x86emu.c revision 1.2 1 1.2 joerg /* $NetBSD: x86emu.c,v 1.2 2007/12/04 17:32:22 joerg Exp $ */
2 1.1 joerg
3 1.1 joerg /****************************************************************************
4 1.1 joerg *
5 1.1 joerg * Realmode X86 Emulator Library
6 1.1 joerg *
7 1.1 joerg * Copyright (C) 1996-1999 SciTech Software, Inc.
8 1.1 joerg * Copyright (C) David Mosberger-Tang
9 1.1 joerg * Copyright (C) 1999 Egbert Eich
10 1.1 joerg * Copyright (C) 2007 Joerg Sonnenberger
11 1.1 joerg *
12 1.1 joerg * ========================================================================
13 1.1 joerg *
14 1.1 joerg * Permission to use, copy, modify, distribute, and sell this software and
15 1.1 joerg * its documentation for any purpose is hereby granted without fee,
16 1.1 joerg * provided that the above copyright notice appear in all copies and that
17 1.1 joerg * both that copyright notice and this permission notice appear in
18 1.1 joerg * supporting documentation, and that the name of the authors not be used
19 1.1 joerg * in advertising or publicity pertaining to distribution of the software
20 1.1 joerg * without specific, written prior permission. The authors makes no
21 1.1 joerg * representations about the suitability of this software for any purpose.
22 1.1 joerg * It is provided "as is" without express or implied warranty.
23 1.1 joerg *
24 1.1 joerg * THE AUTHORS DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
25 1.1 joerg * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
26 1.1 joerg * EVENT SHALL THE AUTHORS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
27 1.1 joerg * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
28 1.1 joerg * USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
29 1.1 joerg * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
30 1.1 joerg * PERFORMANCE OF THIS SOFTWARE.
31 1.1 joerg *
32 1.1 joerg ****************************************************************************/
33 1.1 joerg
34 1.1 joerg #ifndef _KERNEL
35 1.1 joerg #include <stdbool.h>
36 1.1 joerg #endif
37 1.1 joerg
38 1.2 joerg #include <x86emu/x86emu.h>
39 1.2 joerg #include <x86emu/x86emu_regs.h>
40 1.1 joerg
41 1.1 joerg static void x86emu_intr_raise (struct X86EMU *, uint8_t type);
42 1.1 joerg
43 1.1 joerg static void X86EMU_exec_one_byte(struct X86EMU *);
44 1.1 joerg static void X86EMU_exec_two_byte(struct X86EMU *);
45 1.1 joerg
46 1.1 joerg static void fetch_decode_modrm (struct X86EMU *);
47 1.1 joerg static uint8_t fetch_byte_imm (struct X86EMU *);
48 1.1 joerg static uint16_t fetch_word_imm (struct X86EMU *);
49 1.1 joerg static uint32_t fetch_long_imm (struct X86EMU *);
50 1.1 joerg static uint8_t fetch_data_byte (struct X86EMU *, uint32_t offset);
51 1.1 joerg static uint8_t fetch_byte (struct X86EMU *, uint segment, uint32_t offset);
52 1.1 joerg static uint16_t fetch_data_word (struct X86EMU *, uint32_t offset);
53 1.1 joerg static uint16_t fetch_word (struct X86EMU *, uint32_t segment, uint32_t offset);
54 1.1 joerg static uint32_t fetch_data_long (struct X86EMU *, uint32_t offset);
55 1.1 joerg static uint32_t fetch_long (struct X86EMU *, uint32_t segment, uint32_t offset);
56 1.1 joerg static void store_data_byte (struct X86EMU *, uint32_t offset, uint8_t val);
57 1.1 joerg static void store_byte (struct X86EMU *, uint32_t segment, uint32_t offset, uint8_t val);
58 1.1 joerg static void store_data_word (struct X86EMU *, uint32_t offset, uint16_t val);
59 1.1 joerg static void store_word (struct X86EMU *, uint32_t segment, uint32_t offset, uint16_t val);
60 1.1 joerg static void store_data_long (struct X86EMU *, uint32_t offset, uint32_t val);
61 1.1 joerg static void store_long (struct X86EMU *, uint32_t segment, uint32_t offset, uint32_t val);
62 1.1 joerg static uint8_t* decode_rl_byte_register(struct X86EMU *);
63 1.1 joerg static uint16_t* decode_rl_word_register(struct X86EMU *);
64 1.1 joerg static uint32_t* decode_rl_long_register(struct X86EMU *);
65 1.1 joerg static uint8_t* decode_rh_byte_register(struct X86EMU *);
66 1.1 joerg static uint16_t* decode_rh_word_register(struct X86EMU *);
67 1.1 joerg static uint32_t* decode_rh_long_register(struct X86EMU *);
68 1.1 joerg static uint16_t* decode_rh_seg_register(struct X86EMU *);
69 1.1 joerg static uint32_t decode_rl_address(struct X86EMU *);
70 1.1 joerg
71 1.1 joerg static uint8_t decode_and_fetch_byte(struct X86EMU *);
72 1.1 joerg static uint16_t decode_and_fetch_word(struct X86EMU *);
73 1.1 joerg static uint32_t decode_and_fetch_long(struct X86EMU *);
74 1.1 joerg
75 1.1 joerg static uint8_t decode_and_fetch_byte_imm8(struct X86EMU *, uint8_t *);
76 1.1 joerg static uint16_t decode_and_fetch_word_imm8(struct X86EMU *, uint8_t *);
77 1.1 joerg static uint32_t decode_and_fetch_long_imm8(struct X86EMU *, uint8_t *);
78 1.1 joerg
79 1.1 joerg static uint16_t decode_and_fetch_word_disp(struct X86EMU *, int16_t);
80 1.1 joerg static uint32_t decode_and_fetch_long_disp(struct X86EMU *, int16_t);
81 1.1 joerg
82 1.1 joerg static void write_back_byte(struct X86EMU *, uint8_t);
83 1.1 joerg static void write_back_word(struct X86EMU *, uint16_t);
84 1.1 joerg static void write_back_long(struct X86EMU *, uint32_t);
85 1.1 joerg
86 1.1 joerg static uint16_t aaa_word (struct X86EMU *, uint16_t d);
87 1.1 joerg static uint16_t aas_word (struct X86EMU *, uint16_t d);
88 1.1 joerg static uint16_t aad_word (struct X86EMU *, uint16_t d);
89 1.1 joerg static uint16_t aam_word (struct X86EMU *, uint8_t d);
90 1.1 joerg static uint8_t adc_byte (struct X86EMU *, uint8_t d, uint8_t s);
91 1.1 joerg static uint16_t adc_word (struct X86EMU *, uint16_t d, uint16_t s);
92 1.1 joerg static uint32_t adc_long (struct X86EMU *, uint32_t d, uint32_t s);
93 1.1 joerg static uint8_t add_byte (struct X86EMU *, uint8_t d, uint8_t s);
94 1.1 joerg static uint16_t add_word (struct X86EMU *, uint16_t d, uint16_t s);
95 1.1 joerg static uint32_t add_long (struct X86EMU *, uint32_t d, uint32_t s);
96 1.1 joerg static uint8_t and_byte (struct X86EMU *, uint8_t d, uint8_t s);
97 1.1 joerg static uint16_t and_word (struct X86EMU *, uint16_t d, uint16_t s);
98 1.1 joerg static uint32_t and_long (struct X86EMU *, uint32_t d, uint32_t s);
99 1.1 joerg static uint8_t cmp_byte (struct X86EMU *, uint8_t d, uint8_t s);
100 1.1 joerg static uint16_t cmp_word (struct X86EMU *, uint16_t d, uint16_t s);
101 1.1 joerg static uint32_t cmp_long (struct X86EMU *, uint32_t d, uint32_t s);
102 1.1 joerg static void cmp_byte_no_return (struct X86EMU *, uint8_t d, uint8_t s);
103 1.1 joerg static void cmp_word_no_return (struct X86EMU *, uint16_t d, uint16_t s);
104 1.1 joerg static void cmp_long_no_return (struct X86EMU *, uint32_t d, uint32_t s);
105 1.1 joerg static uint8_t daa_byte (struct X86EMU *, uint8_t d);
106 1.1 joerg static uint8_t das_byte (struct X86EMU *, uint8_t d);
107 1.1 joerg static uint8_t dec_byte (struct X86EMU *, uint8_t d);
108 1.1 joerg static uint16_t dec_word (struct X86EMU *, uint16_t d);
109 1.1 joerg static uint32_t dec_long (struct X86EMU *, uint32_t d);
110 1.1 joerg static uint8_t inc_byte (struct X86EMU *, uint8_t d);
111 1.1 joerg static uint16_t inc_word (struct X86EMU *, uint16_t d);
112 1.1 joerg static uint32_t inc_long (struct X86EMU *, uint32_t d);
113 1.1 joerg static uint8_t or_byte (struct X86EMU *, uint8_t d, uint8_t s);
114 1.1 joerg static uint16_t or_word (struct X86EMU *, uint16_t d, uint16_t s);
115 1.1 joerg static uint32_t or_long (struct X86EMU *, uint32_t d, uint32_t s);
116 1.1 joerg static uint8_t neg_byte (struct X86EMU *, uint8_t s);
117 1.1 joerg static uint16_t neg_word (struct X86EMU *, uint16_t s);
118 1.1 joerg static uint32_t neg_long (struct X86EMU *, uint32_t s);
119 1.1 joerg static uint8_t rcl_byte (struct X86EMU *, uint8_t d, uint8_t s);
120 1.1 joerg static uint16_t rcl_word (struct X86EMU *, uint16_t d, uint8_t s);
121 1.1 joerg static uint32_t rcl_long (struct X86EMU *, uint32_t d, uint8_t s);
122 1.1 joerg static uint8_t rcr_byte (struct X86EMU *, uint8_t d, uint8_t s);
123 1.1 joerg static uint16_t rcr_word (struct X86EMU *, uint16_t d, uint8_t s);
124 1.1 joerg static uint32_t rcr_long (struct X86EMU *, uint32_t d, uint8_t s);
125 1.1 joerg static uint8_t rol_byte (struct X86EMU *, uint8_t d, uint8_t s);
126 1.1 joerg static uint16_t rol_word (struct X86EMU *, uint16_t d, uint8_t s);
127 1.1 joerg static uint32_t rol_long (struct X86EMU *, uint32_t d, uint8_t s);
128 1.1 joerg static uint8_t ror_byte (struct X86EMU *, uint8_t d, uint8_t s);
129 1.1 joerg static uint16_t ror_word (struct X86EMU *, uint16_t d, uint8_t s);
130 1.1 joerg static uint32_t ror_long (struct X86EMU *, uint32_t d, uint8_t s);
131 1.1 joerg static uint8_t shl_byte (struct X86EMU *, uint8_t d, uint8_t s);
132 1.1 joerg static uint16_t shl_word (struct X86EMU *, uint16_t d, uint8_t s);
133 1.1 joerg static uint32_t shl_long (struct X86EMU *, uint32_t d, uint8_t s);
134 1.1 joerg static uint8_t shr_byte (struct X86EMU *, uint8_t d, uint8_t s);
135 1.1 joerg static uint16_t shr_word (struct X86EMU *, uint16_t d, uint8_t s);
136 1.1 joerg static uint32_t shr_long (struct X86EMU *, uint32_t d, uint8_t s);
137 1.1 joerg static uint8_t sar_byte (struct X86EMU *, uint8_t d, uint8_t s);
138 1.1 joerg static uint16_t sar_word (struct X86EMU *, uint16_t d, uint8_t s);
139 1.1 joerg static uint32_t sar_long (struct X86EMU *, uint32_t d, uint8_t s);
140 1.1 joerg static uint16_t shld_word (struct X86EMU *, uint16_t d, uint16_t fill, uint8_t s);
141 1.1 joerg static uint32_t shld_long (struct X86EMU *, uint32_t d, uint32_t fill, uint8_t s);
142 1.1 joerg static uint16_t shrd_word (struct X86EMU *, uint16_t d, uint16_t fill, uint8_t s);
143 1.1 joerg static uint32_t shrd_long (struct X86EMU *, uint32_t d, uint32_t fill, uint8_t s);
144 1.1 joerg static uint8_t sbb_byte (struct X86EMU *, uint8_t d, uint8_t s);
145 1.1 joerg static uint16_t sbb_word (struct X86EMU *, uint16_t d, uint16_t s);
146 1.1 joerg static uint32_t sbb_long (struct X86EMU *, uint32_t d, uint32_t s);
147 1.1 joerg static uint8_t sub_byte (struct X86EMU *, uint8_t d, uint8_t s);
148 1.1 joerg static uint16_t sub_word (struct X86EMU *, uint16_t d, uint16_t s);
149 1.1 joerg static uint32_t sub_long (struct X86EMU *, uint32_t d, uint32_t s);
150 1.1 joerg static void test_byte (struct X86EMU *, uint8_t d, uint8_t s);
151 1.1 joerg static void test_word (struct X86EMU *, uint16_t d, uint16_t s);
152 1.1 joerg static void test_long (struct X86EMU *, uint32_t d, uint32_t s);
153 1.1 joerg static uint8_t xor_byte (struct X86EMU *, uint8_t d, uint8_t s);
154 1.1 joerg static uint16_t xor_word (struct X86EMU *, uint16_t d, uint16_t s);
155 1.1 joerg static uint32_t xor_long (struct X86EMU *, uint32_t d, uint32_t s);
156 1.1 joerg static void imul_byte (struct X86EMU *, uint8_t s);
157 1.1 joerg static void imul_word (struct X86EMU *, uint16_t s);
158 1.1 joerg static void imul_long (struct X86EMU *, uint32_t s);
159 1.1 joerg static void mul_byte (struct X86EMU *, uint8_t s);
160 1.1 joerg static void mul_word (struct X86EMU *, uint16_t s);
161 1.1 joerg static void mul_long (struct X86EMU *, uint32_t s);
162 1.1 joerg static void idiv_byte (struct X86EMU *, uint8_t s);
163 1.1 joerg static void idiv_word (struct X86EMU *, uint16_t s);
164 1.1 joerg static void idiv_long (struct X86EMU *, uint32_t s);
165 1.1 joerg static void div_byte (struct X86EMU *, uint8_t s);
166 1.1 joerg static void div_word (struct X86EMU *, uint16_t s);
167 1.1 joerg static void div_long (struct X86EMU *, uint32_t s);
168 1.1 joerg static void ins (struct X86EMU *, int size);
169 1.1 joerg static void outs (struct X86EMU *, int size);
170 1.1 joerg static void push_word (struct X86EMU *, uint16_t w);
171 1.1 joerg static void push_long (struct X86EMU *, uint32_t w);
172 1.1 joerg static uint16_t pop_word (struct X86EMU *);
173 1.1 joerg static uint32_t pop_long (struct X86EMU *);
174 1.1 joerg
175 1.1 joerg /****************************************************************************
176 1.1 joerg REMARKS:
177 1.1 joerg Handles any pending asychronous interrupts.
178 1.1 joerg ****************************************************************************/
179 1.1 joerg static void
180 1.1 joerg x86emu_intr_handle(struct X86EMU *emu)
181 1.1 joerg {
182 1.1 joerg uint8_t intno;
183 1.1 joerg
184 1.1 joerg if (emu->x86.intr & INTR_SYNCH) {
185 1.1 joerg intno = emu->x86.intno;
186 1.1 joerg if (emu->_X86EMU_intrTab[intno]) {
187 1.1 joerg (*emu->_X86EMU_intrTab[intno]) (emu, intno);
188 1.1 joerg } else {
189 1.1 joerg push_word(emu, (uint16_t) emu->x86.R_FLG);
190 1.1 joerg CLEAR_FLAG(F_IF);
191 1.1 joerg CLEAR_FLAG(F_TF);
192 1.1 joerg push_word(emu, emu->x86.R_CS);
193 1.1 joerg emu->x86.R_CS = fetch_word(emu, 0, intno * 4 + 2);
194 1.1 joerg push_word(emu, emu->x86.R_IP);
195 1.1 joerg emu->x86.R_IP = fetch_word(emu, 0, intno * 4);
196 1.1 joerg emu->x86.intr = 0;
197 1.1 joerg }
198 1.1 joerg }
199 1.1 joerg }
200 1.1 joerg /****************************************************************************
201 1.1 joerg PARAMETERS:
202 1.1 joerg intrnum - Interrupt number to raise
203 1.1 joerg
204 1.1 joerg REMARKS:
205 1.1 joerg Raise the specified interrupt to be handled before the execution of the
206 1.1 joerg next instruction.
207 1.1 joerg ****************************************************************************/
208 1.1 joerg void
209 1.1 joerg x86emu_intr_raise(struct X86EMU *emu, uint8_t intrnum)
210 1.1 joerg {
211 1.1 joerg emu->x86.intno = intrnum;
212 1.1 joerg emu->x86.intr |= INTR_SYNCH;
213 1.1 joerg }
214 1.1 joerg /****************************************************************************
215 1.1 joerg REMARKS:
216 1.1 joerg Main execution loop for the emulator. We return from here when the system
217 1.1 joerg halts, which is normally caused by a stack fault when we return from the
218 1.1 joerg original real mode call.
219 1.1 joerg ****************************************************************************/
220 1.1 joerg void
221 1.1 joerg X86EMU_exec(struct X86EMU *emu)
222 1.1 joerg {
223 1.1 joerg emu->x86.intr = 0;
224 1.1 joerg
225 1.1 joerg #ifdef _KERNEL
226 1.1 joerg if (setjmp(&emu->exec_state))
227 1.1 joerg return;
228 1.1 joerg #else
229 1.1 joerg if (setjmp(emu->exec_state))
230 1.1 joerg return;
231 1.1 joerg #endif
232 1.1 joerg
233 1.1 joerg for (;;) {
234 1.1 joerg if (emu->x86.intr) {
235 1.1 joerg if (((emu->x86.intr & INTR_SYNCH) && (emu->x86.intno == 0 || emu->x86.intno == 2)) ||
236 1.1 joerg !ACCESS_FLAG(F_IF)) {
237 1.1 joerg x86emu_intr_handle(emu);
238 1.1 joerg }
239 1.1 joerg }
240 1.1 joerg X86EMU_exec_one_byte(emu);
241 1.1 joerg ++emu->cur_cycles;
242 1.1 joerg }
243 1.1 joerg }
244 1.1 joerg
245 1.1 joerg void
246 1.1 joerg X86EMU_exec_call(struct X86EMU *emu, uint16_t seg, uint16_t off)
247 1.1 joerg {
248 1.1 joerg push_word(emu, 0);
249 1.1 joerg push_word(emu, 0);
250 1.1 joerg emu->x86.R_CS = seg;
251 1.1 joerg emu->x86.R_IP = off;
252 1.1 joerg
253 1.1 joerg X86EMU_exec(emu);
254 1.1 joerg }
255 1.1 joerg
256 1.1 joerg void
257 1.1 joerg X86EMU_exec_intr(struct X86EMU *emu, uint8_t intr)
258 1.1 joerg {
259 1.1 joerg push_word(emu, emu->x86.R_FLG);
260 1.1 joerg CLEAR_FLAG(F_IF);
261 1.1 joerg CLEAR_FLAG(F_TF);
262 1.1 joerg push_word(emu, 0);
263 1.1 joerg push_word(emu, 0);
264 1.1 joerg emu->x86.R_CS = (*emu->emu_rdw)(emu, intr * 4 + 2);
265 1.1 joerg emu->x86.R_IP = (*emu->emu_rdw)(emu, intr * 4);
266 1.1 joerg emu->x86.intr = 0;
267 1.1 joerg
268 1.1 joerg X86EMU_exec(emu);
269 1.1 joerg }
270 1.1 joerg /****************************************************************************
271 1.1 joerg REMARKS:
272 1.1 joerg Halts the system by setting the halted system flag.
273 1.1 joerg ****************************************************************************/
274 1.1 joerg void
275 1.1 joerg X86EMU_halt_sys(struct X86EMU *emu)
276 1.1 joerg {
277 1.1 joerg #ifdef _KERNEL
278 1.1 joerg longjmp(&emu->exec_state);
279 1.1 joerg #else
280 1.1 joerg longjmp(emu->exec_state, 1);
281 1.1 joerg #endif
282 1.1 joerg }
283 1.1 joerg /****************************************************************************
284 1.1 joerg PARAMETERS:
285 1.1 joerg mod - Mod value from decoded byte
286 1.1 joerg regh - Reg h value from decoded byte
287 1.1 joerg regl - Reg l value from decoded byte
288 1.1 joerg
289 1.1 joerg REMARKS:
290 1.1 joerg Raise the specified interrupt to be handled before the execution of the
291 1.1 joerg next instruction.
292 1.1 joerg
293 1.1 joerg NOTE: Do not inline this function, as (*emu->emu_rdb) is already inline!
294 1.1 joerg ****************************************************************************/
295 1.1 joerg static void
296 1.1 joerg fetch_decode_modrm(struct X86EMU *emu)
297 1.1 joerg {
298 1.1 joerg int fetched;
299 1.1 joerg
300 1.1 joerg fetched = fetch_byte_imm(emu);
301 1.1 joerg emu->cur_mod = (fetched >> 6) & 0x03;
302 1.1 joerg emu->cur_rh = (fetched >> 3) & 0x07;
303 1.1 joerg emu->cur_rl = (fetched >> 0) & 0x07;
304 1.1 joerg }
305 1.1 joerg /****************************************************************************
306 1.1 joerg RETURNS:
307 1.1 joerg Immediate byte value read from instruction queue
308 1.1 joerg
309 1.1 joerg REMARKS:
310 1.1 joerg This function returns the immediate byte from the instruction queue, and
311 1.1 joerg moves the instruction pointer to the next value.
312 1.1 joerg
313 1.1 joerg NOTE: Do not inline this function, as (*emu->emu_rdb) is already inline!
314 1.1 joerg ****************************************************************************/
315 1.1 joerg static uint8_t
316 1.1 joerg fetch_byte_imm(struct X86EMU *emu)
317 1.1 joerg {
318 1.1 joerg uint8_t fetched;
319 1.1 joerg
320 1.1 joerg fetched = fetch_byte(emu, emu->x86.R_CS, emu->x86.R_IP);
321 1.1 joerg emu->x86.R_IP++;
322 1.1 joerg return fetched;
323 1.1 joerg }
324 1.1 joerg /****************************************************************************
325 1.1 joerg RETURNS:
326 1.1 joerg Immediate word value read from instruction queue
327 1.1 joerg
328 1.1 joerg REMARKS:
329 1.1 joerg This function returns the immediate byte from the instruction queue, and
330 1.1 joerg moves the instruction pointer to the next value.
331 1.1 joerg
332 1.1 joerg NOTE: Do not inline this function, as (*emu->emu_rdw) is already inline!
333 1.1 joerg ****************************************************************************/
334 1.1 joerg static uint16_t
335 1.1 joerg fetch_word_imm(struct X86EMU *emu)
336 1.1 joerg {
337 1.1 joerg uint16_t fetched;
338 1.1 joerg
339 1.1 joerg fetched = fetch_word(emu, emu->x86.R_CS, emu->x86.R_IP);
340 1.1 joerg emu->x86.R_IP += 2;
341 1.1 joerg return fetched;
342 1.1 joerg }
343 1.1 joerg /****************************************************************************
344 1.1 joerg RETURNS:
345 1.1 joerg Immediate lone value read from instruction queue
346 1.1 joerg
347 1.1 joerg REMARKS:
348 1.1 joerg This function returns the immediate byte from the instruction queue, and
349 1.1 joerg moves the instruction pointer to the next value.
350 1.1 joerg
351 1.1 joerg NOTE: Do not inline this function, as (*emu->emu_rdw) is already inline!
352 1.1 joerg ****************************************************************************/
353 1.1 joerg static uint32_t
354 1.1 joerg fetch_long_imm(struct X86EMU *emu)
355 1.1 joerg {
356 1.1 joerg uint32_t fetched;
357 1.1 joerg
358 1.1 joerg fetched = fetch_long(emu, emu->x86.R_CS, emu->x86.R_IP);
359 1.1 joerg emu->x86.R_IP += 4;
360 1.1 joerg return fetched;
361 1.1 joerg }
362 1.1 joerg /****************************************************************************
363 1.1 joerg RETURNS:
364 1.1 joerg Value of the default data segment
365 1.1 joerg
366 1.1 joerg REMARKS:
367 1.1 joerg Inline function that returns the default data segment for the current
368 1.1 joerg instruction.
369 1.1 joerg
370 1.1 joerg On the x86 processor, the default segment is not always DS if there is
371 1.1 joerg no segment override. Address modes such as -3[BP] or 10[BP+SI] all refer to
372 1.1 joerg addresses relative to SS (ie: on the stack). So, at the minimum, all
373 1.1 joerg decodings of addressing modes would have to set/clear a bit describing
374 1.1 joerg whether the access is relative to DS or SS. That is the function of the
375 1.1 joerg cpu-state-varible emu->x86.mode. There are several potential states:
376 1.1 joerg
377 1.1 joerg repe prefix seen (handled elsewhere)
378 1.1 joerg repne prefix seen (ditto)
379 1.1 joerg
380 1.1 joerg cs segment override
381 1.1 joerg ds segment override
382 1.1 joerg es segment override
383 1.1 joerg fs segment override
384 1.1 joerg gs segment override
385 1.1 joerg ss segment override
386 1.1 joerg
387 1.1 joerg ds/ss select (in absense of override)
388 1.1 joerg
389 1.1 joerg Each of the above 7 items are handled with a bit in the mode field.
390 1.1 joerg ****************************************************************************/
391 1.1 joerg static uint32_t
392 1.1 joerg get_data_segment(struct X86EMU *emu)
393 1.1 joerg {
394 1.1 joerg switch (emu->x86.mode & SYSMODE_SEGMASK) {
395 1.1 joerg case 0: /* default case: use ds register */
396 1.1 joerg case SYSMODE_SEGOVR_DS:
397 1.1 joerg case SYSMODE_SEGOVR_DS | SYSMODE_SEG_DS_SS:
398 1.1 joerg return emu->x86.R_DS;
399 1.1 joerg case SYSMODE_SEG_DS_SS:/* non-overridden, use ss register */
400 1.1 joerg return emu->x86.R_SS;
401 1.1 joerg case SYSMODE_SEGOVR_CS:
402 1.1 joerg case SYSMODE_SEGOVR_CS | SYSMODE_SEG_DS_SS:
403 1.1 joerg return emu->x86.R_CS;
404 1.1 joerg case SYSMODE_SEGOVR_ES:
405 1.1 joerg case SYSMODE_SEGOVR_ES | SYSMODE_SEG_DS_SS:
406 1.1 joerg return emu->x86.R_ES;
407 1.1 joerg case SYSMODE_SEGOVR_FS:
408 1.1 joerg case SYSMODE_SEGOVR_FS | SYSMODE_SEG_DS_SS:
409 1.1 joerg return emu->x86.R_FS;
410 1.1 joerg case SYSMODE_SEGOVR_GS:
411 1.1 joerg case SYSMODE_SEGOVR_GS | SYSMODE_SEG_DS_SS:
412 1.1 joerg return emu->x86.R_GS;
413 1.1 joerg case SYSMODE_SEGOVR_SS:
414 1.1 joerg case SYSMODE_SEGOVR_SS | SYSMODE_SEG_DS_SS:
415 1.1 joerg return emu->x86.R_SS;
416 1.1 joerg }
417 1.1 joerg X86EMU_halt_sys(emu);
418 1.1 joerg }
419 1.1 joerg /****************************************************************************
420 1.1 joerg PARAMETERS:
421 1.1 joerg offset - Offset to load data from
422 1.1 joerg
423 1.1 joerg RETURNS:
424 1.1 joerg Byte value read from the absolute memory location.
425 1.1 joerg
426 1.1 joerg NOTE: Do not inline this function as (*emu->emu_rdX) is already inline!
427 1.1 joerg ****************************************************************************/
428 1.1 joerg static uint8_t
429 1.1 joerg fetch_data_byte(struct X86EMU *emu, uint32_t offset)
430 1.1 joerg {
431 1.1 joerg return fetch_byte(emu, get_data_segment(emu), offset);
432 1.1 joerg }
433 1.1 joerg /****************************************************************************
434 1.1 joerg PARAMETERS:
435 1.1 joerg offset - Offset to load data from
436 1.1 joerg
437 1.1 joerg RETURNS:
438 1.1 joerg Word value read from the absolute memory location.
439 1.1 joerg
440 1.1 joerg NOTE: Do not inline this function as (*emu->emu_rdX) is already inline!
441 1.1 joerg ****************************************************************************/
442 1.1 joerg static uint16_t
443 1.1 joerg fetch_data_word(struct X86EMU *emu, uint32_t offset)
444 1.1 joerg {
445 1.1 joerg return fetch_word(emu, get_data_segment(emu), offset);
446 1.1 joerg }
447 1.1 joerg /****************************************************************************
448 1.1 joerg PARAMETERS:
449 1.1 joerg offset - Offset to load data from
450 1.1 joerg
451 1.1 joerg RETURNS:
452 1.1 joerg Long value read from the absolute memory location.
453 1.1 joerg
454 1.1 joerg NOTE: Do not inline this function as (*emu->emu_rdX) is already inline!
455 1.1 joerg ****************************************************************************/
456 1.1 joerg static uint32_t
457 1.1 joerg fetch_data_long(struct X86EMU *emu, uint32_t offset)
458 1.1 joerg {
459 1.1 joerg return fetch_long(emu, get_data_segment(emu), offset);
460 1.1 joerg }
461 1.1 joerg /****************************************************************************
462 1.1 joerg PARAMETERS:
463 1.1 joerg segment - Segment to load data from
464 1.1 joerg offset - Offset to load data from
465 1.1 joerg
466 1.1 joerg RETURNS:
467 1.1 joerg Byte value read from the absolute memory location.
468 1.1 joerg
469 1.1 joerg NOTE: Do not inline this function as (*emu->emu_rdX) is already inline!
470 1.1 joerg ****************************************************************************/
471 1.1 joerg static uint8_t
472 1.1 joerg fetch_byte(struct X86EMU *emu, uint32_t segment, uint32_t offset)
473 1.1 joerg {
474 1.1 joerg return (*emu->emu_rdb) (emu, ((uint32_t) segment << 4) + offset);
475 1.1 joerg }
476 1.1 joerg /****************************************************************************
477 1.1 joerg PARAMETERS:
478 1.1 joerg segment - Segment to load data from
479 1.1 joerg offset - Offset to load data from
480 1.1 joerg
481 1.1 joerg RETURNS:
482 1.1 joerg Word value read from the absolute memory location.
483 1.1 joerg
484 1.1 joerg NOTE: Do not inline this function as (*emu->emu_rdX) is already inline!
485 1.1 joerg ****************************************************************************/
486 1.1 joerg static uint16_t
487 1.1 joerg fetch_word(struct X86EMU *emu, uint32_t segment, uint32_t offset)
488 1.1 joerg {
489 1.1 joerg return (*emu->emu_rdw) (emu, ((uint32_t) segment << 4) + offset);
490 1.1 joerg }
491 1.1 joerg /****************************************************************************
492 1.1 joerg PARAMETERS:
493 1.1 joerg segment - Segment to load data from
494 1.1 joerg offset - Offset to load data from
495 1.1 joerg
496 1.1 joerg RETURNS:
497 1.1 joerg Long value read from the absolute memory location.
498 1.1 joerg
499 1.1 joerg NOTE: Do not inline this function as (*emu->emu_rdX) is already inline!
500 1.1 joerg ****************************************************************************/
501 1.1 joerg static uint32_t
502 1.1 joerg fetch_long(struct X86EMU *emu, uint32_t segment, uint32_t offset)
503 1.1 joerg {
504 1.1 joerg return (*emu->emu_rdl) (emu, ((uint32_t) segment << 4) + offset);
505 1.1 joerg }
506 1.1 joerg /****************************************************************************
507 1.1 joerg PARAMETERS:
508 1.1 joerg offset - Offset to store data at
509 1.1 joerg val - Value to store
510 1.1 joerg
511 1.1 joerg REMARKS:
512 1.1 joerg Writes a word value to an segmented memory location. The segment used is
513 1.1 joerg the current 'default' segment, which may have been overridden.
514 1.1 joerg
515 1.1 joerg NOTE: Do not inline this function as (*emu->emu_wrX) is already inline!
516 1.1 joerg ****************************************************************************/
517 1.1 joerg static void
518 1.1 joerg store_data_byte(struct X86EMU *emu, uint32_t offset, uint8_t val)
519 1.1 joerg {
520 1.1 joerg store_byte(emu, get_data_segment(emu), offset, val);
521 1.1 joerg }
522 1.1 joerg /****************************************************************************
523 1.1 joerg PARAMETERS:
524 1.1 joerg offset - Offset to store data at
525 1.1 joerg val - Value to store
526 1.1 joerg
527 1.1 joerg REMARKS:
528 1.1 joerg Writes a word value to an segmented memory location. The segment used is
529 1.1 joerg the current 'default' segment, which may have been overridden.
530 1.1 joerg
531 1.1 joerg NOTE: Do not inline this function as (*emu->emu_wrX) is already inline!
532 1.1 joerg ****************************************************************************/
533 1.1 joerg static void
534 1.1 joerg store_data_word(struct X86EMU *emu, uint32_t offset, uint16_t val)
535 1.1 joerg {
536 1.1 joerg store_word(emu, get_data_segment(emu), offset, val);
537 1.1 joerg }
538 1.1 joerg /****************************************************************************
539 1.1 joerg PARAMETERS:
540 1.1 joerg offset - Offset to store data at
541 1.1 joerg val - Value to store
542 1.1 joerg
543 1.1 joerg REMARKS:
544 1.1 joerg Writes a long value to an segmented memory location. The segment used is
545 1.1 joerg the current 'default' segment, which may have been overridden.
546 1.1 joerg
547 1.1 joerg NOTE: Do not inline this function as (*emu->emu_wrX) is already inline!
548 1.1 joerg ****************************************************************************/
549 1.1 joerg static void
550 1.1 joerg store_data_long(struct X86EMU *emu, uint32_t offset, uint32_t val)
551 1.1 joerg {
552 1.1 joerg store_long(emu, get_data_segment(emu), offset, val);
553 1.1 joerg }
554 1.1 joerg /****************************************************************************
555 1.1 joerg PARAMETERS:
556 1.1 joerg segment - Segment to store data at
557 1.1 joerg offset - Offset to store data at
558 1.1 joerg val - Value to store
559 1.1 joerg
560 1.1 joerg REMARKS:
561 1.1 joerg Writes a byte value to an absolute memory location.
562 1.1 joerg
563 1.1 joerg NOTE: Do not inline this function as (*emu->emu_wrX) is already inline!
564 1.1 joerg ****************************************************************************/
565 1.1 joerg static void
566 1.1 joerg store_byte(struct X86EMU *emu, uint32_t segment, uint32_t offset, uint8_t val)
567 1.1 joerg {
568 1.1 joerg (*emu->emu_wrb) (emu, ((uint32_t) segment << 4) + offset, val);
569 1.1 joerg }
570 1.1 joerg /****************************************************************************
571 1.1 joerg PARAMETERS:
572 1.1 joerg segment - Segment to store data at
573 1.1 joerg offset - Offset to store data at
574 1.1 joerg val - Value to store
575 1.1 joerg
576 1.1 joerg REMARKS:
577 1.1 joerg Writes a word value to an absolute memory location.
578 1.1 joerg
579 1.1 joerg NOTE: Do not inline this function as (*emu->emu_wrX) is already inline!
580 1.1 joerg ****************************************************************************/
581 1.1 joerg static void
582 1.1 joerg store_word(struct X86EMU *emu, uint32_t segment, uint32_t offset, uint16_t val)
583 1.1 joerg {
584 1.1 joerg (*emu->emu_wrw) (emu, ((uint32_t) segment << 4) + offset, val);
585 1.1 joerg }
586 1.1 joerg /****************************************************************************
587 1.1 joerg PARAMETERS:
588 1.1 joerg segment - Segment to store data at
589 1.1 joerg offset - Offset to store data at
590 1.1 joerg val - Value to store
591 1.1 joerg
592 1.1 joerg REMARKS:
593 1.1 joerg Writes a long value to an absolute memory location.
594 1.1 joerg
595 1.1 joerg NOTE: Do not inline this function as (*emu->emu_wrX) is already inline!
596 1.1 joerg ****************************************************************************/
597 1.1 joerg static void
598 1.1 joerg store_long(struct X86EMU *emu, uint32_t segment, uint32_t offset, uint32_t val)
599 1.1 joerg {
600 1.1 joerg (*emu->emu_wrl) (emu, ((uint32_t) segment << 4) + offset, val);
601 1.1 joerg }
602 1.1 joerg /****************************************************************************
603 1.1 joerg PARAMETERS:
604 1.1 joerg reg - Register to decode
605 1.1 joerg
606 1.1 joerg RETURNS:
607 1.1 joerg Pointer to the appropriate register
608 1.1 joerg
609 1.1 joerg REMARKS:
610 1.1 joerg Return a pointer to the register given by the R/RM field of the
611 1.1 joerg modrm byte, for byte operands. Also enables the decoding of instructions.
612 1.1 joerg ****************************************************************************/
613 1.1 joerg static uint8_t *
614 1.1 joerg decode_rm_byte_register(struct X86EMU *emu, int reg)
615 1.1 joerg {
616 1.1 joerg switch (reg) {
617 1.1 joerg case 0:
618 1.1 joerg return &emu->x86.R_AL;
619 1.1 joerg case 1:
620 1.1 joerg return &emu->x86.R_CL;
621 1.1 joerg case 2:
622 1.1 joerg return &emu->x86.R_DL;
623 1.1 joerg case 3:
624 1.1 joerg return &emu->x86.R_BL;
625 1.1 joerg case 4:
626 1.1 joerg return &emu->x86.R_AH;
627 1.1 joerg case 5:
628 1.1 joerg return &emu->x86.R_CH;
629 1.1 joerg case 6:
630 1.1 joerg return &emu->x86.R_DH;
631 1.1 joerg case 7:
632 1.1 joerg return &emu->x86.R_BH;
633 1.1 joerg default:
634 1.1 joerg X86EMU_halt_sys(emu);
635 1.1 joerg }
636 1.1 joerg }
637 1.1 joerg
638 1.1 joerg static uint8_t *
639 1.1 joerg decode_rl_byte_register(struct X86EMU *emu)
640 1.1 joerg {
641 1.1 joerg return decode_rm_byte_register(emu, emu->cur_rl);
642 1.1 joerg }
643 1.1 joerg
644 1.1 joerg static uint8_t *
645 1.1 joerg decode_rh_byte_register(struct X86EMU *emu)
646 1.1 joerg {
647 1.1 joerg return decode_rm_byte_register(emu, emu->cur_rh);
648 1.1 joerg }
649 1.1 joerg /****************************************************************************
650 1.1 joerg PARAMETERS:
651 1.1 joerg reg - Register to decode
652 1.1 joerg
653 1.1 joerg RETURNS:
654 1.1 joerg Pointer to the appropriate register
655 1.1 joerg
656 1.1 joerg REMARKS:
657 1.1 joerg Return a pointer to the register given by the R/RM field of the
658 1.1 joerg modrm byte, for word operands. Also enables the decoding of instructions.
659 1.1 joerg ****************************************************************************/
660 1.1 joerg static uint16_t *
661 1.1 joerg decode_rm_word_register(struct X86EMU *emu, int reg)
662 1.1 joerg {
663 1.1 joerg switch (reg) {
664 1.1 joerg case 0:
665 1.1 joerg return &emu->x86.R_AX;
666 1.1 joerg case 1:
667 1.1 joerg return &emu->x86.R_CX;
668 1.1 joerg case 2:
669 1.1 joerg return &emu->x86.R_DX;
670 1.1 joerg case 3:
671 1.1 joerg return &emu->x86.R_BX;
672 1.1 joerg case 4:
673 1.1 joerg return &emu->x86.R_SP;
674 1.1 joerg case 5:
675 1.1 joerg return &emu->x86.R_BP;
676 1.1 joerg case 6:
677 1.1 joerg return &emu->x86.R_SI;
678 1.1 joerg case 7:
679 1.1 joerg return &emu->x86.R_DI;
680 1.1 joerg default:
681 1.1 joerg X86EMU_halt_sys(emu);
682 1.1 joerg }
683 1.1 joerg }
684 1.1 joerg
685 1.1 joerg static uint16_t *
686 1.1 joerg decode_rl_word_register(struct X86EMU *emu)
687 1.1 joerg {
688 1.1 joerg return decode_rm_word_register(emu, emu->cur_rl);
689 1.1 joerg }
690 1.1 joerg
691 1.1 joerg static uint16_t *
692 1.1 joerg decode_rh_word_register(struct X86EMU *emu)
693 1.1 joerg {
694 1.1 joerg return decode_rm_word_register(emu, emu->cur_rh);
695 1.1 joerg }
696 1.1 joerg /****************************************************************************
697 1.1 joerg PARAMETERS:
698 1.1 joerg reg - Register to decode
699 1.1 joerg
700 1.1 joerg RETURNS:
701 1.1 joerg Pointer to the appropriate register
702 1.1 joerg
703 1.1 joerg REMARKS:
704 1.1 joerg Return a pointer to the register given by the R/RM field of the
705 1.1 joerg modrm byte, for dword operands. Also enables the decoding of instructions.
706 1.1 joerg ****************************************************************************/
707 1.1 joerg static uint32_t *
708 1.1 joerg decode_rm_long_register(struct X86EMU *emu, int reg)
709 1.1 joerg {
710 1.1 joerg switch (reg) {
711 1.1 joerg case 0:
712 1.1 joerg return &emu->x86.R_EAX;
713 1.1 joerg case 1:
714 1.1 joerg return &emu->x86.R_ECX;
715 1.1 joerg case 2:
716 1.1 joerg return &emu->x86.R_EDX;
717 1.1 joerg case 3:
718 1.1 joerg return &emu->x86.R_EBX;
719 1.1 joerg case 4:
720 1.1 joerg return &emu->x86.R_ESP;
721 1.1 joerg case 5:
722 1.1 joerg return &emu->x86.R_EBP;
723 1.1 joerg case 6:
724 1.1 joerg return &emu->x86.R_ESI;
725 1.1 joerg case 7:
726 1.1 joerg return &emu->x86.R_EDI;
727 1.1 joerg default:
728 1.1 joerg X86EMU_halt_sys(emu);
729 1.1 joerg }
730 1.1 joerg }
731 1.1 joerg
732 1.1 joerg static uint32_t *
733 1.1 joerg decode_rl_long_register(struct X86EMU *emu)
734 1.1 joerg {
735 1.1 joerg return decode_rm_long_register(emu, emu->cur_rl);
736 1.1 joerg }
737 1.1 joerg
738 1.1 joerg static uint32_t *
739 1.1 joerg decode_rh_long_register(struct X86EMU *emu)
740 1.1 joerg {
741 1.1 joerg return decode_rm_long_register(emu, emu->cur_rh);
742 1.1 joerg }
743 1.1 joerg
744 1.1 joerg /****************************************************************************
745 1.1 joerg PARAMETERS:
746 1.1 joerg reg - Register to decode
747 1.1 joerg
748 1.1 joerg RETURNS:
749 1.1 joerg Pointer to the appropriate register
750 1.1 joerg
751 1.1 joerg REMARKS:
752 1.1 joerg Return a pointer to the register given by the R/RM field of the
753 1.1 joerg modrm byte, for word operands, modified from above for the weirdo
754 1.1 joerg special case of segreg operands. Also enables the decoding of instructions.
755 1.1 joerg ****************************************************************************/
756 1.1 joerg static uint16_t *
757 1.1 joerg decode_rh_seg_register(struct X86EMU *emu)
758 1.1 joerg {
759 1.1 joerg switch (emu->cur_rh) {
760 1.1 joerg case 0:
761 1.1 joerg return &emu->x86.R_ES;
762 1.1 joerg case 1:
763 1.1 joerg return &emu->x86.R_CS;
764 1.1 joerg case 2:
765 1.1 joerg return &emu->x86.R_SS;
766 1.1 joerg case 3:
767 1.1 joerg return &emu->x86.R_DS;
768 1.1 joerg case 4:
769 1.1 joerg return &emu->x86.R_FS;
770 1.1 joerg case 5:
771 1.1 joerg return &emu->x86.R_GS;
772 1.1 joerg default:
773 1.1 joerg X86EMU_halt_sys(emu);
774 1.1 joerg }
775 1.1 joerg }
776 1.1 joerg /*
777 1.1 joerg *
778 1.1 joerg * return offset from the SIB Byte
779 1.1 joerg */
780 1.1 joerg static uint32_t
781 1.1 joerg decode_sib_address(struct X86EMU *emu, int sib, int mod)
782 1.1 joerg {
783 1.1 joerg uint32_t base = 0, i = 0, scale = 1;
784 1.1 joerg
785 1.1 joerg switch (sib & 0x07) {
786 1.1 joerg case 0:
787 1.1 joerg base = emu->x86.R_EAX;
788 1.1 joerg break;
789 1.1 joerg case 1:
790 1.1 joerg base = emu->x86.R_ECX;
791 1.1 joerg break;
792 1.1 joerg case 2:
793 1.1 joerg base = emu->x86.R_EDX;
794 1.1 joerg break;
795 1.1 joerg case 3:
796 1.1 joerg base = emu->x86.R_EBX;
797 1.1 joerg break;
798 1.1 joerg case 4:
799 1.1 joerg base = emu->x86.R_ESP;
800 1.1 joerg emu->x86.mode |= SYSMODE_SEG_DS_SS;
801 1.1 joerg break;
802 1.1 joerg case 5:
803 1.1 joerg if (mod == 0) {
804 1.1 joerg base = fetch_long_imm(emu);
805 1.1 joerg } else {
806 1.1 joerg base = emu->x86.R_ESP;
807 1.1 joerg emu->x86.mode |= SYSMODE_SEG_DS_SS;
808 1.1 joerg }
809 1.1 joerg break;
810 1.1 joerg case 6:
811 1.1 joerg base = emu->x86.R_ESI;
812 1.1 joerg break;
813 1.1 joerg case 7:
814 1.1 joerg base = emu->x86.R_EDI;
815 1.1 joerg break;
816 1.1 joerg }
817 1.1 joerg switch ((sib >> 3) & 0x07) {
818 1.1 joerg case 0:
819 1.1 joerg i = emu->x86.R_EAX;
820 1.1 joerg break;
821 1.1 joerg case 1:
822 1.1 joerg i = emu->x86.R_ECX;
823 1.1 joerg break;
824 1.1 joerg case 2:
825 1.1 joerg i = emu->x86.R_EDX;
826 1.1 joerg break;
827 1.1 joerg case 3:
828 1.1 joerg i = emu->x86.R_EBX;
829 1.1 joerg break;
830 1.1 joerg case 4:
831 1.1 joerg i = 0;
832 1.1 joerg break;
833 1.1 joerg case 5:
834 1.1 joerg i = emu->x86.R_EBP;
835 1.1 joerg break;
836 1.1 joerg case 6:
837 1.1 joerg i = emu->x86.R_ESI;
838 1.1 joerg break;
839 1.1 joerg case 7:
840 1.1 joerg i = emu->x86.R_EDI;
841 1.1 joerg break;
842 1.1 joerg }
843 1.1 joerg scale = 1 << ((sib >> 6) & 0x03);
844 1.1 joerg return base + (i * scale);
845 1.1 joerg }
846 1.1 joerg /****************************************************************************
847 1.1 joerg PARAMETERS:
848 1.1 joerg rm - RM value to decode
849 1.1 joerg
850 1.1 joerg RETURNS:
851 1.1 joerg Offset in memory for the address decoding
852 1.1 joerg
853 1.1 joerg REMARKS:
854 1.1 joerg Return the offset given by mod=00, mod=01 or mod=10 addressing.
855 1.1 joerg Also enables the decoding of instructions.
