x86emu.c revision 1.3 1 1.3 joerg /* $NetBSD: x86emu.c,v 1.3 2007/12/13 16:41:59 joerg Exp $ */
2 1.1 joerg
3 1.1 joerg /****************************************************************************
4 1.1 joerg *
5 1.1 joerg * Realmode X86 Emulator Library
6 1.1 joerg *
7 1.1 joerg * Copyright (C) 1996-1999 SciTech Software, Inc.
8 1.1 joerg * Copyright (C) David Mosberger-Tang
9 1.1 joerg * Copyright (C) 1999 Egbert Eich
10 1.1 joerg * Copyright (C) 2007 Joerg Sonnenberger
11 1.1 joerg *
12 1.1 joerg * ========================================================================
13 1.1 joerg *
14 1.1 joerg * Permission to use, copy, modify, distribute, and sell this software and
15 1.1 joerg * its documentation for any purpose is hereby granted without fee,
16 1.1 joerg * provided that the above copyright notice appear in all copies and that
17 1.1 joerg * both that copyright notice and this permission notice appear in
18 1.1 joerg * supporting documentation, and that the name of the authors not be used
19 1.1 joerg * in advertising or publicity pertaining to distribution of the software
20 1.1 joerg * without specific, written prior permission. The authors makes no
21 1.1 joerg * representations about the suitability of this software for any purpose.
22 1.1 joerg * It is provided "as is" without express or implied warranty.
23 1.1 joerg *
24 1.1 joerg * THE AUTHORS DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
25 1.1 joerg * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
26 1.1 joerg * EVENT SHALL THE AUTHORS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
27 1.1 joerg * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
28 1.1 joerg * USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
29 1.1 joerg * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
30 1.1 joerg * PERFORMANCE OF THIS SOFTWARE.
31 1.1 joerg *
32 1.1 joerg ****************************************************************************/
33 1.1 joerg
34 1.1 joerg #ifndef _KERNEL
35 1.1 joerg #include <stdbool.h>
36 1.1 joerg #endif
37 1.1 joerg
38 1.2 joerg #include <x86emu/x86emu.h>
39 1.2 joerg #include <x86emu/x86emu_regs.h>
40 1.1 joerg
41 1.1 joerg static void x86emu_intr_raise (struct X86EMU *, uint8_t type);
42 1.1 joerg
43 1.1 joerg static void X86EMU_exec_one_byte(struct X86EMU *);
44 1.1 joerg static void X86EMU_exec_two_byte(struct X86EMU *);
45 1.1 joerg
46 1.1 joerg static void fetch_decode_modrm (struct X86EMU *);
47 1.1 joerg static uint8_t fetch_byte_imm (struct X86EMU *);
48 1.1 joerg static uint16_t fetch_word_imm (struct X86EMU *);
49 1.1 joerg static uint32_t fetch_long_imm (struct X86EMU *);
50 1.1 joerg static uint8_t fetch_data_byte (struct X86EMU *, uint32_t offset);
51 1.1 joerg static uint8_t fetch_byte (struct X86EMU *, uint segment, uint32_t offset);
52 1.1 joerg static uint16_t fetch_data_word (struct X86EMU *, uint32_t offset);
53 1.1 joerg static uint16_t fetch_word (struct X86EMU *, uint32_t segment, uint32_t offset);
54 1.1 joerg static uint32_t fetch_data_long (struct X86EMU *, uint32_t offset);
55 1.1 joerg static uint32_t fetch_long (struct X86EMU *, uint32_t segment, uint32_t offset);
56 1.1 joerg static void store_data_byte (struct X86EMU *, uint32_t offset, uint8_t val);
57 1.1 joerg static void store_byte (struct X86EMU *, uint32_t segment, uint32_t offset, uint8_t val);
58 1.1 joerg static void store_data_word (struct X86EMU *, uint32_t offset, uint16_t val);
59 1.1 joerg static void store_word (struct X86EMU *, uint32_t segment, uint32_t offset, uint16_t val);
60 1.1 joerg static void store_data_long (struct X86EMU *, uint32_t offset, uint32_t val);
61 1.1 joerg static void store_long (struct X86EMU *, uint32_t segment, uint32_t offset, uint32_t val);
62 1.1 joerg static uint8_t* decode_rl_byte_register(struct X86EMU *);
63 1.1 joerg static uint16_t* decode_rl_word_register(struct X86EMU *);
64 1.1 joerg static uint32_t* decode_rl_long_register(struct X86EMU *);
65 1.1 joerg static uint8_t* decode_rh_byte_register(struct X86EMU *);
66 1.1 joerg static uint16_t* decode_rh_word_register(struct X86EMU *);
67 1.1 joerg static uint32_t* decode_rh_long_register(struct X86EMU *);
68 1.1 joerg static uint16_t* decode_rh_seg_register(struct X86EMU *);
69 1.1 joerg static uint32_t decode_rl_address(struct X86EMU *);
70 1.1 joerg
71 1.1 joerg static uint8_t decode_and_fetch_byte(struct X86EMU *);
72 1.1 joerg static uint16_t decode_and_fetch_word(struct X86EMU *);
73 1.1 joerg static uint32_t decode_and_fetch_long(struct X86EMU *);
74 1.1 joerg
75 1.1 joerg static uint8_t decode_and_fetch_byte_imm8(struct X86EMU *, uint8_t *);
76 1.1 joerg static uint16_t decode_and_fetch_word_imm8(struct X86EMU *, uint8_t *);
