F_ZF);
7928 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(mod & 0xff), F_PF);
7929 1.1 joerg
7930 1.1 joerg emu->x86.R_EAX = (uint32_t) div;
7931 1.1 joerg emu->x86.R_EDX = (uint32_t) mod;
7932 1.1 joerg }
7933 1.1 joerg /****************************************************************************
7934 1.1 joerg REMARKS:
7935 1.1 joerg Implements the IN string instruction and side effects.
7936 1.1 joerg ****************************************************************************/
7937 1.1 joerg static void
7938 1.1 joerg ins(struct X86EMU *emu, int size)
7939 1.1 joerg {
7940 1.1 joerg int inc = size;
7941 1.1 joerg
7942 1.1 joerg if (ACCESS_FLAG(F_DF)) {
7943 1.1 joerg inc = -size;
7944 1.1 joerg }
7945 1.1 joerg if (emu->x86.mode & (SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE)) {
7946 1.1 joerg /* dont care whether REPE or REPNE */
7947 1.1 joerg /* in until CX is ZERO. */
7948 1.1 joerg uint32_t count = ((emu->x86.mode & SYSMODE_PREFIX_DATA) ?
7949 1.1 joerg emu->x86.R_ECX : emu->x86.R_CX);
7950 1.1 joerg switch (size) {
7951 1.1 joerg case 1:
7952 1.1 joerg while (count--) {
7953 1.1 joerg store_byte(emu, emu->x86.R_ES, emu->x86.R_DI,
7954 1.1 joerg (*emu->emu_inb) (emu, emu->x86.R_DX));
7955 1.1 joerg emu->x86.R_DI += inc;
7956 1.1 joerg }
7957 1.1 joerg break;
7958 1.1 joerg
7959 1.1 joerg case 2:
7960 1.1 joerg while (count--) {
7961 1.1 joerg store_word(emu, emu->x86.R_ES, emu->x86.R_DI,
7962 1.1 joerg (*emu->emu_inw) (emu, emu->x86.R_DX));
7963 1.1 joerg emu->x86.R_DI += inc;
7964 1.1 joerg }
7965 1.1 joerg break;
7966 1.1 joerg case 4:
7967 1.1 joerg while (count--) {
7968 1.1 joerg store_long(emu, emu->x86.R_ES, emu->x86.R_DI,
7969 1.1 joerg (*emu->emu_inl) (emu, emu->x86.R_DX));
7970 1.1 joerg emu->x86.R_DI += inc;
7971 1.1 joerg break;
7972 1.1 joerg }
7973 1.1 joerg }
7974 1.1 joerg emu->x86.R_CX = 0;
7975 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
7976 1.1 joerg emu->x86.R_ECX = 0;
7977 1.1 joerg }
7978 1.1 joerg emu->x86.mode &= ~(SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE);
7979 1.1 joerg } else {
7980 1.1 joerg switch (size) {
7981 1.1 joerg case 1:
7982 1.1 joerg store_byte(emu, emu->x86.R_ES, emu->x86.R_DI,
7983 1.1 joerg (*emu->emu_inb) (emu, emu->x86.R_DX));
7984 1.1 joerg break;
7985 1.1 joerg case 2:
7986 1.1 joerg store_word(emu, emu->x86.R_ES, emu->x86.R_DI,
7987 1.1 joerg (*emu->emu_inw) (emu, emu->x86.R_DX));
7988 1.1 joerg break;
7989 1.1 joerg case 4:
7990 1.1 joerg store_long(emu, emu->x86.R_ES, emu->x86.R_DI,
7991 1.1 joerg (*emu->emu_inl) (emu, emu->x86.R_DX));
7992 1.1 joerg break;
7993 1.1 joerg }
7994 1.1 joerg emu->x86.R_DI += inc;
7995 1.1 joerg }
7996 1.1 joerg }
7997 1.1 joerg /****************************************************************************
7998 1.1 joerg REMARKS:
7999 1.1 joerg Implements the OUT string instruction and side effects.
8000 1.1 joerg ****************************************************************************/
8001 1.1 joerg static void
8002 1.1 joerg outs(struct X86EMU *emu, int size)
8003 1.1 joerg {
8004 1.1 joerg int inc = size;
8005 1.1 joerg
8006 1.1 joerg if (ACCESS_FLAG(F_DF)) {
8007 1.1 joerg inc = -size;
8008 1.1 joerg }
8009 1.1 joerg if (emu->x86.mode & (SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE)) {
8010 1.1 joerg /* dont care whether REPE or REPNE */
8011 1.1 joerg /* out until CX is ZERO. */
8012 1.1 joerg uint32_t count = ((emu->x86.mode & SYSMODE_PREFIX_DATA) ?