856 1.1 joerg ****************************************************************************/
857 1.1 joerg static uint32_t
858 1.1 joerg decode_rl_address(struct X86EMU *emu)
859 1.1 joerg {
860 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_ADDR) {
861 1.1 joerg uint32_t offset, sib;
862 1.1 joerg /* 32-bit addressing */
863 1.1 joerg switch (emu->cur_rl) {
864 1.1 joerg case 0:
865 1.1 joerg offset = emu->x86.R_EAX;
866 1.1 joerg break;
867 1.1 joerg case 1:
868 1.1 joerg offset = emu->x86.R_ECX;
869 1.1 joerg break;
870 1.1 joerg case 2:
871 1.1 joerg offset = emu->x86.R_EDX;
872 1.1 joerg break;
873 1.1 joerg case 3:
874 1.1 joerg offset = emu->x86.R_EBX;
875 1.1 joerg break;
876 1.1 joerg case 4:
877 1.1 joerg sib = fetch_byte_imm(emu);
878 1.1 joerg offset = decode_sib_address(emu, sib, 0);
879 1.1 joerg break;
880 1.1 joerg case 5:
881 1.1 joerg if (emu->cur_mod == 0)
882 1.1 joerg offset = fetch_long_imm(emu);
883 1.1 joerg else
884 1.1 joerg offset = emu->x86.R_EBP;
885 1.1 joerg break;
886 1.1 joerg case 6:
887 1.1 joerg offset = emu->x86.R_ESI;
888 1.1 joerg break;
889 1.1 joerg case 7:
890 1.1 joerg offset = emu->x86.R_EDI;
891 1.1 joerg break;
892 1.1 joerg default:
893 1.1 joerg X86EMU_halt_sys(emu);
894 1.1 joerg }
895 1.1 joerg if (emu->cur_mod == 1)
896 1.1 joerg offset += (int8_t)fetch_byte_imm(emu);
897 1.1 joerg else if (emu->cur_mod == 2)
898 1.1 joerg offset += fetch_long_imm(emu);
899 1.1 joerg return offset;
900 1.1 joerg } else {
901 1.1 joerg uint16_t offset;
902 1.1 joerg
903 1.1 joerg /* 16-bit addressing */
904 1.1 joerg switch (emu->cur_rl) {
905 1.1 joerg case 0:
906 1.1 joerg offset = emu->x86.R_BX + emu->x86.R_SI;
907 1.1 joerg break;
908 1.1 joerg case 1:
909 1.1 joerg offset = emu->x86.R_BX + emu->x86.R_DI;
910 1.1 joerg break;
911 1.1 joerg case 2:
912 1.1 joerg emu->x86.mode |= SYSMODE_SEG_DS_SS;
913 1.1 joerg offset = emu->x86.R_BP + emu->x86.R_SI;
914 1.1 joerg break;
915 1.1 joerg case 3:
916 1.1 joerg emu->x86.mode |= SYSMODE_SEG_DS_SS;
917 1.1 joerg offset = emu->x86.R_BP + emu->x86.R_DI;
918 1.1 joerg break;
919 1.1 joerg case 4:
920 1.1 joerg offset = emu->x86.R_SI;
921 1.1 joerg break;
922 1.1 joerg case 5:
923 1.1 joerg offset = emu->x86.R_DI;
924 1.1 joerg break;
925 1.1 joerg case 6:
926 1.1 joerg if (emu->cur_mod == 0)
927 1.1 joerg offset = fetch_word_imm(emu);
928 1.1 joerg else
929 1.1 joerg offset = emu->x86.R_BP;
930 1.1 joerg break;
931 1.1 joerg case 7:
932 1.1 joerg offset = emu->x86.R_BX;
933 1.1 joerg break;
934 1.1 joerg default:
935 1.1 joerg X86EMU_halt_sys(emu);
936 1.1 joerg }
937 1.1 joerg if (emu->cur_mod == 1)
938 1.1 joerg offset += (int8_t)fetch_byte_imm(emu);
939 1.1 joerg else if (emu->cur_mod == 2)
940 1.1 joerg offset += fetch_word_imm(emu);
941 1.1 joerg return offset;
942 1.1 joerg }
943 1.1 joerg }
944 1.1 joerg
945 1.1 joerg static uint8_t
946 1.1 joerg decode_and_fetch_byte(struct X86EMU *emu)
947 1.1 joerg {
948 1.1 joerg if (emu->cur_mod != 3) {
949 1.1 joerg emu->cur_offset = decode_rl_address(emu);
950 1.1 joerg return fetch_data_byte(emu, emu->cur_offset);
951 1.1 joerg } else {
952 1.1 joerg return *decode_rl_byte_register(emu);
953 1.1 joerg }
954 1.1 joerg }
955 1.1 joerg
956 1.1 joerg static uint16_t
957 1.1 joerg decode_and_fetch_word_disp(struct X86EMU *emu, int16_t disp)
958 1.1 joerg {
959 1.1 joerg if (emu->cur_mod != 3) {
960 1.1 joerg /* TODO: A20 gate emulation */
961 1.1 joerg emu->cur_offset = decode_rl_address(emu) + disp;
962 1.1 joerg if ((emu->x86.mode & SYSMODE_PREFIX_ADDR) == 0)
963 1.1 joerg emu->cur_offset &= 0xffff;
964 1.1 joerg return fetch_data_word(emu, emu->cur_offset);
965 1.1 joerg } else {
966 1.1 joerg return *decode_rl_word_register(emu);
967 1.1 joerg }
968 1.1 joerg }
969 1.1 joerg
970 1.1 joerg static uint32_t
971 1.1 joerg decode_and_fetch_long_disp(struct X86EMU *emu, int16_t disp)
972 1.1 joerg {
973 1.1 joerg if (emu->cur_mod != 3) {
974 1.1 joerg /* TODO: A20 gate emulation */
975 1.1 joerg emu->cur_offset = decode_rl_address(emu) + disp;
976 1.1 joerg if ((emu->x86.mode & SYSMODE_PREFIX_ADDR) == 0)
977 1.1 joerg emu->cur_offset &= 0xffff;
978 1.1 joerg return fetch_data_long(emu, emu->cur_offset);
979 1.1 joerg } else {
980 1.1 joerg return *decode_rl_long_register(emu);
981 1.1 joerg }
982 1.1 joerg }
983 1.1 joerg
984 1.1 joerg uint16_t
985 1.1 joerg decode_and_fetch_word(struct X86EMU *emu)
986 1.1 joerg {
987 1.1 joerg return decode_and_fetch_word_disp(emu, 0);
988 1.1 joerg }
989 1.1 joerg
990 1.1 joerg uint32_t
991 1.1 joerg decode_and_fetch_long(struct X86EMU *emu)
992 1.1 joerg {
993 1.1 joerg return decode_and_fetch_long_disp(emu, 0);
994 1.1 joerg }
995 1.1 joerg
996 1.1 joerg uint8_t
997 1.1 joerg decode_and_fetch_byte_imm8(struct X86EMU *emu, uint8_t *imm)
998 1.1 joerg {
999 1.1 joerg if (emu->cur_mod != 3) {
1000 1.1 joerg emu->cur_offset = decode_rl_address(emu);
1001 1.1 joerg *imm = fetch_byte_imm(emu);
1002 1.1 joerg return fetch_data_byte(emu, emu->cur_offset);
1003 1.1 joerg } else {
1004 1.1 joerg *imm = fetch_byte_imm(emu);
1005 1.1 joerg return *decode_rl_byte_register(emu);
1006 1.1 joerg }
1007 1.1 joerg }
1008 1.1 joerg
1009 1.1 joerg static uint16_t
1010 1.1 joerg decode_and_fetch_word_imm8(struct X86EMU *emu, uint8_t *imm)
1011 1.1 joerg {
1012 1.1 joerg if (emu->cur_mod != 3) {
1013 1.1 joerg emu->cur_offset = decode_rl_address(emu);
1014 1.1 joerg *imm = fetch_byte_imm(emu);
1015 1.1 joerg return fetch_data_word(emu, emu->cur_offset);
1016 1.1 joerg } else {
1017 1.1 joerg *imm = fetch_byte_imm(emu);
1018 1.1 joerg return *decode_rl_word_register(emu);
1019 1.1 joerg }
1020 1.1 joerg }
1021 1.1 joerg
1022 1.1 joerg static uint32_t
1023 1.1 joerg decode_and_fetch_long_imm8(struct X86EMU *emu, uint8_t *imm)
1024 1.1 joerg {
1025 1.1 joerg if (emu->cur_mod != 3) {
1026 1.1 joerg emu->cur_offset = decode_rl_address(emu);
1027 1.1 joerg *imm = fetch_byte_imm(emu);
1028 1.1 joerg return fetch_data_long(emu, emu->cur_offset);
1029 1.1 joerg } else {
1030 1.1 joerg *imm = fetch_byte_imm(emu);
1031 1.1 joerg return *decode_rl_long_register(emu);
1032 1.1 joerg }
1033 1.1 joerg }
1034 1.1 joerg
1035 1.1 joerg static void
1036 1.1 joerg write_back_byte(struct X86EMU *emu, uint8_t val)
1037 1.1 joerg {
1038 1.1 joerg if (emu->cur_mod != 3)
1039 1.1 joerg store_data_byte(emu, emu->cur_offset, val);
1040 1.1 joerg else
1041 1.1 joerg *decode_rl_byte_register(emu) = val;
1042 1.1 joerg }
1043 1.1 joerg
1044 1.1 joerg static void
1045 1.1 joerg write_back_word(struct X86EMU *emu, uint16_t val)
1046 1.1 joerg {
1047 1.1 joerg if (emu->cur_mod != 3)
1048 1.1 joerg store_data_word(emu, emu->cur_offset, val);
1049 1.1 joerg else
1050 1.1 joerg *decode_rl_word_register(emu) = val;
1051 1.1 joerg }
1052 1.1 joerg
1053 1.1 joerg static void
1054 1.1 joerg write_back_long(struct X86EMU *emu, uint32_t val)
1055 1.1 joerg {
1056 1.1 joerg if (emu->cur_mod != 3)
1057 1.1 joerg store_data_long(emu, emu->cur_offset, val);
1058 1.1 joerg else
1059 1.1 joerg *decode_rl_long_register(emu) = val;
1060 1.1 joerg }
1061 1.1 joerg
1062 1.1 joerg static void
1063 1.1 joerg common_inc_word_long(struct X86EMU *emu, union X86EMU_register *reg)
1064 1.1 joerg {
1065 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1066 1.1 joerg reg->I32_reg.e_reg = inc_long(emu, reg->I32_reg.e_reg);
1067 1.1 joerg else
1068 1.1 joerg reg->I16_reg.x_reg = inc_word(emu, reg->I16_reg.x_reg);
1069 1.1 joerg }
1070 1.1 joerg
1071 1.1 joerg static void
1072 1.1 joerg common_dec_word_long(struct X86EMU *emu, union X86EMU_register *reg)
1073 1.1 joerg {
1074 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1075 1.1 joerg reg->I32_reg.e_reg = dec_long(emu, reg->I32_reg.e_reg);
1076 1.1 joerg else
1077 1.1 joerg reg->I16_reg.x_reg = dec_word(emu, reg->I16_reg.x_reg);
1078 1.1 joerg }
1079 1.1 joerg
1080 1.1 joerg static void
1081 1.1 joerg common_binop_byte_rm_r(struct X86EMU *emu, uint8_t (*binop)(struct X86EMU *, uint8_t, uint8_t))
1082 1.1 joerg {
1083 1.1 joerg uint32_t destoffset;
1084 1.1 joerg uint8_t *destreg, srcval;
1085 1.1 joerg uint8_t destval;
1086 1.1 joerg
1087 1.1 joerg fetch_decode_modrm(emu);
1088 1.1 joerg srcval = *decode_rh_byte_register(emu);
1089 1.1 joerg if (emu->cur_mod != 3) {
1090 1.1 joerg destoffset = decode_rl_address(emu);
1091 1.1 joerg destval = fetch_data_byte(emu, destoffset);
1092 1.1 joerg destval = (*binop)(emu, destval, srcval);
1093 1.1 joerg store_data_byte(emu, destoffset, destval);
1094 1.1 joerg } else {
1095 1.1 joerg destreg = decode_rl_byte_register(emu);
1096 1.1 joerg *destreg = (*binop)(emu, *destreg, srcval);
1097 1.1 joerg }
1098 1.1 joerg }
1099 1.1 joerg
1100 1.1 joerg static void
1101 1.1 joerg common_binop_ns_byte_rm_r(struct X86EMU *emu, void (*binop)(struct X86EMU *, uint8_t, uint8_t))
1102 1.1 joerg {
1103 1.1 joerg uint32_t destoffset;
1104 1.1 joerg uint8_t destval, srcval;
1105 1.1 joerg
1106 1.1 joerg fetch_decode_modrm(emu);
1107 1.1 joerg srcval = *decode_rh_byte_register(emu);
1108 1.1 joerg if (emu->cur_mod != 3) {
1109 1.1 joerg destoffset = decode_rl_address(emu);
1110 1.1 joerg destval = fetch_data_byte(emu, destoffset);
1111 1.1 joerg } else {
1112 1.1 joerg destval = *decode_rl_byte_register(emu);
1113 1.1 joerg }
1114 1.1 joerg (*binop)(emu, destval, srcval);
1115 1.1 joerg }
1116 1.1 joerg
1117 1.1 joerg static void
1118 1.1 joerg common_binop_word_rm_r(struct X86EMU *emu, uint16_t (*binop)(struct X86EMU *, uint16_t, uint16_t))
1119 1.1 joerg {
1120 1.1 joerg uint32_t destoffset;
1121 1.1 joerg uint16_t destval, *destreg, srcval;
1122 1.1 joerg
1123 1.1 joerg fetch_decode_modrm(emu);
1124 1.1 joerg srcval = *decode_rh_word_register(emu);
1125 1.1 joerg if (emu->cur_mod != 3) {
1126 1.1 joerg destoffset = decode_rl_address(emu);
1127 1.1 joerg destval = fetch_data_word(emu, destoffset);
1128 1.1 joerg destval = (*binop)(emu, destval, srcval);
1129 1.1 joerg store_data_word(emu, destoffset, destval);
1130 1.1 joerg } else {
1131 1.1 joerg destreg = decode_rl_word_register(emu);
1132 1.1 joerg *destreg = (*binop)(emu, *destreg, srcval);
1133 1.1 joerg }
1134 1.1 joerg }
1135 1.1 joerg
1136 1.1 joerg static void
1137 1.1 joerg common_binop_byte_r_rm(struct X86EMU *emu, uint8_t (*binop)(struct X86EMU *, uint8_t, uint8_t))
1138 1.1 joerg {
1139 1.1 joerg uint8_t *destreg, srcval;
1140 1.1 joerg uint32_t srcoffset;
1141 1.1 joerg
1142 1.1 joerg fetch_decode_modrm(emu);
1143 1.1 joerg destreg = decode_rh_byte_register(emu);
1144 1.1 joerg if (emu->cur_mod != 3) {
1145 1.1 joerg srcoffset = decode_rl_address(emu);
1146 1.1 joerg srcval = fetch_data_byte(emu, srcoffset);
1147 1.1 joerg } else {
1148 1.1 joerg srcval = *decode_rl_byte_register(emu);
1149 1.1 joerg }
1150 1.1 joerg *destreg = (*binop)(emu, *destreg, srcval);
1151 1.1 joerg }
1152 1.1 joerg
1153 1.1 joerg static void
1154 1.1 joerg common_binop_long_rm_r(struct X86EMU *emu, uint32_t (*binop)(struct X86EMU *, uint32_t, uint32_t))
1155 1.1 joerg {
1156 1.1 joerg uint32_t destoffset;
1157 1.1 joerg uint32_t destval, *destreg, srcval;
1158 1.1 joerg
1159 1.1 joerg fetch_decode_modrm(emu);
1160 1.1 joerg srcval = *decode_rh_long_register(emu);
1161 1.1 joerg if (emu->cur_mod != 3) {
1162 1.1 joerg destoffset = decode_rl_address(emu);
1163 1.1 joerg destval = fetch_data_long(emu, destoffset);
1164 1.1 joerg destval = (*binop)(emu, destval, srcval);
1165 1.1 joerg store_data_long(emu, destoffset, destval);
1166 1.1 joerg } else {
1167 1.1 joerg destreg = decode_rl_long_register(emu);
1168 1.1 joerg *destreg = (*binop)(emu, *destreg, srcval);
1169 1.1 joerg }
1170 1.1 joerg }
1171 1.1 joerg
1172 1.1 joerg static void
1173 1.1 joerg common_binop_word_long_rm_r(struct X86EMU *emu,
1174 1.1 joerg uint16_t (*binop16)(struct X86EMU *, uint16_t, uint16_t), uint32_t (*binop32)(struct X86EMU *, uint32_t, uint32_t))
1175 1.1 joerg {
1176 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1177 1.1 joerg common_binop_long_rm_r(emu, binop32);
1178 1.1 joerg else
1179 1.1 joerg common_binop_word_rm_r(emu, binop16);
1180 1.1 joerg }
1181 1.1 joerg
1182 1.1 joerg static void
1183 1.1 joerg common_binop_ns_word_rm_r(struct X86EMU *emu, void (*binop)(struct X86EMU *, uint16_t, uint16_t))
1184 1.1 joerg {
1185 1.1 joerg uint32_t destoffset;
1186 1.1 joerg uint16_t destval, srcval;
1187 1.1 joerg
1188 1.1 joerg fetch_decode_modrm(emu);
1189 1.1 joerg srcval = *decode_rh_word_register(emu);
1190 1.1 joerg if (emu->cur_mod != 3) {
1191 1.1 joerg destoffset = decode_rl_address(emu);
1192 1.1 joerg destval = fetch_data_word(emu, destoffset);
1193 1.1 joerg } else {
1194 1.1 joerg destval = *decode_rl_word_register(emu);
1195 1.1 joerg }
1196 1.1 joerg (*binop)(emu, destval, srcval);
1197 1.1 joerg }
1198 1.1 joerg
1199 1.1 joerg
1200 1.1 joerg static void
1201 1.1 joerg common_binop_ns_long_rm_r(struct X86EMU *emu, void (*binop)(struct X86EMU *, uint32_t, uint32_t))
1202 1.1 joerg {
1203 1.1 joerg uint32_t destoffset;
1204 1.1 joerg uint32_t destval, srcval;
1205 1.1 joerg
1206 1.1 joerg fetch_decode_modrm(emu);
1207 1.1 joerg srcval = *decode_rh_long_register(emu);
1208 1.1 joerg if (emu->cur_mod != 3) {
1209 1.1 joerg destoffset = decode_rl_address(emu);
1210 1.1 joerg destval = fetch_data_long(emu, destoffset);
1211 1.1 joerg } else {
1212 1.1 joerg destval = *decode_rl_long_register(emu);
1213 1.1 joerg }
1214 1.1 joerg (*binop)(emu, destval, srcval);
1215 1.1 joerg }
1216 1.1 joerg
1217 1.1 joerg static void
1218 1.1 joerg common_binop_ns_word_long_rm_r(struct X86EMU *emu,
1219 1.1 joerg void (*binop16)(struct X86EMU *, uint16_t, uint16_t), void (*binop32)(struct X86EMU *, uint32_t, uint32_t))
1220 1.1 joerg {
1221 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1222 1.1 joerg common_binop_ns_long_rm_r(emu, binop32);
1223 1.1 joerg else
1224 1.1 joerg common_binop_ns_word_rm_r(emu, binop16);
1225 1.1 joerg }
1226 1.1 joerg
1227 1.1 joerg static void
1228 1.1 joerg common_binop_long_r_rm(struct X86EMU *emu, uint32_t (*binop)(struct X86EMU *, uint32_t, uint32_t))
1229 1.1 joerg {
1230 1.1 joerg uint32_t srcoffset;
1231 1.1 joerg uint32_t *destreg, srcval;
1232 1.1 joerg
1233 1.1 joerg fetch_decode_modrm(emu);
1234 1.1 joerg destreg = decode_rh_long_register(emu);
1235 1.1 joerg if (emu->cur_mod != 3) {
1236 1.1 joerg srcoffset = decode_rl_address(emu);
1237 1.1 joerg srcval = fetch_data_long(emu, srcoffset);
1238 1.1 joerg } else {
1239 1.1 joerg srcval = *decode_rl_long_register(emu);
1240 1.1 joerg }
1241 1.1 joerg *destreg = (*binop)(emu, *destreg, srcval);
1242 1.1 joerg }
1243 1.1 joerg
1244 1.1 joerg static void
1245 1.1 joerg common_binop_word_r_rm(struct X86EMU *emu, uint16_t (*binop)(struct X86EMU *, uint16_t, uint16_t))
1246 1.1 joerg {
1247 1.1 joerg uint32_t srcoffset;
1248 1.1 joerg uint16_t *destreg, srcval;
1249 1.1 joerg
1250 1.1 joerg fetch_decode_modrm(emu);
1251 1.1 joerg destreg = decode_rh_word_register(emu);
1252 1.1 joerg if (emu->cur_mod != 3) {
1253 1.1 joerg srcoffset = decode_rl_address(emu);
1254 1.1 joerg srcval = fetch_data_word(emu, srcoffset);
1255 1.1 joerg } else {
1256 1.1 joerg srcval = *decode_rl_word_register(emu);
1257 1.1 joerg }
1258 1.1 joerg *destreg = (*binop)(emu, *destreg, srcval);
1259 1.1 joerg }
1260 1.1 joerg
1261 1.1 joerg static void
1262 1.1 joerg common_binop_word_long_r_rm(struct X86EMU *emu,
1263 1.1 joerg uint16_t (*binop16)(struct X86EMU *, uint16_t, uint16_t), uint32_t (*binop32)(struct X86EMU *, uint32_t, uint32_t))
1264 1.1 joerg {
1265 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1266 1.1 joerg common_binop_long_r_rm(emu, binop32);
1267 1.1 joerg else
1268 1.1 joerg common_binop_word_r_rm(emu, binop16);
1269 1.1 joerg }
1270 1.1 joerg
1271 1.1 joerg static void
1272 1.1 joerg common_binop_byte_imm(struct X86EMU *emu, uint8_t (*binop)(struct X86EMU *, uint8_t, uint8_t))
1273 1.1 joerg {
1274 1.1 joerg uint8_t srcval;
1275 1.1 joerg
1276 1.1 joerg srcval = fetch_byte_imm(emu);
1277 1.1 joerg emu->x86.R_AL = (*binop)(emu, emu->x86.R_AL, srcval);
1278 1.1 joerg }
1279 1.1 joerg
1280 1.1 joerg static void
1281 1.1 joerg common_binop_word_long_imm(struct X86EMU *emu,
1282 1.1 joerg uint16_t (*binop16)(struct X86EMU *, uint16_t, uint16_t), uint32_t (*binop32)(struct X86EMU *, uint32_t, uint32_t))
1283 1.1 joerg {
1284 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
1285 1.1 joerg uint32_t srcval;
1286 1.1 joerg
1287 1.1 joerg srcval = fetch_long_imm(emu);
1288 1.1 joerg emu->x86.R_EAX = (*binop32)(emu, emu->x86.R_EAX, srcval);
1289 1.1 joerg } else {
1290 1.1 joerg uint16_t srcval;
1291 1.1 joerg
1292 1.1 joerg srcval = fetch_word_imm(emu);
1293 1.1 joerg emu->x86.R_AX = (*binop16)(emu, emu->x86.R_AX, srcval);
1294 1.1 joerg }
1295 1.1 joerg }
1296 1.1 joerg
1297 1.1 joerg static void
1298 1.1 joerg common_push_word_long(struct X86EMU *emu, union X86EMU_register *reg)
1299 1.1 joerg {
1300 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1301 1.1 joerg push_long(emu, reg->I32_reg.e_reg);
1302 1.1 joerg else
1303 1.1 joerg push_word(emu, reg->I16_reg.x_reg);
1304 1.1 joerg }
1305 1.1 joerg
1306 1.1 joerg static void
1307 1.1 joerg common_pop_word_long(struct X86EMU *emu, union X86EMU_register *reg)
1308 1.1 joerg {
1309 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1310 1.1 joerg reg->I32_reg.e_reg = pop_long(emu);
1311 1.1 joerg else
1312 1.1 joerg reg->I16_reg.x_reg = pop_word(emu);
1313 1.1 joerg }
1314 1.1 joerg
1315 1.1 joerg static void
1316 1.1 joerg common_imul_long_IMM(struct X86EMU *emu, bool byte_imm)
1317 1.1 joerg {
1318 1.1 joerg uint32_t srcoffset;
1319 1.1 joerg uint32_t *destreg, srcval;
1320 1.1 joerg int32_t imm;
1321 1.1 joerg uint64_t res;
1322 1.1 joerg
1323 1.1 joerg fetch_decode_modrm(emu);
1324 1.1 joerg destreg = decode_rh_long_register(emu);
1325 1.1 joerg if (emu->cur_mod != 3) {
1326 1.1 joerg srcoffset = decode_rl_address(emu);
1327 1.1 joerg srcval = fetch_data_long(emu, srcoffset);
1328 1.1 joerg } else {
1329 1.1 joerg srcval = *decode_rl_long_register(emu);
1330 1.1 joerg }
1331 1.1 joerg
1332 1.1 joerg if (byte_imm)
1333 1.1 joerg imm = (int8_t)fetch_byte_imm(emu);
1334 1.1 joerg else
1335 1.1 joerg imm = fetch_long_imm(emu);
1336 1.1 joerg res = (int32_t)srcval * imm;
1337 1.1 joerg
1338 1.1 joerg if (res > 0xffffffff) {
1339 1.1 joerg SET_FLAG(F_CF);
1340 1.1 joerg SET_FLAG(F_OF);
1341 1.1 joerg } else {
1342 1.1 joerg CLEAR_FLAG(F_CF);
1343 1.1 joerg CLEAR_FLAG(F_OF);
1344 1.1 joerg }
1345 1.1 joerg *destreg = (uint32_t)res;
1346 1.1 joerg }
1347 1.1 joerg
1348 1.1 joerg static void
1349 1.1 joerg common_imul_word_IMM(struct X86EMU *emu, bool byte_imm)
1350 1.1 joerg {
1351 1.1 joerg uint32_t srcoffset;
1352 1.1 joerg uint16_t *destreg, srcval;
1353 1.1 joerg int16_t imm;
1354 1.1 joerg uint32_t res;
1355 1.1 joerg
1356 1.1 joerg fetch_decode_modrm(emu);
1357 1.1 joerg destreg = decode_rh_word_register(emu);
1358 1.1 joerg if (emu->cur_mod != 3) {
1359 1.1 joerg srcoffset = decode_rl_address(emu);
1360 1.1 joerg srcval = fetch_data_word(emu, srcoffset);
1361 1.1 joerg } else {
1362 1.1 joerg srcval = *decode_rl_word_register(emu);
1363 1.1 joerg }
1364 1.1 joerg
1365 1.1 joerg if (byte_imm)
1366 1.1 joerg imm = (int8_t)fetch_byte_imm(emu);
1367 1.1 joerg else
1368 1.1 joerg imm = fetch_word_imm(emu);
1369 1.1 joerg res = (int16_t)srcval * imm;
1370 1.1 joerg
1371 1.1 joerg if (res > 0xffff) {
1372 1.1 joerg SET_FLAG(F_CF);
1373 1.1 joerg SET_FLAG(F_OF);
1374 1.1 joerg } else {
1375 1.1 joerg CLEAR_FLAG(F_CF);
1376 1.1 joerg CLEAR_FLAG(F_OF);
1377 1.1 joerg }
1378 1.1 joerg *destreg = (uint16_t) res;
1379 1.1 joerg }
1380 1.1 joerg
1381 1.1 joerg static void
1382 1.1 joerg common_imul_imm(struct X86EMU *emu, bool byte_imm)
1383 1.1 joerg {
1384 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1385 1.1 joerg common_imul_long_IMM(emu, byte_imm);
1386 1.1 joerg else
1387 1.1 joerg common_imul_word_IMM(emu, byte_imm);
1388 1.1 joerg }
1389 1.1 joerg
1390 1.1 joerg static void
1391 1.1 joerg common_jmp_near(struct X86EMU *emu, bool cond)
1392 1.1 joerg {
1393 1.1 joerg int8_t offset;
1394 1.1 joerg uint16_t target;
1395 1.1 joerg
1396 1.1 joerg offset = (int8_t) fetch_byte_imm(emu);
1397 1.1 joerg target = (uint16_t) (emu->x86.R_IP + (int16_t) offset);
1398 1.1 joerg if (cond)
1399 1.1 joerg emu->x86.R_IP = target;
1400 1.1 joerg }
1401 1.1 joerg
1402 1.1 joerg static void
1403 1.1 joerg common_load_far_pointer(struct X86EMU *emu, uint16_t *seg)
1404 1.1 joerg {
1405 1.1 joerg uint16_t *dstreg;
1406 1.1 joerg uint32_t srcoffset;
1407 1.1 joerg
1408 1.1 joerg fetch_decode_modrm(emu);
1409 1.1 joerg if (emu->cur_mod == 3)
1410 1.1 joerg X86EMU_halt_sys(emu);
1411 1.1 joerg
1412 1.1 joerg dstreg = decode_rh_word_register(emu);
1413 1.1 joerg srcoffset = decode_rl_address(emu);
1414 1.1 joerg *dstreg = fetch_data_word(emu, srcoffset);
1415 1.1 joerg *seg = fetch_data_word(emu, srcoffset + 2);
1416 1.1 joerg }
1417 1.1 joerg
1418 1.1 joerg /*----------------------------- Implementation ----------------------------*/
1419 1.1 joerg /****************************************************************************
1420 1.1 joerg REMARKS:
1421 1.1 joerg Handles opcode 0x3a
1422 1.1 joerg ****************************************************************************/
1423 1.1 joerg static void
1424 1.1 joerg x86emuOp_cmp_byte_R_RM(struct X86EMU *emu)
1425 1.1 joerg {
1426 1.1 joerg uint8_t *destreg, srcval;
1427 1.1 joerg
1428 1.1 joerg fetch_decode_modrm(emu);
1429 1.1 joerg destreg = decode_rh_byte_register(emu);
1430 1.1 joerg srcval = decode_and_fetch_byte(emu);
1431 1.1 joerg cmp_byte(emu, *destreg, srcval);
1432 1.1 joerg }
1433 1.1 joerg /****************************************************************************
1434 1.1 joerg REMARKS:
1435 1.1 joerg Handles opcode 0x3b
1436 1.1 joerg ****************************************************************************/
1437 1.1 joerg static void
1438 1.1 joerg x86emuOp32_cmp_word_R_RM(struct X86EMU *emu)
1439 1.1 joerg {
1440 1.1 joerg uint32_t srcval, *destreg;
1441 1.1 joerg
1442 1.1 joerg fetch_decode_modrm(emu);
1443 1.1 joerg destreg = decode_rh_long_register(emu);
1444 1.1 joerg srcval = decode_and_fetch_long(emu);
1445 1.1 joerg cmp_long(emu, *destreg, srcval);
1446 1.1 joerg }
1447 1.1 joerg
1448 1.1 joerg static void
1449 1.1 joerg x86emuOp16_cmp_word_R_RM(struct X86EMU *emu)
1450 1.1 joerg {
1451 1.1 joerg uint16_t srcval, *destreg;
1452 1.1 joerg
1453 1.1 joerg fetch_decode_modrm(emu);
1454 1.1 joerg destreg = decode_rh_word_register(emu);
1455 1.1 joerg srcval = decode_and_fetch_word(emu);
1456 1.1 joerg cmp_word(emu, *destreg, srcval);
1457 1.1 joerg }
1458 1.1 joerg
1459 1.1 joerg static void
1460 1.1 joerg x86emuOp_cmp_word_R_RM(struct X86EMU *emu)
1461 1.1 joerg {
1462 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1463 1.1 joerg x86emuOp32_cmp_word_R_RM(emu);
1464 1.1 joerg else
1465 1.1 joerg x86emuOp16_cmp_word_R_RM(emu);
1466 1.1 joerg }
1467 1.1 joerg /****************************************************************************
1468 1.1 joerg REMARKS:
1469 1.1 joerg Handles opcode 0x3c
1470 1.1 joerg ****************************************************************************/
1471 1.1 joerg static void
1472 1.1 joerg x86emuOp_cmp_byte_AL_IMM(struct X86EMU *emu)
1473 1.1 joerg {
1474 1.1 joerg uint8_t srcval;
1475 1.1 joerg
1476 1.1 joerg srcval = fetch_byte_imm(emu);
1477 1.1 joerg cmp_byte(emu, emu->x86.R_AL, srcval);
1478 1.1 joerg }
1479 1.1 joerg /****************************************************************************
1480 1.1 joerg REMARKS:
1481 1.1 joerg Handles opcode 0x3d
1482 1.1 joerg ****************************************************************************/
1483 1.1 joerg static void
1484 1.1 joerg x86emuOp32_cmp_word_AX_IMM(struct X86EMU *emu)
1485 1.1 joerg {
1486 1.1 joerg uint32_t srcval;
1487 1.1 joerg
1488 1.1 joerg srcval = fetch_long_imm(emu);
1489 1.1 joerg cmp_long(emu, emu->x86.R_EAX, srcval);
1490 1.1 joerg }
1491 1.1 joerg
1492 1.1 joerg static void
1493 1.1 joerg x86emuOp16_cmp_word_AX_IMM(struct X86EMU *emu)
1494 1.1 joerg {
1495 1.1 joerg uint16_t srcval;
1496 1.1 joerg
1497 1.1 joerg srcval = fetch_word_imm(emu);
1498 1.1 joerg cmp_word(emu, emu->x86.R_AX, srcval);
1499 1.1 joerg }
1500 1.1 joerg
1501 1.1 joerg static void
1502 1.1 joerg x86emuOp_cmp_word_AX_IMM(struct X86EMU *emu)
1503 1.1 joerg {
1504 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1505 1.1 joerg x86emuOp32_cmp_word_AX_IMM(emu);
1506 1.1 joerg else
1507 1.1 joerg x86emuOp16_cmp_word_AX_IMM(emu);
1508 1.1 joerg }
1509 1.1 joerg /****************************************************************************
1510 1.1 joerg REMARKS:
1511 1.1 joerg Handles opcode 0x60
1512 1.1 joerg ****************************************************************************/
1513 1.1 joerg static void
1514 1.1 joerg x86emuOp_push_all(struct X86EMU *emu)
1515 1.1 joerg {
1516 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
1517 1.1 joerg uint32_t old_sp = emu->x86.R_ESP;
1518 1.1 joerg
1519 1.1 joerg push_long(emu, emu->x86.R_EAX);
1520 1.1 joerg push_long(emu, emu->x86.R_ECX);
1521 1.1 joerg push_long(emu, emu->x86.R_EDX);
1522 1.1 joerg push_long(emu, emu->x86.R_EBX);
1523 1.1 joerg push_long(emu, old_sp);
1524 1.1 joerg push_long(emu, emu->x86.R_EBP);
1525 1.1 joerg push_long(emu, emu->x86.R_ESI);
1526 1.1 joerg push_long(emu, emu->x86.R_EDI);
1527 1.1 joerg } else {
1528 1.1 joerg uint16_t old_sp = emu->x86.R_SP;
1529 1.1 joerg
1530 1.1 joerg push_word(emu, emu->x86.R_AX);
1531 1.1 joerg push_word(emu, emu->x86.R_CX);
1532 1.1 joerg push_word(emu, emu->x86.R_DX);
1533 1.1 joerg push_word(emu, emu->x86.R_BX);
1534 1.1 joerg push_word(emu, old_sp);
1535 1.1 joerg push_word(emu, emu->x86.R_BP);
1536 1.1 joerg push_word(emu, emu->x86.R_SI);
1537 1.1 joerg push_word(emu, emu->x86.R_DI);
1538 1.1 joerg }
1539 1.1 joerg }
1540 1.1 joerg /****************************************************************************
1541 1.1 joerg REMARKS:
1542 1.1 joerg Handles opcode 0x61
1543 1.1 joerg ****************************************************************************/
1544 1.1 joerg static void
1545 1.1 joerg x86emuOp_pop_all(struct X86EMU *emu)
1546 1.1 joerg {
1547 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
1548 1.1 joerg emu->x86.R_EDI = pop_long(emu);
1549 1.1 joerg emu->x86.R_ESI = pop_long(emu);
1550 1.1 joerg emu->x86.R_EBP = pop_long(emu);
1551 1.1 joerg emu->x86.R_ESP += 4; /* skip ESP */
1552 1.1 joerg emu->x86.R_EBX = pop_long(emu);
1553 1.1 joerg emu->x86.R_EDX = pop_long(emu);
1554 1.1 joerg emu->x86.R_ECX = pop_long(emu);
1555 1.1 joerg emu->x86.R_EAX = pop_long(emu);
1556 1.1 joerg } else {
1557 1.1 joerg emu->x86.R_DI = pop_word(emu);
1558 1.1 joerg emu->x86.R_SI = pop_word(emu);
1559 1.1 joerg emu->x86.R_BP = pop_word(emu);
1560 1.1 joerg emu->x86.R_SP += 2;/* skip SP */
1561 1.1 joerg emu->x86.R_BX = pop_word(emu);
1562 1.1 joerg emu->x86.R_DX = pop_word(emu);
1563 1.1 joerg emu->x86.R_CX = pop_word(emu);
1564 1.1 joerg emu->x86.R_AX = pop_word(emu);
1565 1.1 joerg }
1566 1.1 joerg }
1567 1.1 joerg /*opcode 0x62 ILLEGAL OP, calls x86emuOp_illegal_op() */
1568 1.1 joerg /*opcode 0x63 ILLEGAL OP, calls x86emuOp_illegal_op() */
1569 1.1 joerg
1570 1.1 joerg /****************************************************************************
1571 1.1 joerg REMARKS:
1572 1.1 joerg Handles opcode 0x68
1573 1.1 joerg ****************************************************************************/
1574 1.1 joerg static void
1575 1.1 joerg x86emuOp_push_word_IMM(struct X86EMU *emu)
1576 1.1 joerg {
1577 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
1578 1.1 joerg uint32_t imm;
1579 1.1 joerg
1580 1.1 joerg imm = fetch_long_imm(emu);
1581 1.1 joerg push_long(emu, imm);
1582 1.1 joerg } else {
1583 1.1 joerg uint16_t imm;
1584 1.1 joerg
1585 1.1 joerg imm = fetch_word_imm(emu);
1586 1.1 joerg push_word(emu, imm);
1587 1.1 joerg }
1588 1.1 joerg }
1589 1.1 joerg /****************************************************************************
1590 1.1 joerg REMARKS:
1591 1.1 joerg Handles opcode 0x6a
1592 1.1 joerg ****************************************************************************/
1593 1.1 joerg static void
1594 1.1 joerg x86emuOp_push_byte_IMM(struct X86EMU *emu)
1595 1.1 joerg {
1596 1.1 joerg int16_t imm;
1597 1.1 joerg
1598 1.1 joerg imm = (int8_t) fetch_byte_imm(emu);
1599 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
1600 1.1 joerg push_long(emu, (int32_t) imm);
1601 1.1 joerg } else {
1602 1.1 joerg push_word(emu, imm);
1603 1.1 joerg }
1604 1.1 joerg }
1605 1.1 joerg /****************************************************************************
1606 1.1 joerg REMARKS:
1607 1.1 joerg Handles opcode 0x6c
1608 1.1 joerg ****************************************************************************/
1609 1.1 joerg /****************************************************************************
1610 1.1 joerg REMARKS:
1611 1.1 joerg Handles opcode 0x6d
1612 1.1 joerg ****************************************************************************/
1613 1.1 joerg static void
1614 1.1 joerg x86emuOp_ins_word(struct X86EMU *emu)
1615 1.1 joerg {
1616 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
1617 1.1 joerg ins(emu, 4);
1618 1.1 joerg } else {
1619 1.1 joerg ins(emu, 2);
1620 1.1 joerg }
1621 1.1 joerg }
1622 1.1 joerg /****************************************************************************
1623 1.1 joerg REMARKS:
1624 1.1 joerg Handles opcode 0x6f
1625 1.1 joerg ****************************************************************************/
1626 1.1 joerg static void
1627 1.1 joerg x86emuOp_outs_word(struct X86EMU *emu)
1628 1.1 joerg {
1629 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
1630 1.1 joerg outs(emu, 4);
1631 1.1 joerg } else {
1632 1.1 joerg outs(emu, 2);
1633 1.1 joerg }
1634 1.1 joerg }
1635 1.1 joerg /****************************************************************************
1636 1.1 joerg REMARKS:
1637 1.1 joerg Handles opcode 0x7c
1638 1.1 joerg ****************************************************************************/
1639 1.1 joerg static void
1640 1.1 joerg x86emuOp_jump_near_L(struct X86EMU *emu)
1641 1.1 joerg {
1642 1.1 joerg bool sf, of;
1643 1.1 joerg
1644 1.1 joerg sf = ACCESS_FLAG(F_SF) != 0;
1645 1.1 joerg of = ACCESS_FLAG(F_OF) != 0;
1646 1.1 joerg
1647 1.1 joerg common_jmp_near(emu, sf != of);
1648 1.1 joerg }
1649 1.1 joerg /****************************************************************************
1650 1.1 joerg REMARKS:
1651 1.1 joerg Handles opcode 0x7d
1652 1.1 joerg ****************************************************************************/
1653 1.1 joerg static void
1654 1.1 joerg x86emuOp_jump_near_NL(struct X86EMU *emu)
1655 1.1 joerg {
1656 1.1 joerg bool sf, of;
1657 1.1 joerg
1658 1.1 joerg sf = ACCESS_FLAG(F_SF) != 0;
1659 1.1 joerg of = ACCESS_FLAG(F_OF) != 0;
1660 1.1 joerg
1661 1.1 joerg common_jmp_near(emu, sf == of);
1662 1.1 joerg }
1663 1.1 joerg /****************************************************************************
1664 1.1 joerg REMARKS:
1665 1.1 joerg Handles opcode 0x7e
1666 1.1 joerg ****************************************************************************/
1667 1.1 joerg static void
1668 1.1 joerg x86emuOp_jump_near_LE(struct X86EMU *emu)
1669 1.1 joerg {
1670 1.1 joerg bool sf, of;
1671 1.1 joerg
1672 1.1 joerg sf = ACCESS_FLAG(F_SF) != 0;
1673 1.1 joerg of = ACCESS_FLAG(F_OF) != 0;
1674 1.1 joerg
1675 1.1 joerg common_jmp_near(emu, sf != of || ACCESS_FLAG(F_ZF));
1676 1.1 joerg }
1677 1.1 joerg /****************************************************************************
1678 1.1 joerg REMARKS:
1679 1.1 joerg Handles opcode 0x7f
1680 1.1 joerg ****************************************************************************/
1681 1.1 joerg static void
1682 1.1 joerg x86emuOp_jump_near_NLE(struct X86EMU *emu)
1683 1.1 joerg {
1684 1.1 joerg bool sf, of;
1685 1.1 joerg
1686 1.1 joerg sf = ACCESS_FLAG(F_SF) != 0;
1687 1.1 joerg of = ACCESS_FLAG(F_OF) != 0;
1688 1.1 joerg
1689 1.1 joerg common_jmp_near(emu, sf == of && !ACCESS_FLAG(F_ZF));
1690 1.1 joerg }
1691 1.1 joerg
1692 1.1 joerg static
1693 1.1 joerg uint8_t(*const opc80_byte_operation[]) (struct X86EMU *, uint8_t d, uint8_t s) =
1694 1.1 joerg {
1695 1.1 joerg add_byte, /* 00 */
1696 1.1 joerg or_byte, /* 01 */
1697 1.1 joerg adc_byte, /* 02 */
1698 1.1 joerg sbb_byte, /* 03 */
1699 1.1 joerg and_byte, /* 04 */
1700 1.1 joerg sub_byte, /* 05 */
1701 1.1 joerg xor_byte, /* 06 */
1702 1.1 joerg cmp_byte, /* 07 */
1703 1.1 joerg };
1704 1.1 joerg /****************************************************************************
1705 1.1 joerg REMARKS:
1706 1.1 joerg Handles opcode 0x80
1707 1.1 joerg ****************************************************************************/
1708 1.1 joerg static void
1709 1.1 joerg x86emuOp_opc80_byte_RM_IMM(struct X86EMU *emu)
1710 1.1 joerg {
1711 1.1 joerg uint8_t imm, destval;
1712 1.1 joerg
1713 1.1 joerg /*
1714 1.1 joerg * Weirdo special case instruction format. Part of the opcode
1715 1.1 joerg * held below in "RH". Doubly nested case would result, except
1716 1.1 joerg * that the decoded instruction
1717 1.1 joerg */
1718 1.1 joerg fetch_decode_modrm(emu);
1719 1.1 joerg destval = decode_and_fetch_byte(emu);
1720 1.1 joerg imm = fetch_byte_imm(emu);
1721 1.1 joerg destval = (*opc80_byte_operation[emu->cur_rh]) (emu, destval, imm);
1722 1.1 joerg if (emu->cur_rh != 7)
1723 1.1 joerg write_back_byte(emu, destval);
1724 1.1 joerg }
1725 1.1 joerg
1726 1.1 joerg static
1727 1.1 joerg uint16_t(* const opc81_word_operation[]) (struct X86EMU *, uint16_t d, uint16_t s) =
1728 1.1 joerg {
1729 1.1 joerg add_word, /* 00 */
1730 1.1 joerg or_word, /* 01 */
1731 1.1 joerg adc_word, /* 02 */
1732 1.1 joerg sbb_word, /* 03 */
1733 1.1 joerg and_word, /* 04 */
1734 1.1 joerg sub_word, /* 05 */
1735 1.1 joerg xor_word, /* 06 */
1736 1.1 joerg cmp_word, /* 07 */
1737 1.1 joerg };
1738 1.1 joerg
1739 1.1 joerg static
1740 1.1 joerg uint32_t(* const opc81_long_operation[]) (struct X86EMU *, uint32_t d, uint32_t s) =
1741 1.1 joerg {
1742 1.1 joerg add_long, /* 00 */
1743 1.1 joerg or_long, /* 01 */
1744 1.1 joerg adc_long, /* 02 */
1745 1.1 joerg sbb_long, /* 03 */
1746 1.1 joerg and_long, /* 04 */
1747 1.1 joerg sub_long, /* 05 */
1748 1.1 joerg xor_long, /* 06 */
1749 1.1 joerg cmp_long, /* 07 */
1750 1.1 joerg };
1751 1.1 joerg /****************************************************************************
1752 1.1 joerg REMARKS:
1753 1.1 joerg Handles opcode 0x81
1754 1.1 joerg ****************************************************************************/
1755 1.1 joerg static void
1756 1.1 joerg x86emuOp32_opc81_word_RM_IMM(struct X86EMU *emu)
1757 1.1 joerg {
1758 1.1 joerg uint32_t destval, imm;
1759 1.1 joerg
1760 1.1 joerg /*
1761 1.1 joerg * Weirdo special case instruction format. Part of the opcode
1762 1.1 joerg * held below in "RH". Doubly nested case would result, except
1763 1.1 joerg * that the decoded instruction
1764 1.1 joerg */
1765 1.1 joerg fetch_decode_modrm(emu);
1766 1.1 joerg destval = decode_and_fetch_long(emu);
1767 1.1 joerg imm = fetch_long_imm(emu);
1768 1.1 joerg destval = (*opc81_long_operation[emu->cur_rh]) (emu, destval, imm);
1769 1.1 joerg if (emu->cur_rh != 7)
1770 1.1 joerg write_back_long(emu, destval);
1771 1.1 joerg }
1772 1.1 joerg
1773 1.1 joerg static void
1774 1.1 joerg x86emuOp16_opc81_word_RM_IMM(struct X86EMU *emu)
1775 1.1 joerg {
1776 1.1 joerg uint16_t destval, imm;
1777 1.1 joerg
1778 1.1 joerg /*
1779 1.1 joerg * Weirdo special case instruction format. Part of the opcode
1780 1.1 joerg * held below in "RH". Doubly nested case would result, except
1781 1.1 joerg * that the decoded instruction
1782 1.1 joerg */
1783 1.1 joerg fetch_decode_modrm(emu);
1784 1.1 joerg destval = decode_and_fetch_word(emu);
1785 1.1 joerg imm = fetch_word_imm(emu);
1786 1.1 joerg destval = (*opc81_word_operation[emu->cur_rh]) (emu, destval, imm);
1787 1.1 joerg if (emu->cur_rh != 7)
1788 1.1 joerg write_back_word(emu, destval);
1789 1.1 joerg }
1790 1.1 joerg
1791 1.1 joerg static void
1792 1.1 joerg x86emuOp_opc81_word_RM_IMM(struct X86EMU *emu)
1793 1.1 joerg {
1794 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1795 1.1 joerg x86emuOp32_opc81_word_RM_IMM(emu);
1796 1.1 joerg else
1797 1.1 joerg x86emuOp16_opc81_word_RM_IMM(emu);
1798 1.1 joerg }
1799 1.1 joerg
1800 1.1 joerg static
1801 1.1 joerg uint8_t(* const opc82_byte_operation[]) (struct X86EMU *, uint8_t s, uint8_t d) =
1802 1.1 joerg {
1803 1.1 joerg add_byte, /* 00 */
1804 1.1 joerg or_byte, /* 01 *//* YYY UNUSED ???? */
1805 1.1 joerg adc_byte, /* 02 */
1806 1.1 joerg sbb_byte, /* 03 */
1807 1.1 joerg and_byte, /* 04 *//* YYY UNUSED ???? */
1808 1.1 joerg sub_byte, /* 05 */
1809 1.1 joerg xor_byte, /* 06 *//* YYY UNUSED ???? */
1810 1.1 joerg cmp_byte, /* 07 */
1811 1.1 joerg };
1812 1.1 joerg /****************************************************************************
1813 1.1 joerg REMARKS:
1814 1.1 joerg Handles opcode 0x82
1815 1.1 joerg ****************************************************************************/
1816 1.1 joerg static void
1817 1.1 joerg x86emuOp_opc82_byte_RM_IMM(struct X86EMU *emu)
1818 1.1 joerg {
1819 1.1 joerg uint8_t imm, destval;
1820 1.1 joerg
1821 1.1 joerg /*
1822 1.1 joerg * Weirdo special case instruction format. Part of the opcode
1823 1.1 joerg * held below in "RH". Doubly nested case would result, except
1824 1.1 joerg * that the decoded instruction Similar to opcode 81, except that
1825 1.1 joerg * the immediate byte is sign extended to a word length.