77 1.1 joerg static uint32_t decode_and_fetch_long_imm8(struct X86EMU *, uint8_t *);
78 1.1 joerg
79 1.1 joerg static uint16_t decode_and_fetch_word_disp(struct X86EMU *, int16_t);
80 1.1 joerg static uint32_t decode_and_fetch_long_disp(struct X86EMU *, int16_t);
81 1.1 joerg
82 1.1 joerg static void write_back_byte(struct X86EMU *, uint8_t);
83 1.1 joerg static void write_back_word(struct X86EMU *, uint16_t);
84 1.1 joerg static void write_back_long(struct X86EMU *, uint32_t);
85 1.1 joerg
86 1.1 joerg static uint16_t aaa_word (struct X86EMU *, uint16_t d);
87 1.1 joerg static uint16_t aas_word (struct X86EMU *, uint16_t d);
88 1.1 joerg static uint16_t aad_word (struct X86EMU *, uint16_t d);
89 1.1 joerg static uint16_t aam_word (struct X86EMU *, uint8_t d);
90 1.1 joerg static uint8_t adc_byte (struct X86EMU *, uint8_t d, uint8_t s);
91 1.1 joerg static uint16_t adc_word (struct X86EMU *, uint16_t d, uint16_t s);
92 1.1 joerg static uint32_t adc_long (struct X86EMU *, uint32_t d, uint32_t s);
93 1.1 joerg static uint8_t add_byte (struct X86EMU *, uint8_t d, uint8_t s);
94 1.1 joerg static uint16_t add_word (struct X86EMU *, uint16_t d, uint16_t s);
95 1.1 joerg static uint32_t add_long (struct X86EMU *, uint32_t d, uint32_t s);
96 1.1 joerg static uint8_t and_byte (struct X86EMU *, uint8_t d, uint8_t s);
97 1.1 joerg static uint16_t and_word (struct X86EMU *, uint16_t d, uint16_t s);
98 1.1 joerg static uint32_t and_long (struct X86EMU *, uint32_t d, uint32_t s);
99 1.1 joerg static uint8_t cmp_byte (struct X86EMU *, uint8_t d, uint8_t s);
100 1.1 joerg static uint16_t cmp_word (struct X86EMU *, uint16_t d, uint16_t s);
101 1.1 joerg static uint32_t cmp_long (struct X86EMU *, uint32_t d, uint32_t s);
102 1.1 joerg static void cmp_byte_no_return (struct X86EMU *, uint8_t d, uint8_t s);
103 1.1 joerg static void cmp_word_no_return (struct X86EMU *, uint16_t d, uint16_t s);
104 1.1 joerg static void cmp_long_no_return (struct X86EMU *, uint32_t d, uint32_t s);
105 1.1 joerg static uint8_t daa_byte (struct X86EMU *, uint8_t d);
106 1.1 joerg static uint8_t das_byte (struct X86EMU *, uint8_t d);
107 1.1 joerg static uint8_t dec_byte (struct X86EMU *, uint8_t d);
108 1.1 joerg static uint16_t dec_word (struct X86EMU *, uint16_t d);
109 1.1 joerg static uint32_t dec_long (struct X86EMU *, uint32_t d);
110 1.1 joerg static uint8_t inc_byte (struct X86EMU *, uint8_t d);
111 1.1 joerg static uint16_t inc_word (struct X86EMU *, uint16_t d);
112 1.1 joerg static uint32_t inc_long (struct X86EMU *, uint32_t d);
113 1.1 joerg static uint8_t or_byte (struct X86EMU *, uint8_t d, uint8_t s);
114 1.1 joerg static uint16_t or_word (struct X86EMU *, uint16_t d, uint16_t s);
115 1.1 joerg static uint32_t or_long (struct X86EMU *, uint32_t d, uint32_t s);
116 1.1 joerg static uint8_t neg_byte (struct X86EMU *, uint8_t s);
117 1.1 joerg static uint16_t neg_word (struct X86EMU *, uint16_t s);
118 1.1 joerg static uint32_t neg_long (struct X86EMU *, uint32_t s);
119 1.1 joerg static uint8_t rcl_byte (struct X86EMU *, uint8_t d, uint8_t s);
120 1.1 joerg static uint16_t rcl_word (struct X86EMU *, uint16_t d, uint8_t s);
121 1.1 joerg static uint32_t rcl_long (struct X86EMU *, uint32_t d, uint8_t s);
122 1.1 joerg static uint8_t rcr_byte (struct X86EMU *, uint8_t d, uint8_t s);
123 1.1 joerg static uint16_t rcr_word (struct X86EMU *, uint16_t d, uint8_t s);
124 1.1 joerg static uint32_t rcr_long (struct X86EMU *, uint32_t d, uint8_t s);
125 1.1 joerg static uint8_t rol_byte (struct X86EMU *, uint8_t d, uint8_t s);
126 1.1 joerg static uint16_t rol_word (struct X86EMU *, uint16_t d, uint8_t s);
127 1.1 joerg static uint32_t rol_long (struct X86EMU *, uint32_t d, uint8_t s);
128 1.1 joerg static uint8_t ror_byte (struct X86EMU *, uint8_t d, uint8_t s);
129 1.1 joerg static uint16_t ror_word (struct X86EMU *, uint16_t d, uint8_t s);
130 1.1 joerg static uint32_t ror_long (struct X86EMU *, uint32_t d, uint8_t s);
131 1.1 joerg static uint8_t shl_byte (struct X86EMU *, uint8_t d, uint8_t s);
132 1.1 joerg static uint16_t shl_word (struct X86EMU *, uint16_t d, uint8_t s);
133 1.1 joerg static uint32_t shl_long (struct X86EMU *, uint32_t d, uint8_t s);
134 1.1 joerg static uint8_t shr_byte (struct X86EMU *, uint8_t d, uint8_t s);
135 1.1 joerg static uint16_t shr_word (struct X86EMU *, uint16_t d, uint8_t s);
136 1.1 joerg static uint32_t shr_long (struct X86EMU *, uint32_t d, uint8_t s);
137 1.1 joerg static uint8_t sar_byte (struct X86EMU *, uint8_t d, uint8_t s);
138 1.1 joerg static uint16_t sar_word (struct X86EMU *, uint16_t d, uint8_t s);
139 1.1 joerg static uint32_t sar_long (struct X86EMU *, uint32_t d, uint8_t s);