8013 1.1 joerg emu->x86.R_ECX : emu->x86.R_CX);
8014 1.1 joerg switch (size) {
8015 1.1 joerg case 1:
8016 1.1 joerg while (count--) {
8017 1.1 joerg (*emu->emu_outb) (emu, emu->x86.R_DX,
8018 1.1 joerg fetch_byte(emu, emu->x86.R_ES, emu->x86.R_SI));
8019 1.1 joerg emu->x86.R_SI += inc;
8020 1.1 joerg }
8021 1.1 joerg break;
8022 1.1 joerg
8023 1.1 joerg case 2:
8024 1.1 joerg while (count--) {
8025 1.1 joerg (*emu->emu_outw) (emu, emu->x86.R_DX,
8026 1.1 joerg fetch_word(emu, emu->x86.R_ES, emu->x86.R_SI));
8027 1.1 joerg emu->x86.R_SI += inc;
8028 1.1 joerg }
8029 1.1 joerg break;
8030 1.1 joerg case 4:
8031 1.1 joerg while (count--) {
8032 1.1 joerg (*emu->emu_outl) (emu, emu->x86.R_DX,
8033 1.1 joerg fetch_long(emu, emu->x86.R_ES, emu->x86.R_SI));
8034 1.1 joerg emu->x86.R_SI += inc;
8035 1.1 joerg break;
8036 1.1 joerg }
8037 1.1 joerg }
8038 1.1 joerg emu->x86.R_CX = 0;
8039 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
8040 1.1 joerg emu->x86.R_ECX = 0;
8041 1.1 joerg }
8042 1.1 joerg emu->x86.mode &= ~(SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE);
8043 1.1 joerg } else {
8044 1.1 joerg switch (size) {
8045 1.1 joerg case 1:
8046 1.1 joerg (*emu->emu_outb) (emu, emu->x86.R_DX,
8047 1.1 joerg fetch_byte(emu, emu->x86.R_ES, emu->x86.R_SI));
8048 1.1 joerg break;
8049 1.1 joerg case 2:
8050 1.1 joerg (*emu->emu_outw) (emu, emu->x86.R_DX,
8051 1.1 joerg fetch_word(emu, emu->x86.R_ES, emu->x86.R_SI));
8052 1.1 joerg break;
8053 1.1 joerg case 4:
8054 1.1 joerg (*emu->emu_outl) (emu, emu->x86.R_DX,
8055 1.1 joerg fetch_long(emu, emu->x86.R_ES, emu->x86.R_SI));
8056 1.1 joerg break;
8057 1.1 joerg }
8058 1.1 joerg emu->x86.R_SI += inc;
8059 1.1 joerg }
8060 1.1 joerg }
8061 1.1 joerg /****************************************************************************
8062 1.1 joerg REMARKS:
8063 1.1 joerg Pushes a word onto the stack.
8064 1.1 joerg
8065 1.1 joerg NOTE: Do not inline this, as (*emu->emu_wrX) is already inline!
8066 1.1 joerg ****************************************************************************/
8067 1.1 joerg static void
8068 1.1 joerg push_word(struct X86EMU *emu, uint16_t w)
8069 1.1 joerg {
8070 1.1 joerg emu->x86.R_SP -= 2;
8071 1.1 joerg store_word(emu, emu->x86.R_SS, emu->x86.R_SP, w);
8072 1.1 joerg }
8073 1.1 joerg /****************************************************************************
8074 1.1 joerg REMARKS:
8075 1.1 joerg Pushes a long onto the stack.
8076 1.1 joerg
8077 1.1 joerg NOTE: Do not inline this, as (*emu->emu_wrX) is already inline!
8078 1.1 joerg ****************************************************************************/
8079 1.1 joerg static void
8080 1.1 joerg push_long(struct X86EMU *emu, uint32_t w)
8081 1.1 joerg {
8082 1.1 joerg emu->x86.R_SP -= 4;
8083 1.1 joerg store_long(emu, emu->x86.R_SS, emu->x86.R_SP, w);
8084 1.1 joerg }
8085 1.1 joerg /****************************************************************************
8086 1.1 joerg REMARKS:
8087 1.1 joerg Pops a word from the stack.
8088 1.1 joerg
8089 1.1 joerg NOTE: Do not inline this, as (*emu->emu_rdX) is already inline!
8090 1.1 joerg ****************************************************************************/
8091 1.1 joerg static uint16_t
8092 1.1 joerg pop_word(struct X86EMU *emu)
8093 1.1 joerg {
8094 1.1 joerg uint16_t res;
8095 1.1 joerg
8096 1.1 joerg res = fetch_word(emu, emu->x86.R_SS, emu->x86.R_SP);
8097 1.1 joerg emu->x86.R_SP += 2;
8098 1.1 joerg return res;
8099 1.1 joerg }
8100 1.1 joerg /****************************************************************************
8101 1.1 joerg REMARKS:
8102 1.1 joerg Pops a long from the stack.
8103 1.1 joerg
8104 1.1 joerg NOTE: Do not inline this, as (*emu->emu_rdX) is already inline!
8105 1.1 joerg ****************************************************************************/
8106 1.1 joerg static uint32_t
8107 1.1 joerg pop_long(struct X86EMU *emu)
8108 1.1 joerg {
8109 1.1 joerg uint32_t res;
8110 1.1 joerg
8111 1.1 joerg res = fetch_long(emu, emu->x86.R_SS, emu->x86.R_SP);
8112 1.1 joerg emu->x86.R_SP += 4;
8113 1.1 joerg return res;
8114 1.1 joerg }
8115