1826 1.1 joerg */
1827 1.1 joerg fetch_decode_modrm(emu);
1828 1.1 joerg destval = decode_and_fetch_byte(emu);
1829 1.1 joerg imm = fetch_byte_imm(emu);
1830 1.1 joerg destval = (*opc82_byte_operation[emu->cur_rh]) (emu, destval, imm);
1831 1.1 joerg if (emu->cur_rh != 7)
1832 1.1 joerg write_back_byte(emu, destval);
1833 1.1 joerg }
1834 1.1 joerg
1835 1.1 joerg static
1836 1.1 joerg uint16_t(* const opc83_word_operation[]) (struct X86EMU *, uint16_t s, uint16_t d) =
1837 1.1 joerg {
1838 1.1 joerg add_word, /* 00 */
1839 1.1 joerg or_word, /* 01 *//* YYY UNUSED ???? */
1840 1.1 joerg adc_word, /* 02 */
1841 1.1 joerg sbb_word, /* 03 */
1842 1.1 joerg and_word, /* 04 *//* YYY UNUSED ???? */
1843 1.1 joerg sub_word, /* 05 */
1844 1.1 joerg xor_word, /* 06 *//* YYY UNUSED ???? */
1845 1.1 joerg cmp_word, /* 07 */
1846 1.1 joerg };
1847 1.1 joerg
1848 1.1 joerg static
1849 1.1 joerg uint32_t(* const opc83_long_operation[]) (struct X86EMU *, uint32_t s, uint32_t d) =
1850 1.1 joerg {
1851 1.1 joerg add_long, /* 00 */
1852 1.1 joerg or_long, /* 01 *//* YYY UNUSED ???? */
1853 1.1 joerg adc_long, /* 02 */
1854 1.1 joerg sbb_long, /* 03 */
1855 1.1 joerg and_long, /* 04 *//* YYY UNUSED ???? */
1856 1.1 joerg sub_long, /* 05 */
1857 1.1 joerg xor_long, /* 06 *//* YYY UNUSED ???? */
1858 1.1 joerg cmp_long, /* 07 */
1859 1.1 joerg };
1860 1.1 joerg /****************************************************************************
1861 1.1 joerg REMARKS:
1862 1.1 joerg Handles opcode 0x83
1863 1.1 joerg ****************************************************************************/
1864 1.1 joerg static void
1865 1.1 joerg x86emuOp32_opc83_word_RM_IMM(struct X86EMU *emu)
1866 1.1 joerg {
1867 1.1 joerg uint32_t destval, imm;
1868 1.1 joerg
1869 1.1 joerg fetch_decode_modrm(emu);
1870 1.1 joerg destval = decode_and_fetch_long(emu);
1871 1.1 joerg imm = (int8_t) fetch_byte_imm(emu);
1872 1.1 joerg destval = (*opc83_long_operation[emu->cur_rh]) (emu, destval, imm);
1873 1.1 joerg if (emu->cur_rh != 7)
1874 1.1 joerg write_back_long(emu, destval);
1875 1.1 joerg }
1876 1.1 joerg
1877 1.1 joerg static void
1878 1.1 joerg x86emuOp16_opc83_word_RM_IMM(struct X86EMU *emu)
1879 1.1 joerg {
1880 1.1 joerg uint16_t destval, imm;
1881 1.1 joerg
1882 1.1 joerg fetch_decode_modrm(emu);
1883 1.1 joerg destval = decode_and_fetch_word(emu);
1884 1.1 joerg imm = (int8_t) fetch_byte_imm(emu);
1885 1.1 joerg destval = (*opc83_word_operation[emu->cur_rh]) (emu, destval, imm);
1886 1.1 joerg if (emu->cur_rh != 7)
1887 1.1 joerg write_back_word(emu, destval);
1888 1.1 joerg }
1889 1.1 joerg
1890 1.1 joerg static void
1891 1.1 joerg x86emuOp_opc83_word_RM_IMM(struct X86EMU *emu)
1892 1.1 joerg {
1893 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1894 1.1 joerg x86emuOp32_opc83_word_RM_IMM(emu);
1895 1.1 joerg else
1896 1.1 joerg x86emuOp16_opc83_word_RM_IMM(emu);
1897 1.1 joerg }
1898 1.1 joerg /****************************************************************************
1899 1.1 joerg REMARKS:
1900 1.1 joerg Handles opcode 0x86
1901 1.1 joerg ****************************************************************************/
1902 1.1 joerg static void
1903 1.1 joerg x86emuOp_xchg_byte_RM_R(struct X86EMU *emu)
1904 1.1 joerg {
1905 1.1 joerg uint8_t *srcreg, destval, tmp;
1906 1.1 joerg
1907 1.1 joerg fetch_decode_modrm(emu);
1908 1.1 joerg destval = decode_and_fetch_byte(emu);
1909 1.1 joerg srcreg = decode_rh_byte_register(emu);
1910 1.1 joerg tmp = destval;
1911 1.1 joerg destval = *srcreg;
1912 1.1 joerg *srcreg = tmp;
1913 1.1 joerg write_back_byte(emu, destval);
1914 1.1 joerg }
1915 1.1 joerg /****************************************************************************
1916 1.1 joerg REMARKS:
1917 1.1 joerg Handles opcode 0x87
1918 1.1 joerg ****************************************************************************/
1919 1.1 joerg static void
1920 1.1 joerg x86emuOp32_xchg_word_RM_R(struct X86EMU *emu)
1921 1.1 joerg {
1922 1.1 joerg uint32_t *srcreg, destval, tmp;
1923 1.1 joerg
1924 1.1 joerg fetch_decode_modrm(emu);
1925 1.1 joerg destval = decode_and_fetch_long(emu);
1926 1.1 joerg srcreg = decode_rh_long_register(emu);
1927 1.1 joerg tmp = destval;
1928 1.1 joerg destval = *srcreg;
1929 1.1 joerg *srcreg = tmp;
1930 1.1 joerg write_back_long(emu, destval);
1931 1.1 joerg }
1932 1.1 joerg
1933 1.1 joerg static void
1934 1.1 joerg x86emuOp16_xchg_word_RM_R(struct X86EMU *emu)
1935 1.1 joerg {
1936 1.1 joerg uint16_t *srcreg, destval, tmp;
1937 1.1 joerg
1938 1.1 joerg fetch_decode_modrm(emu);
1939 1.1 joerg destval = decode_and_fetch_word(emu);
1940 1.1 joerg srcreg = decode_rh_word_register(emu);
1941 1.1 joerg tmp = destval;
1942 1.1 joerg destval = *srcreg;
1943 1.1 joerg *srcreg = tmp;
1944 1.1 joerg write_back_word(emu, destval);
1945 1.1 joerg }
1946 1.1 joerg
1947 1.1 joerg static void
1948 1.1 joerg x86emuOp_xchg_word_RM_R(struct X86EMU *emu)
1949 1.1 joerg {
1950 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1951 1.1 joerg x86emuOp32_xchg_word_RM_R(emu);
1952 1.1 joerg else
1953 1.1 joerg x86emuOp16_xchg_word_RM_R(emu);
1954 1.1 joerg }
1955 1.1 joerg /****************************************************************************
1956 1.1 joerg REMARKS:
1957 1.1 joerg Handles opcode 0x88
1958 1.1 joerg ****************************************************************************/
1959 1.1 joerg static void
1960 1.1 joerg x86emuOp_mov_byte_RM_R(struct X86EMU *emu)
1961 1.1 joerg {
1962 1.1 joerg uint8_t *destreg, *srcreg;
1963 1.1 joerg uint32_t destoffset;
1964 1.1 joerg
1965 1.1 joerg fetch_decode_modrm(emu);
1966 1.1 joerg srcreg = decode_rh_byte_register(emu);
1967 1.1 joerg if (emu->cur_mod != 3) {
1968 1.1 joerg destoffset = decode_rl_address(emu);
1969 1.1 joerg store_data_byte(emu, destoffset, *srcreg);
1970 1.1 joerg } else {
1971 1.1 joerg destreg = decode_rl_byte_register(emu);
1972 1.1 joerg *destreg = *srcreg;
1973 1.1 joerg }
1974 1.1 joerg }
1975 1.1 joerg /****************************************************************************
1976 1.1 joerg REMARKS:
1977 1.1 joerg Handles opcode 0x89
1978 1.1 joerg ****************************************************************************/
1979 1.1 joerg static void
1980 1.1 joerg x86emuOp32_mov_word_RM_R(struct X86EMU *emu)
1981 1.1 joerg {
1982 1.1 joerg uint32_t destoffset;
1983 1.1 joerg uint32_t *destreg, srcval;
1984 1.1 joerg
1985 1.1 joerg fetch_decode_modrm(emu);
1986 1.1 joerg srcval = *decode_rh_long_register(emu);
1987 1.1 joerg if (emu->cur_mod != 3) {
1988 1.1 joerg destoffset = decode_rl_address(emu);
1989 1.1 joerg store_data_long(emu, destoffset, srcval);
1990 1.1 joerg } else {
1991 1.1 joerg destreg = decode_rl_long_register(emu);
1992 1.1 joerg *destreg = srcval;
1993 1.1 joerg }
1994 1.1 joerg }
1995 1.1 joerg
1996 1.1 joerg static void
1997 1.1 joerg x86emuOp16_mov_word_RM_R(struct X86EMU *emu)
1998 1.1 joerg {
1999 1.1 joerg uint32_t destoffset;
2000 1.1 joerg uint16_t *destreg, srcval;
2001 1.1 joerg
2002 1.1 joerg fetch_decode_modrm(emu);
2003 1.1 joerg srcval = *decode_rh_word_register(emu);
2004 1.1 joerg if (emu->cur_mod != 3) {
2005 1.1 joerg destoffset = decode_rl_address(emu);
2006 1.1 joerg store_data_word(emu, destoffset, srcval);
2007 1.1 joerg } else {
2008 1.1 joerg destreg = decode_rl_word_register(emu);
2009 1.1 joerg *destreg = srcval;
2010 1.1 joerg }
2011 1.1 joerg }
2012 1.1 joerg
2013 1.1 joerg static void
2014 1.1 joerg x86emuOp_mov_word_RM_R(struct X86EMU *emu)
2015 1.1 joerg {
2016 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2017 1.1 joerg x86emuOp32_mov_word_RM_R(emu);
2018 1.1 joerg else
2019 1.1 joerg x86emuOp16_mov_word_RM_R(emu);
2020 1.1 joerg }
2021 1.1 joerg /****************************************************************************
2022 1.1 joerg REMARKS:
2023 1.1 joerg Handles opcode 0x8a
2024 1.1 joerg ****************************************************************************/
2025 1.1 joerg static void
2026 1.1 joerg x86emuOp_mov_byte_R_RM(struct X86EMU *emu)
2027 1.1 joerg {
2028 1.1 joerg uint8_t *destreg;
2029 1.1 joerg
2030 1.1 joerg fetch_decode_modrm(emu);
2031 1.1 joerg destreg = decode_rh_byte_register(emu);
2032 1.1 joerg *destreg = decode_and_fetch_byte(emu);
2033 1.1 joerg }
2034 1.1 joerg /****************************************************************************
2035 1.1 joerg REMARKS:
2036 1.1 joerg Handles opcode 0x8b
2037 1.1 joerg ****************************************************************************/
2038 1.1 joerg static void
2039 1.1 joerg x86emuOp_mov_word_R_RM(struct X86EMU *emu)
2040 1.1 joerg {
2041 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2042 1.1 joerg uint32_t *destreg;
2043 1.1 joerg
2044 1.1 joerg fetch_decode_modrm(emu);
2045 1.1 joerg destreg = decode_rh_long_register(emu);
2046 1.1 joerg *destreg = decode_and_fetch_long(emu);
2047 1.1 joerg } else {
2048 1.1 joerg uint16_t *destreg;
2049 1.1 joerg
2050 1.1 joerg fetch_decode_modrm(emu);
2051 1.1 joerg destreg = decode_rh_word_register(emu);
2052 1.1 joerg *destreg = decode_and_fetch_word(emu);
2053 1.1 joerg }
2054 1.1 joerg }
2055 1.1 joerg /****************************************************************************
2056 1.1 joerg REMARKS:
2057 1.1 joerg Handles opcode 0x8c
2058 1.1 joerg ****************************************************************************/
2059 1.1 joerg static void
2060 1.1 joerg x86emuOp_mov_word_RM_SR(struct X86EMU *emu)
2061 1.1 joerg {
2062 1.1 joerg uint16_t *destreg, srcval;
2063 1.1 joerg uint32_t destoffset;
2064 1.1 joerg
2065 1.1 joerg fetch_decode_modrm(emu);
2066 1.1 joerg srcval = *decode_rh_seg_register(emu);
2067 1.1 joerg if (emu->cur_mod != 3) {
2068 1.1 joerg destoffset = decode_rl_address(emu);
2069 1.1 joerg store_data_word(emu, destoffset, srcval);
2070 1.1 joerg } else {
2071 1.1 joerg destreg = decode_rl_word_register(emu);
2072 1.1 joerg *destreg = srcval;
2073 1.1 joerg }
2074 1.1 joerg }
2075 1.1 joerg /****************************************************************************
2076 1.1 joerg REMARKS:
2077 1.1 joerg Handles opcode 0x8d
2078 1.1 joerg ****************************************************************************/
2079 1.1 joerg static void
2080 1.1 joerg x86emuOp_lea_word_R_M(struct X86EMU *emu)
2081 1.1 joerg {
2082 1.1 joerg uint16_t *srcreg;
2083 1.1 joerg uint32_t destoffset;
2084 1.1 joerg
2085 1.1 joerg /*
2086 1.1 joerg * TODO: Need to handle address size prefix!
2087 1.1 joerg *
2088 1.1 joerg * lea eax,[eax+ebx*2] ??
2089 1.1 joerg */
2090 1.1 joerg fetch_decode_modrm(emu);
2091 1.1 joerg if (emu->cur_mod == 3)
2092 1.1 joerg X86EMU_halt_sys(emu);
2093 1.1 joerg
2094 1.1 joerg srcreg = decode_rh_word_register(emu);
2095 1.1 joerg destoffset = decode_rl_address(emu);
2096 1.1 joerg *srcreg = (uint16_t) destoffset;
2097 1.1 joerg }
2098 1.1 joerg /****************************************************************************
2099 1.1 joerg REMARKS:
2100 1.1 joerg Handles opcode 0x8e
2101 1.1 joerg ****************************************************************************/
2102 1.1 joerg static void
2103 1.1 joerg x86emuOp_mov_word_SR_RM(struct X86EMU *emu)
2104 1.1 joerg {
2105 1.1 joerg uint16_t *destreg;
2106 1.1 joerg
2107 1.1 joerg fetch_decode_modrm(emu);
2108 1.1 joerg destreg = decode_rh_seg_register(emu);
2109 1.1 joerg *destreg = decode_and_fetch_word(emu);
2110 1.1 joerg /*
2111 1.1 joerg * Clean up, and reset all the R_xSP pointers to the correct
2112 1.1 joerg * locations. This is about 3x too much overhead (doing all the
2113 1.1 joerg * segreg ptrs when only one is needed, but this instruction
2114 1.1 joerg * *cannot* be that common, and this isn't too much work anyway.
2115 1.1 joerg */
2116 1.1 joerg }
2117 1.1 joerg /****************************************************************************
2118 1.1 joerg REMARKS:
2119 1.1 joerg Handles opcode 0x8f
2120 1.1 joerg ****************************************************************************/
2121 1.1 joerg static void
2122 1.1 joerg x86emuOp32_pop_RM(struct X86EMU *emu)
2123 1.1 joerg {
2124 1.1 joerg uint32_t destoffset;
2125 1.1 joerg uint32_t destval, *destreg;
2126 1.1 joerg
2127 1.1 joerg fetch_decode_modrm(emu);
2128 1.1 joerg if (emu->cur_mod != 3) {
2129 1.1 joerg destoffset = decode_rl_address(emu);
2130 1.1 joerg destval = pop_long(emu);
2131 1.1 joerg store_data_long(emu, destoffset, destval);
2132 1.1 joerg } else {
2133 1.1 joerg destreg = decode_rl_long_register(emu);
2134 1.1 joerg *destreg = pop_long(emu);
2135 1.1 joerg }
2136 1.1 joerg }
2137 1.1 joerg
2138 1.1 joerg static void
2139 1.1 joerg x86emuOp16_pop_RM(struct X86EMU *emu)
2140 1.1 joerg {
2141 1.1 joerg uint32_t destoffset;
2142 1.1 joerg uint16_t destval, *destreg;
2143 1.1 joerg
2144 1.1 joerg fetch_decode_modrm(emu);
2145 1.1 joerg if (emu->cur_mod != 3) {
2146 1.1 joerg destoffset = decode_rl_address(emu);
2147 1.1 joerg destval = pop_word(emu);
2148 1.1 joerg store_data_word(emu, destoffset, destval);
2149 1.1 joerg } else {
2150 1.1 joerg destreg = decode_rl_word_register(emu);
2151 1.1 joerg *destreg = pop_word(emu);
2152 1.1 joerg }
2153 1.1 joerg }
2154 1.1 joerg
2155 1.1 joerg static void
2156 1.1 joerg x86emuOp_pop_RM(struct X86EMU *emu)
2157 1.1 joerg {
2158 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2159 1.1 joerg x86emuOp32_pop_RM(emu);
2160 1.1 joerg else
2161 1.1 joerg x86emuOp16_pop_RM(emu);
2162 1.1 joerg }
2163 1.1 joerg /****************************************************************************
2164 1.1 joerg REMARKS:
2165 1.1 joerg Handles opcode 0x91
2166 1.1 joerg ****************************************************************************/
2167 1.1 joerg static void
2168 1.1 joerg x86emuOp_xchg_word_AX_CX(struct X86EMU *emu)
2169 1.1 joerg {
2170 1.1 joerg uint32_t tmp;
2171 1.1 joerg
2172 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2173 1.1 joerg tmp = emu->x86.R_EAX;
2174 1.1 joerg emu->x86.R_EAX = emu->x86.R_ECX;
2175 1.1 joerg emu->x86.R_ECX = tmp;
2176 1.1 joerg } else {
2177 1.1 joerg tmp = emu->x86.R_AX;
2178 1.1 joerg emu->x86.R_AX = emu->x86.R_CX;
2179 1.1 joerg emu->x86.R_CX = (uint16_t) tmp;
2180 1.1 joerg }
2181 1.1 joerg }
2182 1.1 joerg /****************************************************************************
2183 1.1 joerg REMARKS:
2184 1.1 joerg Handles opcode 0x92
2185 1.1 joerg ****************************************************************************/
2186 1.1 joerg static void
2187 1.1 joerg x86emuOp_xchg_word_AX_DX(struct X86EMU *emu)
2188 1.1 joerg {
2189 1.1 joerg uint32_t tmp;
2190 1.1 joerg
2191 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2192 1.1 joerg tmp = emu->x86.R_EAX;
2193 1.1 joerg emu->x86.R_EAX = emu->x86.R_EDX;
2194 1.1 joerg emu->x86.R_EDX = tmp;
2195 1.1 joerg } else {
2196 1.1 joerg tmp = emu->x86.R_AX;
2197 1.1 joerg emu->x86.R_AX = emu->x86.R_DX;
2198 1.1 joerg emu->x86.R_DX = (uint16_t) tmp;
2199 1.1 joerg }
2200 1.1 joerg }
2201 1.1 joerg /****************************************************************************
2202 1.1 joerg REMARKS:
2203 1.1 joerg Handles opcode 0x93
2204 1.1 joerg ****************************************************************************/
2205 1.1 joerg static void
2206 1.1 joerg x86emuOp_xchg_word_AX_BX(struct X86EMU *emu)
2207 1.1 joerg {
2208 1.1 joerg uint32_t tmp;
2209 1.1 joerg
2210 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2211 1.1 joerg tmp = emu->x86.R_EAX;
2212 1.1 joerg emu->x86.R_EAX = emu->x86.R_EBX;
2213 1.1 joerg emu->x86.R_EBX = tmp;
2214 1.1 joerg } else {
2215 1.1 joerg tmp = emu->x86.R_AX;
2216 1.1 joerg emu->x86.R_AX = emu->x86.R_BX;
2217 1.1 joerg emu->x86.R_BX = (uint16_t) tmp;
2218 1.1 joerg }
2219 1.1 joerg }
2220 1.1 joerg /****************************************************************************
2221 1.1 joerg REMARKS:
2222 1.1 joerg Handles opcode 0x94
2223 1.1 joerg ****************************************************************************/
2224 1.1 joerg static void
2225 1.1 joerg x86emuOp_xchg_word_AX_SP(struct X86EMU *emu)
2226 1.1 joerg {
2227 1.1 joerg uint32_t tmp;
2228 1.1 joerg
2229 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2230 1.1 joerg tmp = emu->x86.R_EAX;
2231 1.1 joerg emu->x86.R_EAX = emu->x86.R_ESP;
2232 1.1 joerg emu->x86.R_ESP = tmp;
2233 1.1 joerg } else {
2234 1.1 joerg tmp = emu->x86.R_AX;
2235 1.1 joerg emu->x86.R_AX = emu->x86.R_SP;
2236 1.1 joerg emu->x86.R_SP = (uint16_t) tmp;
2237 1.1 joerg }
2238 1.1 joerg }
2239 1.1 joerg /****************************************************************************
2240 1.1 joerg REMARKS:
2241 1.1 joerg Handles opcode 0x95
2242 1.1 joerg ****************************************************************************/
2243 1.1 joerg static void
2244 1.1 joerg x86emuOp_xchg_word_AX_BP(struct X86EMU *emu)
2245 1.1 joerg {
2246 1.1 joerg uint32_t tmp;
2247 1.1 joerg
2248 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2249 1.1 joerg tmp = emu->x86.R_EAX;
2250 1.1 joerg emu->x86.R_EAX = emu->x86.R_EBP;
2251 1.1 joerg emu->x86.R_EBP = tmp;
2252 1.1 joerg } else {
2253 1.1 joerg tmp = emu->x86.R_AX;
2254 1.1 joerg emu->x86.R_AX = emu->x86.R_BP;
2255 1.1 joerg emu->x86.R_BP = (uint16_t) tmp;
2256 1.1 joerg }
2257 1.1 joerg }
2258 1.1 joerg /****************************************************************************
2259 1.1 joerg REMARKS:
2260 1.1 joerg Handles opcode 0x96
2261 1.1 joerg ****************************************************************************/
2262 1.1 joerg static void
2263 1.1 joerg x86emuOp_xchg_word_AX_SI(struct X86EMU *emu)
2264 1.1 joerg {
2265 1.1 joerg uint32_t tmp;
2266 1.1 joerg
2267 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2268 1.1 joerg tmp = emu->x86.R_EAX;
2269 1.1 joerg emu->x86.R_EAX = emu->x86.R_ESI;
2270 1.1 joerg emu->x86.R_ESI = tmp;
2271 1.1 joerg } else {
2272 1.1 joerg tmp = emu->x86.R_AX;
2273 1.1 joerg emu->x86.R_AX = emu->x86.R_SI;
2274 1.1 joerg emu->x86.R_SI = (uint16_t) tmp;
2275 1.1 joerg }
2276 1.1 joerg }
2277 1.1 joerg /****************************************************************************
2278 1.1 joerg REMARKS:
2279 1.1 joerg Handles opcode 0x97
2280 1.1 joerg ****************************************************************************/
2281 1.1 joerg static void
2282 1.1 joerg x86emuOp_xchg_word_AX_DI(struct X86EMU *emu)
2283 1.1 joerg {
2284 1.1 joerg uint32_t tmp;
2285 1.1 joerg
2286 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2287 1.1 joerg tmp = emu->x86.R_EAX;
2288 1.1 joerg emu->x86.R_EAX = emu->x86.R_EDI;
2289 1.1 joerg emu->x86.R_EDI = tmp;
2290 1.1 joerg } else {
2291 1.1 joerg tmp = emu->x86.R_AX;
2292 1.1 joerg emu->x86.R_AX = emu->x86.R_DI;
2293 1.1 joerg emu->x86.R_DI = (uint16_t) tmp;
2294 1.1 joerg }
2295 1.1 joerg }
2296 1.1 joerg /****************************************************************************
2297 1.1 joerg REMARKS:
2298 1.1 joerg Handles opcode 0x98
2299 1.1 joerg ****************************************************************************/
2300 1.1 joerg static void
2301 1.1 joerg x86emuOp_cbw(struct X86EMU *emu)
2302 1.1 joerg {
2303 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2304 1.1 joerg if (emu->x86.R_AX & 0x8000) {
2305 1.1 joerg emu->x86.R_EAX |= 0xffff0000;
2306 1.1 joerg } else {
2307 1.1 joerg emu->x86.R_EAX &= 0x0000ffff;
2308 1.1 joerg }
2309 1.1 joerg } else {
2310 1.1 joerg if (emu->x86.R_AL & 0x80) {
2311 1.1 joerg emu->x86.R_AH = 0xff;
2312 1.1 joerg } else {
2313 1.1 joerg emu->x86.R_AH = 0x0;
2314 1.1 joerg }
2315 1.1 joerg }
2316 1.1 joerg }
2317 1.1 joerg /****************************************************************************
2318 1.1 joerg REMARKS:
2319 1.1 joerg Handles opcode 0x99
2320 1.1 joerg ****************************************************************************/
2321 1.1 joerg static void
2322 1.1 joerg x86emuOp_cwd(struct X86EMU *emu)
2323 1.1 joerg {
2324 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2325 1.1 joerg if (emu->x86.R_EAX & 0x80000000) {
2326 1.1 joerg emu->x86.R_EDX = 0xffffffff;
2327 1.1 joerg } else {
2328 1.1 joerg emu->x86.R_EDX = 0x0;
2329 1.1 joerg }
2330 1.1 joerg } else {
2331 1.1 joerg if (emu->x86.R_AX & 0x8000) {
2332 1.1 joerg emu->x86.R_DX = 0xffff;
2333 1.1 joerg } else {
2334 1.1 joerg emu->x86.R_DX = 0x0;
2335 1.1 joerg }
2336 1.1 joerg }
2337 1.1 joerg }
2338 1.1 joerg /****************************************************************************
2339 1.1 joerg REMARKS:
2340 1.1 joerg Handles opcode 0x9a
2341 1.1 joerg ****************************************************************************/
2342 1.1 joerg static void
2343 1.1 joerg x86emuOp_call_far_IMM(struct X86EMU *emu)
2344 1.1 joerg {
2345 1.1 joerg uint16_t farseg, faroff;
2346 1.1 joerg
2347 1.1 joerg faroff = fetch_word_imm(emu);
2348 1.1 joerg farseg = fetch_word_imm(emu);
2349 1.1 joerg /* XXX
2350 1.1 joerg *
2351 1.1 joerg * Hooked interrupt vectors calling into our "BIOS" will cause problems
2352 1.1 joerg * unless all intersegment stuff is checked for BIOS access. Check
2353 1.1 joerg * needed here. For moment, let it alone. */
2354 1.1 joerg push_word(emu, emu->x86.R_CS);
2355 1.1 joerg emu->x86.R_CS = farseg;
2356 1.1 joerg push_word(emu, emu->x86.R_IP);
2357 1.1 joerg emu->x86.R_IP = faroff;
2358 1.1 joerg }
2359 1.1 joerg /****************************************************************************
2360 1.1 joerg REMARKS:
2361 1.1 joerg Handles opcode 0x9c
2362 1.1 joerg ****************************************************************************/
2363 1.1 joerg static void
2364 1.1 joerg x86emuOp_pushf_word(struct X86EMU *emu)
2365 1.1 joerg {
2366 1.1 joerg uint32_t flags;
2367 1.1 joerg
2368 1.1 joerg /* clear out *all* bits not representing flags, and turn on real bits */
2369 1.1 joerg flags = (emu->x86.R_EFLG & F_MSK) | F_ALWAYS_ON;
2370 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2371 1.1 joerg push_long(emu, flags);
2372 1.1 joerg } else {
2373 1.1 joerg push_word(emu, (uint16_t) flags);
2374 1.1 joerg }
2375 1.1 joerg }
2376 1.1 joerg /****************************************************************************
2377 1.1 joerg REMARKS:
2378 1.1 joerg Handles opcode 0x9d
2379 1.1 joerg ****************************************************************************/
2380 1.1 joerg static void
2381 1.1 joerg x86emuOp_popf_word(struct X86EMU *emu)
2382 1.1 joerg {
2383 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2384 1.1 joerg emu->x86.R_EFLG = pop_long(emu);
2385 1.1 joerg } else {
2386 1.1 joerg emu->x86.R_FLG = pop_word(emu);
2387 1.1 joerg }
2388 1.1 joerg }
2389 1.1 joerg /****************************************************************************
2390 1.1 joerg REMARKS:
2391 1.1 joerg Handles opcode 0x9e
2392 1.1 joerg ****************************************************************************/
2393 1.1 joerg static void
2394 1.1 joerg x86emuOp_sahf(struct X86EMU *emu)
2395 1.1 joerg {
2396 1.1 joerg /* clear the lower bits of the flag register */
2397 1.1 joerg emu->x86.R_FLG &= 0xffffff00;
2398 1.1 joerg /* or in the AH register into the flags register */
2399 1.1 joerg emu->x86.R_FLG |= emu->x86.R_AH;
2400 1.1 joerg }
2401 1.1 joerg /****************************************************************************
2402 1.1 joerg REMARKS:
2403 1.1 joerg Handles opcode 0x9f
2404 1.1 joerg ****************************************************************************/
2405 1.1 joerg static void
2406 1.1 joerg x86emuOp_lahf(struct X86EMU *emu)
2407 1.1 joerg {
2408 1.1 joerg emu->x86.R_AH = (uint8_t) (emu->x86.R_FLG & 0xff);
2409 1.1 joerg /* undocumented TC++ behavior??? Nope. It's documented, but you have
2410 1.1 joerg * too look real hard to notice it. */
2411 1.1 joerg emu->x86.R_AH |= 0x2;
2412 1.1 joerg }
2413 1.1 joerg /****************************************************************************
2414 1.1 joerg REMARKS:
2415 1.1 joerg Handles opcode 0xa0
2416 1.1 joerg ****************************************************************************/
2417 1.1 joerg static void
2418 1.1 joerg x86emuOp_mov_AL_M_IMM(struct X86EMU *emu)
2419 1.1 joerg {
2420 1.1 joerg uint16_t offset;
2421 1.1 joerg
2422 1.1 joerg offset = fetch_word_imm(emu);
2423 1.1 joerg emu->x86.R_AL = fetch_data_byte(emu, offset);
2424 1.1 joerg }
2425 1.1 joerg /****************************************************************************
2426 1.1 joerg REMARKS:
2427 1.1 joerg Handles opcode 0xa1
2428 1.1 joerg ****************************************************************************/
2429 1.1 joerg static void
2430 1.1 joerg x86emuOp_mov_AX_M_IMM(struct X86EMU *emu)
2431 1.1 joerg {
2432 1.1 joerg uint16_t offset;
2433 1.1 joerg
2434 1.1 joerg offset = fetch_word_imm(emu);
2435 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2436 1.1 joerg emu->x86.R_EAX = fetch_data_long(emu, offset);
2437 1.1 joerg } else {
2438 1.1 joerg emu->x86.R_AX = fetch_data_word(emu, offset);
2439 1.1 joerg }
2440 1.1 joerg }
2441 1.1 joerg /****************************************************************************
2442 1.1 joerg REMARKS:
2443 1.1 joerg Handles opcode 0xa2
2444 1.1 joerg ****************************************************************************/
2445 1.1 joerg static void
2446 1.1 joerg x86emuOp_mov_M_AL_IMM(struct X86EMU *emu)
2447 1.1 joerg {
2448 1.1 joerg uint16_t offset;
2449 1.1 joerg
2450 1.1 joerg offset = fetch_word_imm(emu);
2451 1.1 joerg store_data_byte(emu, offset, emu->x86.R_AL);
2452 1.1 joerg }
2453 1.1 joerg /****************************************************************************
2454 1.1 joerg REMARKS:
2455 1.1 joerg Handles opcode 0xa3
2456 1.1 joerg ****************************************************************************/
2457 1.1 joerg static void
2458 1.1 joerg x86emuOp_mov_M_AX_IMM(struct X86EMU *emu)
2459 1.1 joerg {
2460 1.1 joerg uint16_t offset;
2461 1.1 joerg
2462 1.1 joerg offset = fetch_word_imm(emu);
2463 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2464 1.1 joerg store_data_long(emu, offset, emu->x86.R_EAX);
2465 1.1 joerg } else {
2466 1.1 joerg store_data_word(emu, offset, emu->x86.R_AX);
2467 1.1 joerg }
2468 1.1 joerg }
2469 1.1 joerg /****************************************************************************
2470 1.1 joerg REMARKS:
2471 1.1 joerg Handles opcode 0xa4
2472 1.1 joerg ****************************************************************************/
2473 1.1 joerg static void
2474 1.1 joerg x86emuOp_movs_byte(struct X86EMU *emu)
2475 1.1 joerg {
2476 1.1 joerg uint8_t val;
2477 1.1 joerg uint32_t count;
2478 1.1 joerg int inc;
2479 1.1 joerg
2480 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2481 1.1 joerg inc = -1;
2482 1.1 joerg else
2483 1.1 joerg inc = 1;
2484 1.1 joerg count = 1;
2485 1.1 joerg if (emu->x86.mode & (SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE)) {
2486 1.1 joerg /* dont care whether REPE or REPNE */
2487 1.1 joerg /* move them until CX is ZERO. */
2488 1.1 joerg count = emu->x86.R_CX;
2489 1.1 joerg emu->x86.R_CX = 0;
2490 1.1 joerg emu->x86.mode &= ~(SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE);
2491 1.1 joerg }
2492 1.1 joerg while (count--) {
2493 1.1 joerg val = fetch_data_byte(emu, emu->x86.R_SI);
2494 1.1 joerg store_byte(emu, emu->x86.R_ES, emu->x86.R_DI, val);
2495 1.1 joerg emu->x86.R_SI += inc;
2496 1.1 joerg emu->x86.R_DI += inc;
2497 1.1 joerg }
2498 1.1 joerg }
2499 1.1 joerg /****************************************************************************
2500 1.1 joerg REMARKS:
2501 1.1 joerg Handles opcode 0xa5
2502 1.1 joerg ****************************************************************************/
2503 1.1 joerg static void
2504 1.1 joerg x86emuOp_movs_word(struct X86EMU *emu)
2505 1.1 joerg {
2506 1.1 joerg uint32_t val;
2507 1.1 joerg int inc;
2508 1.1 joerg uint32_t count;
2509 1.1 joerg
2510 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2511 1.1 joerg inc = 4;
2512 1.1 joerg else
2513 1.1 joerg inc = 2;
2514 1.1 joerg
2515 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2516 1.1 joerg inc = -inc;
2517 1.1 joerg
2518 1.1 joerg count = 1;
2519 1.1 joerg if (emu->x86.mode & (SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE)) {
2520 1.1 joerg /* dont care whether REPE or REPNE */
2521 1.1 joerg /* move them until CX is ZERO. */
2522 1.1 joerg count = emu->x86.R_CX;
2523 1.1 joerg emu->x86.R_CX = 0;
2524 1.1 joerg emu->x86.mode &= ~(SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE);
2525 1.1 joerg }
2526 1.1 joerg while (count--) {
2527 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2528 1.1 joerg val = fetch_data_long(emu, emu->x86.R_SI);
2529 1.1 joerg store_long(emu, emu->x86.R_ES, emu->x86.R_DI, val);
2530 1.1 joerg } else {
2531 1.1 joerg val = fetch_data_word(emu, emu->x86.R_SI);
2532 1.1 joerg store_word(emu, emu->x86.R_ES, emu->x86.R_DI, (uint16_t) val);
2533 1.1 joerg }
2534 1.1 joerg emu->x86.R_SI += inc;
2535 1.1 joerg emu->x86.R_DI += inc;
2536 1.1 joerg }
2537 1.1 joerg }
2538 1.1 joerg /****************************************************************************
2539 1.1 joerg REMARKS:
2540 1.1 joerg Handles opcode 0xa6
2541 1.1 joerg ****************************************************************************/
2542 1.1 joerg static void
2543 1.1 joerg x86emuOp_cmps_byte(struct X86EMU *emu)
2544 1.1 joerg {
2545 1.1 joerg int8_t val1, val2;
2546 1.1 joerg int inc;
2547 1.1 joerg
2548 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2549 1.1 joerg inc = -1;
2550 1.1 joerg else
2551 1.1 joerg inc = 1;
2552 1.1 joerg
2553 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_REPE) {
2554 1.1 joerg /* REPE */
2555 1.1 joerg /* move them until CX is ZERO. */
2556 1.1 joerg while (emu->x86.R_CX != 0) {
2557 1.1 joerg val1 = fetch_data_byte(emu, emu->x86.R_SI);
2558 1.1 joerg val2 = fetch_byte(emu, emu->x86.R_ES, emu->x86.R_DI);
2559 1.1 joerg cmp_byte(emu, val1, val2);
2560 1.1 joerg emu->x86.R_CX -= 1;
2561 1.1 joerg emu->x86.R_SI += inc;
2562 1.1 joerg emu->x86.R_DI += inc;
2563 1.1 joerg if (ACCESS_FLAG(F_ZF) == 0)
2564 1.1 joerg break;
2565 1.1 joerg }
2566 1.1 joerg emu->x86.mode &= ~SYSMODE_PREFIX_REPE;
2567 1.1 joerg } else if (emu->x86.mode & SYSMODE_PREFIX_REPNE) {
2568 1.1 joerg /* REPNE */
2569 1.1 joerg /* move them until CX is ZERO. */
2570 1.1 joerg while (emu->x86.R_CX != 0) {
2571 1.1 joerg val1 = fetch_data_byte(emu, emu->x86.R_SI);
2572 1.1 joerg val2 = fetch_byte(emu, emu->x86.R_ES, emu->x86.R_DI);
2573 1.1 joerg cmp_byte(emu, val1, val2);
2574 1.1 joerg emu->x86.R_CX -= 1;
2575 1.1 joerg emu->x86.R_SI += inc;
2576 1.1 joerg emu->x86.R_DI += inc;
2577 1.1 joerg if (ACCESS_FLAG(F_ZF))
2578 1.1 joerg break; /* zero flag set means equal */
2579 1.1 joerg }
2580 1.1 joerg emu->x86.mode &= ~SYSMODE_PREFIX_REPNE;
2581 1.1 joerg } else {
2582 1.1 joerg val1 = fetch_data_byte(emu, emu->x86.R_SI);
2583 1.1 joerg val2 = fetch_byte(emu, emu->x86.R_ES, emu->x86.R_DI);
2584 1.1 joerg cmp_byte(emu, val1, val2);
2585 1.1 joerg emu->x86.R_SI += inc;
2586 1.1 joerg emu->x86.R_DI += inc;
2587 1.1 joerg }
2588 1.1 joerg }
2589 1.1 joerg /****************************************************************************
2590 1.1 joerg REMARKS:
2591 1.1 joerg Handles opcode 0xa7
2592 1.1 joerg ****************************************************************************/
2593 1.1 joerg static void
2594 1.1 joerg x86emuOp_cmps_word(struct X86EMU *emu)
2595 1.1 joerg {
2596 1.1 joerg uint32_t val1, val2;
2597 1.1 joerg int inc;
2598 1.1 joerg
2599 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2600 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2601 1.1 joerg inc = -4;
2602 1.1 joerg else
2603 1.1 joerg inc = 4;
2604 1.1 joerg } else {
2605 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2606 1.1 joerg inc = -2;
2607 1.1 joerg else
2608 1.1 joerg inc = 2;
2609 1.1 joerg }
2610 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_REPE) {
2611 1.1 joerg /* REPE */
2612 1.1 joerg /* move them until CX is ZERO. */
2613 1.1 joerg while (emu->x86.R_CX != 0) {
2614 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2615 1.1 joerg val1 = fetch_data_long(emu, emu->x86.R_SI);
2616 1.1 joerg val2 = fetch_long(emu, emu->x86.R_ES, emu->x86.R_DI);
2617 1.1 joerg cmp_long(emu, val1, val2);
2618 1.1 joerg } else {
2619 1.1 joerg val1 = fetch_data_word(emu, emu->x86.R_SI);
2620 1.1 joerg val2 = fetch_word(emu, emu->x86.R_ES, emu->x86.R_DI);
2621 1.1 joerg cmp_word(emu, (uint16_t) val1, (uint16_t) val2);
2622 1.1 joerg }
2623 1.1 joerg emu->x86.R_CX -= 1;
2624 1.1 joerg emu->x86.R_SI += inc;
2625 1.1 joerg emu->x86.R_DI += inc;
2626 1.1 joerg if (ACCESS_FLAG(F_ZF) == 0)
2627 1.1 joerg break;
2628 1.1 joerg }
2629 1.1 joerg emu->x86.mode &= ~SYSMODE_PREFIX_REPE;
2630 1.1 joerg } else if (emu->x86.mode & SYSMODE_PREFIX_REPNE) {
2631 1.1 joerg /* REPNE */
2632 1.1 joerg /* move them until CX is ZERO. */
2633 1.1 joerg while (emu->x86.R_CX != 0) {
2634 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2635 1.1 joerg val1 = fetch_data_long(emu, emu->x86.R_SI);
2636 1.1 joerg val2 = fetch_long(emu, emu->x86.R_ES, emu->x86.R_DI);
2637 1.1 joerg cmp_long(emu, val1, val2);
2638 1.1 joerg } else {
2639 1.1 joerg val1 = fetch_data_word(emu, emu->x86.R_SI);
2640 1.1 joerg val2 = fetch_word(emu, emu->x86.R_ES, emu->x86.R_DI);
2641 1.1 joerg cmp_word(emu, (uint16_t) val1, (uint16_t) val2);
2642 1.1 joerg }
2643 1.1 joerg emu->x86.R_CX -= 1;
2644 1.1 joerg emu->x86.R_SI += inc;
2645 1.1 joerg emu->x86.R_DI += inc;
2646 1.1 joerg if (ACCESS_FLAG(F_ZF))
2647 1.1 joerg break; /* zero flag set means equal */
2648 1.1 joerg }
2649 1.1 joerg emu->x86.mode &= ~SYSMODE_PREFIX_REPNE;
2650 1.1 joerg } else {
2651 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2652 1.1 joerg val1 = fetch_data_long(emu, emu->x86.R_SI);
2653 1.1 joerg val2 = fetch_long(emu, emu->x86.R_ES, emu->x86.R_DI);
2654 1.1 joerg cmp_long(emu, val1, val2);
2655 1.1 joerg } else {
2656 1.1 joerg val1 = fetch_data_word(emu, emu->x86.R_SI);
2657 1.1 joerg val2 = fetch_word(emu, emu->x86.R_ES, emu->x86.R_DI);
2658 1.1 joerg cmp_word(emu, (uint16_t) val1, (uint16_t) val2);
2659 1.1 joerg }
2660 1.1 joerg emu->x86.R_SI += inc;
2661 1.1 joerg emu->x86.R_DI += inc;
2662 1.1 joerg }
2663 1.1 joerg }
2664 1.1 joerg /****************************************************************************
2665 1.1 joerg REMARKS:
2666 1.1 joerg Handles opcode 0xa9
2667 1.1 joerg ****************************************************************************/
2668 1.1 joerg static void
2669 1.1 joerg x86emuOp_test_AX_IMM(struct X86EMU *emu)
2670 1.1 joerg {
2671 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2672 1.1 joerg test_long(emu, emu->x86.R_EAX, fetch_long_imm(emu));
2673 1.1 joerg } else {
2674 1.1 joerg test_word(emu, emu->x86.R_AX, fetch_word_imm(emu));
2675 1.1 joerg }
2676 1.1 joerg }
2677 1.1 joerg /****************************************************************************
2678 1.1 joerg REMARKS:
2679 1.1 joerg Handles opcode 0xaa
2680 1.1 joerg ****************************************************************************/
2681 1.1 joerg static void
2682 1.1 joerg x86emuOp_stos_byte(struct X86EMU *emu)
2683 1.1 joerg {
2684 1.1 joerg int inc;
2685 1.1 joerg
2686 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2687 1.1 joerg inc = -1;
2688 1.1 joerg else
2689 1.1 joerg inc = 1;
2690 1.1 joerg if (emu->x86.mode & (SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE)) {
2691 1.1 joerg /* dont care whether REPE or REPNE */
2692 1.1 joerg /* move them until CX is ZERO. */
2693 1.1 joerg while (emu->x86.R_CX != 0) {
2694 1.1 joerg store_byte(emu, emu->x86.R_ES, emu->x86.R_DI, emu->x86.R_AL);
2695 1.1 joerg emu->x86.R_CX -= 1;
2696 1.1 joerg emu->x86.R_DI += inc;
2697 1.1 joerg }
2698 1.1 joerg emu->x86.mode &= ~(SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE);
2699 1.1 joerg } else {
2700 1.1 joerg store_byte(emu, emu->x86.R_ES, emu->x86.R_DI, emu->x86.R_AL);
2701 1.1 joerg emu->x86.R_DI += inc;
2702 1.1 joerg }
2703 1.1 joerg }
2704 1.1 joerg /****************************************************************************
2705 1.1 joerg REMARKS:
2706 1.1 joerg Handles opcode 0xab
2707 1.1 joerg ****************************************************************************/
2708 1.1 joerg static void
2709 1.1 joerg x86emuOp_stos_word(struct X86EMU *emu)
2710 1.1 joerg {
2711 1.1 joerg int inc;
2712 1.1 joerg uint32_t count;
2713 1.1 joerg
2714 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2715 1.1 joerg inc = 4;
2716 1.1 joerg else
2717 1.1 joerg inc = 2;
2718 1.1 joerg
2719 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2720 1.1 joerg inc = -inc;
2721 1.1 joerg
2722 1.1 joerg count = 1;
2723 1.1 joerg if (emu->x86.mode & (SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE)) {
2724 1.1 joerg /* dont care whether REPE or REPNE */
2725 1.1 joerg /* move them until CX is ZERO. */
2726 1.1 joerg count = emu->x86.R_CX;
2727 1.1 joerg emu->x86.R_CX = 0;
2728 1.1 joerg emu->x86.mode &= ~(SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE);
2729 1.1 joerg }
2730 1.1 joerg while (count--) {
2731 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2732 1.1 joerg store_long(emu, emu->x86.R_ES, emu->x86.R_DI, emu->x86.R_EAX);
2733 1.1 joerg } else {
2734 1.1 joerg store_word(emu, emu->x86.R_ES, emu->x86.R_DI, emu->x86.R_AX);
2735 1.1 joerg }
2736 1.1 joerg emu->x86.R_DI += inc;
2737 1.1 joerg }
2738 1.1 joerg }
2739 1.1 joerg /****************************************************************************
2740 1.1 joerg REMARKS:
2741 1.1 joerg Handles opcode 0xac
2742 1.1 joerg ****************************************************************************/
2743 1.1 joerg static void
2744 1.1 joerg x86emuOp_lods_byte(struct X86EMU *emu)
2745 1.1 joerg {
2746 1.1 joerg int inc;
2747 1.1 joerg
2748 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2749 1.1 joerg inc = -1;
2750 1.1 joerg else
2751 1.1 joerg inc = 1;
2752 1.1 joerg if (emu->x86.mode & (SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE)) {
2753 1.1 joerg /* dont care whether REPE or REPNE */
2754 1.1 joerg /* move them until CX is ZERO. */
2755 1.1 joerg while (emu->x86.R_CX != 0) {
2756 1.1 joerg emu->x86.R_AL = fetch_data_byte(emu, emu->x86.R_SI);
2757 1.1 joerg emu->x86.R_CX -= 1;
2758 1.1 joerg emu->x86.R_SI += inc;
2759 1.1 joerg }
2760 1.1 joerg emu->x86.mode &= ~(SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE);
2761 1.1 joerg } else {
2762 1.1 joerg emu->x86.R_AL = fetch_data_byte(emu, emu->x86.R_SI);
2763 1.1 joerg emu->x86.R_SI += inc;
2764 1.1 joerg }
2765 1.1 joerg }
2766 1.1 joerg /****************************************************************************
2767 1.1 joerg REMARKS:
2768 1.1 joerg Handles opcode 0xad
2769 1.1 joerg ****************************************************************************/
2770 1.1 joerg static void
2771 1.1 joerg x86emuOp_lods_word(struct X86EMU *emu)
2772 1.1 joerg {
2773 1.1 joerg int inc;
2774 1.1 joerg uint32_t count;
2775 1.1 joerg
2776 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2777 1.1 joerg inc = 4;
2778 1.1 joerg else
2779 1.1 joerg inc = 2;
2780 1.1 joerg
2781 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2782 1.1 joerg inc = -inc;
2783 1.1 joerg
2784 1.1 joerg count = 1;
2785 1.1 joerg if (emu->x86.mode & (SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE)) {
2786 1.1 joerg /* dont care whether REPE or REPNE */
2787 1.1 joerg /* move them until CX is ZERO. */
2788 1.1 joerg count = emu->x86.R_CX;
2789 1.1 joerg emu->x86.R_CX = 0;
2790 1.1 joerg emu->x86.mode &= ~(SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE);
2791 1.1 joerg }
2792 1.1 joerg while (count--) {
2793 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2794 1.1 joerg emu->x86.R_EAX = fetch_data_long(emu, emu->x86.R_SI);
2795 1.1 joerg } else {
2796 1.1 joerg emu->x86.R_AX = fetch_data_word(emu, emu->x86.R_SI);
2797 1.1 joerg }
2798 1.1 joerg emu->x86.R_SI += inc;
2799 1.1 joerg }
2800 1.1 joerg }
2801 1.1 joerg /****************************************************************************
2802 1.1 joerg REMARKS:
2803 1.1 joerg Handles opcode 0xae
2804 1.1 joerg ****************************************************************************/