140 1.1 joerg static uint16_t shld_word (struct X86EMU *, uint16_t d, uint16_t fill, uint8_t s);
141 1.1 joerg static uint32_t shld_long (struct X86EMU *, uint32_t d, uint32_t fill, uint8_t s);
142 1.1 joerg static uint16_t shrd_word (struct X86EMU *, uint16_t d, uint16_t fill, uint8_t s);
143 1.1 joerg static uint32_t shrd_long (struct X86EMU *, uint32_t d, uint32_t fill, uint8_t s);
144 1.1 joerg static uint8_t sbb_byte (struct X86EMU *, uint8_t d, uint8_t s);
145 1.1 joerg static uint16_t sbb_word (struct X86EMU *, uint16_t d, uint16_t s);
146 1.1 joerg static uint32_t sbb_long (struct X86EMU *, uint32_t d, uint32_t s);
147 1.1 joerg static uint8_t sub_byte (struct X86EMU *, uint8_t d, uint8_t s);
148 1.1 joerg static uint16_t sub_word (struct X86EMU *, uint16_t d, uint16_t s);
149 1.1 joerg static uint32_t sub_long (struct X86EMU *, uint32_t d, uint32_t s);
150 1.1 joerg static void test_byte (struct X86EMU *, uint8_t d, uint8_t s);
151 1.1 joerg static void test_word (struct X86EMU *, uint16_t d, uint16_t s);
152 1.1 joerg static void test_long (struct X86EMU *, uint32_t d, uint32_t s);
153 1.1 joerg static uint8_t xor_byte (struct X86EMU *, uint8_t d, uint8_t s);
154 1.1 joerg static uint16_t xor_word (struct X86EMU *, uint16_t d, uint16_t s);
155 1.1 joerg static uint32_t xor_long (struct X86EMU *, uint32_t d, uint32_t s);
156 1.1 joerg static void imul_byte (struct X86EMU *, uint8_t s);
157 1.1 joerg static void imul_word (struct X86EMU *, uint16_t s);
158 1.1 joerg static void imul_long (struct X86EMU *, uint32_t s);
159 1.1 joerg static void mul_byte (struct X86EMU *, uint8_t s);
160 1.1 joerg static void mul_word (struct X86EMU *, uint16_t s);
161 1.1 joerg static void mul_long (struct X86EMU *, uint32_t s);
162 1.1 joerg static void idiv_byte (struct X86EMU *, uint8_t s);
163 1.1 joerg static void idiv_word (struct X86EMU *, uint16_t s);
164 1.1 joerg static void idiv_long (struct X86EMU *, uint32_t s);
165 1.1 joerg static void div_byte (struct X86EMU *, uint8_t s);
166 1.1 joerg static void div_word (struct X86EMU *, uint16_t s);
167 1.1 joerg static void div_long (struct X86EMU *, uint32_t s);
168 1.1 joerg static void ins (struct X86EMU *, int size);
169 1.1 joerg static void outs (struct X86EMU *, int size);
170 1.1 joerg static void push_word (struct X86EMU *, uint16_t w);
171 1.1 joerg static void push_long (struct X86EMU *, uint32_t w);
172 1.1 joerg static uint16_t pop_word (struct X86EMU *);
173 1.1 joerg static uint32_t pop_long (struct X86EMU *);
174 1.1 joerg
175 1.1 joerg /****************************************************************************
176 1.1 joerg REMARKS:
177 1.1 joerg Handles any pending asychronous interrupts.
178 1.1 joerg ****************************************************************************/
179 1.3 joerg static void
180 1.3 joerg x86emu_intr_dispatch(struct X86EMU *emu, uint8_t intno)
181 1.3 joerg {
182 1.3 joerg if (emu->_X86EMU_intrTab[intno]) {
183 1.3 joerg (*emu->_X86EMU_intrTab[intno]) (emu, intno);
184 1.3 joerg } else {
185 1.3 joerg push_word(emu, (uint16_t) emu->x86.R_FLG);
186 1.3 joerg CLEAR_FLAG(F_IF);
187 1.3 joerg CLEAR_FLAG(F_TF);
188 1.3 joerg push_word(emu, emu->x86.R_CS);
189 1.3 joerg emu->x86.R_CS = fetch_word(emu, 0, intno * 4 + 2);
190 1.3 joerg push_word(emu, emu->x86.R_IP);
191 1.3 joerg emu->x86.R_IP = fetch_word(emu, 0, intno * 4);
192 1.3 joerg }
193 1.3 joerg }
194 1.3 joerg
195 1.1 joerg static void
196 1.1 joerg x86emu_intr_handle(struct X86EMU *emu)
197 1.1 joerg {
198 1.1 joerg uint8_t intno;
199 1.1 joerg
200 1.1 joerg if (emu->x86.intr & INTR_SYNCH) {
201 1.1 joerg intno = emu->x86.intno;
202 1.3 joerg emu->x86.intr = 0;
203 1.3 joerg x86emu_intr_dispatch(emu, intno);
204 1.1 joerg }
205 1.1 joerg }
206 1.1 joerg /****************************************************************************
207 1.1 joerg PARAMETERS:
208 1.1 joerg intrnum - Interrupt number to raise
209 1.1 joerg
210 1.1 joerg REMARKS:
211 1.1 joerg Raise the specified interrupt to be handled before the execution of the
212 1.1 joerg next instruction.
213 1.1 joerg ****************************************************************************/
214 1.1 joerg void
215 1.1 joerg x86emu_intr_raise(struct X86EMU *emu, uint8_t intrnum)
216 1.1 joerg {
217 1.1 joerg emu->x86.intno = intrnum;
218 1.1 joerg emu->x86.intr |= INTR_SYNCH;
219 1.1 joerg }
220 1.1 joerg /****************************************************************************
221 1.1 joerg REMARKS:
222 1.1 joerg Main execution loop for the emulator. We return from here when the system
223 1.1 joerg halts, which is normally caused by a stack fault when we return from the
224 1.1 joerg original real mode call.