2805 1.1 joerg static void
2806 1.1 joerg x86emuOp_scas_byte(struct X86EMU *emu)
2807 1.1 joerg {
2808 1.1 joerg int8_t val2;
2809 1.1 joerg int inc;
2810 1.1 joerg
2811 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2812 1.1 joerg inc = -1;
2813 1.1 joerg else
2814 1.1 joerg inc = 1;
2815 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_REPE) {
2816 1.1 joerg /* REPE */
2817 1.1 joerg /* move them until CX is ZERO. */
2818 1.1 joerg while (emu->x86.R_CX != 0) {
2819 1.1 joerg val2 = fetch_byte(emu, emu->x86.R_ES, emu->x86.R_DI);
2820 1.1 joerg cmp_byte(emu, emu->x86.R_AL, val2);
2821 1.1 joerg emu->x86.R_CX -= 1;
2822 1.1 joerg emu->x86.R_DI += inc;
2823 1.1 joerg if (ACCESS_FLAG(F_ZF) == 0)
2824 1.1 joerg break;
2825 1.1 joerg }
2826 1.1 joerg emu->x86.mode &= ~SYSMODE_PREFIX_REPE;
2827 1.1 joerg } else if (emu->x86.mode & SYSMODE_PREFIX_REPNE) {
2828 1.1 joerg /* REPNE */
2829 1.1 joerg /* move them until CX is ZERO. */
2830 1.1 joerg while (emu->x86.R_CX != 0) {
2831 1.1 joerg val2 = fetch_byte(emu, emu->x86.R_ES, emu->x86.R_DI);
2832 1.1 joerg cmp_byte(emu, emu->x86.R_AL, val2);
2833 1.1 joerg emu->x86.R_CX -= 1;
2834 1.1 joerg emu->x86.R_DI += inc;
2835 1.1 joerg if (ACCESS_FLAG(F_ZF))
2836 1.1 joerg break; /* zero flag set means equal */
2837 1.1 joerg }
2838 1.1 joerg emu->x86.mode &= ~SYSMODE_PREFIX_REPNE;
2839 1.1 joerg } else {
2840 1.1 joerg val2 = fetch_byte(emu, emu->x86.R_ES, emu->x86.R_DI);
2841 1.1 joerg cmp_byte(emu, emu->x86.R_AL, val2);
2842 1.1 joerg emu->x86.R_DI += inc;
2843 1.1 joerg }
2844 1.1 joerg }
2845 1.1 joerg /****************************************************************************
2846 1.1 joerg REMARKS:
2847 1.1 joerg Handles opcode 0xaf
2848 1.1 joerg ****************************************************************************/
2849 1.1 joerg static void
2850 1.1 joerg x86emuOp_scas_word(struct X86EMU *emu)
2851 1.1 joerg {
2852 1.1 joerg int inc;
2853 1.1 joerg uint32_t val;
2854 1.1 joerg
2855 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2856 1.1 joerg inc = 4;
2857 1.1 joerg else
2858 1.1 joerg inc = 2;
2859 1.1 joerg
2860 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2861 1.1 joerg inc = -inc;
2862 1.1 joerg
2863 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_REPE) {
2864 1.1 joerg /* REPE */
2865 1.1 joerg /* move them until CX is ZERO. */
2866 1.1 joerg while (emu->x86.R_CX != 0) {
2867 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2868 1.1 joerg val = fetch_long(emu, emu->x86.R_ES, emu->x86.R_DI);
2869 1.1 joerg cmp_long(emu, emu->x86.R_EAX, val);
2870 1.1 joerg } else {
2871 1.1 joerg val = fetch_word(emu, emu->x86.R_ES, emu->x86.R_DI);
2872 1.1 joerg cmp_word(emu, emu->x86.R_AX, (uint16_t) val);
2873 1.1 joerg }
2874 1.1 joerg emu->x86.R_CX -= 1;
2875 1.1 joerg emu->x86.R_DI += inc;
2876 1.1 joerg if (ACCESS_FLAG(F_ZF) == 0)
2877 1.1 joerg break;
2878 1.1 joerg }
2879 1.1 joerg emu->x86.mode &= ~SYSMODE_PREFIX_REPE;
2880 1.1 joerg } else if (emu->x86.mode & SYSMODE_PREFIX_REPNE) {
2881 1.1 joerg /* REPNE */
2882 1.1 joerg /* move them until CX is ZERO. */
2883 1.1 joerg while (emu->x86.R_CX != 0) {
2884 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2885 1.1 joerg val = fetch_long(emu, emu->x86.R_ES, emu->x86.R_DI);
2886 1.1 joerg cmp_long(emu, emu->x86.R_EAX, val);
2887 1.1 joerg } else {
2888 1.1 joerg val = fetch_word(emu, emu->x86.R_ES, emu->x86.R_DI);
2889 1.1 joerg cmp_word(emu, emu->x86.R_AX, (uint16_t) val);
2890 1.1 joerg }
2891 1.1 joerg emu->x86.R_CX -= 1;
2892 1.1 joerg emu->x86.R_DI += inc;
2893 1.1 joerg if (ACCESS_FLAG(F_ZF))
2894 1.1 joerg break; /* zero flag set means equal */
2895 1.1 joerg }
2896 1.1 joerg emu->x86.mode &= ~SYSMODE_PREFIX_REPNE;
2897 1.1 joerg } else {
2898 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2899 1.1 joerg val = fetch_long(emu, emu->x86.R_ES, emu->x86.R_DI);
2900 1.1 joerg cmp_long(emu, emu->x86.R_EAX, val);
2901 1.1 joerg } else {
2902 1.1 joerg val = fetch_word(emu, emu->x86.R_ES, emu->x86.R_DI);
2903 1.1 joerg cmp_word(emu, emu->x86.R_AX, (uint16_t) val);
2904 1.1 joerg }
2905 1.1 joerg emu->x86.R_DI += inc;
2906 1.1 joerg }
2907 1.1 joerg }
2908 1.1 joerg /****************************************************************************
2909 1.1 joerg REMARKS:
2910 1.1 joerg Handles opcode 0xb8
2911 1.1 joerg ****************************************************************************/
2912 1.1 joerg static void
2913 1.1 joerg x86emuOp_mov_word_AX_IMM(struct X86EMU *emu)
2914 1.1 joerg {
2915 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2916 1.1 joerg emu->x86.R_EAX = fetch_long_imm(emu);
2917 1.1 joerg else
2918 1.1 joerg emu->x86.R_AX = fetch_word_imm(emu);
2919 1.1 joerg }
2920 1.1 joerg /****************************************************************************
2921 1.1 joerg REMARKS:
2922 1.1 joerg Handles opcode 0xb9
2923 1.1 joerg ****************************************************************************/
2924 1.1 joerg static void
2925 1.1 joerg x86emuOp_mov_word_CX_IMM(struct X86EMU *emu)
2926 1.1 joerg {
2927 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2928 1.1 joerg emu->x86.R_ECX = fetch_long_imm(emu);
2929 1.1 joerg else
2930 1.1 joerg emu->x86.R_CX = fetch_word_imm(emu);
2931 1.1 joerg }
2932 1.1 joerg /****************************************************************************
2933 1.1 joerg REMARKS:
2934 1.1 joerg Handles opcode 0xba
2935 1.1 joerg ****************************************************************************/
2936 1.1 joerg static void
2937 1.1 joerg x86emuOp_mov_word_DX_IMM(struct X86EMU *emu)
2938 1.1 joerg {
2939 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2940 1.1 joerg emu->x86.R_EDX = fetch_long_imm(emu);
2941 1.1 joerg else
2942 1.1 joerg emu->x86.R_DX = fetch_word_imm(emu);
2943 1.1 joerg }
2944 1.1 joerg /****************************************************************************
2945 1.1 joerg REMARKS:
2946 1.1 joerg Handles opcode 0xbb
2947 1.1 joerg ****************************************************************************/
2948 1.1 joerg static void
2949 1.1 joerg x86emuOp_mov_word_BX_IMM(struct X86EMU *emu)
2950 1.1 joerg {
2951 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2952 1.1 joerg emu->x86.R_EBX = fetch_long_imm(emu);
2953 1.1 joerg else
2954 1.1 joerg emu->x86.R_BX = fetch_word_imm(emu);
2955 1.1 joerg }
2956 1.1 joerg /****************************************************************************
2957 1.1 joerg REMARKS:
2958 1.1 joerg Handles opcode 0xbc
2959 1.1 joerg ****************************************************************************/
2960 1.1 joerg static void
2961 1.1 joerg x86emuOp_mov_word_SP_IMM(struct X86EMU *emu)
2962 1.1 joerg {
2963 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2964 1.1 joerg emu->x86.R_ESP = fetch_long_imm(emu);
2965 1.1 joerg else
2966 1.1 joerg emu->x86.R_SP = fetch_word_imm(emu);
2967 1.1 joerg }
2968 1.1 joerg /****************************************************************************
2969 1.1 joerg REMARKS:
2970 1.1 joerg Handles opcode 0xbd
2971 1.1 joerg ****************************************************************************/
2972 1.1 joerg static void
2973 1.1 joerg x86emuOp_mov_word_BP_IMM(struct X86EMU *emu)
2974 1.1 joerg {
2975 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2976 1.1 joerg emu->x86.R_EBP = fetch_long_imm(emu);
2977 1.1 joerg else
2978 1.1 joerg emu->x86.R_BP = fetch_word_imm(emu);
2979 1.1 joerg }
2980 1.1 joerg /****************************************************************************
2981 1.1 joerg REMARKS:
2982 1.1 joerg Handles opcode 0xbe
2983 1.1 joerg ****************************************************************************/
2984 1.1 joerg static void
2985 1.1 joerg x86emuOp_mov_word_SI_IMM(struct X86EMU *emu)
2986 1.1 joerg {
2987 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2988 1.1 joerg emu->x86.R_ESI = fetch_long_imm(emu);
2989 1.1 joerg else
2990 1.1 joerg emu->x86.R_SI = fetch_word_imm(emu);
2991 1.1 joerg }
2992 1.1 joerg /****************************************************************************
2993 1.1 joerg REMARKS:
2994 1.1 joerg Handles opcode 0xbf
2995 1.1 joerg ****************************************************************************/
2996 1.1 joerg static void
2997 1.1 joerg x86emuOp_mov_word_DI_IMM(struct X86EMU *emu)
2998 1.1 joerg {
2999 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
3000 1.1 joerg emu->x86.R_EDI = fetch_long_imm(emu);
3001 1.1 joerg else
3002 1.1 joerg emu->x86.R_DI = fetch_word_imm(emu);
3003 1.1 joerg }
3004 1.1 joerg /* used by opcodes c0, d0, and d2. */
3005 1.1 joerg static
3006 1.1 joerg uint8_t(* const opcD0_byte_operation[]) (struct X86EMU *, uint8_t d, uint8_t s) =
3007 1.1 joerg {
3008 1.1 joerg rol_byte,
3009 1.1 joerg ror_byte,
3010 1.1 joerg rcl_byte,
3011 1.1 joerg rcr_byte,
3012 1.1 joerg shl_byte,
3013 1.1 joerg shr_byte,
3014 1.1 joerg shl_byte, /* sal_byte === shl_byte by definition */
3015 1.1 joerg sar_byte,
3016 1.1 joerg };
3017 1.1 joerg /****************************************************************************
3018 1.1 joerg REMARKS:
3019 1.1 joerg Handles opcode 0xc0
3020 1.1 joerg ****************************************************************************/
3021 1.1 joerg static void
3022 1.1 joerg x86emuOp_opcC0_byte_RM_MEM(struct X86EMU *emu)
3023 1.1 joerg {
3024 1.1 joerg uint8_t destval, amt;
3025 1.1 joerg
3026 1.1 joerg /*
3027 1.1 joerg * Yet another weirdo special case instruction format. Part of
3028 1.1 joerg * the opcode held below in "RH". Doubly nested case would
3029 1.1 joerg * result, except that the decoded instruction
3030 1.1 joerg */
3031 1.1 joerg fetch_decode_modrm(emu);
3032 1.1 joerg /* know operation, decode the mod byte to find the addressing mode. */
3033 1.1 joerg destval = decode_and_fetch_byte_imm8(emu, &amt);
3034 1.1 joerg destval = (*opcD0_byte_operation[emu->cur_rh]) (emu, destval, amt);
3035 1.1 joerg write_back_byte(emu, destval);
3036 1.1 joerg }
3037 1.1 joerg /* used by opcodes c1, d1, and d3. */
3038 1.1 joerg static
3039 1.1 joerg uint16_t(* const opcD1_word_operation[]) (struct X86EMU *, uint16_t s, uint8_t d) =
3040 1.1 joerg {
3041 1.1 joerg rol_word,
3042 1.1 joerg ror_word,
3043 1.1 joerg rcl_word,
3044 1.1 joerg rcr_word,
3045 1.1 joerg shl_word,
3046 1.1 joerg shr_word,
3047 1.1 joerg shl_word, /* sal_byte === shl_byte by definition */
3048 1.1 joerg sar_word,
3049 1.1 joerg };
3050 1.1 joerg /* used by opcodes c1, d1, and d3. */
3051 1.1 joerg static
3052 1.1 joerg uint32_t(* const opcD1_long_operation[]) (struct X86EMU *, uint32_t s, uint8_t d) =
3053 1.1 joerg {
3054 1.1 joerg rol_long,
3055 1.1 joerg ror_long,
3056 1.1 joerg rcl_long,
3057 1.1 joerg rcr_long,
3058 1.1 joerg shl_long,
3059 1.1 joerg shr_long,
3060 1.1 joerg shl_long, /* sal_byte === shl_byte by definition */
3061 1.1 joerg sar_long,
3062 1.1 joerg };
3063 1.1 joerg /****************************************************************************
3064 1.1 joerg REMARKS:
3065 1.1 joerg Handles opcode 0xc1
3066 1.1 joerg ****************************************************************************/
3067 1.1 joerg static void
3068 1.1 joerg x86emuOp_opcC1_word_RM_MEM(struct X86EMU *emu)
3069 1.1 joerg {
3070 1.1 joerg uint8_t amt;
3071 1.1 joerg
3072 1.1 joerg /*
3073 1.1 joerg * Yet another weirdo special case instruction format. Part of
3074 1.1 joerg * the opcode held below in "RH". Doubly nested case would
3075 1.1 joerg * result, except that the decoded instruction
3076 1.1 joerg */
3077 1.1 joerg fetch_decode_modrm(emu);
3078 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
3079 1.1 joerg uint32_t destval;
3080 1.1 joerg
3081 1.1 joerg destval = decode_and_fetch_long_imm8(emu, &amt);
3082 1.1 joerg destval = (*opcD1_long_operation[emu->cur_rh]) (emu, destval, amt);
3083 1.1 joerg write_back_long(emu, destval);
3084 1.1 joerg } else {
3085 1.1 joerg uint16_t destval;
3086 1.1 joerg
3087 1.1 joerg destval = decode_and_fetch_word_imm8(emu, &amt);
3088 1.1 joerg destval = (*opcD1_word_operation[emu->cur_rh]) (emu, destval, amt);
3089 1.1 joerg write_back_word(emu, destval);
3090 1.1 joerg }
3091 1.1 joerg }
3092 1.1 joerg /****************************************************************************
3093 1.1 joerg REMARKS:
3094 1.1 joerg Handles opcode 0xc2
3095 1.1 joerg ****************************************************************************/
3096 1.1 joerg static void
3097 1.1 joerg x86emuOp_ret_near_IMM(struct X86EMU *emu)
3098 1.1 joerg {
3099 1.1 joerg uint16_t imm;
3100 1.1 joerg
3101 1.1 joerg imm = fetch_word_imm(emu);
3102 1.1 joerg emu->x86.R_IP = pop_word(emu);
3103 1.1 joerg emu->x86.R_SP += imm;
3104 1.1 joerg }
3105 1.1 joerg /****************************************************************************
3106 1.1 joerg REMARKS:
3107 1.1 joerg Handles opcode 0xc6
3108 1.1 joerg ****************************************************************************/
3109 1.1 joerg static void
3110 1.1 joerg x86emuOp_mov_byte_RM_IMM(struct X86EMU *emu)
3111 1.1 joerg {
3112 1.1 joerg uint8_t *destreg;
3113 1.1 joerg uint32_t destoffset;
3114 1.1 joerg uint8_t imm;
3115 1.1 joerg
3116 1.1 joerg fetch_decode_modrm(emu);
3117 1.1 joerg if (emu->cur_rh != 0)
3118 1.1 joerg X86EMU_halt_sys(emu);
3119 1.1 joerg if (emu->cur_mod != 3) {
3120 1.1 joerg destoffset = decode_rl_address(emu);
3121 1.1 joerg imm = fetch_byte_imm(emu);
3122 1.1 joerg store_data_byte(emu, destoffset, imm);
3123 1.1 joerg } else {
3124 1.1 joerg destreg = decode_rl_byte_register(emu);
3125 1.1 joerg imm = fetch_byte_imm(emu);
3126 1.1 joerg *destreg = imm;
3127 1.1 joerg }
3128 1.1 joerg }
3129 1.1 joerg /****************************************************************************
3130 1.1 joerg REMARKS:
3131 1.1 joerg Handles opcode 0xc7
3132 1.1 joerg ****************************************************************************/
3133 1.1 joerg static void
3134 1.1 joerg x86emuOp32_mov_word_RM_IMM(struct X86EMU *emu)
3135 1.1 joerg {
3136 1.1 joerg uint32_t destoffset;
3137 1.1 joerg uint32_t imm, *destreg;
3138 1.1 joerg
3139 1.1 joerg fetch_decode_modrm(emu);
3140 1.1 joerg if (emu->cur_rh != 0)
3141 1.1 joerg X86EMU_halt_sys(emu);
3142 1.1 joerg
3143 1.1 joerg if (emu->cur_mod != 3) {
3144 1.1 joerg destoffset = decode_rl_address(emu);
3145 1.1 joerg imm = fetch_long_imm(emu);
3146 1.1 joerg store_data_long(emu, destoffset, imm);
3147 1.1 joerg } else {
3148 1.1 joerg destreg = decode_rl_long_register(emu);
3149 1.1 joerg imm = fetch_long_imm(emu);
3150 1.1 joerg *destreg = imm;
3151 1.1 joerg }
3152 1.1 joerg }
3153 1.1 joerg
3154 1.1 joerg static void
3155 1.1 joerg x86emuOp16_mov_word_RM_IMM(struct X86EMU *emu)
3156 1.1 joerg {
3157 1.1 joerg uint32_t destoffset;
3158 1.1 joerg uint16_t imm, *destreg;
3159 1.1 joerg
3160 1.1 joerg fetch_decode_modrm(emu);
3161 1.1 joerg if (emu->cur_rh != 0)
3162 1.1 joerg X86EMU_halt_sys(emu);
3163 1.1 joerg
3164 1.1 joerg if (emu->cur_mod != 3) {
3165 1.1 joerg destoffset = decode_rl_address(emu);
3166 1.1 joerg imm = fetch_word_imm(emu);
3167 1.1 joerg store_data_word(emu, destoffset, imm);
3168 1.1 joerg } else {
3169 1.1 joerg destreg = decode_rl_word_register(emu);
3170 1.1 joerg imm = fetch_word_imm(emu);
3171 1.1 joerg *destreg = imm;
3172 1.1 joerg }
3173 1.1 joerg }
3174 1.1 joerg
3175 1.1 joerg static void
3176 1.1 joerg x86emuOp_mov_word_RM_IMM(struct X86EMU *emu)
3177 1.1 joerg {
3178 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
3179 1.1 joerg x86emuOp32_mov_word_RM_IMM(emu);
3180 1.1 joerg else
3181 1.1 joerg x86emuOp16_mov_word_RM_IMM(emu);
3182 1.1 joerg }
3183 1.1 joerg /****************************************************************************
3184 1.1 joerg REMARKS:
3185 1.1 joerg Handles opcode 0xc8
3186 1.1 joerg ****************************************************************************/
3187 1.1 joerg static void
3188 1.1 joerg x86emuOp_enter(struct X86EMU *emu)
3189 1.1 joerg {
3190 1.1 joerg uint16_t local, frame_pointer;
3191 1.1 joerg uint8_t nesting;
3192 1.1 joerg int i;
3193 1.1 joerg
3194 1.1 joerg local = fetch_word_imm(emu);
3195 1.1 joerg nesting = fetch_byte_imm(emu);
3196 1.1 joerg push_word(emu, emu->x86.R_BP);
3197 1.1 joerg frame_pointer = emu->x86.R_SP;
3198 1.1 joerg if (nesting > 0) {
3199 1.1 joerg for (i = 1; i < nesting; i++) {
3200 1.1 joerg emu->x86.R_BP -= 2;
3201 1.1 joerg push_word(emu, fetch_word(emu, emu->x86.R_SS, emu->x86.R_BP));
3202 1.1 joerg }
3203 1.1 joerg push_word(emu, frame_pointer);
3204 1.1 joerg }
3205 1.1 joerg emu->x86.R_BP = frame_pointer;
3206 1.1 joerg emu->x86.R_SP = (uint16_t) (emu->x86.R_SP - local);
3207 1.1 joerg }
3208 1.1 joerg /****************************************************************************
3209 1.1 joerg REMARKS:
3210 1.1 joerg Handles opcode 0xc9
3211 1.1 joerg ****************************************************************************/
3212 1.1 joerg static void
3213 1.1 joerg x86emuOp_leave(struct X86EMU *emu)
3214 1.1 joerg {
3215 1.1 joerg emu->x86.R_SP = emu->x86.R_BP;
3216 1.1 joerg emu->x86.R_BP = pop_word(emu);
3217 1.1 joerg }
3218 1.1 joerg /****************************************************************************
3219 1.1 joerg REMARKS:
3220 1.1 joerg Handles opcode 0xca
3221 1.1 joerg ****************************************************************************/
3222 1.1 joerg static void
3223 1.1 joerg x86emuOp_ret_far_IMM(struct X86EMU *emu)
3224 1.1 joerg {
3225 1.1 joerg uint16_t imm;
3226 1.1 joerg
3227 1.1 joerg imm = fetch_word_imm(emu);
3228 1.1 joerg emu->x86.R_IP = pop_word(emu);
3229 1.1 joerg emu->x86.R_CS = pop_word(emu);
3230 1.1 joerg emu->x86.R_SP += imm;
3231 1.1 joerg }
3232 1.1 joerg /****************************************************************************
3233 1.1 joerg REMARKS:
3234 1.1 joerg Handles opcode 0xcb
3235 1.1 joerg ****************************************************************************/
3236 1.1 joerg static void
3237 1.1 joerg x86emuOp_ret_far(struct X86EMU *emu)
3238 1.1 joerg {
3239 1.1 joerg emu->x86.R_IP = pop_word(emu);
3240 1.1 joerg emu->x86.R_CS = pop_word(emu);
3241 1.1 joerg }
3242 1.1 joerg /****************************************************************************
3243 1.1 joerg REMARKS:
3244 1.1 joerg Handles opcode 0xcc
3245 1.1 joerg ****************************************************************************/
3246 1.1 joerg static void
3247 1.1 joerg x86emuOp_int3(struct X86EMU *emu)
3248 1.1 joerg {
3249 1.1 joerg if (emu->_X86EMU_intrTab[3]) {
3250 1.1 joerg (*emu->_X86EMU_intrTab[3]) (emu, 3);
3251 1.1 joerg } else {
3252 1.1 joerg push_word(emu, (uint16_t) emu->x86.R_FLG);
3253 1.1 joerg CLEAR_FLAG(F_IF);
3254 1.1 joerg CLEAR_FLAG(F_TF);
3255 1.1 joerg push_word(emu, emu->x86.R_CS);
3256 1.1 joerg emu->x86.R_CS = fetch_word(emu, 0, 3 * 4 + 2);
3257 1.1 joerg push_word(emu, emu->x86.R_IP);
3258 1.1 joerg emu->x86.R_IP = fetch_word(emu, 0, 3 * 4);
3259 1.1 joerg }
3260 1.1 joerg }
3261 1.1 joerg /****************************************************************************
3262 1.1 joerg REMARKS:
3263 1.1 joerg Handles opcode 0xcd
3264 1.1 joerg ****************************************************************************/
3265 1.1 joerg static void
3266 1.1 joerg x86emuOp_int_IMM(struct X86EMU *emu)
3267 1.1 joerg {
3268 1.1 joerg uint8_t intnum;
3269 1.1 joerg
3270 1.1 joerg intnum = fetch_byte_imm(emu);
3271 1.1 joerg if (emu->_X86EMU_intrTab[intnum]) {
3272 1.1 joerg (*emu->_X86EMU_intrTab[intnum]) (emu, intnum);
3273 1.1 joerg } else {
3274 1.1 joerg push_word(emu, (uint16_t) emu->x86.R_FLG);
3275 1.1 joerg CLEAR_FLAG(F_IF);
3276 1.1 joerg CLEAR_FLAG(F_TF);
3277 1.1 joerg push_word(emu, emu->x86.R_CS);
3278 1.1 joerg emu->x86.R_CS = fetch_word(emu, 0, intnum * 4 + 2);
3279 1.1 joerg push_word(emu, emu->x86.R_IP);
3280 1.1 joerg emu->x86.R_IP = fetch_word(emu, 0, intnum * 4);
3281 1.1 joerg }
3282 1.1 joerg }
3283 1.1 joerg /****************************************************************************
3284 1.1 joerg REMARKS:
3285 1.1 joerg Handles opcode 0xce
3286 1.1 joerg ****************************************************************************/
3287 1.1 joerg static void
3288 1.1 joerg x86emuOp_into(struct X86EMU *emu)
3289 1.1 joerg {
3290 1.1 joerg if (ACCESS_FLAG(F_OF)) {
3291 1.1 joerg if (emu->_X86EMU_intrTab[4]) {
3292 1.1 joerg (*emu->_X86EMU_intrTab[4]) (emu, 4);
3293 1.1 joerg } else {
3294 1.1 joerg push_word(emu, (uint16_t) emu->x86.R_FLG);
3295 1.1 joerg CLEAR_FLAG(F_IF);
3296 1.1 joerg CLEAR_FLAG(F_TF);
3297 1.1 joerg push_word(emu, emu->x86.R_CS);
3298 1.1 joerg emu->x86.R_CS = fetch_word(emu, 0, 4 * 4 + 2);
3299 1.1 joerg push_word(emu, emu->x86.R_IP);
3300 1.1 joerg emu->x86.R_IP = fetch_word(emu, 0, 4 * 4);
3301 1.1 joerg }
3302 1.1 joerg }
3303 1.1 joerg }
3304 1.1 joerg /****************************************************************************
3305 1.1 joerg REMARKS:
3306 1.1 joerg Handles opcode 0xcf
3307 1.1 joerg ****************************************************************************/
3308 1.1 joerg static void
3309 1.1 joerg x86emuOp_iret(struct X86EMU *emu)
3310 1.1 joerg {
3311 1.1 joerg emu->x86.R_IP = pop_word(emu);
3312 1.1 joerg emu->x86.R_CS = pop_word(emu);
3313 1.1 joerg emu->x86.R_FLG = pop_word(emu);
3314 1.1 joerg }
3315 1.1 joerg /****************************************************************************
3316 1.1 joerg REMARKS:
3317 1.1 joerg Handles opcode 0xd0
3318 1.1 joerg ****************************************************************************/
3319 1.1 joerg static void
3320 1.1 joerg x86emuOp_opcD0_byte_RM_1(struct X86EMU *emu)
3321 1.1 joerg {
3322 1.1 joerg uint8_t destval;
3323 1.1 joerg
3324 1.1 joerg fetch_decode_modrm(emu);
3325 1.1 joerg destval = decode_and_fetch_byte(emu);
3326 1.1 joerg destval = (*opcD0_byte_operation[emu->cur_rh]) (emu, destval, 1);
3327 1.1 joerg write_back_byte(emu, destval);
3328 1.1 joerg }
3329 1.1 joerg /****************************************************************************
3330 1.1 joerg REMARKS:
3331 1.1 joerg Handles opcode 0xd1
3332 1.1 joerg ****************************************************************************/
3333 1.1 joerg static void
3334 1.1 joerg x86emuOp_opcD1_word_RM_1(struct X86EMU *emu)
3335 1.1 joerg {
3336 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
3337 1.1 joerg uint32_t destval;
3338 1.1 joerg
3339 1.1 joerg fetch_decode_modrm(emu);
3340 1.1 joerg destval = decode_and_fetch_long(emu);
3341 1.1 joerg destval = (*opcD1_long_operation[emu->cur_rh]) (emu, destval, 1);
3342 1.1 joerg write_back_long(emu, destval);
3343 1.1 joerg } else {
3344 1.1 joerg uint16_t destval;
3345 1.1 joerg
3346 1.1 joerg fetch_decode_modrm(emu);
3347 1.1 joerg destval = decode_and_fetch_word(emu);
3348 1.1 joerg destval = (*opcD1_word_operation[emu->cur_rh]) (emu, destval, 1);
3349 1.1 joerg write_back_word(emu, destval);
3350 1.1 joerg }
3351 1.1 joerg }
3352 1.1 joerg /****************************************************************************
3353 1.1 joerg REMARKS:
3354 1.1 joerg Handles opcode 0xd2
3355 1.1 joerg ****************************************************************************/
3356 1.1 joerg static void
3357 1.1 joerg x86emuOp_opcD2_byte_RM_CL(struct X86EMU *emu)
3358 1.1 joerg {
3359 1.1 joerg uint8_t destval;
3360 1.1 joerg
3361 1.1 joerg fetch_decode_modrm(emu);
3362 1.1 joerg destval = decode_and_fetch_byte(emu);
3363 1.1 joerg destval = (*opcD0_byte_operation[emu->cur_rh]) (emu, destval, emu->x86.R_CL);
3364 1.1 joerg write_back_byte(emu, destval);
3365 1.1 joerg }
3366 1.1 joerg /****************************************************************************
3367 1.1 joerg REMARKS:
3368 1.1 joerg Handles opcode 0xd3
3369 1.1 joerg ****************************************************************************/
3370 1.1 joerg static void
3371 1.1 joerg x86emuOp_opcD3_word_RM_CL(struct X86EMU *emu)
3372 1.1 joerg {
3373 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
3374 1.1 joerg uint32_t destval;
3375 1.1 joerg
3376 1.1 joerg fetch_decode_modrm(emu);
3377 1.1 joerg destval = decode_and_fetch_long(emu);
3378 1.1 joerg destval = (*opcD1_long_operation[emu->cur_rh]) (emu, destval, emu->x86.R_CL);
3379 1.1 joerg write_back_long(emu, destval);
3380 1.1 joerg } else {
3381 1.1 joerg uint16_t destval;
3382 1.1 joerg
3383 1.1 joerg fetch_decode_modrm(emu);
3384 1.1 joerg destval = decode_and_fetch_word(emu);
3385 1.1 joerg destval = (*opcD1_word_operation[emu->cur_rh]) (emu, destval, emu->x86.R_CL);
3386 1.1 joerg write_back_word(emu, destval);
3387 1.1 joerg }
3388 1.1 joerg }
3389 1.1 joerg /****************************************************************************
3390 1.1 joerg REMARKS:
3391 1.1 joerg Handles opcode 0xd4
3392 1.1 joerg ****************************************************************************/
3393 1.1 joerg static void
3394 1.1 joerg x86emuOp_aam(struct X86EMU *emu)
3395 1.1 joerg {
3396 1.1 joerg uint8_t a;
3397 1.1 joerg
3398 1.1 joerg a = fetch_byte_imm(emu); /* this is a stupid encoding. */
3399 1.1 joerg if (a != 10) {
3400 1.1 joerg /* fix: add base decoding aam_word(uint8_t val, int base a) */
3401 1.1 joerg X86EMU_halt_sys(emu);
3402 1.1 joerg }
3403 1.1 joerg /* note the type change here --- returning AL and AH in AX. */
3404 1.1 joerg emu->x86.R_AX = aam_word(emu, emu->x86.R_AL);
3405 1.1 joerg }
3406 1.1 joerg /****************************************************************************
3407 1.1 joerg REMARKS:
3408 1.1 joerg Handles opcode 0xd5
3409 1.1 joerg ****************************************************************************/
3410 1.1 joerg static void
3411 1.1 joerg x86emuOp_aad(struct X86EMU *emu)
3412 1.1 joerg {
3413 1.1 joerg uint8_t a;
3414 1.1 joerg
3415 1.1 joerg a = fetch_byte_imm(emu);
3416 1.1 joerg if (a != 10) {
3417 1.1 joerg /* fix: add base decoding aad_word(uint16_t val, int base a) */
3418 1.1 joerg X86EMU_halt_sys(emu);
3419 1.1 joerg }
3420 1.1 joerg emu->x86.R_AX = aad_word(emu, emu->x86.R_AX);
3421 1.1 joerg }
3422 1.1 joerg /* opcode 0xd6 ILLEGAL OPCODE */
3423 1.1 joerg
3424 1.1 joerg /****************************************************************************
3425 1.1 joerg REMARKS:
3426 1.1 joerg Handles opcode 0xd7
3427 1.1 joerg ****************************************************************************/
3428 1.1 joerg static void
3429 1.1 joerg x86emuOp_xlat(struct X86EMU *emu)
3430 1.1 joerg {
3431 1.1 joerg uint16_t addr;
3432 1.1 joerg
3433 1.1 joerg addr = (uint16_t) (emu->x86.R_BX + (uint8_t) emu->x86.R_AL);
3434 1.1 joerg emu->x86.R_AL = fetch_data_byte(emu, addr);
3435 1.1 joerg }
3436 1.1 joerg
3437 1.1 joerg /* opcode=0xd8 */
3438 1.1 joerg static void
3439 1.1 joerg x86emuOp_esc_coprocess_d8(struct X86EMU *emu)
3440 1.1 joerg {
3441 1.1 joerg }
3442 1.1 joerg /* opcode=0xd9 */
3443 1.1 joerg static void
3444 1.1 joerg x86emuOp_esc_coprocess_d9(struct X86EMU *emu)
3445 1.1 joerg {
3446 1.1 joerg fetch_decode_modrm(emu);
3447 1.1 joerg if (emu->cur_mod != 3)
3448 1.1 joerg decode_rl_address(emu);
3449 1.1 joerg }
3450 1.1 joerg /* opcode=0xda */
3451 1.1 joerg static void
3452 1.1 joerg x86emuOp_esc_coprocess_da(struct X86EMU *emu)
3453 1.1 joerg {
3454 1.1 joerg fetch_decode_modrm(emu);
3455 1.1 joerg if (emu->cur_mod != 3)
3456 1.1 joerg decode_rl_address(emu);
3457 1.1 joerg }
3458 1.1 joerg /* opcode=0xdb */
3459 1.1 joerg static void
3460 1.1 joerg x86emuOp_esc_coprocess_db(struct X86EMU *emu)
3461 1.1 joerg {
3462 1.1 joerg fetch_decode_modrm(emu);
3463 1.1 joerg if (emu->cur_mod != 3)
3464 1.1 joerg decode_rl_address(emu);
3465 1.1 joerg }
3466 1.1 joerg /* opcode=0xdc */
3467 1.1 joerg static void
3468 1.1 joerg x86emuOp_esc_coprocess_dc(struct X86EMU *emu)
3469 1.1 joerg {
3470 1.1 joerg fetch_decode_modrm(emu);
3471 1.1 joerg if (emu->cur_mod != 3)
3472 1.1 joerg decode_rl_address(emu);
3473 1.1 joerg }
3474 1.1 joerg /* opcode=0xdd */
3475 1.1 joerg static void
3476 1.1 joerg x86emuOp_esc_coprocess_dd(struct X86EMU *emu)
3477 1.1 joerg {
3478 1.1 joerg fetch_decode_modrm(emu);
3479 1.1 joerg if (emu->cur_mod != 3)
3480 1.1 joerg decode_rl_address(emu);
3481 1.1 joerg }
3482 1.1 joerg /* opcode=0xde */
3483 1.1 joerg static void
3484 1.1 joerg x86emuOp_esc_coprocess_de(struct X86EMU *emu)
3485 1.1 joerg {
3486 1.1 joerg fetch_decode_modrm(emu);
3487 1.1 joerg if (emu->cur_mod != 3)
3488 1.1 joerg decode_rl_address(emu);
3489 1.1 joerg }
3490 1.1 joerg /* opcode=0xdf */
3491 1.1 joerg static void
3492 1.1 joerg x86emuOp_esc_coprocess_df(struct X86EMU *emu)
3493 1.1 joerg {
3494 1.1 joerg fetch_decode_modrm(emu);
3495 1.1 joerg if (emu->cur_mod != 3)
3496 1.1 joerg decode_rl_address(emu);
3497 1.1 joerg }
3498 1.1 joerg
3499 1.1 joerg /****************************************************************************
3500 1.1 joerg REMARKS:
3501 1.1 joerg Handles opcode 0xe0
3502 1.1 joerg ****************************************************************************/
3503 1.1 joerg static void
3504 1.1 joerg x86emuOp_loopne(struct X86EMU *emu)
3505 1.1 joerg {
3506 1.1 joerg int16_t ip;
3507 1.1 joerg
3508 1.1 joerg ip = (int8_t) fetch_byte_imm(emu);
3509 1.1 joerg ip += (int16_t) emu->x86.R_IP;
3510 1.1 joerg emu->x86.R_CX -= 1;
3511 1.1 joerg if (emu->x86.R_CX != 0 && !ACCESS_FLAG(F_ZF)) /* CX != 0 and !ZF */
3512 1.1 joerg emu->x86.R_IP = ip;
3513 1.1 joerg }
3514 1.1 joerg /****************************************************************************
3515 1.1 joerg REMARKS:
3516 1.1 joerg Handles opcode 0xe1
3517 1.1 joerg ****************************************************************************/
3518 1.1 joerg static void
3519 1.1 joerg x86emuOp_loope(struct X86EMU *emu)
3520 1.1 joerg {
3521 1.1 joerg int16_t ip;
3522 1.1 joerg
3523 1.1 joerg ip = (int8_t) fetch_byte_imm(emu);
3524 1.1 joerg ip += (int16_t) emu->x86.R_IP;
3525 1.1 joerg emu->x86.R_CX -= 1;
3526 1.1 joerg if (emu->x86.R_CX != 0 && ACCESS_FLAG(F_ZF)) /* CX != 0 and ZF */
3527 1.1 joerg emu->x86.R_IP = ip;
3528 1.1 joerg }
3529 1.1 joerg /****************************************************************************
3530 1.1 joerg REMARKS:
3531 1.1 joerg Handles opcode 0xe2
3532 1.1 joerg ****************************************************************************/
3533 1.1 joerg static void
3534 1.1 joerg x86emuOp_loop(struct X86EMU *emu)
3535 1.1 joerg {
3536 1.1 joerg int16_t ip;
3537 1.1 joerg
3538 1.1 joerg ip = (int8_t) fetch_byte_imm(emu);
3539 1.1 joerg ip += (int16_t) emu->x86.R_IP;
3540 1.1 joerg emu->x86.R_CX -= 1;
3541 1.1 joerg if (emu->x86.R_CX != 0)
3542 1.1 joerg emu->x86.R_IP = ip;
3543 1.1 joerg }
3544 1.1 joerg /****************************************************************************
3545 1.1 joerg REMARKS:
3546 1.1 joerg Handles opcode 0xe3
3547 1.1 joerg ****************************************************************************/
3548 1.1 joerg static void
3549 1.1 joerg x86emuOp_jcxz(struct X86EMU *emu)
3550 1.1 joerg {
3551 1.1 joerg uint16_t target;
3552 1.1 joerg int8_t offset;
3553 1.1 joerg
3554 1.1 joerg /* jump to byte offset if overflow flag is set */
3555 1.1 joerg offset = (int8_t) fetch_byte_imm(emu);
3556 1.1 joerg target = (uint16_t) (emu->x86.R_IP + offset);
3557 1.1 joerg if (emu->x86.R_CX == 0)
3558 1.1 joerg emu->x86.R_IP = target;
3559 1.1 joerg }
3560 1.1 joerg /****************************************************************************
3561 1.1 joerg REMARKS:
3562 1.1 joerg Handles opcode 0xe4
3563 1.1 joerg ****************************************************************************/
3564 1.1 joerg static void
3565 1.1 joerg x86emuOp_in_byte_AL_IMM(struct X86EMU *emu)
3566 1.1 joerg {
3567 1.1 joerg uint8_t port;
3568 1.1 joerg
3569 1.1 joerg port = (uint8_t) fetch_byte_imm(emu);
3570 1.1 joerg emu->x86.R_AL = (*emu->emu_inb) (emu, port);
3571 1.1 joerg }
3572 1.1 joerg /****************************************************************************
3573 1.1 joerg REMARKS:
3574 1.1 joerg Handles opcode 0xe5
3575 1.1 joerg ****************************************************************************/
3576 1.1 joerg static void
3577 1.1 joerg x86emuOp_in_word_AX_IMM(struct X86EMU *emu)
3578 1.1 joerg {
3579 1.1 joerg uint8_t port;
3580 1.1 joerg
3581 1.1 joerg port = (uint8_t) fetch_byte_imm(emu);
3582 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
3583 1.1 joerg emu->x86.R_EAX = (*emu->emu_inl) (emu, port);
3584 1.1 joerg } else {
3585 1.1 joerg emu->x86.R_AX = (*emu->emu_inw) (emu, port);
3586 1.1 joerg }
3587 1.1 joerg }
3588 1.1 joerg /****************************************************************************
3589 1.1 joerg REMARKS:
3590 1.1 joerg Handles opcode 0xe6
3591 1.1 joerg ****************************************************************************/
3592 1.1 joerg static void
3593 1.1 joerg x86emuOp_out_byte_IMM_AL(struct X86EMU *emu)
3594 1.1 joerg {
3595 1.1 joerg uint8_t port;
3596 1.1 joerg
3597 1.1 joerg port = (uint8_t) fetch_byte_imm(emu);
3598 1.1 joerg (*emu->emu_outb) (emu, port, emu->x86.R_AL);
3599 1.1 joerg }
3600 1.1 joerg /****************************************************************************
3601 1.1 joerg REMARKS:
3602 1.1 joerg Handles opcode 0xe7
3603 1.1 joerg ****************************************************************************/
3604 1.1 joerg static void
3605 1.1 joerg x86emuOp_out_word_IMM_AX(struct X86EMU *emu)
3606 1.1 joerg {
3607 1.1 joerg uint8_t port;
3608 1.1 joerg
3609 1.1 joerg port = (uint8_t) fetch_byte_imm(emu);
3610 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
3611 1.1 joerg (*emu->emu_outl) (emu, port, emu->x86.R_EAX);
3612 1.1 joerg } else {
3613 1.1 joerg (*emu->emu_outw) (emu, port, emu->x86.R_AX);
3614 1.1 joerg }
3615 1.1 joerg }
3616 1.1 joerg /****************************************************************************
3617 1.1 joerg REMARKS:
3618 1.1 joerg Handles opcode 0xe8
3619 1.1 joerg ****************************************************************************/
3620 1.1 joerg static void
3621 1.1 joerg x86emuOp_call_near_IMM(struct X86EMU *emu)
3622 1.1 joerg {
3623 1.1 joerg int16_t ip;
3624 1.1 joerg
3625 1.1 joerg ip = (int16_t) fetch_word_imm(emu);
3626 1.1 joerg ip += (int16_t) emu->x86.R_IP; /* CHECK SIGN */
3627 1.1 joerg push_word(emu, emu->x86.R_IP);
3628 1.1 joerg emu->x86.R_IP = ip;
3629 1.1 joerg }
3630 1.1 joerg /****************************************************************************
3631 1.1 joerg REMARKS:
3632 1.1 joerg Handles opcode 0xe9
3633 1.1 joerg ****************************************************************************/
3634 1.1 joerg static void
3635 1.1 joerg x86emuOp_jump_near_IMM(struct X86EMU *emu)
3636 1.1 joerg {
3637 1.1 joerg int ip;
3638 1.1 joerg
3639 1.1 joerg ip = (int16_t) fetch_word_imm(emu);
3640 1.1 joerg ip += (int16_t) emu->x86.R_IP;
3641 1.1 joerg emu->x86.R_IP = (uint16_t) ip;
3642 1.1 joerg }
3643 1.1 joerg /****************************************************************************
3644 1.1 joerg REMARKS:
3645 1.1 joerg Handles opcode 0xea
3646 1.1 joerg ****************************************************************************/
3647 1.1 joerg static void
3648 1.1 joerg x86emuOp_jump_far_IMM(struct X86EMU *emu)
3649 1.1 joerg {
3650 1.1 joerg uint16_t cs, ip;
3651 1.1 joerg
3652 1.1 joerg ip = fetch_word_imm(emu);
3653 1.1 joerg cs = fetch_word_imm(emu);
3654 1.1 joerg emu->x86.R_IP = ip;
3655 1.1 joerg emu->x86.R_CS = cs;
3656 1.1 joerg }
3657 1.1 joerg /****************************************************************************
3658 1.1 joerg REMARKS:
3659 1.1 joerg Handles opcode 0xeb
3660 1.1 joerg ****************************************************************************/
3661 1.1 joerg static void
3662 1.1 joerg x86emuOp_jump_byte_IMM(struct X86EMU *emu)
3663 1.1 joerg {
3664 1.1 joerg uint16_t target;
3665 1.1 joerg int8_t offset;
3666 1.1 joerg
3667 1.1 joerg offset = (int8_t) fetch_byte_imm(emu);
3668 1.1 joerg target = (uint16_t) (emu->x86.R_IP + offset);
3669 1.1 joerg emu->x86.R_IP = target;
3670 1.1 joerg }
3671 1.1 joerg /****************************************************************************
3672 1.1 joerg REMARKS:
3673 1.1 joerg Handles opcode 0xec
3674 1.1 joerg ****************************************************************************/
3675 1.1 joerg static void
3676 1.1 joerg x86emuOp_in_byte_AL_DX(struct X86EMU *emu)
3677 1.1 joerg {
3678 1.1 joerg emu->x86.R_AL = (*emu->emu_inb) (emu, emu->x86.R_DX);
3679 1.1 joerg }
3680 1.1 joerg /****************************************************************************
3681 1.1 joerg REMARKS:
3682 1.1 joerg Handles opcode 0xed
3683 1.1 joerg ****************************************************************************/
3684 1.1 joerg static void
3685 1.1 joerg x86emuOp_in_word_AX_DX(struct X86EMU *emu)
3686 1.1 joerg {
3687 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
3688 1.1 joerg emu->x86.R_EAX = (*emu->emu_inl) (emu, emu->x86.R_DX);
3689 1.1 joerg } else {
3690 1.1 joerg emu->x86.R_AX = (*emu->emu_inw) (emu, emu->x86.R_DX);
3691 1.1 joerg }
3692 1.1 joerg }
3693 1.1 joerg /****************************************************************************
3694 1.1 joerg REMARKS:
3695 1.1 joerg Handles opcode 0xee
3696 1.1 joerg ****************************************************************************/
3697 1.1 joerg static void
3698 1.1 joerg x86emuOp_out_byte_DX_AL(struct X86EMU *emu)
3699 1.1 joerg {
3700 1.1 joerg (*emu->emu_outb) (emu, emu->x86.R_DX, emu->x86.R_AL);
3701 1.1 joerg }
3702 1.1 joerg /****************************************************************************
3703 1.1 joerg REMARKS:
3704 1.1 joerg Handles opcode 0xef
3705 1.1 joerg ****************************************************************************/
3706 1.1 joerg static void
3707 1.1 joerg x86emuOp_out_word_DX_AX(struct X86EMU *emu)
3708 1.1 joerg {
3709 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
3710 1.1 joerg (*emu->emu_outl) (emu, emu->x86.R_DX, emu->x86.R_EAX);
3711 1.1 joerg } else {
3712 1.1 joerg (*emu->emu_outw) (emu, emu->x86.R_DX, emu->x86.R_AX);
3713 1.1 joerg }
3714 1.1 joerg }
3715 1.1 joerg /****************************************************************************
3716 1.1 joerg REMARKS:
3717 1.1 joerg Handles opcode 0xf0
3718 1.1 joerg ****************************************************************************/
3719 1.1 joerg static void
3720 1.1 joerg x86emuOp_lock(struct X86EMU *emu)
3721 1.1 joerg {
3722 1.1 joerg }
3723 1.1 joerg /*opcode 0xf1 ILLEGAL OPERATION */
3724 1.1 joerg
3725 1.1 joerg /****************************************************************************
3726 1.1 joerg REMARKS:
3727 1.1 joerg Handles opcode 0xf5
3728 1.1 joerg ****************************************************************************/
3729 1.1 joerg static void
3730 1.1 joerg x86emuOp_cmc(struct X86EMU *emu)
3731 1.1 joerg {
3732 1.1 joerg if (ACCESS_FLAG(F_CF))
3733 1.1 joerg CLEAR_FLAG(F_CF);
3734 1.1 joerg else
3735 1.1 joerg SET_FLAG(F_CF);
3736 1.1 joerg }
3737 1.1 joerg /****************************************************************************
3738 1.1 joerg REMARKS:
3739 1.1 joerg Handles opcode 0xf6
3740 1.1 joerg ****************************************************************************/
3741 1.1 joerg static void
3742 1.1 joerg x86emuOp_opcF6_byte_RM(struct X86EMU *emu)
3743 1.1 joerg {
3744 1.1 joerg uint8_t destval, srcval;
3745 1.1 joerg
3746 1.1 joerg /* long, drawn out code follows. Double switch for a total of 32
3747 1.1 joerg * cases. */
3748 1.1 joerg fetch_decode_modrm(emu);
3749 1.1 joerg if (emu->cur_rh == 1)
3750 1.1 joerg X86EMU_halt_sys(emu);
3751 1.1 joerg
3752 1.1 joerg if (emu->cur_rh == 0) {
3753 1.1 joerg destval = decode_and_fetch_byte_imm8(emu, &srcval);
3754 1.1 joerg test_byte(emu, destval, srcval);
3755 1.1 joerg return;
3756 1.1 joerg }
3757 1.1 joerg destval = decode_and_fetch_byte(emu);
3758 1.1 joerg switch (emu->cur_rh) {
3759 1.1 joerg case 2:
3760 1.1 joerg destval = ~destval;
3761 1.1 joerg write_back_byte(emu, destval);
3762 1.1 joerg break;
3763 1.1 joerg case 3:
3764 1.1 joerg destval = neg_byte(emu, destval);
3765 1.1 joerg write_back_byte(emu, destval);
3766 1.1 joerg break;
3767 1.1 joerg case 4:
3768 1.1 joerg mul_byte(emu, destval);
3769 1.1 joerg break;
3770 1.1 joerg case 5:
3771 1.1 joerg imul_byte(emu, destval);
3772 1.1 joerg break;
3773 1.1 joerg case 6:
3774 1.1 joerg div_byte(emu, destval);
3775 1.1 joerg break;
3776 1.1 joerg case 7:
3777 1.1 joerg idiv_byte(emu, destval);
3778 1.1 joerg break;
3779 1.1 joerg }
3780 1.1 joerg }
3781 1.1 joerg /****************************************************************************
3782 1.1 joerg REMARKS:
3783 1.1 joerg Handles opcode 0xf7
3784 1.1 joerg ****************************************************************************/
3785 1.1 joerg static void
3786 1.1 joerg x86emuOp32_opcF7_word_RM(struct X86EMU *emu)
3787 1.1 joerg {
3788 1.1 joerg uint32_t destval, srcval;
3789 1.1 joerg
3790 1.1 joerg /* long, drawn out code follows. Double switch for a total of 32
3791 1.1 joerg * cases. */
3792 1.1 joerg fetch_decode_modrm(emu);
3793 1.1 joerg if (emu->cur_rh == 1)
3794 1.1 joerg X86EMU_halt_sys(emu);
3795 1.1 joerg
3796 1.1 joerg if (emu->cur_rh == 0) {
3797 1.1 joerg if (emu->cur_mod != 3) {
3798 1.1 joerg uint32_t destoffset;
3799 1.1 joerg
3800 1.1 joerg destoffset = decode_rl_address(emu);
3801 1.1 joerg srcval = fetch_long_imm(emu);
3802 1.1 joerg destval = fetch_data_long(emu, destoffset);
3803 1.1 joerg } else {
3804 1.1 joerg srcval = fetch_long_imm(emu);
3805 1.1 joerg destval = *decode_rl_long_register(emu);
3806 1.1 joerg }
3807 1.1 joerg test_long(emu, destval, srcval);
3808 1.1 joerg return;
3809 1.1 joerg }
3810 1.1 joerg destval = decode_and_fetch_long(emu);
3811 1.1 joerg switch (emu->cur_rh) {
3812 1.1 joerg case 2:
3813 1.1 joerg destval = ~destval;
3814 1.1 joerg write_back_long(emu, destval);
3815 1.1 joerg break;
3816 1.1 joerg case 3:
3817 1.1 joerg destval = neg_long(emu, destval);
3818 1.1 joerg write_back_long(emu, destval);
3819 1.1 joerg break;
3820 1.1 joerg case 4:
3821 1.1 joerg mul_long(emu, destval);
3822 1.1 joerg break;
3823 1.1 joerg case 5:
3824 1.1 joerg imul_long(emu, destval);
3825 1.1 joerg break;
3826 1.1 joerg case 6:
3827 1.1 joerg div_long(emu, destval);
3828 1.1 joerg break;
3829 1.1 joerg case 7:
3830 1.1 joerg idiv_long(emu, destval);
3831 1.1 joerg break;
3832 1.1 joerg }
3833 1.1 joerg }
3834 1.1 joerg static void
3835 1.1 joerg x86emuOp16_opcF7_word_RM(struct X86EMU *emu)
3836 1.1 joerg {
3837 1.1 joerg uint16_t destval, srcval;
3838 1.1 joerg
3839 1.1 joerg /* long, drawn out code follows. Double switch for a total of 32
3840 1.1 joerg * cases. */
3841 1.1 joerg fetch_decode_modrm(emu);
3842 1.1 joerg if (emu->cur_rh == 1)
3843 1.1 joerg X86EMU_halt_sys(emu);
3844 1.1 joerg
3845 1.1 joerg if (emu->cur_rh == 0) {
3846 1.1 joerg if (emu->cur_mod != 3) {
3847 1.1 joerg uint32_t destoffset;
3848 1.1 joerg
3849 1.1 joerg destoffset = decode_rl_address(emu);
3850 1.1 joerg srcval = fetch_word_imm(emu);
3851 1.1 joerg destval = fetch_data_word(emu, destoffset);
3852 1.1 joerg } else {
3853 1.1 joerg srcval = fetch_word_imm(emu);
3854 1.1 joerg destval = *decode_rl_word_register(emu);
3855 1.1 joerg }
3856 1.1 joerg test_word(emu, destval, srcval);
3857 1.1 joerg return;
3858 1.1 joerg }
3859 1.1 joerg destval = decode_and_fetch_word(emu);
3860 1.1 joerg switch (emu->cur_rh) {
3861 1.1 joerg case 2:
3862 1.1 joerg destval = ~destval;
3863 1.1 joerg write_back_word(emu, destval);
3864 1.1 joerg break;
3865 1.1 joerg case 3:
3866 1.1 joerg destval = neg_word(emu, destval);
3867 1.1 joerg write_back_word(emu, destval);
3868 1.1 joerg break;
3869 1.1 joerg case 4:
3870 1.1 joerg mul_word(emu, destval);
3871 1.1 joerg break;
3872 1.1 joerg case 5:
3873 1.1 joerg imul_word(emu, destval);
3874 1.1 joerg break;
3875 1.1 joerg case 6:
3876 1.1 joerg div_word(emu, destval);
3877 1.1 joerg break;
3878 1.1 joerg case 7:
3879 1.1 joerg idiv_word(emu, destval);
3880 1.1 joerg break;
3881 1.1 joerg }
3882 1.1 joerg }
3883 1.1 joerg static void
3884 1.1 joerg x86emuOp_opcF7_word_RM(struct X86EMU *emu)
3885 1.1 joerg {
3886 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
3887 1.1 joerg x86emuOp32_opcF7_word_RM(emu);
3888 1.1 joerg else
3889 1.1 joerg x86emuOp16_opcF7_word_RM(emu);
3890 1.1 joerg }
3891 1.1 joerg /****************************************************************************
3892 1.1 joerg REMARKS:
3893 1.1 joerg Handles opcode 0xfe
3894 1.1 joerg ****************************************************************************/
3895 1.1 joerg static void
3896 1.1 joerg x86emuOp_opcFE_byte_RM(struct X86EMU *emu)
3897 1.1 joerg {
3898 1.1 joerg uint8_t destval;
3899 1.1 joerg uint32_t destoffset;
3900 1.1 joerg uint8_t *destreg;
3901 1.1 joerg
3902 1.1 joerg /* Yet another special case instruction. */
3903 1.1 joerg fetch_decode_modrm(emu);
3904 1.1 joerg if (emu->cur_mod != 3) {
3905 1.1 joerg destoffset = decode_rl_address(emu);
3906 1.1 joerg switch (emu->cur_rh) {
3907 1.1 joerg case 0: /* inc word ptr ... */
3908 1.1 joerg destval = fetch_data_byte(emu, destoffset);
3909 1.1 joerg destval = inc_byte(emu, destval);
3910 1.1 joerg store_data_byte(emu, destoffset, destval);
3911 1.1 joerg break;
3912 1.1 joerg case 1: /* dec word ptr ... */
3913 1.1 joerg destval = fetch_data_byte(emu, destoffset);
3914 1.1 joerg destval = dec_byte(emu, destval);
3915 1.1 joerg store_data_byte(emu, destoffset, destval);
3916 1.1 joerg break;
3917 1.1 joerg }
3918 1.1 joerg } else {
3919 1.1 joerg destreg = decode_rl_byte_register(emu);
3920 1.1 joerg switch (emu->cur_rh) {
3921 1.1 joerg case 0:
3922 1.1 joerg *destreg = inc_byte(emu, *destreg);
3923 1.1 joerg break;
3924 1.1 joerg case 1:
3925 1.1 joerg *destreg = dec_byte(emu, *destreg);
3926 1.1 joerg break;
3927 1.1 joerg }
3928 1.1 joerg }
3929 1.1 joerg }
3930 1.1 joerg /****************************************************************************
3931 1.1 joerg REMARKS:
3932 1.1 joerg Handles opcode 0xff
3933 1.1 joerg ****************************************************************************/
3934 1.1 joerg static void
3935 1.1 joerg x86emuOp32_opcFF_word_RM(struct X86EMU *emu)
3936 1.1 joerg {
3937 1.1 joerg uint32_t destoffset = 0;
3938 1.1 joerg uint32_t destval, *destreg;
3939 1.1 joerg
3940 1.1 joerg if (emu->cur_mod != 3) {
3941 1.1 joerg destoffset = decode_rl_address(emu);
3942 1.1 joerg destval = fetch_data_long(emu, destoffset);
3943 1.1 joerg switch (emu->cur_rh) {
3944 1.1 joerg case 0: /* inc word ptr ... */
3945 1.1 joerg destval = inc_long(emu, destval);
3946 1.1 joerg store_data_long(emu, destoffset, destval);
3947 1.1 joerg break;
3948 1.1 joerg case 1: /* dec word ptr ... */
3949 1.1 joerg destval = dec_long(emu, destval);
3950 1.1 joerg store_data_long(emu, destoffset, destval);
3951 1.1 joerg break;
3952 1.1 joerg case 6: /* push word ptr ... */
3953 1.1 joerg push_long(emu, destval);
3954 1.1 joerg break;
3955 1.1 joerg }
3956 1.1 joerg } else {
3957 1.1 joerg destreg = decode_rl_long_register(emu);
3958 1.1 joerg switch (emu->cur_rh) {
3959 1.1 joerg case 0:
3960 1.1 joerg *destreg = inc_long(emu, *destreg);
3961 1.1 joerg break;
3962 1.1 joerg case 1:
3963 1.1 joerg *destreg = dec_long(emu, *destreg);
3964 1.1 joerg break;
3965 1.1 joerg case 6:
3966 1.1 joerg push_long(emu, *destreg);
3967 1.1 joerg break;
3968 1.1 joerg }
3969 1.1 joerg }
3970 1.1 joerg }
3971 1.1 joerg
3972 1.1 joerg static void
3973 1.1 joerg x86emuOp16_opcFF_word_RM(struct X86EMU *emu)
3974 1.1 joerg {
3975 1.1 joerg uint32_t destoffset = 0;
3976 1.1 joerg uint16_t *destreg;
3977 1.1 joerg uint16_t destval;
3978 1.1 joerg
3979 1.1 joerg if (emu->cur_mod != 3) {
3980 1.1 joerg destoffset = decode_rl_address(emu);
3981 1.1 joerg destval = fetch_data_word(emu, destoffset);
3982 1.1 joerg switch (emu->cur_rh) {
3983 1.1 joerg case 0:
3984 1.1 joerg destval = inc_word(emu, destval);
3985 1.1 joerg store_data_word(emu, destoffset, destval);
3986 1.1 joerg break;
3987 1.1 joerg case 1: /* dec word ptr ... */
3988 1.1 joerg destval = dec_word(emu, destval);
3989 1.1 joerg store_data_word(emu, destoffset, destval);
3990 1.1 joerg break;
3991 1.1 joerg case 6: /* push word ptr ... */
3992 1.1 joerg push_word(emu, destval);
3993 1.1 joerg break;
3994 1.1 joerg }
3995 1.1 joerg } else {
3996 1.1 joerg destreg = decode_rl_word_register(emu);
3997 1.1 joerg switch (emu->cur_rh) {
3998 1.1 joerg case 0:
3999 1.1 joerg *destreg = inc_word(emu, *destreg);
4000 1.1 joerg break;
4001 1.1 joerg case 1:
4002 1.1 joerg *destreg = dec_word(emu, *destreg);
4003 1.1 joerg break;
4004 1.1 joerg case 6:
4005 1.1 joerg push_word(emu, *destreg);
4006 1.1 joerg break;
4007 1.1 joerg }
4008 1.1 joerg }
4009 1.1 joerg }
4010 1.1 joerg
4011 1.1 joerg static void
4012 1.1 joerg x86emuOp_opcFF_word_RM(struct X86EMU *emu)
4013 1.1 joerg {
4014 1.1 joerg uint32_t destoffset = 0;
4015 1.1 joerg uint16_t destval, destval2;
4016 1.1 joerg
4017 1.1 joerg /* Yet another special case instruction. */
4018 1.1 joerg fetch_decode_modrm(emu);
4019 1.1 joerg if ((emu->cur_mod == 3 && (emu->cur_rh == 3 || emu->cur_rh == 5)) || emu->cur_rh == 7)
4020 1.1 joerg X86EMU_halt_sys(emu);
4021 1.1 joerg if (emu->cur_rh == 0 || emu->cur_rh == 1 || emu->cur_rh == 6) {
4022 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
4023 1.1 joerg x86emuOp32_opcFF_word_RM(emu);
4024 1.1 joerg else
4025 1.1 joerg x86emuOp16_opcFF_word_RM(emu);
4026 1.1 joerg return;
4027 1.1 joerg }
4028 1.1 joerg
4029 1.1 joerg if (emu->cur_mod != 3) {
4030 1.1 joerg destoffset = decode_rl_address(emu);
4031 1.1 joerg destval = fetch_data_word(emu, destoffset);
4032 1.1 joerg switch (emu->cur_rh) {
4033 1.1 joerg case 3: /* call far ptr ... */
4034 1.1 joerg destval2 = fetch_data_word(emu, destoffset + 2);
4035 1.1 joerg push_word(emu, emu->x86.R_CS);
4036 1.1 joerg emu->x86.R_CS = destval2;
4037 1.1 joerg push_word(emu, emu->x86.R_IP);
4038 1.1 joerg emu->x86.R_IP = destval;
4039 1.1 joerg break;
4040 1.1 joerg case 5: /* jmp far ptr ... */
4041 1.1 joerg destval2 = fetch_data_word(emu, destoffset + 2);
4042 1.1 joerg emu->x86.R_IP = destval;
4043 1.1 joerg emu->x86.R_CS = destval2;
4044 1.1 joerg break;
4045 1.1 joerg }
4046 1.1 joerg } else {
4047 1.1 joerg destval = *decode_rl_word_register(emu);
4048 1.1 joerg }
4049 1.1 joerg
4050 1.1 joerg switch (emu->cur_rh) {
4051 1.1 joerg case 2: /* call word ptr */
4052 1.1 joerg push_word(emu, emu->x86.R_IP);
4053 1.1 joerg emu->x86.R_IP = destval;
4054 1.1 joerg break;
4055 1.1 joerg case 4: /* jmp */
4056 1.1 joerg emu->x86.R_IP = destval;
4057 1.1 joerg break;
4058 1.1 joerg }
4059 1.1 joerg }
4060 1.1 joerg /***************************************************************************
4061 1.1 joerg * Single byte operation code table:
4062 1.1 joerg **************************************************************************/
4063 1.1 joerg static void
4064 1.1 joerg X86EMU_exec_one_byte(struct X86EMU * emu)
4065 1.1 joerg {
4066 1.1 joerg uint8_t op1;
4067 1.1 joerg
4068 1.1 joerg op1 = fetch_byte_imm(emu);
4069 1.1 joerg
4070 1.1 joerg switch (op1) {
4071 1.1 joerg case 0x00:
4072 1.1 joerg common_binop_byte_rm_r(emu, add_byte);
4073 1.1 joerg break;
4074 1.1 joerg case 0x01:
4075 1.1 joerg common_binop_word_long_rm_r(emu, add_word, add_long);
4076 1.1 joerg break;
4077 1.1 joerg case 0x02:
4078 1.1 joerg common_binop_byte_r_rm(emu, add_byte);
4079 1.1 joerg break;
4080 1.1 joerg case 0x03:
4081 1.1 joerg common_binop_word_long_r_rm(emu, add_word, add_long);
4082 1.1 joerg break;
4083 1.1 joerg case 0x04:
4084 1.1 joerg common_binop_byte_imm(emu, add_byte);
4085 1.1 joerg break;
4086 1.1 joerg case 0x05:
4087 1.1 joerg common_binop_word_long_imm(emu, add_word, add_long);
4088 1.1 joerg break;
4089 1.1 joerg case 0x06:
4090 1.1 joerg push_word(emu, emu->x86.R_ES);
4091 1.1 joerg break;
4092 1.1 joerg case 0x07:
4093 1.1 joerg emu->x86.R_ES = pop_word(emu);
4094 1.1 joerg break;
4095 1.1 joerg
4096 1.1 joerg case 0x08:
4097 1.1 joerg common_binop_byte_rm_r(emu, or_byte);
4098 1.1 joerg break;
4099 1.1 joerg case 0x09:
4100 1.1 joerg common_binop_word_long_rm_r(emu, or_word, or_long);
4101 1.1 joerg break;
4102 1.1 joerg case 0x0a:
4103 1.1 joerg common_binop_byte_r_rm(emu, or_byte);
4104 1.1 joerg break;
4105 1.1 joerg case 0x0b:
4106 1.1 joerg common_binop_word_long_r_rm(emu, or_word, or_long);
4107 1.1 joerg break;
4108 1.1 joerg case 0x0c:
4109 1.1 joerg common_binop_byte_imm(emu, or_byte);
4110 1.1 joerg break;
4111 1.1 joerg case 0x0d:
4112 1.1 joerg common_binop_word_long_imm(emu, or_word, or_long);
4113 1.1 joerg break;
4114 1.1 joerg case 0x0e:
4115 1.1 joerg push_word(emu, emu->x86.R_CS);
4116 1.1 joerg break;
4117 1.1 joerg case 0x0f:
4118 1.1 joerg X86EMU_exec_two_byte(emu);
4119 1.1 joerg break;
4120 1.1 joerg
4121 1.1 joerg case 0x10:
4122 1.1 joerg common_binop_byte_rm_r(emu, adc_byte);
4123 1.1 joerg break;
4124 1.1 joerg case 0x11:
4125 1.1 joerg common_binop_word_long_rm_r(emu, adc_word, adc_long);
4126 1.1 joerg break;
4127 1.1 joerg case 0x12:
4128 1.1 joerg common_binop_byte_r_rm(emu, adc_byte);
4129 1.1 joerg break;
4130 1.1 joerg case 0x13:
4131 1.1 joerg common_binop_word_long_r_rm(emu, adc_word, adc_long);
4132 1.1 joerg break;
4133 1.1 joerg case 0x14:
4134 1.1 joerg common_binop_byte_imm(emu, adc_byte);
4135 1.1 joerg break;
4136 1.1 joerg case 0x15:
4137 1.1 joerg common_binop_word_long_imm(emu, adc_word, adc_long);
4138 1.1 joerg break;
4139 1.1 joerg case 0x16:
4140 1.1 joerg push_word(emu, emu->x86.R_SS);
4141 1.1 joerg break;
4142 1.1 joerg case 0x17:
4143 1.1 joerg emu->x86.R_SS = pop_word(emu);
4144 1.1 joerg break;
4145 1.1 joerg
4146 1.1 joerg case 0x18:
4147 1.1 joerg common_binop_byte_rm_r(emu, sbb_byte);
4148 1.1 joerg break;
4149 1.1 joerg case 0x19:
4150 1.1 joerg common_binop_word_long_rm_r(emu, sbb_word, sbb_long);
4151 1.1 joerg break;
4152 1.1 joerg case 0x1a:
4153 1.1 joerg common_binop_byte_r_rm(emu, sbb_byte);
4154 1.1 joerg break;
4155 1.1 joerg case 0x1b:
4156 1.1 joerg common_binop_word_long_r_rm(emu, sbb_word, sbb_long);
4157 1.1 joerg break;
4158 1.1 joerg case 0x1c:
4159 1.1 joerg common_binop_byte_imm(emu, sbb_byte);
4160 1.1 joerg break;
4161 1.1 joerg case 0x1d:
4162 1.1 joerg common_binop_word_long_imm(emu, sbb_word, sbb_long);
4163 1.1 joerg break;
4164 1.1 joerg case 0x1e:
4165 1.1 joerg push_word(emu, emu->x86.R_DS);
4166 1.1 joerg break;
4167 1.1 joerg case 0x1f:
4168 1.1 joerg emu->x86.R_DS = pop_word(emu);
4169 1.1 joerg break;
4170 1.1 joerg
4171 1.1 joerg case 0x20:
4172 1.1 joerg common_binop_byte_rm_r(emu, and_byte);
4173 1.1 joerg break;
4174 1.1 joerg case 0x21:
4175 1.1 joerg common_binop_word_long_rm_r(emu, and_word, and_long);
4176 1.1 joerg break;
4177 1.1 joerg case 0x22:
4178 1.1 joerg common_binop_byte_r_rm(emu, and_byte);
4179 1.1 joerg break;
4180 1.1 joerg case 0x23:
4181 1.1 joerg common_binop_word_long_r_rm(emu, and_word, and_long);
4182 1.1 joerg break;
4183 1.1 joerg case 0x24:
4184 1.1 joerg common_binop_byte_imm(emu, and_byte);
4185 1.1 joerg break;
4186 1.1 joerg case 0x25:
4187 1.1 joerg common_binop_word_long_imm(emu, and_word, and_long);
4188 1.1 joerg break;
4189 1.1 joerg case 0x26:
4190 1.1 joerg emu->x86.mode |= SYSMODE_SEGOVR_ES;
4191 1.1 joerg break;
4192 1.1 joerg case 0x27:
4193 1.1 joerg emu->x86.R_AL = daa_byte(emu, emu->x86.R_AL);
4194 1.1 joerg break;
4195 1.1 joerg
4196 1.1 joerg case 0x28:
4197 1.1 joerg common_binop_byte_rm_r(emu, sub_byte);
4198 1.1 joerg break;
4199 1.1 joerg case 0x29:
4200 1.1 joerg common_binop_word_long_rm_r(emu, sub_word, sub_long);
4201 1.1 joerg break;
4202 1.1 joerg case 0x2a:
4203 1.1 joerg common_binop_byte_r_rm(emu, sub_byte);
4204 1.1 joerg break;
4205 1.1 joerg case 0x2b:
4206 1.1 joerg common_binop_word_long_r_rm(emu, sub_word, sub_long);
4207 1.1 joerg break;
4208 1.1 joerg case 0x2c:
4209 1.1 joerg common_binop_byte_imm(emu, sub_byte);
4210 1.1 joerg break;
4211 1.1 joerg case 0x2d:
4212 1.1 joerg common_binop_word_long_imm(emu, sub_word, sub_long);
4213 1.1 joerg break;
4214 1.1 joerg case 0x2e:
4215 1.1 joerg emu->x86.mode |= SYSMODE_SEGOVR_CS;
4216 1.1 joerg break;
4217 1.1 joerg case 0x2f:
4218 1.1 joerg emu->x86.R_AL = das_byte(emu, emu->x86.R_AL);
4219 1.1 joerg break;
4220 1.1 joerg
4221 1.1 joerg case 0x30:
4222 1.1 joerg common_binop_byte_rm_r(emu, xor_byte);
4223 1.1 joerg break;
4224 1.1 joerg case 0x31:
4225 1.1 joerg common_binop_word_long_rm_r(emu, xor_word, xor_long);
4226 1.1 joerg break;
4227 1.1 joerg case 0x32:
4228 1.1 joerg common_binop_byte_r_rm(emu, xor_byte);
4229 1.1 joerg break;
4230 1.1 joerg case 0x33:
4231 1.1 joerg common_binop_word_long_r_rm(emu, xor_word, xor_long);
4232 1.1 joerg break;
4233 1.1 joerg case 0x34:
4234 1.1 joerg common_binop_byte_imm(emu, xor_byte);
4235 1.1 joerg break;
4236 1.1 joerg case 0x35:
4237 1.1 joerg common_binop_word_long_imm(emu, xor_word, xor_long);
4238 1.1 joerg break;
4239 1.1 joerg case 0x36:
4240 1.1 joerg emu->x86.mode |= SYSMODE_SEGOVR_SS;
4241 1.1 joerg break;
4242 1.1 joerg case 0x37:
4243 1.1 joerg emu->x86.R_AX = aaa_word(emu, emu->x86.R_AX);
4244 1.1 joerg break;
4245 1.1 joerg
4246 1.1 joerg case 0x38:
4247 1.1 joerg common_binop_ns_byte_rm_r(emu, cmp_byte_no_return);
4248 1.1 joerg break;
4249 1.1 joerg case 0x39:
4250 1.1 joerg common_binop_ns_word_long_rm_r(emu, cmp_word_no_return,
4251 1.1 joerg cmp_long_no_return);
4252 1.1 joerg break;
4253 1.1 joerg case 0x3a:
4254 1.1 joerg x86emuOp_cmp_byte_R_RM(emu);
4255 1.1 joerg break;
4256 1.1 joerg case 0x3b:
4257 1.1 joerg x86emuOp_cmp_word_R_RM(emu);
4258 1.1 joerg break;
4259 1.1 joerg case 0x3c:
4260 1.1 joerg x86emuOp_cmp_byte_AL_IMM(emu);
4261 1.1 joerg break;
4262 1.1 joerg case 0x3d:
4263 1.1 joerg x86emuOp_cmp_word_AX_IMM(emu);
4264 1.1 joerg break;
4265 1.1 joerg case 0x3e:
4266 1.1 joerg emu->x86.mode |= SYSMODE_SEGOVR_DS;
4267 1.1 joerg break;
4268 1.1 joerg case 0x3f:
4269 1.1 joerg emu->x86.R_AX = aas_word(emu, emu->x86.R_AX);
4270 1.1 joerg break;
4271 1.1 joerg
4272 1.1 joerg case 0x40:
4273 1.1 joerg common_inc_word_long(emu, &emu->x86.register_a);
4274 1.1 joerg break;
4275 1.1 joerg case 0x41:
4276 1.1 joerg common_inc_word_long(emu, &emu->x86.register_c);
4277 1.1 joerg break;
4278 1.1 joerg case 0x42:
4279 1.1 joerg common_inc_word_long(emu, &emu->x86.register_d);
4280 1.1 joerg break;
4281 1.1 joerg case 0x43:
4282 1.1 joerg common_inc_word_long(emu, &emu->x86.register_b);
4283 1.1 joerg break;
4284 1.1 joerg case 0x44:
4285 1.1 joerg common_inc_word_long(emu, &emu->x86.register_sp);
4286 1.1 joerg break;
4287 1.1 joerg case 0x45:
4288 1.1 joerg common_inc_word_long(emu, &emu->x86.register_bp);
4289 1.1 joerg break;
4290 1.1 joerg case 0x46:
4291 1.1 joerg common_inc_word_long(emu, &emu->x86.register_si);
4292 1.1 joerg break;
4293 1.1 joerg case 0x47:
4294 1.1 joerg common_inc_word_long(emu, &emu->x86.register_di);
4295 1.1 joerg break;
4296 1.1 joerg
4297 1.1 joerg case 0x48:
4298 1.1 joerg common_dec_word_long(emu, &emu->x86.register_a);
4299 1.1 joerg break;
4300 1.1 joerg case 0x49:
4301 1.1 joerg common_dec_word_long(emu, &emu->x86.register_c);
4302 1.1 joerg break;
4303 1.1 joerg case 0x4a:
4304 1.1 joerg common_dec_word_long(emu, &emu->x86.register_d);
4305 1.1 joerg break;
4306 1.1 joerg case 0x4b:
4307 1.1 joerg common_dec_word_long(emu, &emu->x86.register_b);
4308 1.1 joerg break;
4309 1.1 joerg case 0x4c:
4310 1.1 joerg common_dec_word_long(emu, &emu->x86.register_sp);
4311 1.1 joerg break;
4312 1.1 joerg case 0x4d:
4313 1.1 joerg common_dec_word_long(emu, &emu->x86.register_bp);
4314 1.1 joerg break;
4315 1.1 joerg case 0x4e:
4316 1.1 joerg common_dec_word_long(emu, &emu->x86.register_si);
4317 1.1 joerg break;
4318 1.1 joerg case 0x4f:
4319 1.1 joerg common_dec_word_long(emu, &emu->x86.register_di);
4320 1.1 joerg break;
4321 1.1 joerg
4322 1.1 joerg case 0x50:
4323 1.1 joerg common_push_word_long(emu, &emu->x86.register_a);
4324 1.1 joerg break;
4325 1.1 joerg case 0x51:
4326 1.1 joerg common_push_word_long(emu, &emu->x86.register_c);
4327 1.1 joerg break;
4328 1.1 joerg case 0x52:
4329 1.1 joerg common_push_word_long(emu, &emu->x86.register_d);
4330 1.1 joerg break;
4331 1.1 joerg case 0x53:
4332 1.1 joerg common_push_word_long(emu, &emu->x86.register_b);
4333 1.1 joerg break;
4334 1.1 joerg case 0x54:
4335 1.1 joerg common_push_word_long(emu, &emu->x86.register_sp);
4336 1.1 joerg break;
4337 1.1 joerg case 0x55:
4338 1.1 joerg common_push_word_long(emu, &emu->x86.register_bp);
4339 1.1 joerg break;
4340 1.1 joerg case 0x56:
4341 1.1 joerg common_push_word_long(emu, &emu->x86.register_si);
4342 1.1 joerg break;
4343 1.1 joerg case 0x57:
4344 1.1 joerg common_push_word_long(emu, &emu->x86.register_di);
4345 1.1 joerg break;
4346 1.1 joerg
4347 1.1 joerg case 0x58:
4348 1.1 joerg common_pop_word_long(emu, &emu->x86.register_a);
4349 1.1 joerg break;
4350 1.1 joerg case 0x59:
4351 1.1 joerg common_pop_word_long(emu, &emu->x86.register_c);
4352 1.1 joerg break;
4353 1.1 joerg case 0x5a:
4354 1.1 joerg common_pop_word_long(emu, &emu->x86.register_d);
4355 1.1 joerg break;
4356 1.1 joerg case 0x5b:
4357 1.1 joerg common_pop_word_long(emu, &emu->x86.register_b);
4358 1.1 joerg break;
4359 1.1 joerg case 0x5c:
4360 1.1 joerg common_pop_word_long(emu, &emu->x86.register_sp);
4361 1.1 joerg break;
4362 1.1 joerg case 0x5d:
4363 1.1 joerg common_pop_word_long(emu, &emu->x86.register_bp);
4364 1.1 joerg break;
4365 1.1 joerg case 0x5e:
4366 1.1 joerg common_pop_word_long(emu, &emu->x86.register_si);
4367 1.1 joerg break;
4368 1.1 joerg case 0x5f:
4369 1.1 joerg common_pop_word_long(emu, &emu->x86.register_di);
4370 1.1 joerg break;
4371 1.1 joerg
4372 1.1 joerg case 0x60:
4373 1.1 joerg x86emuOp_push_all(emu);
4374 1.1 joerg break;
4375 1.1 joerg case 0x61:
4376 1.1 joerg x86emuOp_pop_all(emu);
4377 1.1 joerg break;
4378 1.1 joerg /* 0x62 bound */
4379 1.1 joerg /* 0x63 arpl */
4380 1.1 joerg case 0x64:
4381 1.1 joerg emu->x86.mode |= SYSMODE_SEGOVR_FS;
4382 1.1 joerg break;
4383 1.1 joerg case 0x65:
4384 1.1 joerg emu->x86.mode |= SYSMODE_SEGOVR_GS;
4385 1.1 joerg break;
4386 1.1 joerg case 0x66:
4387 1.1 joerg emu->x86.mode |= SYSMODE_PREFIX_DATA;
4388 1.1 joerg break;
4389 1.1 joerg case 0x67:
4390 1.1 joerg emu->x86.mode |= SYSMODE_PREFIX_ADDR;
4391 1.1 joerg break;
4392 1.1 joerg
4393 1.1 joerg case 0x68:
4394 1.1 joerg x86emuOp_push_word_IMM(emu);
4395 1.1 joerg break;
4396 1.1 joerg case 0x69:
4397 1.1 joerg common_imul_imm(emu, false);
4398 1.1 joerg break;
4399 1.1 joerg case 0x6a:
4400 1.1 joerg x86emuOp_push_byte_IMM(emu);
4401 1.1 joerg break;
4402 1.1 joerg case 0x6b:
4403 1.1 joerg common_imul_imm(emu, true);
4404 1.1 joerg break;
4405 1.1 joerg case 0x6c:
4406 1.1 joerg ins(emu, 1);
4407 1.1 joerg break;
4408 1.1 joerg case 0x6d:
4409 1.1 joerg x86emuOp_ins_word(emu);
4410 1.1 joerg break;
4411 1.1 joerg case 0x6e:
4412 1.1 joerg outs(emu, 1);
4413 1.1 joerg break;
4414 1.1 joerg case 0x6f:
4415 1.1 joerg x86emuOp_outs_word(emu);
4416 1.1 joerg break;
4417 1.1 joerg
4418 1.1 joerg case 0x70:
4419 1.1 joerg common_jmp_near(emu, ACCESS_FLAG(F_OF));
4420 1.1 joerg break;
4421 1.1 joerg case 0x71:
4422 1.1 joerg common_jmp_near(emu, !ACCESS_FLAG(F_OF));
4423 1.1 joerg break;
4424 1.1 joerg case 0x72:
4425 1.1 joerg common_jmp_near(emu, ACCESS_FLAG(F_CF));
4426 1.1 joerg break;
4427 1.1 joerg case 0x73:
4428 1.1 joerg common_jmp_near(emu, !ACCESS_FLAG(F_CF));
4429 1.1 joerg break;
4430 1.1 joerg case 0x74:
4431 1.1 joerg common_jmp_near(emu, ACCESS_FLAG(F_ZF));
4432 1.1 joerg break;
4433 1.1 joerg case 0x75:
4434 1.1 joerg common_jmp_near(emu, !ACCESS_FLAG(F_ZF));
4435 1.1 joerg break;
4436 1.1 joerg case 0x76:
4437 1.1 joerg common_jmp_near(emu, ACCESS_FLAG(F_CF) || ACCESS_FLAG(F_ZF));
4438 1.1 joerg break;
4439 1.1 joerg case 0x77:
4440 1.1 joerg common_jmp_near(emu, !ACCESS_FLAG(F_CF) && !ACCESS_FLAG(F_ZF));
4441 1.1 joerg break;
4442 1.1 joerg
4443 1.1 joerg case 0x78:
4444 1.1 joerg common_jmp_near(emu, ACCESS_FLAG(F_SF));
4445 1.1 joerg break;
4446 1.1 joerg case 0x79:
4447 1.1 joerg common_jmp_near(emu, !ACCESS_FLAG(F_SF));
4448 1.1 joerg break;
4449 1.1 joerg case 0x7a:
4450 1.1 joerg common_jmp_near(emu, ACCESS_FLAG(F_PF));
4451 1.1 joerg break;
4452 1.1 joerg case 0x7b:
4453 1.1 joerg common_jmp_near(emu, !ACCESS_FLAG(F_PF));
4454 1.1 joerg break;
4455 1.1 joerg case 0x7c:
4456 1.1 joerg x86emuOp_jump_near_L(emu);
4457 1.1 joerg break;
4458 1.1 joerg case 0x7d:
4459 1.1 joerg x86emuOp_jump_near_NL(emu);
4460 1.1 joerg break;
4461 1.1 joerg case 0x7e:
4462 1.1 joerg x86emuOp_jump_near_LE(emu);
4463 1.1 joerg break;
4464 1.1 joerg case 0x7f:
4465 1.1 joerg x86emuOp_jump_near_NLE(emu);
4466 1.1 joerg break;
4467 1.1 joerg
4468 1.1 joerg case 0x80:
4469 1.1 joerg x86emuOp_opc80_byte_RM_IMM(emu);
4470 1.1 joerg break;
4471 1.1 joerg case 0x81:
4472 1.1 joerg x86emuOp_opc81_word_RM_IMM(emu);
4473 1.1 joerg break;
4474 1.1 joerg case 0x82:
4475 1.1 joerg x86emuOp_opc82_byte_RM_IMM(emu);
4476 1.1 joerg break;
4477 1.1 joerg case 0x83:
4478 1.1 joerg x86emuOp_opc83_word_RM_IMM(emu);
4479 1.1 joerg break;
4480 1.1 joerg case 0x84:
4481 1.1 joerg common_binop_ns_byte_rm_r(emu, test_byte);
4482 1.1 joerg break;
4483 1.1 joerg case 0x85:
4484 1.1 joerg common_binop_ns_word_long_rm_r(emu, test_word, test_long);
4485 1.1 joerg break;
4486 1.1 joerg case 0x86:
4487 1.1 joerg x86emuOp_xchg_byte_RM_R(emu);
4488 1.1 joerg break;
4489 1.1 joerg case 0x87:
4490 1.1 joerg x86emuOp_xchg_word_RM_R(emu);
4491 1.1 joerg break;
4492 1.1 joerg
4493 1.1 joerg case 0x88:
4494 1.1 joerg x86emuOp_mov_byte_RM_R(emu);
4495 1.1 joerg break;
4496 1.1 joerg case 0x89:
4497 1.1 joerg x86emuOp_mov_word_RM_R(emu);
4498 1.1 joerg break;
4499 1.1 joerg case 0x8a:
4500 1.1 joerg x86emuOp_mov_byte_R_RM(emu);
4501 1.1 joerg break;
4502 1.1 joerg case 0x8b:
4503 1.1 joerg x86emuOp_mov_word_R_RM(emu);
4504 1.1 joerg break;
4505 1.1 joerg case 0x8c:
4506 1.1 joerg x86emuOp_mov_word_RM_SR(emu);
4507 1.1 joerg break;
4508 1.1 joerg case 0x8d:
4509 1.1 joerg x86emuOp_lea_word_R_M(emu);
4510 1.1 joerg break;
4511 1.1 joerg case 0x8e:
4512 1.1 joerg x86emuOp_mov_word_SR_RM(emu);
4513 1.1 joerg break;
4514 1.1 joerg case 0x8f:
4515 1.1 joerg x86emuOp_pop_RM(emu);
4516 1.1 joerg break;
4517 1.1 joerg
4518 1.1 joerg case 0x90:
4519 1.1 joerg /* nop */
4520 1.1 joerg break;
4521 1.1 joerg case 0x91:
4522 1.1 joerg x86emuOp_xchg_word_AX_CX(emu);
4523 1.1 joerg break;
4524 1.1 joerg case 0x92:
4525 1.1 joerg x86emuOp_xchg_word_AX_DX(emu);
4526 1.1 joerg break;
4527 1.1 joerg case 0x93:
4528 1.1 joerg x86emuOp_xchg_word_AX_BX(emu);
4529 1.1 joerg break;
4530 1.1 joerg case 0x94:
4531 1.1 joerg x86emuOp_xchg_word_AX_SP(emu);
4532 1.1 joerg break;
4533 1.1 joerg case 0x95:
4534 1.1 joerg x86emuOp_xchg_word_AX_BP(emu);
4535 1.1 joerg break;
4536 1.1 joerg case 0x96:
4537 1.1 joerg x86emuOp_xchg_word_AX_SI(emu);
4538 1.1 joerg break;
4539 1.1 joerg case 0x97:
4540 1.1 joerg x86emuOp_xchg_word_AX_DI(emu);
4541 1.1 joerg break;
4542 1.1 joerg
4543 1.1 joerg case 0x98:
4544 1.1 joerg x86emuOp_cbw(emu);
4545 1.1 joerg break;
4546 1.1 joerg case 0x99:
4547 1.1 joerg x86emuOp_cwd(emu);
4548 1.1 joerg break;
4549 1.1 joerg case 0x9a:
4550 1.1 joerg x86emuOp_call_far_IMM(emu);
4551 1.1 joerg break;
4552 1.1 joerg case 0x9b:
4553 1.1 joerg /* wait */
4554 1.1 joerg break;
4555 1.1 joerg case 0x9c:
4556 1.1 joerg x86emuOp_pushf_word(emu);
4557 1.1 joerg break;
4558 1.1 joerg case 0x9d:
4559 1.1 joerg x86emuOp_popf_word(emu);
4560 1.1 joerg break;
4561 1.1 joerg case 0x9e:
4562 1.1 joerg x86emuOp_sahf(emu);
4563 1.1 joerg break;
4564 1.1 joerg case 0x9f:
4565 1.1 joerg x86emuOp_lahf(emu);
4566 1.1 joerg break;
4567 1.1 joerg
4568 1.1 joerg case 0xa0:
4569 1.1 joerg x86emuOp_mov_AL_M_IMM(emu);
4570 1.1 joerg break;
4571 1.1 joerg case 0xa1:
4572 1.1 joerg x86emuOp_mov_AX_M_IMM(emu);
4573 1.1 joerg break;
4574 1.1 joerg case 0xa2:
4575 1.1 joerg x86emuOp_mov_M_AL_IMM(emu);
4576 1.1 joerg break;
4577 1.1 joerg case 0xa3:
4578 1.1 joerg x86emuOp_mov_M_AX_IMM(emu);
4579 1.1 joerg break;
4580 1.1 joerg case 0xa4:
4581 1.1 joerg x86emuOp_movs_byte(emu);
4582 1.1 joerg break;
4583 1.1 joerg case 0xa5:
4584 1.1 joerg x86emuOp_movs_word(emu);
4585 1.1 joerg break;
4586 1.1 joerg case 0xa6:
4587 1.1 joerg x86emuOp_cmps_byte(emu);
4588 1.1 joerg break;
4589 1.1 joerg case 0xa7:
4590 1.1 joerg x86emuOp_cmps_word(emu);
4591 1.1 joerg break;
4592 1.1 joerg
4593 1.1 joerg case 0xa8:
4594 1.1 joerg test_byte(emu, emu->x86.R_AL, fetch_byte_imm(emu));
4595 1.1 joerg break;
4596 1.1 joerg case 0xa9:
4597 1.1 joerg x86emuOp_test_AX_IMM(emu);
4598 1.1 joerg break;
4599 1.1 joerg case 0xaa:
4600 1.1 joerg x86emuOp_stos_byte(emu);
4601 1.1 joerg break;
4602 1.1 joerg case 0xab:
4603 1.1 joerg x86emuOp_stos_word(emu);
4604 1.1 joerg break;
4605 1.1 joerg case 0xac:
4606 1.1 joerg x86emuOp_lods_byte(emu);
4607 1.1 joerg break;
4608 1.1 joerg case 0xad:
4609 1.1 joerg x86emuOp_lods_word(emu);
4610 1.1 joerg break;
4611 1.1 joerg case 0xae:
4612 1.1 joerg x86emuOp_scas_byte(emu);
4613 1.1 joerg break;
4614 1.1 joerg case 0xaf:
4615 1.1 joerg x86emuOp_scas_word(emu);
4616 1.1 joerg break;
4617 1.1 joerg
4618 1.1 joerg case 0xb0:
4619 1.1 joerg emu->x86.R_AL = fetch_byte_imm(emu);
4620 1.1 joerg break;
4621 1.1 joerg case 0xb1:
4622 1.1 joerg emu->x86.R_CL = fetch_byte_imm(emu);
4623 1.1 joerg break;
4624 1.1 joerg case 0xb2:
4625 1.1 joerg emu->x86.R_DL = fetch_byte_imm(emu);
4626 1.1 joerg break;
4627 1.1 joerg case 0xb3:
4628 1.1 joerg emu->x86.R_BL = fetch_byte_imm(emu);
4629 1.1 joerg break;
4630 1.1 joerg case 0xb4:
4631 1.1 joerg emu->x86.R_AH = fetch_byte_imm(emu);
4632 1.1 joerg break;
4633 1.1 joerg case 0xb5:
4634 1.1 joerg emu->x86.R_CH = fetch_byte_imm(emu);
4635 1.1 joerg break;
4636 1.1 joerg case 0xb6:
4637 1.1 joerg emu->x86.R_DH = fetch_byte_imm(emu);
4638 1.1 joerg break;
4639 1.1 joerg case 0xb7:
4640 1.1 joerg emu->x86.R_BH = fetch_byte_imm(emu);
4641 1.1 joerg break;
4642 1.1 joerg
4643 1.1 joerg case 0xb8:
4644 1.1 joerg x86emuOp_mov_word_AX_IMM(emu);
4645 1.1 joerg break;
4646 1.1 joerg case 0xb9:
4647 1.1 joerg x86emuOp_mov_word_CX_IMM(emu);
4648 1.1 joerg break;
4649 1.1 joerg case 0xba:
4650 1.1 joerg x86emuOp_mov_word_DX_IMM(emu);
4651 1.1 joerg break;
4652 1.1 joerg case 0xbb:
4653 1.1 joerg x86emuOp_mov_word_BX_IMM(emu);
4654 1.1 joerg break;
4655 1.1 joerg case 0xbc:
4656 1.1 joerg x86emuOp_mov_word_SP_IMM(emu);
4657 1.1 joerg break;
4658 1.1 joerg case 0xbd:
4659 1.1 joerg x86emuOp_mov_word_BP_IMM(emu);
4660 1.1 joerg break;
4661 1.1 joerg case 0xbe:
4662 1.1 joerg x86emuOp_mov_word_SI_IMM(emu);
4663 1.1 joerg break;
4664 1.1 joerg case 0xbf:
4665 1.1 joerg x86emuOp_mov_word_DI_IMM(emu);
4666 1.1 joerg break;
4667 1.1 joerg
4668 1.1 joerg case 0xc0:
4669 1.1 joerg x86emuOp_opcC0_byte_RM_MEM(emu);
4670 1.1 joerg break;
4671 1.1 joerg case 0xc1:
4672 1.1 joerg x86emuOp_opcC1_word_RM_MEM(emu);
4673 1.1 joerg break;
4674 1.1 joerg case 0xc2:
4675 1.1 joerg x86emuOp_ret_near_IMM(emu);
4676 1.1 joerg break;
4677 1.1 joerg case 0xc3:
4678 1.1 joerg emu->x86.R_IP = pop_word(emu);
4679 1.1 joerg break;
4680 1.1 joerg case 0xc4:
4681 1.1 joerg common_load_far_pointer(emu, &emu->x86.R_ES);
4682 1.1 joerg break;
4683 1.1 joerg case 0xc5:
4684 1.1 joerg common_load_far_pointer(emu, &emu->x86.R_DS);
4685 1.1 joerg break;
4686 1.1 joerg case 0xc6:
4687 1.1 joerg x86emuOp_mov_byte_RM_IMM(emu);
4688 1.1 joerg break;
4689 1.1 joerg case 0xc7:
4690 1.1 joerg x86emuOp_mov_word_RM_IMM(emu);
4691 1.1 joerg break;
4692 1.1 joerg case 0xc8:
4693 1.1 joerg x86emuOp_enter(emu);
4694 1.1 joerg break;
4695 1.1 joerg case 0xc9:
4696 1.1 joerg x86emuOp_leave(emu);
4697 1.1 joerg break;
4698 1.1 joerg case 0xca:
4699 1.1 joerg x86emuOp_ret_far_IMM(emu);
4700 1.1 joerg break;
4701 1.1 joerg case 0xcb:
4702 1.1 joerg x86emuOp_ret_far(emu);
4703 1.1 joerg break;
4704 1.1 joerg case 0xcc:
4705 1.1 joerg x86emuOp_int3(emu);
4706 1.1 joerg break;
4707 1.1 joerg case 0xcd:
4708 1.1 joerg x86emuOp_int_IMM(emu);
4709 1.1 joerg break;
4710 1.1 joerg case 0xce:
4711 1.1 joerg x86emuOp_into(emu);
4712 1.1 joerg break;
4713 1.1 joerg case 0xcf:
4714 1.1 joerg x86emuOp_iret(emu);
4715 1.1 joerg break;
4716 1.1 joerg
4717 1.1 joerg case 0xd0:
4718 1.1 joerg x86emuOp_opcD0_byte_RM_1(emu);
4719 1.1 joerg break;
4720 1.1 joerg case 0xd1:
4721 1.1 joerg x86emuOp_opcD1_word_RM_1(emu);
4722 1.1 joerg break;
4723 1.1 joerg case 0xd2:
4724 1.1 joerg x86emuOp_opcD2_byte_RM_CL(emu);
4725 1.1 joerg break;
4726 1.1 joerg case 0xd3:
4727 1.1 joerg x86emuOp_opcD3_word_RM_CL(emu);
4728 1.1 joerg break;
4729 1.1 joerg case 0xd4:
4730 1.1 joerg x86emuOp_aam(emu);
4731 1.1 joerg break;
4732 1.1 joerg case 0xd5:
4733 1.1 joerg x86emuOp_aad(emu);
4734 1.1 joerg break;
4735 1.1 joerg /* 0xd6 Undocumented SETALC instruction */
4736 1.1 joerg case 0xd7:
4737 1.1 joerg x86emuOp_xlat(emu);
4738 1.1 joerg break;
4739 1.1 joerg case 0xd8:
4740 1.1 joerg x86emuOp_esc_coprocess_d8(emu);
4741 1.1 joerg break;
4742 1.1 joerg case 0xd9:
4743 1.1 joerg x86emuOp_esc_coprocess_d9(emu);
4744 1.1 joerg break;
4745 1.1 joerg case 0xda:
4746 1.1 joerg x86emuOp_esc_coprocess_da(emu);
4747 1.1 joerg break;
4748 1.1 joerg case 0xdb:
4749 1.1 joerg x86emuOp_esc_coprocess_db(emu);
4750 1.1 joerg break;
4751 1.1 joerg case 0xdc:
4752 1.1 joerg x86emuOp_esc_coprocess_dc(emu);
4753 1.1 joerg break;
4754 1.1 joerg case 0xdd:
4755 1.1 joerg x86emuOp_esc_coprocess_dd(emu);
4756 1.1 joerg break;
4757 1.1 joerg case 0xde:
4758 1.1 joerg x86emuOp_esc_coprocess_de(emu);
4759 1.1 joerg break;
4760 1.1 joerg case 0xdf:
4761 1.1 joerg x86emuOp_esc_coprocess_df(emu);
4762 1.1 joerg break;
4763 1.1 joerg
4764 1.1 joerg case 0xe0:
4765 1.1 joerg x86emuOp_loopne(emu);
4766 1.1 joerg break;
4767 1.1 joerg case 0xe1:
4768 1.1 joerg x86emuOp_loope(emu);
4769 1.1 joerg break;
4770 1.1 joerg case 0xe2:
4771 1.1 joerg x86emuOp_loop(emu);
4772 1.1 joerg break;
4773 1.1 joerg case 0xe3:
4774 1.1 joerg x86emuOp_jcxz(emu);
4775 1.1 joerg break;
4776 1.1 joerg case 0xe4:
4777 1.1 joerg x86emuOp_in_byte_AL_IMM(emu);
4778 1.1 joerg break;
4779 1.1 joerg case 0xe5:
4780 1.1 joerg x86emuOp_in_word_AX_IMM(emu);
4781 1.1 joerg break;
4782 1.1 joerg case 0xe6:
4783 1.1 joerg x86emuOp_out_byte_IMM_AL(emu);
4784 1.1 joerg break;
4785 1.1 joerg case 0xe7:
4786 1.1 joerg x86emuOp_out_word_IMM_AX(emu);
4787 1.1 joerg break;
4788 1.1 joerg
4789 1.1 joerg case 0xe8:
4790 1.1 joerg x86emuOp_call_near_IMM(emu);
4791 1.1 joerg break;
4792 1.1 joerg case 0xe9:
4793 1.1 joerg x86emuOp_jump_near_IMM(emu);
4794 1.1 joerg break;
4795 1.1 joerg case 0xea:
4796 1.1 joerg x86emuOp_jump_far_IMM(emu);
4797 1.1 joerg break;
4798 1.1 joerg case 0xeb:
4799 1.1 joerg x86emuOp_jump_byte_IMM(emu);
4800 1.1 joerg break;
4801 1.1 joerg case 0xec:
4802 1.1 joerg x86emuOp_in_byte_AL_DX(emu);
4803 1.1 joerg break;
4804 1.1 joerg case 0xed:
4805 1.1 joerg x86emuOp_in_word_AX_DX(emu);
4806 1.1 joerg break;
4807 1.1 joerg case 0xee:
4808 1.1 joerg x86emuOp_out_byte_DX_AL(emu);
4809 1.1 joerg break;
4810 1.1 joerg case 0xef:
4811 1.1 joerg x86emuOp_out_word_DX_AX(emu);
4812 1.1 joerg break;
4813 1.1 joerg
4814 1.1 joerg case 0xf0:
4815 1.1 joerg x86emuOp_lock(emu);
4816 1.1 joerg break;
4817 1.1 joerg case 0xf2:
4818 1.1 joerg emu->x86.mode |= SYSMODE_PREFIX_REPNE;
4819 1.1 joerg break;
4820 1.1 joerg case 0xf3:
4821 1.1 joerg emu->x86.mode |= SYSMODE_PREFIX_REPE;
4822 1.1 joerg break;
4823 1.1 joerg case 0xf4:
4824 1.1 joerg X86EMU_halt_sys(emu);
4825 1.1 joerg break;
4826 1.1 joerg case 0xf5:
4827 1.1 joerg x86emuOp_cmc(emu);
4828 1.1 joerg break;
4829 1.1 joerg case 0xf6:
4830 1.1 joerg x86emuOp_opcF6_byte_RM(emu);
4831 1.1 joerg break;
4832 1.1 joerg case 0xf7:
4833 1.1 joerg x86emuOp_opcF7_word_RM(emu);
4834 1.1 joerg break;
4835 1.1 joerg
4836 1.1 joerg case 0xf8:
4837 1.1 joerg CLEAR_FLAG(F_CF);
4838 1.1 joerg break;
4839 1.1 joerg case 0xf9:
4840 1.1 joerg SET_FLAG(F_CF);
4841 1.1 joerg break;
4842 1.1 joerg case 0xfa:
4843 1.1 joerg CLEAR_FLAG(F_IF);
4844 1.1 joerg break;
4845 1.1 joerg case 0xfb:
4846 1.1 joerg SET_FLAG(F_IF);
4847 1.1 joerg break;
4848 1.1 joerg case 0xfc:
4849 1.1 joerg CLEAR_FLAG(F_DF);
4850 1.1 joerg break;
4851 1.1 joerg case 0xfd:
4852 1.1 joerg SET_FLAG(F_DF);
4853 1.1 joerg break;
4854 1.1 joerg case 0xfe:
4855 1.1 joerg x86emuOp_opcFE_byte_RM(emu);
4856 1.1 joerg break;
4857 1.1 joerg case 0xff:
4858 1.1 joerg x86emuOp_opcFF_word_RM(emu);
4859 1.1 joerg break;
4860 1.1 joerg default:
4861 1.1 joerg X86EMU_halt_sys(emu);
4862 1.1 joerg break;
4863 1.1 joerg }
4864 1.1 joerg if (op1 != 0x26 && op1 != 0x2e && op1 != 0x36 && op1 != 0x3e &&
4865 1.1 joerg (op1 | 3) != 0x67)
4866 1.1 joerg emu->x86.mode &= ~SYSMODE_CLRMASK;
4867 1.1 joerg }
4868 1.1 joerg
4869 1.1 joerg static void
4870 1.1 joerg common_jmp_long(struct X86EMU *emu, bool cond)
4871 1.1 joerg {
4872 1.1 joerg int16_t target;
4873 1.1 joerg
4874 1.1 joerg target = (int16_t) fetch_word_imm(emu);
4875 1.1 joerg target += (int16_t) emu->x86.R_IP;
4876 1.1 joerg if (cond)
4877 1.1 joerg emu->x86.R_IP = (uint16_t) target;
4878 1.1 joerg }
4879 1.1 joerg
4880 1.1 joerg static void
4881 1.1 joerg common_set_byte(struct X86EMU *emu, bool cond)
4882 1.1 joerg {
4883 1.1 joerg uint32_t destoffset;
4884 1.1 joerg uint8_t *destreg, destval;
4885 1.1 joerg
4886 1.1 joerg fetch_decode_modrm(emu);
4887 1.1 joerg destval = cond ? 0x01 : 0x00;
4888 1.1 joerg if (emu->cur_mod != 3) {
4889 1.1 joerg destoffset = decode_rl_address(emu);
4890 1.1 joerg store_data_byte(emu, destoffset, destval);
4891 1.1 joerg } else {
4892 1.1 joerg destreg = decode_rl_byte_register(emu);
4893 1.1 joerg *destreg = destval;
4894 1.1 joerg }
4895 1.1 joerg }
4896 1.1 joerg
4897 1.1 joerg static void
4898 1.1 joerg common_bitstring32(struct X86EMU *emu, int op)
4899 1.1 joerg {
4900 1.1 joerg int bit;
4901 1.1 joerg uint32_t srcval, *shiftreg, mask;
4902 1.1 joerg
4903 1.1 joerg fetch_decode_modrm(emu);
4904 1.1 joerg shiftreg = decode_rh_long_register(emu);
4905 1.1 joerg srcval = decode_and_fetch_long_disp(emu, (int16_t) *shiftreg >> 5);
4906 1.1 joerg bit = *shiftreg & 0x1F;
4907 1.1 joerg mask = 0x1 << bit;
4908 1.1 joerg CONDITIONAL_SET_FLAG(srcval & mask, F_CF);
4909 1.1 joerg
4910 1.1 joerg switch (op) {
4911 1.1 joerg case 0:
4912 1.1 joerg break;
4913 1.1 joerg case 1:
4914 1.1 joerg write_back_long(emu, srcval | mask);
4915 1.1 joerg break;
4916 1.1 joerg case 2:
4917 1.1 joerg write_back_long(emu, srcval & ~mask);
4918 1.1 joerg break;
4919 1.1 joerg case 3:
4920 1.1 joerg write_back_long(emu, srcval ^ mask);
4921 1.1 joerg break;
4922 1.1 joerg }
4923 1.1 joerg }
4924 1.1 joerg
4925 1.1 joerg static void
4926 1.1 joerg common_bitstring16(struct X86EMU *emu, int op)
4927 1.1 joerg {
4928 1.1 joerg int bit;
4929 1.1 joerg uint16_t srcval, *shiftreg, mask;
4930 1.1 joerg
4931 1.1 joerg fetch_decode_modrm(emu);
4932 1.1 joerg shiftreg = decode_rh_word_register(emu);
4933 1.1 joerg srcval = decode_and_fetch_word_disp(emu, (int16_t) *shiftreg >> 4);
4934 1.1 joerg bit = *shiftreg & 0xF;
4935 1.1 joerg mask = 0x1 << bit;
4936 1.1 joerg CONDITIONAL_SET_FLAG(srcval & mask, F_CF);
4937 1.1 joerg
4938 1.1 joerg switch (op) {
4939 1.1 joerg case 0:
4940 1.1 joerg break;
4941 1.1 joerg case 1:
4942 1.1 joerg write_back_word(emu, srcval | mask);
4943 1.1 joerg break;
4944 1.1 joerg case 2:
4945 1.1 joerg write_back_word(emu, srcval & ~mask);
4946 1.1 joerg break;
4947 1.1 joerg case 3:
4948 1.1 joerg write_back_word(emu, srcval ^ mask);
4949 1.1 joerg break;
4950 1.1 joerg }
4951 1.1 joerg }
4952 1.1 joerg
4953 1.1 joerg static void
4954 1.1 joerg common_bitstring(struct X86EMU *emu, int op)
4955 1.1 joerg {
4956 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
4957 1.1 joerg common_bitstring32(emu, op);
4958 1.1 joerg else
4959 1.1 joerg common_bitstring16(emu, op);
4960 1.1 joerg }
4961 1.1 joerg
4962 1.1 joerg static void
4963 1.1 joerg common_bitsearch32(struct X86EMU *emu, int diff)
4964 1.1 joerg {
4965 1.1 joerg uint32_t srcval, *dstreg;
4966 1.1 joerg
4967 1.1 joerg fetch_decode_modrm(emu);
4968 1.1 joerg dstreg = decode_rh_long_register(emu);
4969 1.1 joerg srcval = decode_and_fetch_long(emu);
4970 1.1 joerg CONDITIONAL_SET_FLAG(srcval == 0, F_ZF);