225 1.1 joerg ****************************************************************************/
226 1.1 joerg void
227 1.1 joerg X86EMU_exec(struct X86EMU *emu)
228 1.1 joerg {
229 1.1 joerg emu->x86.intr = 0;
230 1.1 joerg
231 1.1 joerg #ifdef _KERNEL
232 1.1 joerg if (setjmp(&emu->exec_state))
233 1.1 joerg return;
234 1.1 joerg #else
235 1.1 joerg if (setjmp(emu->exec_state))
236 1.1 joerg return;
237 1.1 joerg #endif
238 1.1 joerg
239 1.1 joerg for (;;) {
240 1.1 joerg if (emu->x86.intr) {
241 1.1 joerg if (((emu->x86.intr & INTR_SYNCH) && (emu->x86.intno == 0 || emu->x86.intno == 2)) ||
242 1.1 joerg !ACCESS_FLAG(F_IF)) {
243 1.1 joerg x86emu_intr_handle(emu);
244 1.1 joerg }
245 1.1 joerg }
246 1.1 joerg X86EMU_exec_one_byte(emu);
247 1.1 joerg ++emu->cur_cycles;
248 1.1 joerg }
249 1.1 joerg }
250 1.1 joerg
251 1.1 joerg void
252 1.1 joerg X86EMU_exec_call(struct X86EMU *emu, uint16_t seg, uint16_t off)
253 1.1 joerg {
254 1.1 joerg push_word(emu, 0);
255 1.1 joerg push_word(emu, 0);
256 1.1 joerg emu->x86.R_CS = seg;
257 1.1 joerg emu->x86.R_IP = off;
258 1.1 joerg
259 1.1 joerg X86EMU_exec(emu);
260 1.1 joerg }
261 1.1 joerg
262 1.1 joerg void
263 1.1 joerg X86EMU_exec_intr(struct X86EMU *emu, uint8_t intr)
264 1.1 joerg {
265 1.1 joerg push_word(emu, emu->x86.R_FLG);
266 1.1 joerg CLEAR_FLAG(F_IF);
267 1.1 joerg CLEAR_FLAG(F_TF);
268 1.1 joerg push_word(emu, 0);
269 1.1 joerg push_word(emu, 0);
270 1.1 joerg emu->x86.R_CS = (*emu->emu_rdw)(emu, intr * 4 + 2);
271 1.1 joerg emu->x86.R_IP = (*emu->emu_rdw)(emu, intr * 4);
272 1.1 joerg emu->x86.intr = 0;
273 1.1 joerg
274 1.1 joerg X86EMU_exec(emu);
275 1.1 joerg }
276 1.1 joerg /****************************************************************************
277 1.1 joerg REMARKS:
278 1.1 joerg Halts the system by setting the halted system flag.
279 1.1 joerg ****************************************************************************/
280 1.1 joerg void
281 1.1 joerg X86EMU_halt_sys(struct X86EMU *emu)
282 1.1 joerg {
283 1.1 joerg #ifdef _KERNEL
284 1.1 joerg longjmp(&emu->exec_state);
285 1.1 joerg #else
286 1.1 joerg longjmp(emu->exec_state, 1);
287 1.1 joerg #endif
288 1.1 joerg }
289 1.1 joerg /****************************************************************************
290 1.1 joerg PARAMETERS:
291 1.1 joerg mod - Mod value from decoded byte
292 1.1 joerg regh - Reg h value from decoded byte
293 1.1 joerg regl - Reg l value from decoded byte
294 1.1 joerg
295 1.1 joerg REMARKS:
296 1.1 joerg Raise the specified interrupt to be handled before the execution of the
297 1.1 joerg next instruction.
298 1.1 joerg
299 1.1 joerg NOTE: Do not inline this function, as (*emu->emu_rdb) is already inline!
300 1.1 joerg ****************************************************************************/
301 1.1 joerg static void
302 1.1 joerg fetch_decode_modrm(struct X86EMU *emu)
303 1.1 joerg {
304 1.1 joerg int fetched;
305 1.1 joerg
306 1.1 joerg fetched = fetch_byte_imm(emu);
307 1.1 joerg emu->cur_mod = (fetched >> 6) & 0x03;
308 1.1 joerg emu->cur_rh = (fetched >> 3) & 0x07;
309 1.1 joerg emu->cur_rl = (fetched >> 0) & 0x07;
310 1.1 joerg }
311 1.1 joerg /****************************************************************************
312 1.1 joerg RETURNS:
313 1.1 joerg Immediate byte value read from instruction queue
314 1.1 joerg
315 1.1 joerg REMARKS:
316 1.1 joerg This function returns the immediate byte from the instruction queue, and
317 1.1 joerg moves the instruction pointer to the next value.
318 1.1 joerg
319 1.1 joerg NOTE: Do not inline this function, as (*emu->emu_rdb) is already inline!
320 1.1 joerg ****************************************************************************/
321 1.1 joerg static uint8_t
322 1.1 joerg fetch_byte_imm(struct X86EMU *emu)
323 1.1 joerg {
324 1.1 joerg uint8_t fetched;
325 1.1 joerg
326 1.1 joerg fetched = fetch_byte(emu, emu->x86.R_CS, emu->x86.R_IP);
327 1.1 joerg emu->x86.R_IP++;
328 1.1 joerg return fetched;
329 1.1 joerg }
330 1.1 joerg /****************************************************************************
331 1.1 joerg RETURNS:
332 1.1 joerg Immediate word value read from instruction queue
333 1.1 joerg
334 1.1 joerg REMARKS:
335 1.1 joerg This function returns the immediate byte from the instruction queue, and
336 1.1 joerg moves the instruction pointer to the next value.
337 1.1 joerg
338 1.1 joerg NOTE: Do not inline this function, as (*emu->emu_rdw) is already inline!