4971 1.1 joerg for (*dstreg = 0; *dstreg < 32; *dstreg += diff) {
4972 1.1 joerg if ((srcval >> *dstreg) & 1)
4973 1.1 joerg break;
4974 1.1 joerg }
4975 1.1 joerg }
4976 1.1 joerg
4977 1.1 joerg static void
4978 1.1 joerg common_bitsearch16(struct X86EMU *emu, int diff)
4979 1.1 joerg {
4980 1.1 joerg uint16_t srcval, *dstreg;
4981 1.1 joerg
4982 1.1 joerg fetch_decode_modrm(emu);
4983 1.1 joerg dstreg = decode_rh_word_register(emu);
4984 1.1 joerg srcval = decode_and_fetch_word(emu);
4985 1.1 joerg CONDITIONAL_SET_FLAG(srcval == 0, F_ZF);
4986 1.1 joerg for (*dstreg = 0; *dstreg < 16; *dstreg += diff) {
4987 1.1 joerg if ((srcval >> *dstreg) & 1)
4988 1.1 joerg break;
4989 1.1 joerg }
4990 1.1 joerg }
4991 1.1 joerg
4992 1.1 joerg static void
4993 1.1 joerg common_bitsearch(struct X86EMU *emu, int diff)
4994 1.1 joerg {
4995 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
4996 1.1 joerg common_bitsearch32(emu, diff);
4997 1.1 joerg else
4998 1.1 joerg common_bitsearch16(emu, diff);
4999 1.1 joerg }
5000 1.1 joerg
5001 1.1 joerg static void
5002 1.1 joerg common_shift32(struct X86EMU *emu, bool shift_left, bool use_cl)
5003 1.1 joerg {
5004 1.1 joerg uint8_t shift;
5005 1.1 joerg uint32_t destval, *shiftreg;
5006 1.1 joerg
5007 1.1 joerg fetch_decode_modrm(emu);
5008 1.1 joerg shiftreg = decode_rh_long_register(emu);
5009 1.1 joerg if (use_cl) {
5010 1.1 joerg destval = decode_and_fetch_long(emu);
5011 1.1 joerg shift = emu->x86.R_CL;
5012 1.1 joerg } else {
5013 1.1 joerg destval = decode_and_fetch_long_imm8(emu, &shift);
5014 1.1 joerg }
5015 1.1 joerg if (shift_left)
5016 1.1 joerg destval = shld_long(emu, destval, *shiftreg, shift);
5017 1.1 joerg else
5018 1.1 joerg destval = shrd_long(emu, destval, *shiftreg, shift);
5019 1.1 joerg write_back_long(emu, destval);
5020 1.1 joerg }
5021 1.1 joerg
5022 1.1 joerg static void
5023 1.1 joerg common_shift16(struct X86EMU *emu, bool shift_left, bool use_cl)
5024 1.1 joerg {
5025 1.1 joerg uint8_t shift;
5026 1.1 joerg uint16_t destval, *shiftreg;
5027 1.1 joerg
5028 1.1 joerg fetch_decode_modrm(emu);
5029 1.1 joerg shiftreg = decode_rh_word_register(emu);
5030 1.1 joerg if (use_cl) {
5031 1.1 joerg destval = decode_and_fetch_word(emu);
5032 1.1 joerg shift = emu->x86.R_CL;
5033 1.1 joerg } else {
5034 1.1 joerg destval = decode_and_fetch_word_imm8(emu, &shift);
5035 1.1 joerg }
5036 1.1 joerg if (shift_left)
5037 1.1 joerg destval = shld_word(emu, destval, *shiftreg, shift);
5038 1.1 joerg else
5039 1.1 joerg destval = shrd_word(emu, destval, *shiftreg, shift);
5040 1.1 joerg write_back_word(emu, destval);
5041 1.1 joerg }
5042 1.1 joerg
5043 1.1 joerg static void
5044 1.1 joerg common_shift(struct X86EMU *emu, bool shift_left, bool use_cl)
5045 1.1 joerg {
5046 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
5047 1.1 joerg common_shift32(emu, shift_left, use_cl);
5048 1.1 joerg else
5049 1.1 joerg common_shift16(emu, shift_left, use_cl);
5050 1.1 joerg }
5051 1.1 joerg
5052 1.1 joerg /*----------------------------- Implementation ----------------------------*/
5053 1.1 joerg #define xorl(a,b) ((a) && !(b)) || (!(a) && (b))
5054 1.1 joerg
5055 1.1 joerg /****************************************************************************
5056 1.1 joerg REMARKS:
5057 1.1 joerg Handles opcode 0x0f,0x31
5058 1.1 joerg ****************************************************************************/
5059 1.1 joerg static void
5060 1.1 joerg x86emuOp2_rdtsc(struct X86EMU *emu)
5061 1.1 joerg {
5062 1.1 joerg emu->x86.R_EAX = emu->cur_cycles & 0xffffffff;
5063 1.1 joerg emu->x86.R_EDX = emu->cur_cycles >> 32;
5064 1.1 joerg }
5065 1.1 joerg /****************************************************************************
5066 1.1 joerg REMARKS:
5067 1.1 joerg Handles opcode 0x0f,0xa0
5068 1.1 joerg ****************************************************************************/
5069 1.1 joerg static void
5070 1.1 joerg x86emuOp2_push_FS(struct X86EMU *emu)
5071 1.1 joerg {
5072 1.1 joerg push_word(emu, emu->x86.R_FS);
5073 1.1 joerg }
5074 1.1 joerg /****************************************************************************
5075 1.1 joerg REMARKS:
5076 1.1 joerg Handles opcode 0x0f,0xa1
5077 1.1 joerg ****************************************************************************/
5078 1.1 joerg static void
5079 1.1 joerg x86emuOp2_pop_FS(struct X86EMU *emu)
5080 1.1 joerg {
5081 1.1 joerg emu->x86.R_FS = pop_word(emu);
5082 1.1 joerg }
5083 1.1 joerg /****************************************************************************
5084 1.1 joerg REMARKS:
5085 1.1 joerg Handles opcode 0x0f,0xa3
5086 1.1 joerg ****************************************************************************/
5087 1.1 joerg static void
5088 1.1 joerg x86emuOp2_bt_R(struct X86EMU *emu)
5089 1.1 joerg {
5090 1.1 joerg common_bitstring(emu, 0);
5091 1.1 joerg }
5092 1.1 joerg /****************************************************************************
5093 1.1 joerg REMARKS:
5094 1.1 joerg Handles opcode 0x0f,0xa4
5095 1.1 joerg ****************************************************************************/
5096 1.1 joerg static void
5097 1.1 joerg x86emuOp2_shld_IMM(struct X86EMU *emu)
5098 1.1 joerg {
5099 1.1 joerg common_shift(emu, true, false);
5100 1.1 joerg }
5101 1.1 joerg /****************************************************************************
5102 1.1 joerg REMARKS:
5103 1.1 joerg Handles opcode 0x0f,0xa5
5104 1.1 joerg ****************************************************************************/
5105 1.1 joerg static void
5106 1.1 joerg x86emuOp2_shld_CL(struct X86EMU *emu)
5107 1.1 joerg {
5108 1.1 joerg common_shift(emu, true, true);
5109 1.1 joerg }
5110 1.1 joerg /****************************************************************************
5111 1.1 joerg REMARKS:
5112 1.1 joerg Handles opcode 0x0f,0xa8
5113 1.1 joerg ****************************************************************************/
5114 1.1 joerg static void
5115 1.1 joerg x86emuOp2_push_GS(struct X86EMU *emu)
5116 1.1 joerg {
5117 1.1 joerg push_word(emu, emu->x86.R_GS);
5118 1.1 joerg }
5119 1.1 joerg /****************************************************************************
5120 1.1 joerg REMARKS:
5121 1.1 joerg Handles opcode 0x0f,0xa9
5122 1.1 joerg ****************************************************************************/
5123 1.1 joerg static void
5124 1.1 joerg x86emuOp2_pop_GS(struct X86EMU *emu)
5125 1.1 joerg {
5126 1.1 joerg emu->x86.R_GS = pop_word(emu);
5127 1.1 joerg }
5128 1.1 joerg /****************************************************************************
5129 1.1 joerg REMARKS:
5130 1.1 joerg Handles opcode 0x0f,0xab
5131 1.1 joerg ****************************************************************************/
5132 1.1 joerg static void
5133 1.1 joerg x86emuOp2_bts_R(struct X86EMU *emu)
5134 1.1 joerg {
5135 1.1 joerg common_bitstring(emu, 1);
5136 1.1 joerg }
5137 1.1 joerg /****************************************************************************
5138 1.1 joerg REMARKS:
5139 1.1 joerg Handles opcode 0x0f,0xac
5140 1.1 joerg ****************************************************************************/
5141 1.1 joerg static void
5142 1.1 joerg x86emuOp2_shrd_IMM(struct X86EMU *emu)
5143 1.1 joerg {
5144 1.1 joerg common_shift(emu, false, false);
5145 1.1 joerg }
5146 1.1 joerg /****************************************************************************
5147 1.1 joerg REMARKS:
5148 1.1 joerg Handles opcode 0x0f,0xad
5149 1.1 joerg ****************************************************************************/
5150 1.1 joerg static void
5151 1.1 joerg x86emuOp2_shrd_CL(struct X86EMU *emu)
5152 1.1 joerg {
5153 1.1 joerg common_shift(emu, false, true);
5154 1.1 joerg }
5155 1.1 joerg /****************************************************************************
5156 1.1 joerg REMARKS:
5157 1.1 joerg Handles opcode 0x0f,0xaf
5158 1.1 joerg ****************************************************************************/
5159 1.1 joerg static void
5160 1.1 joerg x86emuOp2_32_imul_R_RM(struct X86EMU *emu)
5161 1.1 joerg {
5162 1.1 joerg uint32_t *destreg, srcval;
5163 1.1 joerg uint64_t res;
5164 1.1 joerg
5165 1.1 joerg fetch_decode_modrm(emu);
5166 1.1 joerg destreg = decode_rh_long_register(emu);
5167 1.1 joerg srcval = decode_and_fetch_long(emu);
5168 1.1 joerg res = (int32_t) *destreg * (int32_t)srcval;
5169 1.1 joerg if (res > 0xffffffff) {
5170 1.1 joerg SET_FLAG(F_CF);
5171 1.1 joerg SET_FLAG(F_OF);
5172 1.1 joerg } else {
5173 1.1 joerg CLEAR_FLAG(F_CF);
5174 1.1 joerg CLEAR_FLAG(F_OF);
5175 1.1 joerg }
5176 1.1 joerg *destreg = (uint32_t) res;
5177 1.1 joerg }
5178 1.1 joerg
5179 1.1 joerg static void
5180 1.1 joerg x86emuOp2_16_imul_R_RM(struct X86EMU *emu)
5181 1.1 joerg {
5182 1.1 joerg uint16_t *destreg, srcval;
5183 1.1 joerg uint32_t res;
5184 1.1 joerg
5185 1.1 joerg fetch_decode_modrm(emu);
5186 1.1 joerg destreg = decode_rh_word_register(emu);
5187 1.1 joerg srcval = decode_and_fetch_word(emu);
5188 1.1 joerg res = (int16_t) * destreg * (int16_t)srcval;
5189 1.1 joerg if (res > 0xFFFF) {
5190 1.1 joerg SET_FLAG(F_CF);
5191 1.1 joerg SET_FLAG(F_OF);
5192 1.1 joerg } else {
5193 1.1 joerg CLEAR_FLAG(F_CF);
5194 1.1 joerg CLEAR_FLAG(F_OF);
5195 1.1 joerg }
5196 1.1 joerg *destreg = (uint16_t) res;
5197 1.1 joerg }
5198 1.1 joerg
5199 1.1 joerg static void
5200 1.1 joerg x86emuOp2_imul_R_RM(struct X86EMU *emu)
5201 1.1 joerg {
5202 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
5203 1.1 joerg x86emuOp2_32_imul_R_RM(emu);
5204 1.1 joerg else
5205 1.1 joerg x86emuOp2_16_imul_R_RM(emu);
5206 1.1 joerg }
5207 1.1 joerg /****************************************************************************
5208 1.1 joerg REMARKS:
5209 1.1 joerg Handles opcode 0x0f,0xb2
5210 1.1 joerg ****************************************************************************/
5211 1.1 joerg static void
5212 1.1 joerg x86emuOp2_lss_R_IMM(struct X86EMU *emu)
5213 1.1 joerg {
5214 1.1 joerg common_load_far_pointer(emu, &emu->x86.R_SS);
5215 1.1 joerg }
5216 1.1 joerg /****************************************************************************
5217 1.1 joerg REMARKS:
5218 1.1 joerg Handles opcode 0x0f,0xb3
5219 1.1 joerg ****************************************************************************/
5220 1.1 joerg static void
5221 1.1 joerg x86emuOp2_btr_R(struct X86EMU *emu)
5222 1.1 joerg {
5223 1.1 joerg common_bitstring(emu, 2);
5224 1.1 joerg }
5225 1.1 joerg /****************************************************************************
5226 1.1 joerg REMARKS:
5227 1.1 joerg Handles opcode 0x0f,0xb4
5228 1.1 joerg ****************************************************************************/
5229 1.1 joerg static void
5230 1.1 joerg x86emuOp2_lfs_R_IMM(struct X86EMU *emu)
5231 1.1 joerg {
5232 1.1 joerg common_load_far_pointer(emu, &emu->x86.R_FS);
5233 1.1 joerg }
5234 1.1 joerg /****************************************************************************
5235 1.1 joerg REMARKS:
5236 1.1 joerg Handles opcode 0x0f,0xb5
5237 1.1 joerg ****************************************************************************/
5238 1.1 joerg static void
5239 1.1 joerg x86emuOp2_lgs_R_IMM(struct X86EMU *emu)
5240 1.1 joerg {
5241 1.1 joerg common_load_far_pointer(emu, &emu->x86.R_GS);
5242 1.1 joerg }
5243 1.1 joerg /****************************************************************************
5244 1.1 joerg REMARKS:
5245 1.1 joerg Handles opcode 0x0f,0xb6
5246 1.1 joerg ****************************************************************************/
5247 1.1 joerg static void
5248 1.1 joerg x86emuOp2_32_movzx_byte_R_RM(struct X86EMU *emu)
5249 1.1 joerg {
5250 1.1 joerg uint32_t *destreg;
5251 1.1 joerg
5252 1.1 joerg fetch_decode_modrm(emu);
5253 1.1 joerg destreg = decode_rh_long_register(emu);
5254 1.1 joerg *destreg = decode_and_fetch_byte(emu);
5255 1.1 joerg }
5256 1.1 joerg
5257 1.1 joerg static void
5258 1.1 joerg x86emuOp2_16_movzx_byte_R_RM(struct X86EMU *emu)
5259 1.1 joerg {
5260 1.1 joerg uint16_t *destreg;
5261 1.1 joerg
5262 1.1 joerg fetch_decode_modrm(emu);
5263 1.1 joerg destreg = decode_rh_word_register(emu);
5264 1.1 joerg *destreg = decode_and_fetch_byte(emu);
5265 1.1 joerg }
5266 1.1 joerg
5267 1.1 joerg static void
5268 1.1 joerg x86emuOp2_movzx_byte_R_RM(struct X86EMU *emu)
5269 1.1 joerg {
5270 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
5271 1.1 joerg x86emuOp2_32_movzx_byte_R_RM(emu);
5272 1.1 joerg else
5273 1.1 joerg x86emuOp2_16_movzx_byte_R_RM(emu);
5274 1.1 joerg }
5275 1.1 joerg /****************************************************************************
5276 1.1 joerg REMARKS:
5277 1.1 joerg Handles opcode 0x0f,0xb7
5278 1.1 joerg ****************************************************************************/
5279 1.1 joerg static void
5280 1.1 joerg x86emuOp2_movzx_word_R_RM(struct X86EMU *emu)
5281 1.1 joerg {
5282 1.1 joerg uint32_t *destreg;
5283 1.1 joerg
5284 1.1 joerg fetch_decode_modrm(emu);
5285 1.1 joerg destreg = decode_rh_long_register(emu);
5286 1.1 joerg *destreg = decode_and_fetch_word(emu);
5287 1.1 joerg }
5288 1.1 joerg /****************************************************************************
5289 1.1 joerg REMARKS:
5290 1.1 joerg Handles opcode 0x0f,0xba
5291 1.1 joerg ****************************************************************************/
5292 1.1 joerg static void
5293 1.1 joerg x86emuOp2_32_btX_I(struct X86EMU *emu)
5294 1.1 joerg {
5295 1.1 joerg int bit;
5296 1.1 joerg uint32_t srcval, mask;
5297 1.1 joerg uint8_t shift;
5298 1.1 joerg
5299 1.1 joerg fetch_decode_modrm(emu);
5300 1.1 joerg if (emu->cur_rh < 4)
5301 1.1 joerg X86EMU_halt_sys(emu);
5302 1.1 joerg
5303 1.1 joerg srcval = decode_and_fetch_long_imm8(emu, &shift);
5304 1.1 joerg bit = shift & 0x1F;
5305 1.1 joerg mask = (0x1 << bit);
5306 1.1 joerg
5307 1.1 joerg switch (emu->cur_rh) {
5308 1.1 joerg case 5:
5309 1.1 joerg write_back_long(emu, srcval | mask);
5310 1.1 joerg break;
5311 1.1 joerg case 6:
5312 1.1 joerg write_back_long(emu, srcval & ~mask);
5313 1.1 joerg break;
5314 1.1 joerg case 7:
5315 1.1 joerg write_back_long(emu, srcval ^ mask);
5316 1.1 joerg break;
5317 1.1 joerg }
5318 1.1 joerg CONDITIONAL_SET_FLAG(srcval & mask, F_CF);
5319 1.1 joerg }
5320 1.1 joerg
5321 1.1 joerg static void
5322 1.1 joerg x86emuOp2_16_btX_I(struct X86EMU *emu)
5323 1.1 joerg {
5324 1.1 joerg int bit;
5325 1.1 joerg
5326 1.1 joerg uint16_t srcval, mask;
5327 1.1 joerg uint8_t shift;
5328 1.1 joerg
5329 1.1 joerg fetch_decode_modrm(emu);
5330 1.1 joerg if (emu->cur_rh < 4)
5331 1.1 joerg X86EMU_halt_sys(emu);
5332 1.1 joerg
5333 1.1 joerg srcval = decode_and_fetch_word_imm8(emu, &shift);
5334 1.1 joerg bit = shift & 0xF;
5335 1.1 joerg mask = (0x1 << bit);
5336 1.1 joerg switch (emu->cur_rh) {
5337 1.1 joerg case 5:
5338 1.1 joerg write_back_word(emu, srcval | mask);
5339 1.1 joerg break;
5340 1.1 joerg case 6:
5341 1.1 joerg write_back_word(emu, srcval & ~mask);
5342 1.1 joerg break;
5343 1.1 joerg case 7:
5344 1.1 joerg write_back_word(emu, srcval ^ mask);
5345 1.1 joerg break;
5346 1.1 joerg }
5347 1.1 joerg CONDITIONAL_SET_FLAG(srcval & mask, F_CF);
5348 1.1 joerg }
5349 1.1 joerg
5350 1.1 joerg static void
5351 1.1 joerg x86emuOp2_btX_I(struct X86EMU *emu)
5352 1.1 joerg {
5353 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
5354 1.1 joerg x86emuOp2_32_btX_I(emu);
5355 1.1 joerg else
5356 1.1 joerg x86emuOp2_16_btX_I(emu);
5357 1.1 joerg }
5358 1.1 joerg /****************************************************************************
5359 1.1 joerg REMARKS:
5360 1.1 joerg Handles opcode 0x0f,0xbb
5361 1.1 joerg ****************************************************************************/
5362 1.1 joerg static void
5363 1.1 joerg x86emuOp2_btc_R(struct X86EMU *emu)
5364 1.1 joerg {
5365 1.1 joerg common_bitstring(emu, 3);
5366 1.1 joerg }
5367 1.1 joerg /****************************************************************************
5368 1.1 joerg REMARKS:
5369 1.1 joerg Handles opcode 0x0f,0xbc
5370 1.1 joerg ****************************************************************************/
5371 1.1 joerg static void
5372 1.1 joerg x86emuOp2_bsf(struct X86EMU *emu)
5373 1.1 joerg {
5374 1.1 joerg common_bitsearch(emu, +1);
5375 1.1 joerg }
5376 1.1 joerg /****************************************************************************
5377 1.1 joerg REMARKS:
5378 1.1 joerg Handles opcode 0x0f,0xbd
5379 1.1 joerg ****************************************************************************/
5380 1.1 joerg static void
5381 1.1 joerg x86emuOp2_bsr(struct X86EMU *emu)
5382 1.1 joerg {
5383 1.1 joerg common_bitsearch(emu, -1);
5384 1.1 joerg }
5385 1.1 joerg /****************************************************************************
5386 1.1 joerg REMARKS:
5387 1.1 joerg Handles opcode 0x0f,0xbe
5388 1.1 joerg ****************************************************************************/
5389 1.1 joerg static void
5390 1.1 joerg x86emuOp2_32_movsx_byte_R_RM(struct X86EMU *emu)
5391 1.1 joerg {
5392 1.1 joerg uint32_t *destreg;
5393 1.1 joerg
5394 1.1 joerg destreg = decode_rh_long_register(emu);
5395 1.1 joerg *destreg = (int32_t)(int8_t)decode_and_fetch_byte(emu);
5396 1.1 joerg }
5397 1.1 joerg
5398 1.1 joerg static void
5399 1.1 joerg x86emuOp2_16_movsx_byte_R_RM(struct X86EMU *emu)
5400 1.1 joerg {
5401 1.1 joerg uint16_t *destreg;
5402 1.1 joerg
5403 1.1 joerg fetch_decode_modrm(emu);
5404 1.1 joerg destreg = decode_rh_word_register(emu);
5405 1.1 joerg *destreg = (int16_t)(int8_t)decode_and_fetch_byte(emu);
5406 1.1 joerg }
5407 1.1 joerg
5408 1.1 joerg static void
5409 1.1 joerg x86emuOp2_movsx_byte_R_RM(struct X86EMU *emu)
5410 1.1 joerg {
5411 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
5412 1.1 joerg x86emuOp2_32_movsx_byte_R_RM(emu);
5413 1.1 joerg else
5414 1.1 joerg x86emuOp2_16_movsx_byte_R_RM(emu);
5415 1.1 joerg }
5416 1.1 joerg /****************************************************************************
5417 1.1 joerg REMARKS:
5418 1.1 joerg Handles opcode 0x0f,0xbf
5419 1.1 joerg ****************************************************************************/
5420 1.1 joerg static void
5421 1.1 joerg x86emuOp2_movsx_word_R_RM(struct X86EMU *emu)
5422 1.1 joerg {
5423 1.1 joerg uint32_t *destreg;
5424 1.1 joerg
5425 1.1 joerg fetch_decode_modrm(emu);
5426 1.1 joerg destreg = decode_rh_long_register(emu);
5427 1.1 joerg *destreg = (int32_t)(int16_t)decode_and_fetch_word(emu);
5428 1.1 joerg }
5429 1.1 joerg
5430 1.1 joerg static void
5431 1.1 joerg X86EMU_exec_two_byte(struct X86EMU * emu)
5432 1.1 joerg {
5433 1.1 joerg uint8_t op2;
5434 1.1 joerg
5435 1.1 joerg op2 = fetch_byte_imm(emu);
5436 1.1 joerg
5437 1.1 joerg switch (op2) {
5438 1.1 joerg /* 0x00 Group F (ring 0 PM) */
5439 1.1 joerg /* 0x01 Group G (ring 0 PM) */
5440 1.1 joerg /* 0x02 lar (ring 0 PM) */
5441 1.1 joerg /* 0x03 lsl (ring 0 PM) */
5442 1.1 joerg /* 0x05 loadall (undocumented) */
5443 1.1 joerg /* 0x06 clts (ring 0 PM) */
5444 1.1 joerg /* 0x07 loadall (undocumented) */
5445 1.1 joerg /* 0x08 invd (ring 0 PM) */
5446 1.1 joerg /* 0x09 wbinvd (ring 0 PM) */
5447 1.1 joerg
5448 1.1 joerg /* 0x20 mov reg32(op2); break;creg (ring 0 PM) */
5449 1.1 joerg /* 0x21 mov reg32(op2); break;dreg (ring 0 PM) */
5450 1.1 joerg /* 0x22 mov creg(op2); break;reg32 (ring 0 PM) */
5451 1.1 joerg /* 0x23 mov dreg(op2); break;reg32 (ring 0 PM) */
5452 1.1 joerg /* 0x24 mov reg32(op2); break;treg (ring 0 PM) */
5453 1.1 joerg /* 0x26 mov treg(op2); break;reg32 (ring 0 PM) */
5454 1.1 joerg
5455 1.1 joerg case 0x31:
5456 1.1 joerg x86emuOp2_rdtsc(emu);
5457 1.1 joerg break;
5458 1.1 joerg
5459 1.1 joerg case 0x80:
5460 1.1 joerg common_jmp_long(emu, ACCESS_FLAG(F_OF));
5461 1.1 joerg break;
5462 1.1 joerg case 0x81:
5463 1.1 joerg common_jmp_long(emu, !ACCESS_FLAG(F_OF));
5464 1.1 joerg break;
5465 1.1 joerg case 0x82:
5466 1.1 joerg common_jmp_long(emu, ACCESS_FLAG(F_CF));
5467 1.1 joerg break;
5468 1.1 joerg case 0x83:
5469 1.1 joerg common_jmp_long(emu, !ACCESS_FLAG(F_CF));
5470 1.1 joerg break;
5471 1.1 joerg case 0x84:
5472 1.1 joerg common_jmp_long(emu, ACCESS_FLAG(F_ZF));
5473 1.1 joerg break;
5474 1.1 joerg case 0x85:
5475 1.1 joerg common_jmp_long(emu, !ACCESS_FLAG(F_ZF));
5476 1.1 joerg break;
5477 1.1 joerg case 0x86:
5478 1.1 joerg common_jmp_long(emu, ACCESS_FLAG(F_CF) || ACCESS_FLAG(F_ZF));
5479 1.1 joerg break;
5480 1.1 joerg case 0x87:
5481 1.1 joerg common_jmp_long(emu, !(ACCESS_FLAG(F_CF) || ACCESS_FLAG(F_ZF)));
5482 1.1 joerg break;
5483 1.1 joerg case 0x88:
5484 1.1 joerg common_jmp_long(emu, ACCESS_FLAG(F_SF));
5485 1.1 joerg break;
5486 1.1 joerg case 0x89:
5487 1.1 joerg common_jmp_long(emu, !ACCESS_FLAG(F_SF));
5488 1.1 joerg break;
5489 1.1 joerg case 0x8a:
5490 1.1 joerg common_jmp_long(emu, ACCESS_FLAG(F_PF));
5491 1.1 joerg break;
5492 1.1 joerg case 0x8b:
5493 1.1 joerg common_jmp_long(emu, !ACCESS_FLAG(F_PF));
5494 1.1 joerg break;
5495 1.1 joerg case 0x8c:
5496 1.1 joerg common_jmp_long(emu, xorl(ACCESS_FLAG(F_SF), ACCESS_FLAG(F_OF)));
5497 1.1 joerg break;
5498 1.1 joerg case 0x8d:
5499 1.1 joerg common_jmp_long(emu, !(xorl(ACCESS_FLAG(F_SF), ACCESS_FLAG(F_OF))));
5500 1.1 joerg break;
5501 1.1 joerg case 0x8e:
5502 1.1 joerg common_jmp_long(emu,
5503 1.1 joerg (xorl(ACCESS_FLAG(F_SF), ACCESS_FLAG(F_OF)) || ACCESS_FLAG(F_ZF)));
5504 1.1 joerg break;
5505 1.1 joerg case 0x8f:
5506 1.1 joerg common_jmp_long(emu,
5507 1.1 joerg !(xorl(ACCESS_FLAG(F_SF), ACCESS_FLAG(F_OF)) || ACCESS_FLAG(F_ZF)));
5508 1.1 joerg break;
5509 1.1 joerg
5510 1.1 joerg case 0x90:
5511 1.1 joerg common_set_byte(emu, ACCESS_FLAG(F_OF));
5512 1.1 joerg break;
5513 1.1 joerg case 0x91:
5514 1.1 joerg common_set_byte(emu, !ACCESS_FLAG(F_OF));
5515 1.1 joerg break;
5516 1.1 joerg case 0x92:
5517 1.1 joerg common_set_byte(emu, ACCESS_FLAG(F_CF));
5518 1.1 joerg break;
5519 1.1 joerg case 0x93:
5520 1.1 joerg common_set_byte(emu, !ACCESS_FLAG(F_CF));
5521 1.1 joerg break;
5522 1.1 joerg case 0x94:
5523 1.1 joerg common_set_byte(emu, ACCESS_FLAG(F_ZF));
5524 1.1 joerg break;
5525 1.1 joerg case 0x95:
5526 1.1 joerg common_set_byte(emu, !ACCESS_FLAG(F_ZF));
5527 1.1 joerg break;
5528 1.1 joerg case 0x96:
5529 1.1 joerg common_set_byte(emu, ACCESS_FLAG(F_CF) || ACCESS_FLAG(F_ZF));
5530 1.1 joerg break;
5531 1.1 joerg case 0x97:
5532 1.1 joerg common_set_byte(emu, !(ACCESS_FLAG(F_CF) || ACCESS_FLAG(F_ZF)));
5533 1.1 joerg break;
5534 1.1 joerg case 0x98:
5535 1.1 joerg common_set_byte(emu, ACCESS_FLAG(F_SF));
5536 1.1 joerg break;
5537 1.1 joerg case 0x99:
5538 1.1 joerg common_set_byte(emu, !ACCESS_FLAG(F_SF));
5539 1.1 joerg break;
5540 1.1 joerg case 0x9a:
5541 1.1 joerg common_set_byte(emu, ACCESS_FLAG(F_PF));
5542 1.1 joerg break;
5543 1.1 joerg case 0x9b:
5544 1.1 joerg common_set_byte(emu, !ACCESS_FLAG(F_PF));
5545 1.1 joerg break;
5546 1.1 joerg case 0x9c:
5547 1.1 joerg common_set_byte(emu, xorl(ACCESS_FLAG(F_SF), ACCESS_FLAG(F_OF)));
5548 1.1 joerg break;
5549 1.1 joerg case 0x9d:
5550 1.1 joerg common_set_byte(emu, xorl(ACCESS_FLAG(F_SF), ACCESS_FLAG(F_OF)));
5551 1.1 joerg break;
5552 1.1 joerg case 0x9e:
5553 1.1 joerg common_set_byte(emu,
5554 1.1 joerg (xorl(ACCESS_FLAG(F_SF), ACCESS_FLAG(F_OF)) ||
5555 1.1 joerg ACCESS_FLAG(F_ZF)));
5556 1.1 joerg break;
5557 1.1 joerg case 0x9f:
5558 1.1 joerg common_set_byte(emu,
5559 1.1 joerg !(xorl(ACCESS_FLAG(F_SF), ACCESS_FLAG(F_OF)) ||
5560 1.1 joerg ACCESS_FLAG(F_ZF)));
5561 1.1 joerg break;
5562 1.1 joerg
5563 1.1 joerg case 0xa0:
5564 1.1 joerg x86emuOp2_push_FS(emu);
5565 1.1 joerg break;
5566 1.1 joerg case 0xa1:
5567 1.1 joerg x86emuOp2_pop_FS(emu);
5568 1.1 joerg break;
5569 1.1 joerg case 0xa3:
5570 1.1 joerg x86emuOp2_bt_R(emu);
5571 1.1 joerg break;
5572 1.1 joerg case 0xa4:
5573 1.1 joerg x86emuOp2_shld_IMM(emu);
5574 1.1 joerg break;
5575 1.1 joerg case 0xa5:
5576 1.1 joerg x86emuOp2_shld_CL(emu);
5577 1.1 joerg break;
5578 1.1 joerg case 0xa8:
5579 1.1 joerg x86emuOp2_push_GS(emu);
5580 1.1 joerg break;
5581 1.1 joerg case 0xa9:
5582 1.1 joerg x86emuOp2_pop_GS(emu);
5583 1.1 joerg break;
5584 1.1 joerg case 0xab:
5585 1.1 joerg x86emuOp2_bts_R(emu);
5586 1.1 joerg break;
5587 1.1 joerg case 0xac:
5588 1.1 joerg x86emuOp2_shrd_IMM(emu);
5589 1.1 joerg break;
5590 1.1 joerg case 0xad:
5591 1.1 joerg x86emuOp2_shrd_CL(emu);
5592 1.1 joerg break;
5593 1.1 joerg case 0xaf:
5594 1.1 joerg x86emuOp2_imul_R_RM(emu);
5595 1.1 joerg break;
5596 1.1 joerg
5597 1.1 joerg /* 0xb0 TODO: cmpxchg */
5598 1.1 joerg /* 0xb1 TODO: cmpxchg */
5599 1.1 joerg case 0xb2:
5600 1.1 joerg x86emuOp2_lss_R_IMM(emu);
5601 1.1 joerg break;
5602 1.1 joerg case 0xb3:
5603 1.1 joerg x86emuOp2_btr_R(emu);
5604 1.1 joerg break;
5605 1.1 joerg case 0xb4:
5606 1.1 joerg x86emuOp2_lfs_R_IMM(emu);
5607 1.1 joerg break;
5608 1.1 joerg case 0xb5:
5609 1.1 joerg x86emuOp2_lgs_R_IMM(emu);
5610 1.1 joerg break;
5611 1.1 joerg case 0xb6:
5612 1.1 joerg x86emuOp2_movzx_byte_R_RM(emu);
5613 1.1 joerg break;
5614 1.1 joerg case 0xb7:
5615 1.1 joerg x86emuOp2_movzx_word_R_RM(emu);
5616 1.1 joerg break;
5617 1.1 joerg case 0xba:
5618 1.1 joerg x86emuOp2_btX_I(emu);
5619 1.1 joerg break;
5620 1.1 joerg case 0xbb:
5621 1.1 joerg x86emuOp2_btc_R(emu);
5622 1.1 joerg break;
5623 1.1 joerg case 0xbc:
5624 1.1 joerg x86emuOp2_bsf(emu);
5625 1.1 joerg break;
5626 1.1 joerg case 0xbd:
5627 1.1 joerg x86emuOp2_bsr(emu);
5628 1.1 joerg break;
5629 1.1 joerg case 0xbe:
5630 1.1 joerg x86emuOp2_movsx_byte_R_RM(emu);
5631 1.1 joerg break;
5632 1.1 joerg case 0xbf:
5633 1.1 joerg x86emuOp2_movsx_word_R_RM(emu);
5634 1.1 joerg break;
5635 1.1 joerg
5636 1.1 joerg /* 0xc0 TODO: xadd */
5637 1.1 joerg /* 0xc1 TODO: xadd */
5638 1.1 joerg /* 0xc8 TODO: bswap */
5639 1.1 joerg /* 0xc9 TODO: bswap */
5640 1.1 joerg /* 0xca TODO: bswap */
5641 1.1 joerg /* 0xcb TODO: bswap */
5642 1.1 joerg /* 0xcc TODO: bswap */
5643 1.1 joerg /* 0xcd TODO: bswap */
5644 1.1 joerg /* 0xce TODO: bswap */
5645 1.1 joerg /* 0xcf TODO: bswap */
5646 1.1 joerg
5647 1.1 joerg default:
5648 1.1 joerg X86EMU_halt_sys(emu);
5649 1.1 joerg break;
5650 1.1 joerg }
5651 1.1 joerg }
5652 1.1 joerg
5653 1.1 joerg /*
5654 1.1 joerg * Carry Chain Calculation
5655 1.1 joerg *
5656 1.1 joerg * This represents a somewhat expensive calculation which is
5657 1.1 joerg * apparently required to emulate the setting of the OF and AF flag.
5658 1.1 joerg * The latter is not so important, but the former is. The overflow
5659 1.1 joerg * flag is the XOR of the top two bits of the carry chain for an
5660 1.1 joerg * addition (similar for subtraction). Since we do not want to
5661 1.1 joerg * simulate the addition in a bitwise manner, we try to calculate the
5662 1.1 joerg * carry chain given the two operands and the result.
5663 1.1 joerg *
5664 1.1 joerg * So, given the following table, which represents the addition of two
5665 1.1 joerg * bits, we can derive a formula for the carry chain.
5666 1.1 joerg *
5667 1.1 joerg * a b cin r cout
5668 1.1 joerg * 0 0 0 0 0
5669 1.1 joerg * 0 0 1 1 0
5670 1.1 joerg * 0 1 0 1 0
5671 1.1 joerg * 0 1 1 0 1
5672 1.1 joerg * 1 0 0 1 0
5673 1.1 joerg * 1 0 1 0 1
5674 1.1 joerg * 1 1 0 0 1
5675 1.1 joerg * 1 1 1 1 1
5676 1.1 joerg *
5677 1.1 joerg * Construction of table for cout:
5678 1.1 joerg *
5679 1.1 joerg * ab
5680 1.1 joerg * r \ 00 01 11 10
5681 1.1 joerg * |------------------
5682 1.1 joerg * 0 | 0 1 1 1
5683 1.1 joerg * 1 | 0 0 1 0
5684 1.1 joerg *
5685 1.1 joerg * By inspection, one gets: cc = ab + r'(a + b)
5686 1.1 joerg *
5687 1.1 joerg * That represents alot of operations, but NO CHOICE....
5688 1.1 joerg *
5689 1.1 joerg * Borrow Chain Calculation.
5690 1.1 joerg *
5691 1.1 joerg * The following table represents the subtraction of two bits, from
5692 1.1 joerg * which we can derive a formula for the borrow chain.
5693 1.1 joerg *
5694 1.1 joerg * a b bin r bout
5695 1.1 joerg * 0 0 0 0 0
5696 1.1 joerg * 0 0 1 1 1
5697 1.1 joerg * 0 1 0 1 1
5698 1.1 joerg * 0 1 1 0 1
5699 1.1 joerg * 1 0 0 1 0
5700 1.1 joerg * 1 0 1 0 0
5701 1.1 joerg * 1 1 0 0 0
5702 1.1 joerg * 1 1 1 1 1
5703 1.1 joerg *
5704 1.1 joerg * Construction of table for cout:
5705 1.1 joerg *
5706 1.1 joerg * ab
5707 1.1 joerg * r \ 00 01 11 10
5708 1.1 joerg * |------------------
5709 1.1 joerg * 0 | 0 1 0 0
5710 1.1 joerg * 1 | 1 1 1 0
5711 1.1 joerg *
5712 1.1 joerg * By inspection, one gets: bc = a'b + r(a' + b)
5713 1.1 joerg *
5714 1.1 joerg ****************************************************************************/
5715 1.1 joerg
5716 1.1 joerg /*------------------------- Global Variables ------------------------------*/
5717 1.1 joerg
5718 1.1 joerg static uint32_t x86emu_parity_tab[8] =
5719 1.1 joerg {
5720 1.1 joerg 0x96696996,
5721 1.1 joerg 0x69969669,
5722 1.1 joerg 0x69969669,
5723 1.1 joerg 0x96696996,
5724 1.1 joerg 0x69969669,
5725 1.1 joerg 0x96696996,
5726 1.1 joerg 0x96696996,
5727 1.1 joerg 0x69969669,
5728 1.1 joerg };
5729 1.1 joerg #define PARITY(x) (((x86emu_parity_tab[(x) / 32] >> ((x) % 32)) & 1) == 0)
5730 1.1 joerg #define XOR2(x) (((x) ^ ((x)>>1)) & 0x1)
5731 1.1 joerg
5732 1.1 joerg /****************************************************************************
5733 1.1 joerg REMARKS:
5734 1.1 joerg Implements the AAA instruction and side effects.
5735 1.1 joerg ****************************************************************************/
5736 1.1 joerg static uint16_t
5737 1.1 joerg aaa_word(struct X86EMU *emu, uint16_t d)
5738 1.1 joerg {
5739 1.1 joerg uint16_t res;
5740 1.1 joerg if ((d & 0xf) > 0x9 || ACCESS_FLAG(F_AF)) {
5741 1.1 joerg d += 0x6;
5742 1.1 joerg d += 0x100;
5743 1.1 joerg SET_FLAG(F_AF);
5744 1.1 joerg SET_FLAG(F_CF);
5745 1.1 joerg } else {
5746 1.1 joerg CLEAR_FLAG(F_CF);
5747 1.1 joerg CLEAR_FLAG(F_AF);
5748 1.1 joerg }
5749 1.1 joerg res = (uint16_t) (d & 0xFF0F);
5750 1.1 joerg CLEAR_FLAG(F_SF);
5751 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
5752 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
5753 1.1 joerg return res;
5754 1.1 joerg }
5755 1.1 joerg /****************************************************************************
5756 1.1 joerg REMARKS:
5757 1.1 joerg Implements the AAA instruction and side effects.
5758 1.1 joerg ****************************************************************************/
5759 1.1 joerg static uint16_t
5760 1.1 joerg aas_word(struct X86EMU *emu, uint16_t d)
5761 1.1 joerg {
5762 1.1 joerg uint16_t res;
5763 1.1 joerg if ((d & 0xf) > 0x9 || ACCESS_FLAG(F_AF)) {
5764 1.1 joerg d -= 0x6;
5765 1.1 joerg d -= 0x100;
5766 1.1 joerg SET_FLAG(F_AF);
5767 1.1 joerg SET_FLAG(F_CF);
5768 1.1 joerg } else {
5769 1.1 joerg CLEAR_FLAG(F_CF);
5770 1.1 joerg CLEAR_FLAG(F_AF);
5771 1.1 joerg }
5772 1.1 joerg res = (uint16_t) (d & 0xFF0F);
5773 1.1 joerg CLEAR_FLAG(F_SF);
5774 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
5775 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
5776 1.1 joerg return res;
5777 1.1 joerg }
5778 1.1 joerg /****************************************************************************
5779 1.1 joerg REMARKS:
5780 1.1 joerg Implements the AAD instruction and side effects.
5781 1.1 joerg ****************************************************************************/
5782 1.1 joerg static uint16_t
5783 1.1 joerg aad_word(struct X86EMU *emu, uint16_t d)
5784 1.1 joerg {
5785 1.1 joerg uint16_t l;
5786 1.1 joerg uint8_t hb, lb;
5787 1.1 joerg
5788 1.1 joerg hb = (uint8_t) ((d >> 8) & 0xff);
5789 1.1 joerg lb = (uint8_t) ((d & 0xff));
5790 1.1 joerg l = (uint16_t) ((lb + 10 * hb) & 0xFF);
5791 1.1 joerg
5792 1.1 joerg CLEAR_FLAG(F_CF);
5793 1.1 joerg CLEAR_FLAG(F_AF);
5794 1.1 joerg CLEAR_FLAG(F_OF);
5795 1.1 joerg CONDITIONAL_SET_FLAG(l & 0x80, F_SF);
5796 1.1 joerg CONDITIONAL_SET_FLAG(l == 0, F_ZF);
5797 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(l & 0xff), F_PF);
5798 1.1 joerg return l;
5799 1.1 joerg }
5800 1.1 joerg /****************************************************************************
5801 1.1 joerg REMARKS:
5802 1.1 joerg Implements the AAM instruction and side effects.
5803 1.1 joerg ****************************************************************************/
5804 1.1 joerg static uint16_t
5805 1.1 joerg aam_word(struct X86EMU *emu, uint8_t d)
5806 1.1 joerg {
5807 1.1 joerg uint16_t h, l;
5808 1.1 joerg
5809 1.1 joerg h = (uint16_t) (d / 10);
5810 1.1 joerg l = (uint16_t) (d % 10);
5811 1.1 joerg l |= (uint16_t) (h << 8);
5812 1.1 joerg
5813 1.1 joerg CLEAR_FLAG(F_CF);
5814 1.1 joerg CLEAR_FLAG(F_AF);
5815 1.1 joerg CLEAR_FLAG(F_OF);
5816 1.1 joerg CONDITIONAL_SET_FLAG(l & 0x80, F_SF);
5817 1.1 joerg CONDITIONAL_SET_FLAG(l == 0, F_ZF);
5818 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(l & 0xff), F_PF);
5819 1.1 joerg return l;
5820 1.1 joerg }
5821 1.1 joerg /****************************************************************************
5822 1.1 joerg REMARKS:
5823 1.1 joerg Implements the ADC instruction and side effects.
5824 1.1 joerg ****************************************************************************/
5825 1.1 joerg static uint8_t
5826 1.1 joerg adc_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
5827 1.1 joerg {
5828 1.1 joerg uint32_t res; /* all operands in native machine order */
5829 1.1 joerg uint32_t cc;
5830 1.1 joerg
5831 1.1 joerg if (ACCESS_FLAG(F_CF))
5832 1.1 joerg res = 1 + d + s;
5833 1.1 joerg else
5834 1.1 joerg res = d + s;
5835 1.1 joerg
5836 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x100, F_CF);
5837 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
5838 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
5839 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
5840 1.1 joerg
5841 1.1 joerg /* calculate the carry chain SEE NOTE AT TOP. */
5842 1.1 joerg cc = (s & d) | ((~res) & (s | d));
5843 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(cc >> 6), F_OF);
5844 1.1 joerg CONDITIONAL_SET_FLAG(cc & 0x8, F_AF);
5845 1.1 joerg return (uint8_t) res;
5846 1.1 joerg }
5847 1.1 joerg /****************************************************************************
5848 1.1 joerg REMARKS:
5849 1.1 joerg Implements the ADC instruction and side effects.
5850 1.1 joerg ****************************************************************************/
5851 1.1 joerg static uint16_t
5852 1.1 joerg adc_word(struct X86EMU *emu, uint16_t d, uint16_t s)
5853 1.1 joerg {
5854 1.1 joerg uint32_t res; /* all operands in native machine order */
5855 1.1 joerg uint32_t cc;
5856 1.1 joerg
5857 1.1 joerg if (ACCESS_FLAG(F_CF))
5858 1.1 joerg res = 1 + d + s;
5859 1.1 joerg else
5860 1.1 joerg res = d + s;
5861 1.1 joerg
5862 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x10000, F_CF);
5863 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
5864 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
5865 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
5866 1.1 joerg
5867 1.1 joerg /* calculate the carry chain SEE NOTE AT TOP. */
5868 1.1 joerg cc = (s & d) | ((~res) & (s | d));
5869 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(cc >> 14), F_OF);
5870 1.1 joerg CONDITIONAL_SET_FLAG(cc & 0x8, F_AF);
5871 1.1 joerg return (uint16_t) res;
5872 1.1 joerg }
5873 1.1 joerg /****************************************************************************
5874 1.1 joerg REMARKS:
5875 1.1 joerg Implements the ADC instruction and side effects.
5876 1.1 joerg ****************************************************************************/
5877 1.1 joerg static uint32_t
5878 1.1 joerg adc_long(struct X86EMU *emu, uint32_t d, uint32_t s)
5879 1.1 joerg {
5880 1.1 joerg uint32_t lo; /* all operands in native machine order */
5881 1.1 joerg uint32_t hi;
5882 1.1 joerg uint32_t res;
5883 1.1 joerg uint32_t cc;
5884 1.1 joerg
5885 1.1 joerg if (ACCESS_FLAG(F_CF)) {
5886 1.1 joerg lo = 1 + (d & 0xFFFF) + (s & 0xFFFF);
5887 1.1 joerg res = 1 + d + s;
5888 1.1 joerg } else {
5889 1.1 joerg lo = (d & 0xFFFF) + (s & 0xFFFF);
5890 1.1 joerg res = d + s;
5891 1.1 joerg }
5892 1.1 joerg hi = (lo >> 16) + (d >> 16) + (s >> 16);
5893 1.1 joerg
5894 1.1 joerg CONDITIONAL_SET_FLAG(hi & 0x10000, F_CF);
5895 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
5896 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
5897 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
5898 1.1 joerg
5899 1.1 joerg /* calculate the carry chain SEE NOTE AT TOP. */
5900 1.1 joerg cc = (s & d) | ((~res) & (s | d));
5901 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(cc >> 30), F_OF);
5902 1.1 joerg CONDITIONAL_SET_FLAG(cc & 0x8, F_AF);
5903 1.1 joerg return res;
5904 1.1 joerg }
5905 1.1 joerg /****************************************************************************
5906 1.1 joerg REMARKS:
5907 1.1 joerg Implements the ADD instruction and side effects.
5908 1.1 joerg ****************************************************************************/
5909 1.1 joerg static uint8_t
5910 1.1 joerg add_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
5911 1.1 joerg {
5912 1.1 joerg uint32_t res; /* all operands in native machine order */
5913 1.1 joerg uint32_t cc;
5914 1.1 joerg
5915 1.1 joerg res = d + s;
5916 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x100, F_CF);
5917 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
5918 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
5919 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
5920 1.1 joerg
5921 1.1 joerg /* calculate the carry chain SEE NOTE AT TOP. */
5922 1.1 joerg cc = (s & d) | ((~res) & (s | d));
5923 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(cc >> 6), F_OF);
5924 1.1 joerg CONDITIONAL_SET_FLAG(cc & 0x8, F_AF);
5925 1.1 joerg return (uint8_t) res;
5926 1.1 joerg }
5927 1.1 joerg /****************************************************************************
5928 1.1 joerg REMARKS:
5929 1.1 joerg Implements the ADD instruction and side effects.
5930 1.1 joerg ****************************************************************************/
5931 1.1 joerg static uint16_t
5932 1.1 joerg add_word(struct X86EMU *emu, uint16_t d, uint16_t s)
5933 1.1 joerg {
5934 1.1 joerg uint32_t res; /* all operands in native machine order */
5935 1.1 joerg uint32_t cc;
5936 1.1 joerg
5937 1.1 joerg res = d + s;
5938 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x10000, F_CF);
5939 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
5940 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
5941 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
5942 1.1 joerg
5943 1.1 joerg /* calculate the carry chain SEE NOTE AT TOP. */
5944 1.1 joerg cc = (s & d) | ((~res) & (s | d));
5945 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(cc >> 14), F_OF);
5946 1.1 joerg CONDITIONAL_SET_FLAG(cc & 0x8, F_AF);
5947 1.1 joerg return (uint16_t) res;
5948 1.1 joerg }
5949 1.1 joerg /****************************************************************************
5950 1.1 joerg REMARKS:
5951 1.1 joerg Implements the ADD instruction and side effects.
5952 1.1 joerg ****************************************************************************/
5953 1.1 joerg static uint32_t
5954 1.1 joerg add_long(struct X86EMU *emu, uint32_t d, uint32_t s)
5955 1.1 joerg {
5956 1.1 joerg uint32_t lo; /* all operands in native machine order */
5957 1.1 joerg uint32_t hi;
5958 1.1 joerg uint32_t res;
5959 1.1 joerg uint32_t cc;
5960 1.1 joerg
5961 1.1 joerg lo = (d & 0xFFFF) + (s & 0xFFFF);
5962 1.1 joerg res = d + s;
5963 1.1 joerg hi = (lo >> 16) + (d >> 16) + (s >> 16);
5964 1.1 joerg
5965 1.1 joerg CONDITIONAL_SET_FLAG(hi & 0x10000, F_CF);
5966 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
5967 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
5968 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
5969 1.1 joerg
5970 1.1 joerg /* calculate the carry chain SEE NOTE AT TOP. */
5971 1.1 joerg cc = (s & d) | ((~res) & (s | d));
5972 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(cc >> 30), F_OF);
5973 1.1 joerg CONDITIONAL_SET_FLAG(cc & 0x8, F_AF);
5974 1.1 joerg
5975 1.1 joerg return res;
5976 1.1 joerg }
5977 1.1 joerg /****************************************************************************
5978 1.1 joerg REMARKS:
5979 1.1 joerg Implements the AND instruction and side effects.
5980 1.1 joerg ****************************************************************************/
5981 1.1 joerg static uint8_t
5982 1.1 joerg and_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
5983 1.1 joerg {
5984 1.1 joerg uint8_t res; /* all operands in native machine order */
5985 1.1 joerg
5986 1.1 joerg res = d & s;
5987 1.1 joerg
5988 1.1 joerg /* set the flags */
5989 1.1 joerg CLEAR_FLAG(F_OF);
5990 1.1 joerg CLEAR_FLAG(F_CF);
5991 1.1 joerg CLEAR_FLAG(F_AF);
5992 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
5993 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
5994 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res), F_PF);
5995 1.1 joerg return res;
5996 1.1 joerg }
5997 1.1 joerg /****************************************************************************
5998 1.1 joerg REMARKS:
5999 1.1 joerg Implements the AND instruction and side effects.
6000 1.1 joerg ****************************************************************************/
6001 1.1 joerg static uint16_t
6002 1.1 joerg and_word(struct X86EMU *emu, uint16_t d, uint16_t s)
6003 1.1 joerg {
6004 1.1 joerg uint16_t res; /* all operands in native machine order */
6005 1.1 joerg
6006 1.1 joerg res = d & s;
6007 1.1 joerg
6008 1.1 joerg /* set the flags */
6009 1.1 joerg CLEAR_FLAG(F_OF);
6010 1.1 joerg CLEAR_FLAG(F_CF);
6011 1.1 joerg CLEAR_FLAG(F_AF);
6012 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
6013 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
6014 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6015 1.1 joerg return res;
6016 1.1 joerg }
6017 1.1 joerg /****************************************************************************
6018 1.1 joerg REMARKS:
6019 1.1 joerg Implements the AND instruction and side effects.
6020 1.1 joerg ****************************************************************************/
6021 1.1 joerg static uint32_t
6022 1.1 joerg and_long(struct X86EMU *emu, uint32_t d, uint32_t s)
6023 1.1 joerg {
6024 1.1 joerg uint32_t res; /* all operands in native machine order */
6025 1.1 joerg
6026 1.1 joerg res = d & s;
6027 1.1 joerg
6028 1.1 joerg /* set the flags */
6029 1.1 joerg CLEAR_FLAG(F_OF);
6030 1.1 joerg CLEAR_FLAG(F_CF);
6031 1.1 joerg CLEAR_FLAG(F_AF);
6032 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
6033 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
6034 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6035 1.1 joerg return res;
6036 1.1 joerg }
6037 1.1 joerg /****************************************************************************
6038 1.1 joerg REMARKS:
6039 1.1 joerg Implements the CMP instruction and side effects.
6040 1.1 joerg ****************************************************************************/
6041 1.1 joerg static uint8_t
6042 1.1 joerg cmp_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
6043 1.1 joerg {
6044 1.1 joerg uint32_t res; /* all operands in native machine order */
6045 1.1 joerg uint32_t bc;
6046 1.1 joerg
6047 1.1 joerg res = d - s;
6048 1.1 joerg CLEAR_FLAG(F_CF);
6049 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
6050 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
6051 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6052 1.1 joerg
6053 1.1 joerg /* calculate the borrow chain. See note at top */
6054 1.1 joerg bc = (res & (~d | s)) | (~d & s);
6055 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x80, F_CF);
6056 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 6), F_OF);
6057 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
6058 1.1 joerg return d;
6059 1.1 joerg }
6060 1.1 joerg
6061 1.1 joerg static void
6062 1.1 joerg cmp_byte_no_return(struct X86EMU *emu, uint8_t d, uint8_t s)
6063 1.1 joerg {
6064 1.1 joerg cmp_byte(emu, d, s);
6065 1.1 joerg }
6066 1.1 joerg /****************************************************************************
6067 1.1 joerg REMARKS:
6068 1.1 joerg Implements the CMP instruction and side effects.
6069 1.1 joerg ****************************************************************************/
6070 1.1 joerg static uint16_t
6071 1.1 joerg cmp_word(struct X86EMU *emu, uint16_t d, uint16_t s)
6072 1.1 joerg {
6073 1.1 joerg uint32_t res; /* all operands in native machine order */
6074 1.1 joerg uint32_t bc;
6075 1.1 joerg
6076 1.1 joerg res = d - s;
6077 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
6078 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
6079 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6080 1.1 joerg
6081 1.1 joerg /* calculate the borrow chain. See note at top */
6082 1.1 joerg bc = (res & (~d | s)) | (~d & s);
6083 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8000, F_CF);
6084 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 14), F_OF);
6085 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
6086 1.1 joerg return d;
6087 1.1 joerg }
6088 1.1 joerg
6089 1.1 joerg static void
6090 1.1 joerg cmp_word_no_return(struct X86EMU *emu, uint16_t d, uint16_t s)
6091 1.1 joerg {
6092 1.1 joerg cmp_word(emu, d, s);
6093 1.1 joerg }
6094 1.1 joerg /****************************************************************************
6095 1.1 joerg REMARKS:
6096 1.1 joerg Implements the CMP instruction and side effects.
6097 1.1 joerg ****************************************************************************/
6098 1.1 joerg static uint32_t
6099 1.1 joerg cmp_long(struct X86EMU *emu, uint32_t d, uint32_t s)
6100 1.1 joerg {
6101 1.1 joerg uint32_t res; /* all operands in native machine order */
6102 1.1 joerg uint32_t bc;
6103 1.1 joerg
6104 1.1 joerg res = d - s;
6105 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
6106 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
6107 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6108 1.1 joerg
6109 1.1 joerg /* calculate the borrow chain. See note at top */
6110 1.1 joerg bc = (res & (~d | s)) | (~d & s);
6111 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x80000000, F_CF);
6112 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 30), F_OF);
6113 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
6114 1.1 joerg return d;
6115 1.1 joerg }
6116 1.1 joerg
6117 1.1 joerg static void
6118 1.1 joerg cmp_long_no_return(struct X86EMU *emu, uint32_t d, uint32_t s)
6119 1.1 joerg {
6120 1.1 joerg cmp_long(emu, d, s);
6121 1.1 joerg }
6122 1.1 joerg /****************************************************************************
6123 1.1 joerg REMARKS:
6124 1.1 joerg Implements the DAA instruction and side effects.
6125 1.1 joerg ****************************************************************************/
6126 1.1 joerg static uint8_t
6127 1.1 joerg daa_byte(struct X86EMU *emu, uint8_t d)
6128 1.1 joerg {
6129 1.1 joerg uint32_t res = d;
6130 1.1 joerg if ((d & 0xf) > 9 || ACCESS_FLAG(F_AF)) {
6131 1.1 joerg res += 6;
6132 1.1 joerg SET_FLAG(F_AF);
6133 1.1 joerg }
6134 1.1 joerg if (res > 0x9F || ACCESS_FLAG(F_CF)) {
6135 1.1 joerg res += 0x60;
6136 1.1 joerg SET_FLAG(F_CF);
6137 1.1 joerg }
6138 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
6139 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xFF) == 0, F_ZF);
6140 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6141 1.1 joerg return (uint8_t) res;
6142 1.1 joerg }
6143 1.1 joerg /****************************************************************************
6144 1.1 joerg REMARKS:
6145 1.1 joerg Implements the DAS instruction and side effects.
6146 1.1 joerg ****************************************************************************/
6147 1.1 joerg static uint8_t
6148 1.1 joerg das_byte(struct X86EMU *emu, uint8_t d)
6149 1.1 joerg {
6150 1.1 joerg if ((d & 0xf) > 9 || ACCESS_FLAG(F_AF)) {
6151 1.1 joerg d -= 6;
6152 1.1 joerg SET_FLAG(F_AF);
6153 1.1 joerg }
6154 1.1 joerg if (d > 0x9F || ACCESS_FLAG(F_CF)) {
6155 1.1 joerg d -= 0x60;
6156 1.1 joerg SET_FLAG(F_CF);
6157 1.1 joerg }
6158 1.1 joerg CONDITIONAL_SET_FLAG(d & 0x80, F_SF);
6159 1.1 joerg CONDITIONAL_SET_FLAG(d == 0, F_ZF);
6160 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(d & 0xff), F_PF);
6161 1.1 joerg return d;
6162 1.1 joerg }
6163 1.1 joerg /****************************************************************************
6164 1.1 joerg REMARKS:
6165 1.1 joerg Implements the DEC instruction and side effects.
6166 1.1 joerg ****************************************************************************/
6167 1.1 joerg static uint8_t
6168 1.1 joerg dec_byte(struct X86EMU *emu, uint8_t d)
6169 1.1 joerg {
6170 1.1 joerg uint32_t res; /* all operands in native machine order */
6171 1.1 joerg uint32_t bc;
6172 1.1 joerg
6173 1.1 joerg res = d - 1;
6174 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
6175 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
6176 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6177 1.1 joerg
6178 1.1 joerg /* calculate the borrow chain. See note at top */
6179 1.1 joerg /* based on sub_byte, uses s==1. */
6180 1.1 joerg bc = (res & (~d | 1)) | (~d & 1);
6181 1.1 joerg /* carry flag unchanged */
6182 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 6), F_OF);
6183 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
6184 1.1 joerg return (uint8_t) res;
6185 1.1 joerg }
6186 1.1 joerg /****************************************************************************
6187 1.1 joerg REMARKS:
6188 1.1 joerg Implements the DEC instruction and side effects.
6189 1.1 joerg ****************************************************************************/
6190 1.1 joerg static uint16_t
6191 1.1 joerg dec_word(struct X86EMU *emu, uint16_t d)
6192 1.1 joerg {
6193 1.1 joerg uint32_t res; /* all operands in native machine order */
6194 1.1 joerg uint32_t bc;
6195 1.1 joerg
6196 1.1 joerg res = d - 1;
6197 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
6198 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
6199 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6200 1.1 joerg
6201 1.1 joerg /* calculate the borrow chain. See note at top */
6202 1.1 joerg /* based on the sub_byte routine, with s==1 */
6203 1.1 joerg bc = (res & (~d | 1)) | (~d & 1);
6204 1.1 joerg /* carry flag unchanged */
6205 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 14), F_OF);
6206 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
6207 1.1 joerg return (uint16_t) res;
6208 1.1 joerg }
6209 1.1 joerg /****************************************************************************
6210 1.1 joerg REMARKS:
6211 1.1 joerg Implements the DEC instruction and side effects.
6212 1.1 joerg ****************************************************************************/
6213 1.1 joerg static uint32_t
6214 1.1 joerg dec_long(struct X86EMU *emu, uint32_t d)
6215 1.1 joerg {
6216 1.1 joerg uint32_t res; /* all operands in native machine order */
6217 1.1 joerg uint32_t bc;
6218 1.1 joerg
6219 1.1 joerg res = d - 1;
6220 1.1 joerg
6221 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
6222 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
6223 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6224 1.1 joerg
6225 1.1 joerg /* calculate the borrow chain. See note at top */
6226 1.1 joerg bc = (res & (~d | 1)) | (~d & 1);
6227 1.1 joerg /* carry flag unchanged */
6228 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 30), F_OF);
6229 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
6230 1.1 joerg return res;
6231 1.1 joerg }
6232 1.1 joerg /****************************************************************************
6233 1.1 joerg REMARKS:
6234 1.1 joerg Implements the INC instruction and side effects.
6235 1.1 joerg ****************************************************************************/
6236 1.1 joerg static uint8_t
6237 1.1 joerg inc_byte(struct X86EMU *emu, uint8_t d)
6238 1.1 joerg {
6239 1.1 joerg uint32_t res; /* all operands in native machine order */
6240 1.1 joerg uint32_t cc;
6241 1.1 joerg
6242 1.1 joerg res = d + 1;
6243 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
6244 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
6245 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6246 1.1 joerg
6247 1.1 joerg /* calculate the carry chain SEE NOTE AT TOP. */
6248 1.1 joerg cc = ((1 & d) | (~res)) & (1 | d);
6249 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(cc >> 6), F_OF);
6250 1.1 joerg CONDITIONAL_SET_FLAG(cc & 0x8, F_AF);
6251 1.1 joerg return (uint8_t) res;
6252 1.1 joerg }
6253 1.1 joerg /****************************************************************************
6254 1.1 joerg REMARKS:
6255 1.1 joerg Implements the INC instruction and side effects.
6256 1.1 joerg ****************************************************************************/
6257 1.1 joerg static uint16_t
6258 1.1 joerg inc_word(struct X86EMU *emu, uint16_t d)
6259 1.1 joerg {
6260 1.1 joerg uint32_t res; /* all operands in native machine order */
6261 1.1 joerg uint32_t cc;
6262 1.1 joerg
6263 1.1 joerg res = d + 1;
6264 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
6265 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
6266 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6267 1.1 joerg
6268 1.1 joerg /* calculate the carry chain SEE NOTE AT TOP. */
6269 1.1 joerg cc = (1 & d) | ((~res) & (1 | d));
6270 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(cc >> 14), F_OF);
6271 1.1 joerg CONDITIONAL_SET_FLAG(cc & 0x8, F_AF);
6272 1.1 joerg return (uint16_t) res;
6273 1.1 joerg }
6274 1.1 joerg /****************************************************************************
6275 1.1 joerg REMARKS:
6276 1.1 joerg Implements the INC instruction and side effects.
6277 1.1 joerg ****************************************************************************/
6278 1.1 joerg static uint32_t
6279 1.1 joerg inc_long(struct X86EMU *emu, uint32_t d)
6280 1.1 joerg {
6281 1.1 joerg uint32_t res; /* all operands in native machine order */
6282 1.1 joerg uint32_t cc;
6283 1.1 joerg
6284 1.1 joerg res = d + 1;
6285 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
6286 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
6287 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6288 1.1 joerg
6289 1.1 joerg /* calculate the carry chain SEE NOTE AT TOP. */
6290 1.1 joerg cc = (1 & d) | ((~res) & (1 | d));
6291 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(cc >> 30), F_OF);
6292 1.1 joerg CONDITIONAL_SET_FLAG(cc & 0x8, F_AF);
6293 1.1 joerg return res;
6294 1.1 joerg }
6295 1.1 joerg /****************************************************************************
6296 1.1 joerg REMARKS:
6297 1.1 joerg Implements the OR instruction and side effects.
6298 1.1 joerg ****************************************************************************/
6299 1.1 joerg static uint8_t
6300 1.1 joerg or_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
6301 1.1 joerg {
6302 1.1 joerg uint8_t res; /* all operands in native machine order */
6303 1.1 joerg
6304 1.1 joerg res = d | s;
6305 1.1 joerg CLEAR_FLAG(F_OF);
6306 1.1 joerg CLEAR_FLAG(F_CF);
6307 1.1 joerg CLEAR_FLAG(F_AF);
6308 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
6309 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
6310 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res), F_PF);
6311 1.1 joerg return res;
6312 1.1 joerg }
6313 1.1 joerg /****************************************************************************
6314 1.1 joerg REMARKS:
6315 1.1 joerg Implements the OR instruction and side effects.
6316 1.1 joerg ****************************************************************************/
6317 1.1 joerg static uint16_t
6318 1.1 joerg or_word(struct X86EMU *emu, uint16_t d, uint16_t s)
6319 1.1 joerg {
6320 1.1 joerg uint16_t res; /* all operands in native machine order */
6321 1.1 joerg
6322 1.1 joerg res = d | s;
6323 1.1 joerg /* set the carry flag to be bit 8 */
6324 1.1 joerg CLEAR_FLAG(F_OF);
6325 1.1 joerg CLEAR_FLAG(F_CF);
6326 1.1 joerg CLEAR_FLAG(F_AF);
6327 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
6328 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
6329 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6330 1.1 joerg return res;
6331 1.1 joerg }
6332 1.1 joerg /****************************************************************************
6333 1.1 joerg REMARKS:
6334 1.1 joerg Implements the OR instruction and side effects.
6335 1.1 joerg ****************************************************************************/
6336 1.1 joerg static uint32_t
6337 1.1 joerg or_long(struct X86EMU *emu, uint32_t d, uint32_t s)
6338 1.1 joerg {
6339 1.1 joerg uint32_t res; /* all operands in native machine order */
6340 1.1 joerg
6341 1.1 joerg res = d | s;
6342 1.1 joerg
6343 1.1 joerg /* set the carry flag to be bit 8 */
6344 1.1 joerg CLEAR_FLAG(F_OF);
6345 1.1 joerg CLEAR_FLAG(F_CF);
6346 1.1 joerg CLEAR_FLAG(F_AF);
6347 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
6348 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
6349 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6350 1.1 joerg return res;
6351 1.1 joerg }
6352 1.1 joerg /****************************************************************************
6353 1.1 joerg REMARKS:
6354 1.1 joerg Implements the OR instruction and side effects.
6355 1.1 joerg ****************************************************************************/
6356 1.1 joerg static uint8_t
6357 1.1 joerg neg_byte(struct X86EMU *emu, uint8_t s)
6358 1.1 joerg {
6359 1.1 joerg uint8_t res;
6360 1.1 joerg uint8_t bc;
6361 1.1 joerg
6362 1.1 joerg CONDITIONAL_SET_FLAG(s != 0, F_CF);
6363 1.1 joerg res = (uint8_t) - s;
6364 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
6365 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
6366 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res), F_PF);
6367 1.1 joerg /* calculate the borrow chain --- modified such that d=0.
6368 1.1 joerg * substitutiing d=0 into bc= res&(~d|s)|(~d&s); (the one used for
6369 1.1 joerg * sub) and simplifying, since ~d=0xff..., ~d|s == 0xffff..., and
6370 1.1 joerg * res&0xfff... == res. Similarly ~d&s == s. So the simplified
6371 1.1 joerg * result is: */
6372 1.1 joerg bc = res | s;
6373 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 6), F_OF);
6374 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
6375 1.1 joerg return res;
6376 1.1 joerg }
6377 1.1 joerg /****************************************************************************
6378 1.1 joerg REMARKS:
6379 1.1 joerg Implements the OR instruction and side effects.
6380 1.1 joerg ****************************************************************************/
6381 1.1 joerg static uint16_t
6382 1.1 joerg neg_word(struct X86EMU *emu, uint16_t s)
6383 1.1 joerg {
6384 1.1 joerg uint16_t res;
6385 1.1 joerg uint16_t bc;
6386 1.1 joerg
6387 1.1 joerg CONDITIONAL_SET_FLAG(s != 0, F_CF);
6388 1.1 joerg res = (uint16_t) - s;
6389 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
6390 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
6391 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6392 1.1 joerg
6393 1.1 joerg /* calculate the borrow chain --- modified such that d=0.
6394 1.1 joerg * substitutiing d=0 into bc= res&(~d|s)|(~d&s); (the one used for
6395 1.1 joerg * sub) and simplifying, since ~d=0xff..., ~d|s == 0xffff..., and
6396 1.1 joerg * res&0xfff... == res. Similarly ~d&s == s. So the simplified
6397 1.1 joerg * result is: */
6398 1.1 joerg bc = res | s;
6399 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 14), F_OF);
6400 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
6401 1.1 joerg return res;
6402 1.1 joerg }
6403 1.1 joerg /****************************************************************************
6404 1.1 joerg REMARKS:
6405 1.1 joerg Implements the OR instruction and side effects.
6406 1.1 joerg ****************************************************************************/
6407 1.1 joerg static uint32_t
6408 1.1 joerg neg_long(struct X86EMU *emu, uint32_t s)
6409 1.1 joerg {
6410 1.1 joerg uint32_t res;
6411 1.1 joerg uint32_t bc;
6412 1.1 joerg
6413 1.1 joerg CONDITIONAL_SET_FLAG(s != 0, F_CF);
6414 1.1 joerg res = (uint32_t) - s;
6415 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
6416 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
6417 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6418 1.1 joerg
6419 1.1 joerg /* calculate the borrow chain --- modified such that d=0.
6420 1.1 joerg * substitutiing d=0 into bc= res&(~d|s)|(~d&s); (the one used for
6421 1.1 joerg * sub) and simplifying, since ~d=0xff..., ~d|s == 0xffff..., and
6422 1.1 joerg * res&0xfff... == res. Similarly ~d&s == s. So the simplified
6423 1.1 joerg * result is: */
6424 1.1 joerg bc = res | s;
6425 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 30), F_OF);
6426 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
6427 1.1 joerg return res;
6428 1.1 joerg }
6429 1.1 joerg /****************************************************************************
6430 1.1 joerg REMARKS:
6431 1.1 joerg Implements the RCL instruction and side effects.
6432 1.1 joerg ****************************************************************************/
6433 1.1 joerg static uint8_t
6434 1.1 joerg rcl_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
6435 1.1 joerg {
6436 1.1 joerg unsigned int res, cnt, mask, cf;
6437 1.1 joerg
6438 1.1 joerg /* s is the rotate distance. It varies from 0 - 8. */
6439 1.1 joerg /* have
6440 1.1 joerg *
6441 1.1 joerg * CF B_7 B_6 B_5 B_4 B_3 B_2 B_1 B_0
6442 1.1 joerg *
6443 1.1 joerg * want to rotate through the carry by "s" bits. We could loop, but
6444 1.1 joerg * that's inefficient. So the width is 9, and we split into three
6445 1.1 joerg * parts:
6446 1.1 joerg *
6447 1.1 joerg * The new carry flag (was B_n) the stuff in B_n-1 .. B_0 the stuff in
6448 1.1 joerg * B_7 .. B_n+1
6449 1.1 joerg *
6450 1.1 joerg * The new rotate is done mod 9, and given this, for a rotation of n bits
6451 1.1 joerg * (mod 9) the new carry flag is then located n bits from the MSB.
6452 1.1 joerg * The low part is then shifted up cnt bits, and the high part is or'd
6453 1.1 joerg * in. Using CAPS for new values, and lowercase for the original
6454 1.1 joerg * values, this can be expressed as:
6455 1.1 joerg *
6456 1.1 joerg * IF n > 0 1) CF <- b_(8-n) 2) B_(7) .. B_(n) <- b_(8-(n+1)) .. b_0
6457 1.1 joerg * 3) B_(n-1) <- cf 4) B_(n-2) .. B_0 <- b_7 .. b_(8-(n-1)) */
6458 1.1 joerg res = d;
6459 1.1 joerg if ((cnt = s % 9) != 0) {
6460 1.1 joerg /* extract the new CARRY FLAG. */
6461 1.1 joerg /* CF <- b_(8-n) */
6462 1.1 joerg cf = (d >> (8 - cnt)) & 0x1;
6463 1.1 joerg
6464 1.1 joerg /* get the low stuff which rotated into the range B_7 .. B_cnt */
6465 1.1 joerg /* B_(7) .. B_(n) <- b_(8-(n+1)) .. b_0 */
6466 1.1 joerg /* note that the right hand side done by the mask */
6467 1.1 joerg res = (d << cnt) & 0xff;
6468 1.1 joerg
6469 1.1 joerg /* now the high stuff which rotated around into the positions
6470 1.1 joerg * B_cnt-2 .. B_0 */
6471 1.1 joerg /* B_(n-2) .. B_0 <- b_7 .. b_(8-(n-1)) */
6472 1.1 joerg /* shift it downward, 7-(n-2) = 9-n positions. and mask off
6473 1.1 joerg * the result before or'ing in. */
6474 1.1 joerg mask = (1 << (cnt - 1)) - 1;
6475 1.1 joerg res |= (d >> (9 - cnt)) & mask;
6476 1.1 joerg
6477 1.1 joerg /* if the carry flag was set, or it in. */
6478 1.1 joerg if (ACCESS_FLAG(F_CF)) { /* carry flag is set */
6479 1.1 joerg /* B_(n-1) <- cf */
6480 1.1 joerg res |= 1 << (cnt - 1);
6481 1.1 joerg }
6482 1.1 joerg /* set the new carry flag, based on the variable "cf" */
6483 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
6484 1.1 joerg /* OVERFLOW is set *IFF* cnt==1, then it is the xor of CF and
6485 1.1 joerg * the most significant bit. Blecck. */
6486 1.1 joerg /* parenthesized this expression since it appears to be
6487 1.1 joerg * causing OF to be misset */
6488 1.1 joerg CONDITIONAL_SET_FLAG(cnt == 1 && XOR2(cf + ((res >> 6) & 0x2)),
6489 1.1 joerg F_OF);
6490 1.1 joerg
6491 1.1 joerg }
6492 1.1 joerg return (uint8_t) res;
6493 1.1 joerg }
6494 1.1 joerg /****************************************************************************
6495 1.1 joerg REMARKS:
6496 1.1 joerg Implements the RCL instruction and side effects.
6497 1.1 joerg ****************************************************************************/
6498 1.1 joerg static uint16_t
6499 1.1 joerg rcl_word(struct X86EMU *emu, uint16_t d, uint8_t s)
6500 1.1 joerg {
6501 1.1 joerg unsigned int res, cnt, mask, cf;
6502 1.1 joerg
6503 1.1 joerg res = d;
6504 1.1 joerg if ((cnt = s % 17) != 0) {
6505 1.1 joerg cf = (d >> (16 - cnt)) & 0x1;
6506 1.1 joerg res = (d << cnt) & 0xffff;
6507 1.1 joerg mask = (1 << (cnt - 1)) - 1;
6508 1.1 joerg res |= (d >> (17 - cnt)) & mask;
6509 1.1 joerg if (ACCESS_FLAG(F_CF)) {
6510 1.1 joerg res |= 1 << (cnt - 1);
6511 1.1 joerg }
6512 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
6513 1.1 joerg CONDITIONAL_SET_FLAG(cnt == 1 && XOR2(cf + ((res >> 14) & 0x2)),
6514 1.1 joerg F_OF);
6515 1.1 joerg }
6516 1.1 joerg return (uint16_t) res;
6517 1.1 joerg }
6518 1.1 joerg /****************************************************************************
6519 1.1 joerg REMARKS:
6520 1.1 joerg Implements the RCL instruction and side effects.
6521 1.1 joerg ****************************************************************************/
6522 1.1 joerg static uint32_t
6523 1.1 joerg rcl_long(struct X86EMU *emu, uint32_t d, uint8_t s)
6524 1.1 joerg {
6525 1.1 joerg uint32_t res, cnt, mask, cf;
6526 1.1 joerg
6527 1.1 joerg res = d;
6528 1.1 joerg if ((cnt = s % 33) != 0) {
6529 1.1 joerg cf = (d >> (32 - cnt)) & 0x1;
6530 1.1 joerg res = (d << cnt) & 0xffffffff;
6531 1.1 joerg mask = (1 << (cnt - 1)) - 1;
6532 1.1 joerg res |= (d >> (33 - cnt)) & mask;
6533 1.1 joerg if (ACCESS_FLAG(F_CF)) { /* carry flag is set */
6534 1.1 joerg res |= 1 << (cnt - 1);
6535 1.1 joerg }
6536 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
6537 1.1 joerg CONDITIONAL_SET_FLAG(cnt == 1 && XOR2(cf + ((res >> 30) & 0x2)),
6538 1.1 joerg F_OF);
6539 1.1 joerg }
6540 1.1 joerg return res;
6541 1.1 joerg }
6542 1.1 joerg /****************************************************************************
6543 1.1 joerg REMARKS:
6544 1.1 joerg Implements the RCR instruction and side effects.
6545 1.1 joerg ****************************************************************************/
6546 1.1 joerg static uint8_t
6547 1.1 joerg rcr_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
6548 1.1 joerg {
6549 1.1 joerg uint32_t res, cnt;
6550 1.1 joerg uint32_t mask, cf, ocf = 0;
6551 1.1 joerg
6552 1.1 joerg /* rotate right through carry */
6553 1.1 joerg /* s is the rotate distance. It varies from 0 - 8. d is the byte
6554 1.1 joerg * object rotated.
6555 1.1 joerg *
6556 1.1 joerg * have
6557 1.1 joerg *
6558 1.1 joerg * CF B_7 B_6 B_5 B_4 B_3 B_2 B_1 B_0
6559 1.1 joerg *
6560 1.1 joerg * The new rotate is done mod 9, and given this, for a rotation of n bits
6561 1.1 joerg * (mod 9) the new carry flag is then located n bits from the LSB.
6562 1.1 joerg * The low part is then shifted up cnt bits, and the high part is or'd
6563 1.1 joerg * in. Using CAPS for new values, and lowercase for the original
6564 1.1 joerg * values, this can be expressed as:
6565 1.1 joerg *
6566 1.1 joerg * IF n > 0 1) CF <- b_(n-1) 2) B_(8-(n+1)) .. B_(0) <- b_(7) .. b_(n)
6567 1.1 joerg * 3) B_(8-n) <- cf 4) B_(7) .. B_(8-(n-1)) <- b_(n-2) .. b_(0) */
6568 1.1 joerg res = d;
6569 1.1 joerg if ((cnt = s % 9) != 0) {
6570 1.1 joerg /* extract the new CARRY FLAG. */
6571 1.1 joerg /* CF <- b_(n-1) */
6572 1.1 joerg if (cnt == 1) {
6573 1.1 joerg cf = d & 0x1;
6574 1.1 joerg /* note hackery here. Access_flag(..) evaluates to
6575 1.1 joerg * either 0 if flag not set non-zero if flag is set.
6576 1.1 joerg * doing access_flag(..) != 0 casts that into either
6577 1.1 joerg * 0..1 in any representation of the flags register
6578 1.1 joerg * (i.e. packed bit array or unpacked.) */
6579 1.1 joerg ocf = ACCESS_FLAG(F_CF) != 0;
6580 1.1 joerg } else
6581 1.1 joerg cf = (d >> (cnt - 1)) & 0x1;
6582 1.1 joerg
6583 1.1 joerg /* B_(8-(n+1)) .. B_(0) <- b_(7) .. b_n */
6584 1.1 joerg /* note that the right hand side done by the mask This is
6585 1.1 joerg * effectively done by shifting the object to the right. The
6586 1.1 joerg * result must be masked, in case the object came in and was
6587 1.1 joerg * treated as a negative number. Needed??? */
6588 1.1 joerg
6589 1.1 joerg mask = (1 << (8 - cnt)) - 1;
6590 1.1 joerg res = (d >> cnt) & mask;
6591 1.1 joerg
6592 1.1 joerg /* now the high stuff which rotated around into the positions
6593 1.1 joerg * B_cnt-2 .. B_0 */
6594 1.1 joerg /* B_(7) .. B_(8-(n-1)) <- b_(n-2) .. b_(0) */
6595 1.1 joerg /* shift it downward, 7-(n-2) = 9-n positions. and mask off
6596 1.1 joerg * the result before or'ing in. */
6597 1.1 joerg res |= (d << (9 - cnt));
6598 1.1 joerg
6599 1.1 joerg /* if the carry flag was set, or it in. */
6600 1.1 joerg if (ACCESS_FLAG(F_CF)) { /* carry flag is set */
6601 1.1 joerg /* B_(8-n) <- cf */
6602 1.1 joerg res |= 1 << (8 - cnt);
6603 1.1 joerg }
6604 1.1 joerg /* set the new carry flag, based on the variable "cf" */
6605 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
6606 1.1 joerg /* OVERFLOW is set *IFF* cnt==1, then it is the xor of CF and
6607 1.1 joerg * the most significant bit. Blecck. */
6608 1.1 joerg /* parenthesized... */
6609 1.1 joerg if (cnt == 1) {
6610 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(ocf + ((d >> 6) & 0x2)),
6611 1.1 joerg F_OF);
6612 1.1 joerg }
6613 1.1 joerg }
6614 1.1 joerg return (uint8_t) res;
6615 1.1 joerg }
6616 1.1 joerg /****************************************************************************
6617 1.1 joerg REMARKS:
6618 1.1 joerg Implements the RCR instruction and side effects.
6619 1.1 joerg ****************************************************************************/
6620 1.1 joerg static uint16_t
6621 1.1 joerg rcr_word(struct X86EMU *emu, uint16_t d, uint8_t s)
6622 1.1 joerg {
6623 1.1 joerg uint32_t res, cnt;
6624 1.1 joerg uint32_t mask, cf, ocf = 0;
6625 1.1 joerg
6626 1.1 joerg /* rotate right through carry */
6627 1.1 joerg res = d;
6628 1.1 joerg if ((cnt = s % 17) != 0) {
6629 1.1 joerg if (cnt == 1) {
6630 1.1 joerg cf = d & 0x1;
6631 1.1 joerg ocf = ACCESS_FLAG(F_CF) != 0;
6632 1.1 joerg } else
6633 1.1 joerg cf = (d >> (cnt - 1)) & 0x1;
6634 1.1 joerg mask = (1 << (16 - cnt)) - 1;
6635 1.1 joerg res = (d >> cnt) & mask;
6636 1.1 joerg res |= (d << (17 - cnt));
6637 1.1 joerg if (ACCESS_FLAG(F_CF)) {
6638 1.1 joerg res |= 1 << (16 - cnt);
6639 1.1 joerg }
6640 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
6641 1.1 joerg if (cnt == 1) {
6642 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(ocf + ((d >> 14) & 0x2)),
6643 1.1 joerg F_OF);
6644 1.1 joerg }
6645 1.1 joerg }
6646 1.1 joerg return (uint16_t) res;
6647 1.1 joerg }
6648 1.1 joerg /****************************************************************************
6649 1.1 joerg REMARKS:
6650 1.1 joerg Implements the RCR instruction and side effects.
6651 1.1 joerg ****************************************************************************/
6652 1.1 joerg static uint32_t
6653 1.1 joerg rcr_long(struct X86EMU *emu, uint32_t d, uint8_t s)
6654 1.1 joerg {
6655 1.1 joerg uint32_t res, cnt;
6656 1.1 joerg uint32_t mask, cf, ocf = 0;
6657 1.1 joerg
6658 1.1 joerg /* rotate right through carry */
6659 1.1 joerg res = d;
6660 1.1 joerg if ((cnt = s % 33) != 0) {
6661 1.1 joerg if (cnt == 1) {
6662 1.1 joerg cf = d & 0x1;
6663 1.1 joerg ocf = ACCESS_FLAG(F_CF) != 0;
6664 1.1 joerg } else
6665 1.1 joerg cf = (d >> (cnt - 1)) & 0x1;
6666 1.1 joerg mask = (1 << (32 - cnt)) - 1;
6667 1.1 joerg res = (d >> cnt) & mask;
6668 1.1 joerg if (cnt != 1)
6669 1.1 joerg res |= (d << (33 - cnt));
6670 1.1 joerg if (ACCESS_FLAG(F_CF)) { /* carry flag is set */
6671 1.1 joerg res |= 1 << (32 - cnt);
6672 1.1 joerg }
6673 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
6674 1.1 joerg if (cnt == 1) {
6675 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(ocf + ((d >> 30) & 0x2)),
6676 1.1 joerg F_OF);
6677 1.1 joerg }
6678 1.1 joerg }
6679 1.1 joerg return res;
6680 1.1 joerg }
6681 1.1 joerg /****************************************************************************
6682 1.1 joerg REMARKS:
6683 1.1 joerg Implements the ROL instruction and side effects.
6684 1.1 joerg ****************************************************************************/
6685 1.1 joerg static uint8_t
6686 1.1 joerg rol_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
6687 1.1 joerg {
6688 1.1 joerg unsigned int res, cnt, mask;
6689 1.1 joerg
6690 1.1 joerg /* rotate left */
6691 1.1 joerg /* s is the rotate distance. It varies from 0 - 8. d is the byte
6692 1.1 joerg * object rotated.
6693 1.1 joerg *
6694 1.1 joerg * have
6695 1.1 joerg *
6696 1.1 joerg * CF B_7 ... B_0
6697 1.1 joerg *
6698 1.1 joerg * The new rotate is done mod 8. Much simpler than the "rcl" or "rcr"
6699 1.1 joerg * operations.
6700 1.1 joerg *
6701 1.1 joerg * IF n > 0 1) B_(7) .. B_(n) <- b_(8-(n+1)) .. b_(0) 2) B_(n-1) ..
6702 1.1 joerg * B_(0) <- b_(7) .. b_(8-n) */
6703 1.1 joerg res = d;
6704 1.1 joerg if ((cnt = s % 8) != 0) {
6705 1.1 joerg /* B_(7) .. B_(n) <- b_(8-(n+1)) .. b_(0) */
6706 1.1 joerg res = (d << cnt);
6707 1.1 joerg
6708 1.1 joerg /* B_(n-1) .. B_(0) <- b_(7) .. b_(8-n) */
6709 1.1 joerg mask = (1 << cnt) - 1;
6710 1.1 joerg res |= (d >> (8 - cnt)) & mask;
6711 1.1 joerg
6712 1.1 joerg /* set the new carry flag, Note that it is the low order bit
6713 1.1 joerg * of the result!!! */
6714 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x1, F_CF);
6715 1.1 joerg /* OVERFLOW is set *IFF* s==1, then it is the xor of CF and
6716 1.1 joerg * the most significant bit. Blecck. */
6717 1.1 joerg CONDITIONAL_SET_FLAG(s == 1 &&
6718 1.1 joerg XOR2((res & 0x1) + ((res >> 6) & 0x2)),
6719 1.1 joerg F_OF);
6720 1.1 joerg } if (s != 0) {
6721 1.1 joerg /* set the new carry flag, Note that it is the low order bit
6722 1.1 joerg * of the result!!! */
6723 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x1, F_CF);
6724 1.1 joerg }
6725 1.1 joerg return (uint8_t) res;
6726 1.1 joerg }
6727 1.1 joerg /****************************************************************************
6728 1.1 joerg REMARKS:
6729 1.1 joerg Implements the ROL instruction and side effects.
6730 1.1 joerg ****************************************************************************/
6731 1.1 joerg static uint16_t
6732 1.1 joerg rol_word(struct X86EMU *emu, uint16_t d, uint8_t s)
6733 1.1 joerg {
6734 1.1 joerg unsigned int res, cnt, mask;
6735 1.1 joerg
6736 1.1 joerg res = d;
6737 1.1 joerg if ((cnt = s % 16) != 0) {
6738 1.1 joerg res = (d << cnt);
6739 1.1 joerg mask = (1 << cnt) - 1;
6740 1.1 joerg res |= (d >> (16 - cnt)) & mask;
6741 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x1, F_CF);
6742 1.1 joerg CONDITIONAL_SET_FLAG(s == 1 &&
6743 1.1 joerg XOR2((res & 0x1) + ((res >> 14) & 0x2)),
6744 1.1 joerg F_OF);
6745 1.1 joerg } if (s != 0) {
6746 1.1 joerg /* set the new carry flag, Note that it is the low order bit
6747 1.1 joerg * of the result!!! */
6748 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x1, F_CF);
6749 1.1 joerg }
6750 1.1 joerg return (uint16_t) res;
6751 1.1 joerg }
6752 1.1 joerg /****************************************************************************
6753 1.1 joerg REMARKS:
6754 1.1 joerg Implements the ROL instruction and side effects.
6755 1.1 joerg ****************************************************************************/
6756 1.1 joerg static uint32_t
6757 1.1 joerg rol_long(struct X86EMU *emu, uint32_t d, uint8_t s)
6758 1.1 joerg {
6759 1.1 joerg uint32_t res, cnt, mask;
6760 1.1 joerg
6761 1.1 joerg res = d;
6762 1.1 joerg if ((cnt = s % 32) != 0) {
6763 1.1 joerg res = (d << cnt);
6764 1.1 joerg mask = (1 << cnt) - 1;
6765 1.1 joerg res |= (d >> (32 - cnt)) & mask;
6766 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x1, F_CF);
6767 1.1 joerg CONDITIONAL_SET_FLAG(s == 1 &&
6768 1.1 joerg XOR2((res & 0x1) + ((res >> 30) & 0x2)),
6769 1.1 joerg F_OF);
6770 1.1 joerg } if (s != 0) {
6771 1.1 joerg /* set the new carry flag, Note that it is the low order bit
6772 1.1 joerg * of the result!!! */
6773 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x1, F_CF);
6774 1.1 joerg }
6775 1.1 joerg return res;
6776 1.1 joerg }
6777 1.1 joerg /****************************************************************************
6778 1.1 joerg REMARKS:
6779 1.1 joerg Implements the ROR instruction and side effects.
6780 1.1 joerg ****************************************************************************/
6781 1.1 joerg static uint8_t
6782 1.1 joerg ror_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
6783 1.1 joerg {
6784 1.1 joerg unsigned int res, cnt, mask;
6785 1.1 joerg
6786 1.1 joerg /* rotate right */
6787 1.1 joerg /* s is the rotate distance. It varies from 0 - 8. d is the byte
6788 1.1 joerg * object rotated.
6789 1.1 joerg *
6790 1.1 joerg * have
6791 1.1 joerg *
6792 1.1 joerg * B_7 ... B_0
6793 1.1 joerg *
6794 1.1 joerg * The rotate is done mod 8.
6795 1.1 joerg *
6796 1.1 joerg * IF n > 0 1) B_(8-(n+1)) .. B_(0) <- b_(7) .. b_(n) 2) B_(7) ..
6797 1.1 joerg * B_(8-n) <- b_(n-1) .. b_(0) */
6798 1.1 joerg res = d;
6799 1.1 joerg if ((cnt = s % 8) != 0) { /* not a typo, do nada if cnt==0 */
6800 1.1 joerg /* B_(7) .. B_(8-n) <- b_(n-1) .. b_(0) */
6801 1.1 joerg res = (d << (8 - cnt));
6802 1.1 joerg
6803 1.1 joerg /* B_(8-(n+1)) .. B_(0) <- b_(7) .. b_(n) */
6804 1.1 joerg mask = (1 << (8 - cnt)) - 1;
6805 1.1 joerg res |= (d >> (cnt)) & mask;
6806 1.1 joerg
6807 1.1 joerg /* set the new carry flag, Note that it is the low order bit
6808 1.1 joerg * of the result!!! */
6809 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_CF);
6810 1.1 joerg /* OVERFLOW is set *IFF* s==1, then it is the xor of the two
6811 1.1 joerg * most significant bits. Blecck. */
6812 1.1 joerg CONDITIONAL_SET_FLAG(s == 1 && XOR2(res >> 6), F_OF);
6813 1.1 joerg } else if (s != 0) {
6814 1.1 joerg /* set the new carry flag, Note that it is the low order bit
6815 1.1 joerg * of the result!!! */
6816 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_CF);
6817 1.1 joerg }
6818 1.1 joerg return (uint8_t) res;
6819 1.1 joerg }
6820 1.1 joerg /****************************************************************************
6821 1.1 joerg REMARKS:
6822 1.1 joerg Implements the ROR instruction and side effects.
6823 1.1 joerg ****************************************************************************/
6824 1.1 joerg static uint16_t
6825 1.1 joerg ror_word(struct X86EMU *emu, uint16_t d, uint8_t s)
6826 1.1 joerg {
6827 1.1 joerg unsigned int res, cnt, mask;
6828 1.1 joerg
6829 1.1 joerg res = d;
6830 1.1 joerg if ((cnt = s % 16) != 0) {
6831 1.1 joerg res = (d << (16 - cnt));
6832 1.1 joerg mask = (1 << (16 - cnt)) - 1;
6833 1.1 joerg res |= (d >> (cnt)) & mask;
6834 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_CF);
6835 1.1 joerg CONDITIONAL_SET_FLAG(s == 1 && XOR2(res >> 14), F_OF);
6836 1.1 joerg } else if (s != 0) {
6837 1.1 joerg /* set the new carry flag, Note that it is the low order bit
6838 1.1 joerg * of the result!!! */
6839 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_CF);
6840 1.1 joerg }
6841 1.1 joerg return (uint16_t) res;
6842 1.1 joerg }
6843 1.1 joerg /****************************************************************************
6844 1.1 joerg REMARKS:
6845 1.1 joerg Implements the ROR instruction and side effects.
6846 1.1 joerg ****************************************************************************/
6847 1.1 joerg static uint32_t
6848 1.1 joerg ror_long(struct X86EMU *emu, uint32_t d, uint8_t s)
6849 1.1 joerg {
6850 1.1 joerg uint32_t res, cnt, mask;
6851 1.1 joerg
6852 1.1 joerg res = d;
6853 1.1 joerg if ((cnt = s % 32) != 0) {
6854 1.1 joerg res = (d << (32 - cnt));
6855 1.1 joerg mask = (1 << (32 - cnt)) - 1;
6856 1.1 joerg res |= (d >> (cnt)) & mask;
6857 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_CF);
6858 1.1 joerg CONDITIONAL_SET_FLAG(s == 1 && XOR2(res >> 30), F_OF);
6859 1.1 joerg } else if (s != 0) {
6860 1.1 joerg /* set the new carry flag, Note that it is the low order bit
6861 1.1 joerg * of the result!!! */
6862 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_CF);
6863 1.1 joerg }
6864 1.1 joerg return res;
6865 1.1 joerg }
6866 1.1 joerg /****************************************************************************
6867 1.1 joerg REMARKS:
6868 1.1 joerg Implements the SHL instruction and side effects.
6869 1.1 joerg ****************************************************************************/
6870 1.1 joerg static uint8_t
6871 1.1 joerg shl_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
6872 1.1 joerg {
6873 1.1 joerg unsigned int cnt, res, cf;
6874 1.1 joerg
6875 1.1 joerg if (s < 8) {
6876 1.1 joerg cnt = s % 8;
6877 1.1 joerg
6878 1.1 joerg /* last bit shifted out goes into carry flag */
6879 1.1 joerg if (cnt > 0) {
6880 1.1 joerg res = d << cnt;
6881 1.1 joerg cf = d & (1 << (8 - cnt));
6882 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
6883 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
6884 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
6885 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6886 1.1 joerg } else {
6887 1.1 joerg res = (uint8_t) d;
6888 1.1 joerg }
6889 1.1 joerg
6890 1.1 joerg if (cnt == 1) {
6891 1.1 joerg /* Needs simplification. */
6892 1.1 joerg CONDITIONAL_SET_FLAG(
6893 1.1 joerg (((res & 0x80) == 0x80) ^
6894 1.1 joerg (ACCESS_FLAG(F_CF) != 0)),
6895 1.1 joerg /* was (emu->x86.R_FLG&F_CF)==F_CF)), */
6896 1.1 joerg F_OF);
6897 1.1 joerg } else {
6898 1.1 joerg CLEAR_FLAG(F_OF);
6899 1.1 joerg }
6900 1.1 joerg } else {
6901 1.1 joerg res = 0;
6902 1.1 joerg CONDITIONAL_SET_FLAG((d << (s - 1)) & 0x80, F_CF);
6903 1.1 joerg CLEAR_FLAG(F_OF);
6904 1.1 joerg CLEAR_FLAG(F_SF);
6905 1.1 joerg SET_FLAG(F_PF);
6906 1.1 joerg SET_FLAG(F_ZF);
6907 1.1 joerg }
6908 1.1 joerg return (uint8_t) res;
6909 1.1 joerg }
6910 1.1 joerg /****************************************************************************
6911 1.1 joerg REMARKS:
6912 1.1 joerg Implements the SHL instruction and side effects.
6913 1.1 joerg ****************************************************************************/
6914 1.1 joerg static uint16_t
6915 1.1 joerg shl_word(struct X86EMU *emu, uint16_t d, uint8_t s)
6916 1.1 joerg {
6917 1.1 joerg unsigned int cnt, res, cf;
6918 1.1 joerg
6919 1.1 joerg if (s < 16) {
6920 1.1 joerg cnt = s % 16;
6921 1.1 joerg if (cnt > 0) {
6922 1.1 joerg res = d << cnt;
6923 1.1 joerg cf = d & (1 << (16 - cnt));
6924 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
6925 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
6926 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
6927 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6928 1.1 joerg } else {
6929 1.1 joerg res = (uint16_t) d;
6930 1.1 joerg }
6931 1.1 joerg
6932 1.1 joerg if (cnt == 1) {
6933 1.1 joerg CONDITIONAL_SET_FLAG(
6934 1.1 joerg (((res & 0x8000) == 0x8000) ^
6935 1.1 joerg (ACCESS_FLAG(F_CF) != 0)),
6936 1.1 joerg F_OF);
6937 1.1 joerg } else {
6938 1.1 joerg CLEAR_FLAG(F_OF);
6939 1.1 joerg }
6940 1.1 joerg } else {
6941 1.1 joerg res = 0;
6942 1.1 joerg CONDITIONAL_SET_FLAG((d << (s - 1)) & 0x8000, F_CF);
6943 1.1 joerg CLEAR_FLAG(F_OF);
6944 1.1 joerg CLEAR_FLAG(F_SF);
6945 1.1 joerg SET_FLAG(F_PF);
6946 1.1 joerg SET_FLAG(F_ZF);
6947 1.1 joerg }
6948 1.1 joerg return (uint16_t) res;
6949 1.1 joerg }
6950 1.1 joerg /****************************************************************************
6951 1.1 joerg REMARKS:
6952 1.1 joerg Implements the SHL instruction and side effects.
6953 1.1 joerg ****************************************************************************/
6954 1.1 joerg static uint32_t
6955 1.1 joerg shl_long(struct X86EMU *emu, uint32_t d, uint8_t s)
6956 1.1 joerg {
6957 1.1 joerg unsigned int cnt, res, cf;
6958 1.1 joerg
6959 1.1 joerg if (s < 32) {
6960 1.1 joerg cnt = s % 32;
6961 1.1 joerg if (cnt > 0) {
6962 1.1 joerg res = d << cnt;
6963 1.1 joerg cf = d & (1 << (32 - cnt));
6964 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
6965 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
6966 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
6967 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6968 1.1 joerg } else {
6969 1.1 joerg res = d;
6970 1.1 joerg }
6971 1.1 joerg if (cnt == 1) {
6972 1.1 joerg CONDITIONAL_SET_FLAG((((res & 0x80000000) == 0x80000000) ^
6973 1.1 joerg (ACCESS_FLAG(F_CF) != 0)), F_OF);
6974 1.1 joerg } else {
6975 1.1 joerg CLEAR_FLAG(F_OF);
6976 1.1 joerg }
6977 1.1 joerg } else {
6978 1.1 joerg res = 0;
6979 1.1 joerg CONDITIONAL_SET_FLAG((d << (s - 1)) & 0x80000000, F_CF);
6980 1.1 joerg CLEAR_FLAG(F_OF);
6981 1.1 joerg CLEAR_FLAG(F_SF);
6982 1.1 joerg SET_FLAG(F_PF);
6983 1.1 joerg SET_FLAG(F_ZF);
6984 1.1 joerg }
6985 1.1 joerg return res;
6986 1.1 joerg }
6987 1.1 joerg /****************************************************************************
6988 1.1 joerg REMARKS:
6989 1.1 joerg Implements the SHR instruction and side effects.