339 1.1 joerg ****************************************************************************/
340 1.1 joerg static uint16_t
341 1.1 joerg fetch_word_imm(struct X86EMU *emu)
342 1.1 joerg {
343 1.1 joerg uint16_t fetched;
344 1.1 joerg
345 1.1 joerg fetched = fetch_word(emu, emu->x86.R_CS, emu->x86.R_IP);
346 1.1 joerg emu->x86.R_IP += 2;
347 1.1 joerg return fetched;
348 1.1 joerg }
349 1.1 joerg /****************************************************************************
350 1.1 joerg RETURNS:
351 1.1 joerg Immediate lone value read from instruction queue
352 1.1 joerg
353 1.1 joerg REMARKS:
354 1.1 joerg This function returns the immediate byte from the instruction queue, and
355 1.1 joerg moves the instruction pointer to the next value.
356 1.1 joerg
357 1.1 joerg NOTE: Do not inline this function, as (*emu->emu_rdw) is already inline!
358 1.1 joerg ****************************************************************************/
359 1.1 joerg static uint32_t
360 1.1 joerg fetch_long_imm(struct X86EMU *emu)
361 1.1 joerg {
362 1.1 joerg uint32_t fetched;
363 1.1 joerg
364 1.1 joerg fetched = fetch_long(emu, emu->x86.R_CS, emu->x86.R_IP);
365 1.1 joerg emu->x86.R_IP += 4;
366 1.1 joerg return fetched;
367 1.1 joerg }
368 1.1 joerg /****************************************************************************
369 1.1 joerg RETURNS:
370 1.1 joerg Value of the default data segment
371 1.1 joerg
372 1.1 joerg REMARKS:
373 1.1 joerg Inline function that returns the default data segment for the current
374 1.1 joerg instruction.
375 1.1 joerg
376 1.1 joerg On the x86 processor, the default segment is not always DS if there is
377 1.1 joerg no segment override. Address modes such as -3[BP] or 10[BP+SI] all refer to
378 1.1 joerg addresses relative to SS (ie: on the stack). So, at the minimum, all
379 1.1 joerg decodings of addressing modes would have to set/clear a bit describing
380 1.1 joerg whether the access is relative to DS or SS. That is the function of the
381 1.1 joerg cpu-state-varible emu->x86.mode. There are several potential states:
382 1.1 joerg
383 1.1 joerg repe prefix seen (handled elsewhere)
384 1.1 joerg repne prefix seen (ditto)
385 1.1 joerg
386 1.1 joerg cs segment override
387 1.1 joerg ds segment override
388 1.1 joerg es segment override
389 1.1 joerg fs segment override
390 1.1 joerg gs segment override
391 1.1 joerg ss segment override
392 1.1 joerg
393 1.1 joerg ds/ss select (in absense of override)
394 1.1 joerg
395 1.1 joerg Each of the above 7 items are handled with a bit in the mode field.
396 1.1 joerg ****************************************************************************/
397 1.1 joerg static uint32_t
398 1.1 joerg get_data_segment(struct X86EMU *emu)
399 1.1 joerg {
400 1.1 joerg switch (emu->x86.mode & SYSMODE_SEGMASK) {
401 1.1 joerg case 0: /* default case: use ds register */
402 1.1 joerg case SYSMODE_SEGOVR_DS:
403 1.1 joerg case SYSMODE_SEGOVR_DS | SYSMODE_SEG_DS_SS:
404 1.1 joerg return emu->x86.R_DS;
405 1.1 joerg case SYSMODE_SEG_DS_SS:/* non-overridden, use ss register */
406 1.1 joerg return emu->x86.R_SS;
407 1.1 joerg case SYSMODE_SEGOVR_CS:
408 1.1 joerg case SYSMODE_SEGOVR_CS | SYSMODE_SEG_DS_SS:
409 1.1 joerg return emu->x86.R_CS;
410 1.1 joerg case SYSMODE_SEGOVR_ES:
411 1.1 joerg case SYSMODE_SEGOVR_ES | SYSMODE_SEG_DS_SS:
412 1.1 joerg return emu->x86.R_ES;
413 1.1 joerg case SYSMODE_SEGOVR_FS:
414 1.1 joerg case SYSMODE_SEGOVR_FS | SYSMODE_SEG_DS_SS:
415 1.1 joerg return emu->x86.R_FS;
416 1.1 joerg case SYSMODE_SEGOVR_GS:
417 1.1 joerg case SYSMODE_SEGOVR_GS | SYSMODE_SEG_DS_SS:
418 1.1 joerg return emu->x86.R_GS;
419 1.1 joerg case SYSMODE_SEGOVR_SS:
420 1.1 joerg case SYSMODE_SEGOVR_SS | SYSMODE_SEG_DS_SS:
421 1.1 joerg return emu->x86.R_SS;
422 1.1 joerg }
423 1.1 joerg X86EMU_halt_sys(emu);
424 1.1 joerg }
425 1.1 joerg /****************************************************************************
426 1.1 joerg PARAMETERS:
427 1.1 joerg offset - Offset to load data from
428 1.1 joerg
429 1.1 joerg RETURNS:
430 1.1 joerg Byte value read from the absolute memory location.
431 1.1 joerg
432 1.1 joerg NOTE: Do not inline this function as (*emu->emu_rdX) is already inline!
433 1.1 joerg ****************************************************************************/
434 1.1 joerg static uint8_t
435 1.1 joerg fetch_data_byte(struct X86EMU *emu, uint32_t offset)
436 1.1 joerg {
437 1.1 joerg return fetch_byte(emu, get_data_segment(emu), offset);
438 1.1 joerg }
439 1.1 joerg /****************************************************************************
440 1.1 joerg PARAMETERS:
441 1.1 joerg offset - Offset to load data from
442 1.1 joerg
443 1.1 joerg RETURNS:
444 1.1 joerg Word value read from the absolute memory location.
445 1.1 joerg
446 1.1 joerg NOTE: Do not inline this function as (*emu->emu_rdX) is already inline!
447 1.1 joerg ****************************************************************************/
448 1.1 joerg static uint16_t
449 1.1 joerg fetch_data_word(struct X86EMU *emu, uint32_t offset)
450 1.1 joerg {
451 1.1 joerg return fetch_word(emu, get_data_segment(emu), offset);
452 1.1 joerg }
453 1.1 joerg /****************************************************************************
454 1.1 joerg PARAMETERS:
455 1.1 joerg offset - Offset to load data from
456 1.1 joerg
457 1.1 joerg RETURNS:
458 1.1 joerg Long value read from the absolute memory location.