6990 1.1 joerg ****************************************************************************/
6991 1.1 joerg static uint8_t
6992 1.1 joerg shr_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
6993 1.1 joerg {
6994 1.1 joerg unsigned int cnt, res, cf;
6995 1.1 joerg
6996 1.1 joerg if (s < 8) {
6997 1.1 joerg cnt = s % 8;
6998 1.1 joerg if (cnt > 0) {
6999 1.1 joerg cf = d & (1 << (cnt - 1));
7000 1.1 joerg res = d >> cnt;
7001 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
7002 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
7003 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
7004 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7005 1.1 joerg } else {
7006 1.1 joerg res = (uint8_t) d;
7007 1.1 joerg }
7008 1.1 joerg
7009 1.1 joerg if (cnt == 1) {
7010 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(res >> 6), F_OF);
7011 1.1 joerg } else {
7012 1.1 joerg CLEAR_FLAG(F_OF);
7013 1.1 joerg }
7014 1.1 joerg } else {
7015 1.1 joerg res = 0;
7016 1.1 joerg CONDITIONAL_SET_FLAG((d >> (s - 1)) & 0x1, F_CF);
7017 1.1 joerg CLEAR_FLAG(F_OF);
7018 1.1 joerg CLEAR_FLAG(F_SF);
7019 1.1 joerg SET_FLAG(F_PF);
7020 1.1 joerg SET_FLAG(F_ZF);
7021 1.1 joerg }
7022 1.1 joerg return (uint8_t) res;
7023 1.1 joerg }
7024 1.1 joerg /****************************************************************************
7025 1.1 joerg REMARKS:
7026 1.1 joerg Implements the SHR instruction and side effects.
7027 1.1 joerg ****************************************************************************/
7028 1.1 joerg static uint16_t
7029 1.1 joerg shr_word(struct X86EMU *emu, uint16_t d, uint8_t s)
7030 1.1 joerg {
7031 1.1 joerg unsigned int cnt, res, cf;
7032 1.1 joerg
7033 1.1 joerg if (s < 16) {
7034 1.1 joerg cnt = s % 16;
7035 1.1 joerg if (cnt > 0) {
7036 1.1 joerg cf = d & (1 << (cnt - 1));
7037 1.1 joerg res = d >> cnt;
7038 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
7039 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
7040 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
7041 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7042 1.1 joerg } else {
7043 1.1 joerg res = d;
7044 1.1 joerg }
7045 1.1 joerg
7046 1.1 joerg if (cnt == 1) {
7047 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(res >> 14), F_OF);
7048 1.1 joerg } else {
7049 1.1 joerg CLEAR_FLAG(F_OF);
7050 1.1 joerg }
7051 1.1 joerg } else {
7052 1.1 joerg res = 0;
7053 1.1 joerg CLEAR_FLAG(F_CF);
7054 1.1 joerg CLEAR_FLAG(F_OF);
7055 1.1 joerg SET_FLAG(F_ZF);
7056 1.1 joerg CLEAR_FLAG(F_SF);
7057 1.1 joerg CLEAR_FLAG(F_PF);
7058 1.1 joerg }
7059 1.1 joerg return (uint16_t) res;
7060 1.1 joerg }
7061 1.1 joerg /****************************************************************************
7062 1.1 joerg REMARKS:
7063 1.1 joerg Implements the SHR instruction and side effects.
7064 1.1 joerg ****************************************************************************/
7065 1.1 joerg static uint32_t
7066 1.1 joerg shr_long(struct X86EMU *emu, uint32_t d, uint8_t s)
7067 1.1 joerg {
7068 1.1 joerg unsigned int cnt, res, cf;
7069 1.1 joerg
7070 1.1 joerg if (s < 32) {
7071 1.1 joerg cnt = s % 32;
7072 1.1 joerg if (cnt > 0) {
7073 1.1 joerg cf = d & (1 << (cnt - 1));
7074 1.1 joerg res = d >> cnt;
7075 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
7076 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
7077 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
7078 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7079 1.1 joerg } else {
7080 1.1 joerg res = d;
7081 1.1 joerg }
7082 1.1 joerg if (cnt == 1) {
7083 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(res >> 30), F_OF);
7084 1.1 joerg } else {
7085 1.1 joerg CLEAR_FLAG(F_OF);
7086 1.1 joerg }
7087 1.1 joerg } else {
7088 1.1 joerg res = 0;
7089 1.1 joerg CLEAR_FLAG(F_CF);
7090 1.1 joerg CLEAR_FLAG(F_OF);
7091 1.1 joerg SET_FLAG(F_ZF);
7092 1.1 joerg CLEAR_FLAG(F_SF);
7093 1.1 joerg CLEAR_FLAG(F_PF);
7094 1.1 joerg }
7095 1.1 joerg return res;
7096 1.1 joerg }
7097 1.1 joerg /****************************************************************************
7098 1.1 joerg REMARKS:
7099 1.1 joerg Implements the SAR instruction and side effects.
7100 1.1 joerg ****************************************************************************/
7101 1.1 joerg static uint8_t
7102 1.1 joerg sar_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
7103 1.1 joerg {
7104 1.1 joerg unsigned int cnt, res, cf, mask, sf;
7105 1.1 joerg
7106 1.1 joerg res = d;
7107 1.1 joerg sf = d & 0x80;
7108 1.1 joerg cnt = s % 8;
7109 1.1 joerg if (cnt > 0 && cnt < 8) {
7110 1.1 joerg mask = (1 << (8 - cnt)) - 1;
7111 1.1 joerg cf = d & (1 << (cnt - 1));
7112 1.1 joerg res = (d >> cnt) & mask;
7113 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
7114 1.1 joerg if (sf) {
7115 1.1 joerg res |= ~mask;
7116 1.1 joerg }
7117 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
7118 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7119 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
7120 1.1 joerg } else if (cnt >= 8) {
7121 1.1 joerg if (sf) {
7122 1.1 joerg res = 0xff;
7123 1.1 joerg SET_FLAG(F_CF);
7124 1.1 joerg CLEAR_FLAG(F_ZF);
7125 1.1 joerg SET_FLAG(F_SF);
7126 1.1 joerg SET_FLAG(F_PF);
7127 1.1 joerg } else {
7128 1.1 joerg res = 0;
7129 1.1 joerg CLEAR_FLAG(F_CF);
7130 1.1 joerg SET_FLAG(F_ZF);
7131 1.1 joerg CLEAR_FLAG(F_SF);
7132 1.1 joerg CLEAR_FLAG(F_PF);
7133 1.1 joerg }
7134 1.1 joerg }
7135 1.1 joerg return (uint8_t) res;
7136 1.1 joerg }
7137 1.1 joerg /****************************************************************************
7138 1.1 joerg REMARKS:
7139 1.1 joerg Implements the SAR instruction and side effects.
7140 1.1 joerg ****************************************************************************/
7141 1.1 joerg static uint16_t
7142 1.1 joerg sar_word(struct X86EMU *emu, uint16_t d, uint8_t s)
7143 1.1 joerg {
7144 1.1 joerg unsigned int cnt, res, cf, mask, sf;
7145 1.1 joerg
7146 1.1 joerg sf = d & 0x8000;
7147 1.1 joerg cnt = s % 16;
7148 1.1 joerg res = d;
7149 1.1 joerg if (cnt > 0 && cnt < 16) {
7150 1.1 joerg mask = (1 << (16 - cnt)) - 1;
7151 1.1 joerg cf = d & (1 << (cnt - 1));
7152 1.1 joerg res = (d >> cnt) & mask;
7153 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
7154 1.1 joerg if (sf) {
7155 1.1 joerg res |= ~mask;
7156 1.1 joerg }
7157 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
7158 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
7159 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7160 1.1 joerg } else if (cnt >= 16) {
7161 1.1 joerg if (sf) {
7162 1.1 joerg res = 0xffff;
7163 1.1 joerg SET_FLAG(F_CF);
7164 1.1 joerg CLEAR_FLAG(F_ZF);
7165 1.1 joerg SET_FLAG(F_SF);
7166 1.1 joerg SET_FLAG(F_PF);
7167 1.1 joerg } else {
7168 1.1 joerg res = 0;
7169 1.1 joerg CLEAR_FLAG(F_CF);
7170 1.1 joerg SET_FLAG(F_ZF);
7171 1.1 joerg CLEAR_FLAG(F_SF);
7172 1.1 joerg CLEAR_FLAG(F_PF);
7173 1.1 joerg }
7174 1.1 joerg }
7175 1.1 joerg return (uint16_t) res;
7176 1.1 joerg }
7177 1.1 joerg /****************************************************************************
7178 1.1 joerg REMARKS:
7179 1.1 joerg Implements the SAR instruction and side effects.
7180 1.1 joerg ****************************************************************************/
7181 1.1 joerg static uint32_t
7182 1.1 joerg sar_long(struct X86EMU *emu, uint32_t d, uint8_t s)
7183 1.1 joerg {
7184 1.1 joerg uint32_t cnt, res, cf, mask, sf;
7185 1.1 joerg
7186 1.1 joerg sf = d & 0x80000000;
7187 1.1 joerg cnt = s % 32;
7188 1.1 joerg res = d;
7189 1.1 joerg if (cnt > 0 && cnt < 32) {
7190 1.1 joerg mask = (1 << (32 - cnt)) - 1;
7191 1.1 joerg cf = d & (1 << (cnt - 1));
7192 1.1 joerg res = (d >> cnt) & mask;
7193 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
7194 1.1 joerg if (sf) {
7195 1.1 joerg res |= ~mask;
7196 1.1 joerg }
7197 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
7198 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
7199 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7200 1.1 joerg } else if (cnt >= 32) {
7201 1.1 joerg if (sf) {
7202 1.1 joerg res = 0xffffffff;
7203 1.1 joerg SET_FLAG(F_CF);
7204 1.1 joerg CLEAR_FLAG(F_ZF);
7205 1.1 joerg SET_FLAG(F_SF);
7206 1.1 joerg SET_FLAG(F_PF);
7207 1.1 joerg } else {
7208 1.1 joerg res = 0;
7209 1.1 joerg CLEAR_FLAG(F_CF);
7210 1.1 joerg SET_FLAG(F_ZF);
7211 1.1 joerg CLEAR_FLAG(F_SF);
7212 1.1 joerg CLEAR_FLAG(F_PF);
7213 1.1 joerg }
7214 1.1 joerg }
7215 1.1 joerg return res;
7216 1.1 joerg }
7217 1.1 joerg /****************************************************************************
7218 1.1 joerg REMARKS:
7219 1.1 joerg Implements the SHLD instruction and side effects.
7220 1.1 joerg ****************************************************************************/
7221 1.1 joerg static uint16_t
7222 1.1 joerg shld_word(struct X86EMU *emu, uint16_t d, uint16_t fill, uint8_t s)
7223 1.1 joerg {
7224 1.1 joerg unsigned int cnt, res, cf;
7225 1.1 joerg
7226 1.1 joerg if (s < 16) {
7227 1.1 joerg cnt = s % 16;
7228 1.1 joerg if (cnt > 0) {
7229 1.1 joerg res = (d << cnt) | (fill >> (16 - cnt));
7230 1.1 joerg cf = d & (1 << (16 - cnt));
7231 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
7232 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
7233 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
7234 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7235 1.1 joerg } else {
7236 1.1 joerg res = d;
7237 1.1 joerg }
7238 1.1 joerg if (cnt == 1) {
7239 1.1 joerg CONDITIONAL_SET_FLAG((((res & 0x8000) == 0x8000) ^
7240 1.1 joerg (ACCESS_FLAG(F_CF) != 0)), F_OF);
7241 1.1 joerg } else {
7242 1.1 joerg CLEAR_FLAG(F_OF);
7243 1.1 joerg }
7244 1.1 joerg } else {
7245 1.1 joerg res = 0;
7246 1.1 joerg CONDITIONAL_SET_FLAG((d << (s - 1)) & 0x8000, F_CF);
7247 1.1 joerg CLEAR_FLAG(F_OF);
7248 1.1 joerg CLEAR_FLAG(F_SF);
7249 1.1 joerg SET_FLAG(F_PF);
7250 1.1 joerg SET_FLAG(F_ZF);
7251 1.1 joerg }
7252 1.1 joerg return (uint16_t) res;
7253 1.1 joerg }
7254 1.1 joerg /****************************************************************************
7255 1.1 joerg REMARKS:
7256 1.1 joerg Implements the SHLD instruction and side effects.
7257 1.1 joerg ****************************************************************************/
7258 1.1 joerg static uint32_t
7259 1.1 joerg shld_long(struct X86EMU *emu, uint32_t d, uint32_t fill, uint8_t s)
7260 1.1 joerg {
7261 1.1 joerg unsigned int cnt, res, cf;
7262 1.1 joerg
7263 1.1 joerg if (s < 32) {
7264 1.1 joerg cnt = s % 32;
7265 1.1 joerg if (cnt > 0) {
7266 1.1 joerg res = (d << cnt) | (fill >> (32 - cnt));
7267 1.1 joerg cf = d & (1 << (32 - cnt));
7268 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
7269 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
7270 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
7271 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7272 1.1 joerg } else {
7273 1.1 joerg res = d;
7274 1.1 joerg }
7275 1.1 joerg if (cnt == 1) {
7276 1.1 joerg CONDITIONAL_SET_FLAG((((res & 0x80000000) == 0x80000000) ^
7277 1.1 joerg (ACCESS_FLAG(F_CF) != 0)), F_OF);
7278 1.1 joerg } else {
7279 1.1 joerg CLEAR_FLAG(F_OF);
7280 1.1 joerg }
7281 1.1 joerg } else {
7282 1.1 joerg res = 0;
7283 1.1 joerg CONDITIONAL_SET_FLAG((d << (s - 1)) & 0x80000000, F_CF);
7284 1.1 joerg CLEAR_FLAG(F_OF);
7285 1.1 joerg CLEAR_FLAG(F_SF);
7286 1.1 joerg SET_FLAG(F_PF);
7287 1.1 joerg SET_FLAG(F_ZF);
7288 1.1 joerg }
7289 1.1 joerg return res;
7290 1.1 joerg }
7291 1.1 joerg /****************************************************************************
7292 1.1 joerg REMARKS:
7293 1.1 joerg Implements the SHRD instruction and side effects.
7294 1.1 joerg ****************************************************************************/
7295 1.1 joerg static uint16_t
7296 1.1 joerg shrd_word(struct X86EMU *emu, uint16_t d, uint16_t fill, uint8_t s)
7297 1.1 joerg {
7298 1.1 joerg unsigned int cnt, res, cf;
7299 1.1 joerg
7300 1.1 joerg if (s < 16) {
7301 1.1 joerg cnt = s % 16;
7302 1.1 joerg if (cnt > 0) {
7303 1.1 joerg cf = d & (1 << (cnt - 1));
7304 1.1 joerg res = (d >> cnt) | (fill << (16 - cnt));
7305 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
7306 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
7307 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
7308 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7309 1.1 joerg } else {
7310 1.1 joerg res = d;
7311 1.1 joerg }
7312 1.1 joerg
7313 1.1 joerg if (cnt == 1) {
7314 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(res >> 14), F_OF);
7315 1.1 joerg } else {
7316 1.1 joerg CLEAR_FLAG(F_OF);
7317 1.1 joerg }
7318 1.1 joerg } else {
7319 1.1 joerg res = 0;
7320 1.1 joerg CLEAR_FLAG(F_CF);
7321 1.1 joerg CLEAR_FLAG(F_OF);
7322 1.1 joerg SET_FLAG(F_ZF);
7323 1.1 joerg CLEAR_FLAG(F_SF);
7324 1.1 joerg CLEAR_FLAG(F_PF);
7325 1.1 joerg }
7326 1.1 joerg return (uint16_t) res;
7327 1.1 joerg }
7328 1.1 joerg /****************************************************************************
7329 1.1 joerg REMARKS:
7330 1.1 joerg Implements the SHRD instruction and side effects.
7331 1.1 joerg ****************************************************************************/
7332 1.1 joerg static uint32_t
7333 1.1 joerg shrd_long(struct X86EMU *emu, uint32_t d, uint32_t fill, uint8_t s)
7334 1.1 joerg {
7335 1.1 joerg unsigned int cnt, res, cf;
7336 1.1 joerg
7337 1.1 joerg if (s < 32) {
7338 1.1 joerg cnt = s % 32;
7339 1.1 joerg if (cnt > 0) {
7340 1.1 joerg cf = d & (1 << (cnt - 1));
7341 1.1 joerg res = (d >> cnt) | (fill << (32 - cnt));
7342 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
7343 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
7344 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
7345 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7346 1.1 joerg } else {
7347 1.1 joerg res = d;
7348 1.1 joerg }
7349 1.1 joerg if (cnt == 1) {
7350 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(res >> 30), F_OF);
7351 1.1 joerg } else {
7352 1.1 joerg CLEAR_FLAG(F_OF);
7353 1.1 joerg }
7354 1.1 joerg } else {
7355 1.1 joerg res = 0;
7356 1.1 joerg CLEAR_FLAG(F_CF);
7357 1.1 joerg CLEAR_FLAG(F_OF);
7358 1.1 joerg SET_FLAG(F_ZF);
7359 1.1 joerg CLEAR_FLAG(F_SF);
7360 1.1 joerg CLEAR_FLAG(F_PF);
7361 1.1 joerg }
7362 1.1 joerg return res;
7363 1.1 joerg }
7364 1.1 joerg /****************************************************************************
7365 1.1 joerg REMARKS:
7366 1.1 joerg Implements the SBB instruction and side effects.
7367 1.1 joerg ****************************************************************************/
7368 1.1 joerg static uint8_t
7369 1.1 joerg sbb_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
7370 1.1 joerg {
7371 1.1 joerg uint32_t res; /* all operands in native machine order */
7372 1.1 joerg uint32_t bc;
7373 1.1 joerg
7374 1.1 joerg if (ACCESS_FLAG(F_CF))
7375 1.1 joerg res = d - s - 1;
7376 1.1 joerg else
7377 1.1 joerg res = d - s;
7378 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
7379 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
7380 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7381 1.1 joerg
7382 1.1 joerg /* calculate the borrow chain. See note at top */
7383 1.1 joerg bc = (res & (~d | s)) | (~d & s);
7384 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x80, F_CF);
7385 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 6), F_OF);
7386 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
7387 1.1 joerg return (uint8_t) res;
7388 1.1 joerg }
7389 1.1 joerg /****************************************************************************
7390 1.1 joerg REMARKS:
7391 1.1 joerg Implements the SBB instruction and side effects.
7392 1.1 joerg ****************************************************************************/
7393 1.1 joerg static uint16_t
7394 1.1 joerg sbb_word(struct X86EMU *emu, uint16_t d, uint16_t s)
7395 1.1 joerg {
7396 1.1 joerg uint32_t res; /* all operands in native machine order */
7397 1.1 joerg uint32_t bc;
7398 1.1 joerg
7399 1.1 joerg if (ACCESS_FLAG(F_CF))
7400 1.1 joerg res = d - s - 1;
7401 1.1 joerg else
7402 1.1 joerg res = d - s;
7403 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
7404 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
7405 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7406 1.1 joerg
7407 1.1 joerg /* calculate the borrow chain. See note at top */
7408 1.1 joerg bc = (res & (~d | s)) | (~d & s);
7409 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8000, F_CF);
7410 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 14), F_OF);
7411 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
7412 1.1 joerg return (uint16_t) res;
7413 1.1 joerg }
7414 1.1 joerg /****************************************************************************
7415 1.1 joerg REMARKS:
7416 1.1 joerg Implements the SBB instruction and side effects.
7417 1.1 joerg ****************************************************************************/
7418 1.1 joerg static uint32_t
7419 1.1 joerg sbb_long(struct X86EMU *emu, uint32_t d, uint32_t s)
7420 1.1 joerg {
7421 1.1 joerg uint32_t res; /* all operands in native machine order */
7422 1.1 joerg uint32_t bc;
7423 1.1 joerg
7424 1.1 joerg if (ACCESS_FLAG(F_CF))
7425 1.1 joerg res = d - s - 1;
7426 1.1 joerg else
7427 1.1 joerg res = d - s;
7428 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
7429 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
7430 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7431 1.1 joerg
7432 1.1 joerg /* calculate the borrow chain. See note at top */
7433 1.1 joerg bc = (res & (~d | s)) | (~d & s);
7434 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x80000000, F_CF);
7435 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 30), F_OF);
7436 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
7437 1.1 joerg return res;
7438 1.1 joerg }
7439 1.1 joerg /****************************************************************************
7440 1.1 joerg REMARKS:
7441 1.1 joerg Implements the SUB instruction and side effects.
7442 1.1 joerg ****************************************************************************/
7443 1.1 joerg static uint8_t
7444 1.1 joerg sub_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
7445 1.1 joerg {
7446 1.1 joerg uint32_t res; /* all operands in native machine order */
7447 1.1 joerg uint32_t bc;
7448 1.1 joerg
7449 1.1 joerg res = d - s;
7450 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
7451 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
7452 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7453 1.1 joerg
7454 1.1 joerg /* calculate the borrow chain. See note at top */
7455 1.1 joerg bc = (res & (~d | s)) | (~d & s);
7456 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x80, F_CF);
7457 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 6), F_OF);
7458 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
7459 1.1 joerg return (uint8_t) res;
7460 1.1 joerg }
7461 1.1 joerg /****************************************************************************
7462 1.1 joerg REMARKS:
7463 1.1 joerg Implements the SUB instruction and side effects.
7464 1.1 joerg ****************************************************************************/
7465 1.1 joerg static uint16_t
7466 1.1 joerg sub_word(struct X86EMU *emu, uint16_t d, uint16_t s)
7467 1.1 joerg {
7468 1.1 joerg uint32_t res; /* all operands in native machine order */
7469 1.1 joerg uint32_t bc;
7470 1.1 joerg
7471 1.1 joerg res = d - s;
7472 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
7473 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
7474 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7475 1.1 joerg
7476 1.1 joerg /* calculate the borrow chain. See note at top */
7477 1.1 joerg bc = (res & (~d | s)) | (~d & s);
7478 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8000, F_CF);
7479 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 14), F_OF);
7480 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
7481 1.1 joerg return (uint16_t) res;
7482 1.1 joerg }
7483 1.1 joerg /****************************************************************************
7484 1.1 joerg REMARKS:
7485 1.1 joerg Implements the SUB instruction and side effects.
7486 1.1 joerg ****************************************************************************/
7487 1.1 joerg static uint32_t
7488 1.1 joerg sub_long(struct X86EMU *emu, uint32_t d, uint32_t s)
7489 1.1 joerg {
7490 1.1 joerg uint32_t res; /* all operands in native machine order */
7491 1.1 joerg uint32_t bc;
7492 1.1 joerg
7493 1.1 joerg res = d - s;
7494 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
7495 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
7496 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7497 1.1 joerg
7498 1.1 joerg /* calculate the borrow chain. See note at top */
7499 1.1 joerg bc = (res & (~d | s)) | (~d & s);
7500 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x80000000, F_CF);
7501 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 30), F_OF);
7502 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
7503 1.1 joerg return res;
7504 1.1 joerg }
7505 1.1 joerg /****************************************************************************
7506 1.1 joerg REMARKS:
7507 1.1 joerg Implements the TEST instruction and side effects.
7508 1.1 joerg ****************************************************************************/
7509 1.1 joerg static void
7510 1.1 joerg test_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
7511 1.1 joerg {
7512 1.1 joerg uint32_t res; /* all operands in native machine order */
7513 1.1 joerg
7514 1.1 joerg res = d & s;
7515 1.1 joerg
7516 1.1 joerg CLEAR_FLAG(F_OF);
7517 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
7518 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
7519 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7520 1.1 joerg /* AF == dont care */
7521 1.1 joerg CLEAR_FLAG(F_CF);
7522 1.1 joerg }
7523 1.1 joerg /****************************************************************************
7524 1.1 joerg REMARKS:
7525 1.1 joerg Implements the TEST instruction and side effects.
7526 1.1 joerg ****************************************************************************/
7527 1.1 joerg static void
7528 1.1 joerg test_word(struct X86EMU *emu, uint16_t d, uint16_t s)
7529 1.1 joerg {
7530 1.1 joerg uint32_t res; /* all operands in native machine order */
7531 1.1 joerg
7532 1.1 joerg res = d & s;
7533 1.1 joerg
7534 1.1 joerg CLEAR_FLAG(F_OF);
7535 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
7536 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
7537 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7538 1.1 joerg /* AF == dont care */
7539 1.1 joerg CLEAR_FLAG(F_CF);
7540 1.1 joerg }
7541 1.1 joerg /****************************************************************************
7542 1.1 joerg REMARKS:
7543 1.1 joerg Implements the TEST instruction and side effects.
7544 1.1 joerg ****************************************************************************/
7545 1.1 joerg static void
7546 1.1 joerg test_long(struct X86EMU *emu, uint32_t d, uint32_t s)
7547 1.1 joerg {
7548 1.1 joerg uint32_t res; /* all operands in native machine order */
7549 1.1 joerg
7550 1.1 joerg res = d & s;
7551 1.1 joerg
7552 1.1 joerg CLEAR_FLAG(F_OF);
7553 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
7554 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
7555 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7556 1.1 joerg /* AF == dont care */
7557 1.1 joerg CLEAR_FLAG(F_CF);
7558 1.1 joerg }
7559 1.1 joerg /****************************************************************************
7560 1.1 joerg REMARKS:
7561 1.1 joerg Implements the XOR instruction and side effects.
7562 1.1 joerg ****************************************************************************/
7563 1.1 joerg static uint8_t
7564 1.1 joerg xor_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
7565 1.1 joerg {
7566 1.1 joerg uint8_t res; /* all operands in native machine order */
7567 1.1 joerg
7568 1.1 joerg res = d ^ s;
7569 1.1 joerg CLEAR_FLAG(F_OF);
7570 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
7571 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
7572 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res), F_PF);
7573 1.1 joerg CLEAR_FLAG(F_CF);
7574 1.1 joerg CLEAR_FLAG(F_AF);
7575 1.1 joerg return res;
7576 1.1 joerg }
7577 1.1 joerg /****************************************************************************
7578 1.1 joerg REMARKS:
7579 1.1 joerg Implements the XOR instruction and side effects.
7580 1.1 joerg ****************************************************************************/
7581 1.1 joerg static uint16_t
7582 1.1 joerg xor_word(struct X86EMU *emu, uint16_t d, uint16_t s)
7583 1.1 joerg {
7584 1.1 joerg uint16_t res; /* all operands in native machine order */
7585 1.1 joerg
7586 1.1 joerg res = d ^ s;
7587 1.1 joerg CLEAR_FLAG(F_OF);
7588 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
7589 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
7590 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7591 1.1 joerg CLEAR_FLAG(F_CF);
7592 1.1 joerg CLEAR_FLAG(F_AF);
7593 1.1 joerg return res;
7594 1.1 joerg }
7595 1.1 joerg /****************************************************************************
7596 1.1 joerg REMARKS:
7597 1.1 joerg Implements the XOR instruction and side effects.
7598 1.1 joerg ****************************************************************************/
7599 1.1 joerg static uint32_t
7600 1.1 joerg xor_long(struct X86EMU *emu, uint32_t d, uint32_t s)
7601 1.1 joerg {
7602 1.1 joerg uint32_t res; /* all operands in native machine order */
7603 1.1 joerg
7604 1.1 joerg res = d ^ s;
7605 1.1 joerg CLEAR_FLAG(F_OF);
7606 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
7607 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
7608 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7609 1.1 joerg CLEAR_FLAG(F_CF);
7610 1.1 joerg CLEAR_FLAG(F_AF);
7611 1.1 joerg return res;
7612 1.1 joerg }
7613 1.1 joerg /****************************************************************************
7614 1.1 joerg REMARKS:
7615 1.1 joerg Implements the IMUL instruction and side effects.
7616 1.1 joerg ****************************************************************************/
7617 1.1 joerg static void
7618 1.1 joerg imul_byte(struct X86EMU *emu, uint8_t s)
7619 1.1 joerg {
7620 1.1 joerg int16_t res = (int16_t) ((int8_t) emu->x86.R_AL * (int8_t) s);
7621 1.1 joerg
7622 1.1 joerg emu->x86.R_AX = res;
7623 1.1 joerg if (((emu->x86.R_AL & 0x80) == 0 && emu->x86.R_AH == 0x00) ||
7624 1.1 joerg ((emu->x86.R_AL & 0x80) != 0 && emu->x86.R_AH == 0xFF)) {
7625 1.1 joerg CLEAR_FLAG(F_CF);
7626 1.1 joerg CLEAR_FLAG(F_OF);
7627 1.1 joerg } else {
7628 1.1 joerg SET_FLAG(F_CF);
7629 1.1 joerg SET_FLAG(F_OF);
7630 1.1 joerg }
7631 1.1 joerg }
7632 1.1 joerg /****************************************************************************
7633 1.1 joerg REMARKS:
7634 1.1 joerg Implements the IMUL instruction and side effects.
7635 1.1 joerg ****************************************************************************/
7636 1.1 joerg static void
7637 1.1 joerg imul_word(struct X86EMU *emu, uint16_t s)
7638 1.1 joerg {
7639 1.1 joerg int32_t res = (int16_t) emu->x86.R_AX * (int16_t) s;
7640 1.1 joerg
7641 1.1 joerg emu->x86.R_AX = (uint16_t) res;
7642 1.1 joerg emu->x86.R_DX = (uint16_t) (res >> 16);
7643 1.1 joerg if (((emu->x86.R_AX & 0x8000) == 0 && emu->x86.R_DX == 0x00) ||
7644 1.1 joerg ((emu->x86.R_AX & 0x8000) != 0 && emu->x86.R_DX == 0xFF)) {
7645 1.1 joerg CLEAR_FLAG(F_CF);
7646 1.1 joerg CLEAR_FLAG(F_OF);
7647 1.1 joerg } else {
7648 1.1 joerg SET_FLAG(F_CF);
7649 1.1 joerg SET_FLAG(F_OF);
7650 1.1 joerg }
7651 1.1 joerg }
7652 1.1 joerg /****************************************************************************
7653 1.1 joerg REMARKS:
7654 1.1 joerg Implements the IMUL instruction and side effects.
7655 1.1 joerg ****************************************************************************/
7656 1.1 joerg static void
7657 1.1 joerg imul_long(struct X86EMU *emu, uint32_t s)
7658 1.1 joerg {
7659 1.1 joerg int64_t res;
7660 1.1 joerg
7661 1.1 joerg res = (int64_t)(int32_t)emu->x86.R_EAX * (int32_t)s;
7662 1.1 joerg emu->x86.R_EAX = (uint32_t)res;
7663 1.1 joerg emu->x86.R_EDX = ((uint64_t)res) >> 32;
7664 1.1 joerg if (((emu->x86.R_EAX & 0x80000000) == 0 && emu->x86.R_EDX == 0x00) ||
7665 1.1 joerg ((emu->x86.R_EAX & 0x80000000) != 0 && emu->x86.R_EDX == 0xFF)) {
7666 1.1 joerg CLEAR_FLAG(F_CF);
7667 1.1 joerg CLEAR_FLAG(F_OF);
7668 1.1 joerg } else {
7669 1.1 joerg SET_FLAG(F_CF);
7670 1.1 joerg SET_FLAG(F_OF);
7671 1.1 joerg }
7672 1.1 joerg }
7673 1.1 joerg /****************************************************************************
7674 1.1 joerg REMARKS:
7675 1.1 joerg Implements the MUL instruction and side effects.
7676 1.1 joerg ****************************************************************************/
7677 1.1 joerg static void
7678 1.1 joerg mul_byte(struct X86EMU *emu, uint8_t s)
7679 1.1 joerg {
7680 1.1 joerg uint16_t res = (uint16_t) (emu->x86.R_AL * s);
7681 1.1 joerg
7682 1.1 joerg emu->x86.R_AX = res;
7683 1.1 joerg if (emu->x86.R_AH == 0) {
7684 1.1 joerg CLEAR_FLAG(F_CF);
7685 1.1 joerg CLEAR_FLAG(F_OF);
7686 1.1 joerg } else {
7687 1.1 joerg SET_FLAG(F_CF);
7688 1.1 joerg SET_FLAG(F_OF);
7689 1.1 joerg }
7690 1.1 joerg }
7691 1.1 joerg /****************************************************************************
7692 1.1 joerg REMARKS:
7693 1.1 joerg Implements the MUL instruction and side effects.
7694 1.1 joerg ****************************************************************************/
7695 1.1 joerg static void
7696 1.1 joerg mul_word(struct X86EMU *emu, uint16_t s)
7697 1.1 joerg {
7698 1.1 joerg uint32_t res = emu->x86.R_AX * s;
7699 1.1 joerg
7700 1.1 joerg emu->x86.R_AX = (uint16_t) res;
7701 1.1 joerg emu->x86.R_DX = (uint16_t) (res >> 16);
7702 1.1 joerg if (emu->x86.R_DX == 0) {
7703 1.1 joerg CLEAR_FLAG(F_CF);
7704 1.1 joerg CLEAR_FLAG(F_OF);
7705 1.1 joerg } else {
7706 1.1 joerg SET_FLAG(F_CF);
7707 1.1 joerg SET_FLAG(F_OF);
7708 1.1 joerg }
7709 1.1 joerg }
7710 1.1 joerg /****************************************************************************
7711 1.1 joerg REMARKS:
7712 1.1 joerg Implements the MUL instruction and side effects.
7713 1.1 joerg ****************************************************************************/
7714 1.1 joerg static void
7715 1.1 joerg mul_long(struct X86EMU *emu, uint32_t s)
7716 1.1 joerg {
7717 1.1 joerg uint64_t res = (uint64_t) emu->x86.R_EAX * s;
7718 1.1 joerg
7719 1.1 joerg emu->x86.R_EAX = (uint32_t) res;
7720 1.1 joerg emu->x86.R_EDX = (uint32_t) (res >> 32);
7721 1.1 joerg
7722 1.1 joerg if (emu->x86.R_EDX == 0) {
7723 1.1 joerg CLEAR_FLAG(F_CF);
7724 1.1 joerg CLEAR_FLAG(F_OF);
7725 1.1 joerg } else {
7726 1.1 joerg SET_FLAG(F_CF);
7727 1.1 joerg SET_FLAG(F_OF);
7728 1.1 joerg }
7729 1.1 joerg }
7730 1.1 joerg /****************************************************************************
7731 1.1 joerg REMARKS:
7732 1.1 joerg Implements the IDIV instruction and side effects.
7733 1.1 joerg ****************************************************************************/
7734 1.1 joerg static void
7735 1.1 joerg idiv_byte(struct X86EMU *emu, uint8_t s)
7736 1.1 joerg {
7737 1.1 joerg int32_t dvd, div, mod;
7738 1.1 joerg
7739 1.1 joerg dvd = (int16_t) emu->x86.R_AX;
7740 1.1 joerg if (s == 0) {
7741 1.1 joerg x86emu_intr_raise(emu, 0);
7742 1.1 joerg return;
7743 1.1 joerg }
7744 1.1 joerg div = dvd / (int8_t) s;
7745 1.1 joerg mod = dvd % (int8_t) s;
7746 1.1 joerg if (div > 0x7f || div < -0x7f) {
7747 1.1 joerg x86emu_intr_raise(emu, 0);
7748 1.1 joerg return;
7749 1.1 joerg }
7750 1.1 joerg emu->x86.R_AL = (int8_t) div;
7751 1.1 joerg emu->x86.R_AH = (int8_t) mod;
7752 1.1 joerg }
7753 1.1 joerg /****************************************************************************
7754 1.1 joerg REMARKS:
7755 1.1 joerg Implements the IDIV instruction and side effects.
7756 1.1 joerg ****************************************************************************/
7757 1.1 joerg static void
7758 1.1 joerg idiv_word(struct X86EMU *emu, uint16_t s)
7759 1.1 joerg {
7760 1.1 joerg int32_t dvd, div, mod;
7761 1.1 joerg
7762 1.1 joerg dvd = (((int32_t) emu->x86.R_DX) << 16) | emu->x86.R_AX;
7763 1.1 joerg if (s == 0) {
7764 1.1 joerg x86emu_intr_raise(emu, 0);
7765 1.1 joerg return;
7766 1.1 joerg }
7767 1.1 joerg div = dvd / (int16_t) s;
7768 1.1 joerg mod = dvd % (int16_t) s;
7769 1.1 joerg if (div > 0x7fff || div < -0x7fff) {
7770 1.1 joerg x86emu_intr_raise(emu, 0);
7771 1.1 joerg return;
7772 1.1 joerg }
7773 1.1 joerg CLEAR_FLAG(F_CF);
7774 1.1 joerg CLEAR_FLAG(F_SF);
7775 1.1 joerg CONDITIONAL_SET_FLAG(div == 0, F_ZF);
7776 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(mod & 0xff), F_PF);
7777 1.1 joerg
7778 1.1 joerg emu->x86.R_AX = (uint16_t) div;
7779 1.1 joerg emu->x86.R_DX = (uint16_t) mod;
7780 1.1 joerg }
7781 1.1 joerg /****************************************************************************
7782 1.1 joerg REMARKS:
7783 1.1 joerg Implements the IDIV instruction and side effects.
7784 1.1 joerg ****************************************************************************/
7785 1.1 joerg static void
7786 1.1 joerg idiv_long(struct X86EMU *emu, uint32_t s)
7787 1.1 joerg {
7788 1.1 joerg int64_t dvd, div, mod;
7789 1.1 joerg
7790 1.1 joerg dvd = (((int64_t) emu->x86.R_EDX) << 32) | emu->x86.R_EAX;
7791 1.1 joerg if (s == 0) {
7792 1.1 joerg x86emu_intr_raise(emu, 0);
7793 1.1 joerg return;
7794 1.1 joerg }
7795 1.1 joerg div = dvd / (int32_t) s;
7796 1.1 joerg mod = dvd % (int32_t) s;
7797 1.1 joerg if (div > 0x7fffffff || div < -0x7fffffff) {
7798 1.1 joerg x86emu_intr_raise(emu, 0);
7799 1.1 joerg return;
7800 1.1 joerg }
7801 1.1 joerg CLEAR_FLAG(F_CF);
7802 1.1 joerg CLEAR_FLAG(F_AF);
7803 1.1 joerg CLEAR_FLAG(F_SF);
7804 1.1 joerg SET_FLAG(F_ZF);
7805 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(mod & 0xff), F_PF);
7806 1.1 joerg
7807 1.1 joerg emu->x86.R_EAX = (uint32_t) div;
7808 1.1 joerg emu->x86.R_EDX = (uint32_t) mod;
7809 1.1 joerg }
7810 1.1 joerg /****************************************************************************
7811 1.1 joerg REMARKS:
7812 1.1 joerg Implements the DIV instruction and side effects.
7813 1.1 joerg ****************************************************************************/
7814 1.1 joerg static void
7815 1.1 joerg div_byte(struct X86EMU *emu, uint8_t s)
7816 1.1 joerg {
7817 1.1 joerg uint32_t dvd, div, mod;
7818 1.1 joerg
7819 1.1 joerg dvd = emu->x86.R_AX;
7820 1.1 joerg if (s == 0) {
7821 1.1 joerg x86emu_intr_raise(emu, 0);
7822 1.1 joerg return;
7823 1.1 joerg }
7824 1.1 joerg div = dvd / (uint8_t) s;
7825 1.1 joerg mod = dvd % (uint8_t) s;
7826 1.1 joerg if (div > 0xff) {
7827 1.1 joerg x86emu_intr_raise(emu, 0);
7828 1.1 joerg return;
7829 1.1 joerg }
7830 1.1 joerg emu->x86.R_AL = (uint8_t) div;
7831 1.1 joerg emu->x86.R_AH = (uint8_t) mod;
7832 1.1 joerg }
7833 1.1 joerg /****************************************************************************
7834 1.1 joerg REMARKS:
7835 1.1 joerg Implements the DIV instruction and side effects.
7836 1.1 joerg ****************************************************************************/
7837 1.1 joerg static void
7838 1.1 joerg div_word(struct X86EMU *emu, uint16_t s)
7839 1.1 joerg {
7840 1.1 joerg uint32_t dvd, div, mod;
7841 1.1 joerg
7842 1.1 joerg dvd = (((uint32_t) emu->x86.R_DX) << 16) | emu->x86.R_AX;
7843 1.1 joerg if (s == 0) {
7844 1.1 joerg x86emu_intr_raise(emu, 0);
7845 1.1 joerg return;
7846 1.1 joerg }
7847 1.1 joerg div = dvd / (uint16_t) s;
7848 1.1 joerg mod = dvd % (uint16_t) s;
7849 1.1 joerg if (div > 0xffff) {
7850 1.1 joerg x86emu_intr_raise(emu, 0);
7851 1.1 joerg return;
7852 1.1 joerg }
7853 1.1 joerg CLEAR_FLAG(F_CF);
7854 1.1 joerg CLEAR_FLAG(F_SF);
7855 1.1 joerg CONDITIONAL_SET_FLAG(div == 0, F_ZF);
7856 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(mod & 0xff), F_PF);
7857 1.1 joerg
7858 1.1 joerg emu->x86.R_AX = (uint16_t) div;
7859 1.1 joerg emu->x86.R_DX = (uint16_t) mod;
7860 1.1 joerg }
7861 1.1 joerg /****************************************************************************
7862 1.1 joerg REMARKS:
7863 1.1 joerg Implements the DIV instruction and side effects.
7864 1.1 joerg ****************************************************************************/
7865 1.1 joerg static void
7866 1.1 joerg div_long(struct X86EMU *emu, uint32_t s)
7867 1.1 joerg {
7868 1.1 joerg uint64_t dvd, div, mod;
7869 1.1 joerg
7870 1.1 joerg dvd = (((uint64_t) emu->x86.R_EDX) << 32) | emu->x86.R_EAX;
7871 1.1 joerg if (s == 0) {
7872 1.1 joerg x86emu_intr_raise(emu, 0);
7873 1.1 joerg return;
7874 1.1 joerg }
7875 1.1 joerg div = dvd / (uint32_t) s;
7876 1.1 joerg mod = dvd % (uint32_t) s;
7877 1.1 joerg if (div > 0xffffffff) {
7878 1.1 joerg x86emu_intr_raise(emu, 0);
7879 1.1 joerg return;
7880 1.1 joerg }
7881 1.1 joerg CLEAR_FLAG(F_CF);
7882 1.1 joerg CLEAR_FLAG(F_AF);
7883 1.1 joerg CLEAR_FLAG(F_SF);
7884 1.1 joerg SET_FLAG(F_ZF);
7885 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(mod & 0xff), F_PF);
7886 1.1 joerg
7887 1.1 joerg emu->x86.R_EAX = (uint32_t) div;
7888 1.1 joerg emu->x86.R_EDX = (uint32_t) mod;
7889 1.1 joerg }
7890 1.1 joerg /****************************************************************************
7891 1.1 joerg REMARKS:
7892 1.1 joerg Implements the IN string instruction and side effects.
7893 1.1 joerg ****************************************************************************/
7894 1.1 joerg static void
7895 1.1 joerg ins(struct X86EMU *emu, int size)
7896 1.1 joerg {
7897 1.1 joerg int inc = size;
7898 1.1 joerg
7899 1.1 joerg if (ACCESS_FLAG(F_DF)) {
7900 1.1 joerg inc = -size;
7901 1.1 joerg }
7902 1.1 joerg if (emu->x86.mode & (SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE)) {
7903 1.1 joerg /* dont care whether REPE or REPNE */
7904 1.1 joerg /* in until CX is ZERO. */
7905 1.1 joerg uint32_t count = ((emu->x86.mode & SYSMODE_PREFIX_DATA) ?
7906 1.1 joerg emu->x86.R_ECX : emu->x86.R_CX);
7907 1.1 joerg switch (size) {
7908 1.1 joerg case 1:
7909 1.1 joerg while (count--) {
7910 1.1 joerg store_byte(emu, emu->x86.R_ES, emu->x86.R_DI,
7911 1.1 joerg (*emu->emu_inb) (emu, emu->x86.R_DX));
7912 1.1 joerg emu->x86.R_DI += inc;
7913 1.1 joerg }
7914 1.1 joerg break;
7915 1.1 joerg
7916 1.1 joerg case 2:
7917 1.1 joerg while (count--) {
7918 1.1 joerg store_word(emu, emu->x86.R_ES, emu->x86.R_DI,
7919 1.1 joerg (*emu->emu_inw) (emu, emu->x86.R_DX));
7920 1.1 joerg emu->x86.R_DI += inc;
7921 1.1 joerg }
7922 1.1 joerg break;
7923 1.1 joerg case 4:
7924 1.1 joerg while (count--) {
7925 1.1 joerg store_long(emu, emu->x86.R_ES, emu->x86.R_DI,
7926 1.1 joerg (*emu->emu_inl) (emu, emu->x86.R_DX));
7927 1.1 joerg emu->x86.R_DI += inc;
7928 1.1 joerg break;
7929 1.1 joerg }
7930 1.1 joerg }
7931 1.1 joerg emu->x86.R_CX = 0;
7932 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
7933 1.1 joerg emu->x86.R_ECX = 0;
7934 1.1 joerg }
7935 1.1 joerg emu->x86.mode &= ~(SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE);
7936 1.1 joerg } else {
7937 1.1 joerg switch (size) {
7938 1.1 joerg case 1:
7939 1.1 joerg store_byte(emu, emu->x86.R_ES, emu->x86.R_DI,
7940 1.1 joerg (*emu->emu_inb) (emu, emu->x86.R_DX));
7941 1.1 joerg break;
7942 1.1 joerg case 2:
7943 1.1 joerg store_word(emu, emu->x86.R_ES, emu->x86.R_DI,
7944 1.1 joerg (*emu->emu_inw) (emu, emu->x86.R_DX));
7945 1.1 joerg break;
7946 1.1 joerg case 4:
7947 1.1 joerg store_long(emu, emu->x86.R_ES, emu->x86.R_DI,
7948 1.1 joerg (*emu->emu_inl) (emu, emu->x86.R_DX));
7949 1.1 joerg break;
7950 1.1 joerg }
7951 1.1 joerg emu->x86.R_DI += inc;
7952 1.1 joerg }
7953 1.1 joerg }
7954 1.1 joerg /****************************************************************************
7955 1.1 joerg REMARKS:
7956 1.1 joerg Implements the OUT string instruction and side effects.
7957 1.1 joerg ****************************************************************************/
7958 1.1 joerg static void
7959 1.1 joerg outs(struct X86EMU *emu, int size)
7960 1.1 joerg {
7961 1.1 joerg int inc = size;
7962 1.1 joerg
7963 1.1 joerg if (ACCESS_FLAG(F_DF)) {
7964 1.1 joerg inc = -size;
7965 1.1 joerg }
7966 1.1 joerg if (emu->x86.mode & (SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE)) {
7967 1.1 joerg /* dont care whether REPE or REPNE */
7968 1.1 joerg /* out until CX is ZERO. */
7969 1.1 joerg uint32_t count = ((emu->x86.mode & SYSMODE_PREFIX_DATA) ?
7970 1.1 joerg emu->x86.R_ECX : emu->x86.R_CX);
7971 1.1 joerg switch (size) {
7972 1.1 joerg case 1:
7973 1.1 joerg while (count--) {
7974 1.1 joerg (*emu->emu_outb) (emu, emu->x86.R_DX,
7975 1.1 joerg fetch_byte(emu, emu->x86.R_ES, emu->x86.R_SI));
7976 1.1 joerg emu->x86.R_SI += inc;
7977 1.1 joerg }
7978 1.1 joerg break;
7979 1.1 joerg
7980 1.1 joerg case 2:
7981 1.1 joerg while (count--) {
7982 1.1 joerg (*emu->emu_outw) (emu, emu->x86.R_DX,
7983 1.1 joerg fetch_word(emu, emu->x86.R_ES, emu->x86.R_SI));
7984 1.1 joerg emu->x86.R_SI += inc;
7985 1.1 joerg }
7986 1.1 joerg break;
7987 1.1 joerg case 4:
7988 1.1 joerg while (count--) {
7989 1.1 joerg (*emu->emu_outl) (emu, emu->x86.R_DX,
7990 1.1 joerg fetch_long(emu, emu->x86.R_ES, emu->x86.R_SI));
7991 1.1 joerg emu->x86.R_SI += inc;
7992 1.1 joerg break;
7993 1.1 joerg }
7994 1.1 joerg }
7995 1.1 joerg emu->x86.R_CX = 0;
7996 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
7997 1.1 joerg emu->x86.R_ECX = 0;
7998 1.1 joerg }
7999 1.1 joerg emu->x86.mode &= ~(SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE);
8000 1.1 joerg } else {
8001 1.1 joerg switch (size) {
8002 1.1 joerg case 1:
8003 1.1 joerg (*emu->emu_outb) (emu, emu->x86.R_DX,
8004 1.1 joerg fetch_byte(emu, emu->x86.R_ES, emu->x86.R_SI));
8005 1.1 joerg break;
8006 1.1 joerg case 2:
8007 1.1 joerg (*emu->emu_outw) (emu, emu->x86.R_DX,
8008 1.1 joerg fetch_word(emu, emu->x86.R_ES, emu->x86.R_SI));
8009 1.1 joerg break;
8010 1.1 joerg case 4:
8011 1.1 joerg (*emu->emu_outl) (emu, emu->x86.R_DX,
8012 1.1 joerg fetch_long(emu, emu->x86.R_ES, emu->x86.R_SI));
8013 1.1 joerg break;
8014 1.1 joerg }
8015 1.1 joerg emu->x86.R_SI += inc;
8016 1.1 joerg }
8017 1.1 joerg }
8018 1.1 joerg /****************************************************************************
8019 1.1 joerg REMARKS:
8020 1.1 joerg Pushes a word onto the stack.
8021 1.1 joerg
8022 1.1 joerg NOTE: Do not inline this, as (*emu->emu_wrX) is already inline!
8023 1.1 joerg ****************************************************************************/
8024 1.1 joerg static void
8025 1.1 joerg push_word(struct X86EMU *emu, uint16_t w)
8026 1.1 joerg {
8027 1.1 joerg emu->x86.R_SP -= 2;
8028 1.1 joerg store_word(emu, emu->x86.R_SS, emu->x86.R_SP, w);
8029 1.1 joerg }
8030 1.1 joerg /****************************************************************************
8031 1.1 joerg REMARKS:
8032 1.1 joerg Pushes a long onto the stack.
8033 1.1 joerg
8034 1.1 joerg NOTE: Do not inline this, as (*emu->emu_wrX) is already inline!
8035 1.1 joerg ****************************************************************************/
8036 1.1 joerg static void
8037 1.1 joerg push_long(struct X86EMU *emu, uint32_t w)
8038 1.1 joerg {
8039 1.1 joerg emu->x86.R_SP -= 4;
8040 1.1 joerg store_long(emu, emu->x86.R_SS, emu->x86.R_SP, w);
8041 1.1 joerg }
8042 1.1 joerg /****************************************************************************
8043 1.1 joerg REMARKS:
8044 1.1 joerg Pops a word from the stack.
8045 1.1 joerg
8046 1.1 joerg NOTE: Do not inline this, as (*emu->emu_rdX) is already inline!
8047 1.1 joerg ****************************************************************************/
8048 1.1 joerg static uint16_t
8049 1.1 joerg pop_word(struct X86EMU *emu)
8050 1.1 joerg {
8051 1.1 joerg uint16_t res;
8052 1.1 joerg
8053 1.1 joerg res = fetch_word(emu, emu->x86.R_SS, emu->x86.R_SP);
8054 1.1 joerg emu->x86.R_SP += 2;
8055 1.1 joerg return res;
8056 1.1 joerg }
8057 1.1 joerg /****************************************************************************
8058 1.1 joerg REMARKS:
8059 1.1 joerg Pops a long from the stack.
8060 1.1 joerg
8061 1.1 joerg NOTE: Do not inline this, as (*emu->emu_rdX) is already inline!
8062 1.1 joerg ****************************************************************************/
8063 1.1 joerg static uint32_t
8064 1.1 joerg pop_long(struct X86EMU *emu)
8065 1.1 joerg {
8066 1.1 joerg uint32_t res;
8067 1.1 joerg
8068 1.1 joerg res = fetch_long(emu, emu->x86.R_SS, emu->x86.R_SP);
8069 1.1 joerg emu->x86.R_SP += 4;
8070 1.1 joerg return res;
8071 1.1 joerg }
8072