459 1.1 joerg
460 1.1 joerg NOTE: Do not inline this function as (*emu->emu_rdX) is already inline!
461 1.1 joerg ****************************************************************************/
462 1.1 joerg static uint32_t
463 1.1 joerg fetch_data_long(struct X86EMU *emu, uint32_t offset)
464 1.1 joerg {
465 1.1 joerg return fetch_long(emu, get_data_segment(emu), offset);
466 1.1 joerg }
467 1.1 joerg /****************************************************************************
468 1.1 joerg PARAMETERS:
469 1.1 joerg segment - Segment to load data from
470 1.1 joerg offset - Offset to load data from
471 1.1 joerg
472 1.1 joerg RETURNS:
473 1.1 joerg Byte value read from the absolute memory location.
474 1.1 joerg
475 1.1 joerg NOTE: Do not inline this function as (*emu->emu_rdX) is already inline!
476 1.1 joerg ****************************************************************************/
477 1.1 joerg static uint8_t
478 1.1 joerg fetch_byte(struct X86EMU *emu, uint32_t segment, uint32_t offset)
479 1.1 joerg {
480 1.1 joerg return (*emu->emu_rdb) (emu, ((uint32_t) segment << 4) + offset);
481 1.1 joerg }
482 1.1 joerg /****************************************************************************
483 1.1 joerg PARAMETERS:
484 1.1 joerg segment - Segment to load data from
485 1.1 joerg offset - Offset to load data from
486 1.1 joerg
487 1.1 joerg RETURNS:
488 1.1 joerg Word value read from the absolute memory location.
489 1.1 joerg
490 1.1 joerg NOTE: Do not inline this function as (*emu->emu_rdX) is already inline!
491 1.1 joerg ****************************************************************************/
492 1.1 joerg static uint16_t
493 1.1 joerg fetch_word(struct X86EMU *emu, uint32_t segment, uint32_t offset)
494 1.1 joerg {
495 1.1 joerg return (*emu->emu_rdw) (emu, ((uint32_t) segment << 4) + offset);
496 1.1 joerg }
497 1.1 joerg /****************************************************************************
498 1.1 joerg PARAMETERS:
499 1.1 joerg segment - Segment to load data from
500 1.1 joerg offset - Offset to load data from
501 1.1 joerg
502 1.1 joerg RETURNS:
503 1.1 joerg Long value read from the absolute memory location.
504 1.1 joerg
505 1.1 joerg NOTE: Do not inline this function as (*emu->emu_rdX) is already inline!
506 1.1 joerg ****************************************************************************/
507 1.1 joerg static uint32_t
508 1.1 joerg fetch_long(struct X86EMU *emu, uint32_t segment, uint32_t offset)
509 1.1 joerg {
510 1.1 joerg return (*emu->emu_rdl) (emu, ((uint32_t) segment << 4) + offset);
511 1.1 joerg }
512 1.1 joerg /****************************************************************************
513 1.1 joerg PARAMETERS:
514 1.1 joerg offset - Offset to store data at
515 1.1 joerg val - Value to store
516 1.1 joerg
517 1.1 joerg REMARKS:
518 1.1 joerg Writes a word value to an segmented memory location. The segment used is
519 1.1 joerg the current 'default' segment, which may have been overridden.
520 1.1 joerg
521 1.1 joerg NOTE: Do not inline this function as (*emu->emu_wrX) is already inline!
522 1.1 joerg ****************************************************************************/
523 1.1 joerg static void
524 1.1 joerg store_data_byte(struct X86EMU *emu, uint32_t offset, uint8_t val)
525 1.1 joerg {
526 1.1 joerg store_byte(emu, get_data_segment(emu), offset, val);
527 1.1 joerg }
528 1.1 joerg /****************************************************************************
529 1.1 joerg PARAMETERS:
530 1.1 joerg offset - Offset to store data at
531 1.1 joerg val - Value to store
532 1.1 joerg
533 1.1 joerg REMARKS:
534 1.1 joerg Writes a word value to an segmented memory location. The segment used is
535 1.1 joerg the current 'default' segment, which may have been overridden.
536 1.1 joerg
537 1.1 joerg NOTE: Do not inline this function as (*emu->emu_wrX) is already inline!
538 1.1 joerg ****************************************************************************/
539 1.1 joerg static void
540 1.1 joerg store_data_word(struct X86EMU *emu, uint32_t offset, uint16_t val)
541 1.1 joerg {
542 1.1 joerg store_word(emu, get_data_segment(emu), offset, val);
543 1.1 joerg }
544 1.1 joerg /****************************************************************************
545 1.1 joerg PARAMETERS:
546 1.1 joerg offset - Offset to store data at
547 1.1 joerg val - Value to store
548 1.1 joerg
549 1.1 joerg REMARKS:
550 1.1 joerg Writes a long value to an segmented memory location. The segment used is
551 1.1 joerg the current 'default' segment, which may have been overridden.
552 1.1 joerg
553 1.1 joerg NOTE: Do not inline this function as (*emu->emu_wrX) is already inline!
554 1.1 joerg ****************************************************************************/
555 1.1 joerg static void
556 1.1 joerg store_data_long(struct X86EMU *emu, uint32_t offset, uint32_t val)
557 1.1 joerg {
558 1.1 joerg store_long(emu, get_data_segment(emu), offset, val);
559 1.1 joerg }
560 1.1 joerg /****************************************************************************
561 1.1 joerg PARAMETERS:
562 1.1 joerg segment - Segment to store data at
563 1.1 joerg offset - Offset to store data at
564 1.1 joerg val - Value to store
565 1.1 joerg
566 1.1 joerg REMARKS:
567 1.1 joerg Writes a byte value to an absolute memory location.
568 1.1 joerg
569 1.1 joerg NOTE: Do not inline this function as (*emu->emu_wrX) is already inline!
570 1.1 joerg ****************************************************************************/
571 1.1 joerg static void
572 1.1 joerg store_byte(struct X86EMU *emu, uint32_t segment, uint32_t offset, uint8_t val)
573 1.1 joerg {
574 1.1 joerg (*emu->emu_wrb) (emu, ((uint32_t) segment << 4) + offset, val);
575 1.1 joerg }
576 1.1 joerg /****************************************************************************
577 1.1 joerg PARAMETERS:
578 1.1 joerg segment - Segment to store data at
579 1.1 joerg offset - Offset to store data at
580 1.1 joerg val - Value to store
581 1.1 joerg
582 1.1 joerg REMARKS:
583 1.1 joerg Writes a word value to an absolute memory location.
584 1.1 joerg
585 1.1 joerg NOTE: Do not inline this function as (*emu->emu_wrX) is already inline!
586 1.1 joerg ****************************************************************************/
587 1.1 joerg static void
588 1.1 joerg store_word(struct X86EMU *emu, uint32_t segment, uint32_t offset, uint16_t val)
589 1.1 joerg {
590 1.1 joerg (*emu->emu_wrw) (emu, ((uint32_t) segment << 4) + offset, val);
591 1.1 joerg }
592 1.1 joerg /****************************************************************************
593 1.1 joerg PARAMETERS:
594 1.1 joerg segment - Segment to store data at
595 1.1 joerg offset - Offset to store data at
596 1.1 joerg val - Value to store
597 1.1 joerg
598 1.1 joerg REMARKS:
599 1.1 joerg Writes a long value to an absolute memory location.
600 1.1 joerg
601 1.1 joerg NOTE: Do not inline this function as (*emu->emu_wrX) is already inline!
602 1.1 joerg ****************************************************************************/
603 1.1 joerg static void
604 1.1 joerg store_long(struct X86EMU *emu, uint32_t segment, uint32_t offset, uint32_t val)
605 1.1 joerg {
606 1.1 joerg (*emu->emu_wrl) (emu, ((uint32_t) segment << 4) + offset, val);
607 1.1 joerg }
608 1.1 joerg /****************************************************************************
609 1.1 joerg PARAMETERS:
610 1.1 joerg reg - Register to decode
611 1.1 joerg
612 1.1 joerg RETURNS:
613 1.1 joerg Pointer to the appropriate register
614 1.1 joerg
615 1.1 joerg REMARKS:
616 1.1 joerg Return a pointer to the register given by the R/RM field of the
617 1.1 joerg modrm byte, for byte operands. Also enables the decoding of instructions.
618 1.1 joerg ****************************************************************************/
619 1.1 joerg static uint8_t *
620 1.1 joerg decode_rm_byte_register(struct X86EMU *emu, int reg)
621 1.1 joerg {
622 1.1 joerg switch (reg) {
623 1.1 joerg case 0:
624 1.1 joerg return &emu->x86.R_AL;
625 1.1 joerg case 1:
626 1.1 joerg return &emu->x86.R_CL;
627 1.1 joerg case 2:
628 1.1 joerg return &emu->x86.R_DL;
629 1.1 joerg case 3:
630 1.1 joerg return &emu->x86.R_BL;
631 1.1 joerg case 4:
632 1.1 joerg return &emu->x86.R_AH;
633 1.1 joerg case 5:
634 1.1 joerg return &emu->x86.R_CH;
635 1.1 joerg case 6:
636 1.1 joerg return &emu->x86.R_DH;
637 1.1 joerg case 7:
638 1.1 joerg return &emu->x86.R_BH;
639 1.1 joerg default:
640 1.1 joerg X86EMU_halt_sys(emu);
641 1.1 joerg }
642 1.1 joerg }
643 1.1 joerg
644 1.1 joerg static uint8_t *
645 1.1 joerg decode_rl_byte_register(struct X86EMU *emu)
646 1.1 joerg {
647 1.1 joerg return decode_rm_byte_register(emu, emu->cur_rl);
648 1.1 joerg }
649 1.1 joerg
650 1.1 joerg static uint8_t *
651 1.1 joerg decode_rh_byte_register(struct X86EMU *emu)
652 1.1 joerg {
653 1.1 joerg return decode_rm_byte_register(emu, emu->cur_rh);
654 1.1 joerg }
655 1.1 joerg /****************************************************************************
656 1.1 joerg PARAMETERS:
657 1.1 joerg reg - Register to decode
658 1.1 joerg
659 1.1 joerg RETURNS:
660 1.1 joerg Pointer to the appropriate register
661 1.1 joerg
662 1.1 joerg REMARKS:
663 1.1 joerg Return a pointer to the register given by the R/RM field of the
664 1.1 joerg modrm byte, for word operands. Also enables the decoding of instructions.
665 1.1 joerg ****************************************************************************/
666 1.1 joerg static uint16_t *
667 1.1 joerg decode_rm_word_register(struct X86EMU *emu, int reg)
668 1.1 joerg {
669 1.1 joerg switch (reg) {
670 1.1 joerg case 0:
671 1.1 joerg return &emu->x86.R_AX;
672 1.1 joerg case 1:
673 1.1 joerg return &emu->x86.R_CX;
674 1.1 joerg case 2:
675 1.1 joerg return &emu->x86.R_DX;
676 1.1 joerg case 3:
677 1.1 joerg return &emu->x86.R_BX;
678 1.1 joerg case 4:
679 1.1 joerg return &emu->x86.R_SP;
680 1.1 joerg case 5:
681 1.1 joerg return &emu->x86.R_BP;
682 1.1 joerg case 6:
683 1.1 joerg return &emu->x86.R_SI;
684 1.1 joerg case 7:
685 1.1 joerg return &emu->x86.R_DI;
686 1.1 joerg default:
687 1.1 joerg X86EMU_halt_sys(emu);
688 1.1 joerg }
689 1.1 joerg }
690 1.1 joerg
691 1.1 joerg static uint16_t *
692 1.1 joerg decode_rl_word_register(struct X86EMU *emu)
693 1.1 joerg {
694 1.1 joerg return decode_rm_word_register(emu, emu->cur_rl);
695 1.1 joerg }
696 1.1 joerg
697 1.1 joerg static uint16_t *
698 1.1 joerg decode_rh_word_register(struct X86EMU *emu)
699 1.1 joerg {
700 1.1 joerg return decode_rm_word_register(emu, emu->cur_rh);
701 1.1 joerg }
702 1.1 joerg /****************************************************************************
703 1.1 joerg PARAMETERS:
704 1.1 joerg reg - Register to decode
705 1.1 joerg
706 1.1 joerg RETURNS:
707 1.1 joerg Pointer to the appropriate register
708 1.1 joerg
709 1.1 joerg REMARKS:
710 1.1 joerg Return a pointer to the register given by the R/RM field of the
711 1.1 joerg modrm byte, for dword operands. Also enables the decoding of instructions.
712 1.1 joerg ****************************************************************************/
713 1.1 joerg static uint32_t *
714 1.1 joerg decode_rm_long_register(struct X86EMU *emu, int reg)
715 1.1 joerg {
716 1.1 joerg switch (reg) {
717 1.1 joerg case 0:
718 1.1 joerg return &emu->x86.R_EAX;
719 1.1 joerg case 1:
720 1.1 joerg return &emu->x86.R_ECX;
721 1.1 joerg case 2:
722 1.1 joerg return &emu->x86.R_EDX;
723 1.1 joerg case 3:
724 1.1 joerg return &emu->x86.R_EBX;
725 1.1 joerg case 4:
726 1.1 joerg return &emu->x86.R_ESP;
727 1.1 joerg case 5:
728 1.1 joerg return &emu->x86.R_EBP;
729 1.1 joerg case 6:
730 1.1 joerg return &emu->x86.R_ESI;
731 1.1 joerg case 7:
732 1.1 joerg return &emu->x86.R_EDI;
733 1.1 joerg default:
734 1.1 joerg X86EMU_halt_sys(emu);
735 1.1 joerg }
736 1.1 joerg }
737 1.1 joerg
738 1.1 joerg static uint32_t *
739 1.1 joerg decode_rl_long_register(struct X86EMU *emu)
740 1.1 joerg {
741 1.1 joerg return decode_rm_long_register(emu, emu->cur_rl);
742 1.1 joerg }
743 1.1 joerg
744 1.1 joerg static uint32_t *
745 1.1 joerg decode_rh_long_register(struct X86EMU *emu)
746 1.1 joerg {
747 1.1 joerg return decode_rm_long_register(emu, emu->cur_rh);
748 1.1 joerg }
749 1.1 joerg
750 1.1 joerg /****************************************************************************
751 1.1 joerg PARAMETERS:
752 1.1 joerg reg - Register to decode
753 1.1 joerg
754 1.1 joerg RETURNS:
755 1.1 joerg Pointer to the appropriate register
756 1.1 joerg
757 1.1 joerg REMARKS:
758 1.1 joerg Return a pointer to the register given by the R/RM field of the
759 1.1 joerg modrm byte, for word operands, modified from above for the weirdo
760 1.1 joerg special case of segreg operands. Also enables the decoding of instructions.
761 1.1 joerg ****************************************************************************/
762 1.1 joerg static uint16_t *
763 1.1 joerg decode_rh_seg_register(struct X86EMU *emu)
764 1.1 joerg {
765 1.1 joerg switch (emu->cur_rh) {
766 1.1 joerg case 0:
767 1.1 joerg return &emu->x86.R_ES;
768 1.1 joerg case 1:
769 1.1 joerg return &emu->x86.R_CS;
770 1.1 joerg case 2:
771 1.1 joerg return &emu->x86.R_SS;
772 1.1 joerg case 3:
773 1.1 joerg return &emu->x86.R_DS;
774 1.1 joerg case 4:
775 1.1 joerg return &emu->x86.R_FS;
776 1.1 joerg case 5:
777 1.1 joerg return &emu->x86.R_GS;
778 1.1 joerg default:
779 1.1 joerg X86EMU_halt_sys(emu);
780 1.1 joerg }
781 1.1 joerg }
782 1.1 joerg /*
783 1.1 joerg *
784 1.1 joerg * return offset from the SIB Byte
785 1.1 joerg */
786 1.1 joerg static uint32_t
787 1.1 joerg decode_sib_address(struct X86EMU *emu, int sib, int mod)
788 1.1 joerg {
789 1.1 joerg uint32_t base = 0, i = 0, scale = 1;
790 1.1 joerg
791 1.1 joerg switch (sib & 0x07) {
792 1.1 joerg case 0:
793 1.1 joerg base = emu->x86.R_EAX;
794 1.1 joerg break;
795 1.1 joerg case 1:
796 1.1 joerg base = emu->x86.R_ECX;
797 1.1 joerg break;
798 1.1 joerg case 2:
799 1.1 joerg base = emu->x86.R_EDX;
800 1.1 joerg break;
801 1.1 joerg case 3:
802 1.1 joerg base = emu->x86.R_EBX;
803 1.1 joerg break;
804 1.1 joerg case 4:
805 1.1 joerg base = emu->x86.R_ESP;
806 1.1 joerg emu->x86.mode |= SYSMODE_SEG_DS_SS;
807 1.1 joerg break;
808 1.1 joerg case 5:
809 1.1 joerg if (mod == 0) {
810 1.1 joerg base = fetch_long_imm(emu);
811 1.1 joerg } else {
812 1.1 joerg base = emu->x86.R_ESP;
813 1.1 joerg emu->x86.mode |= SYSMODE_SEG_DS_SS;
814 1.1 joerg }
815 1.1 joerg break;
816 1.1 joerg case 6:
817 1.1 joerg base = emu->x86.R_ESI;
818 1.1 joerg break;
819 1.1 joerg case 7:
820 1.1 joerg base = emu->x86.R_EDI;
821 1.1 joerg break;
822 1.1 joerg }
823 1.1 joerg switch ((sib >> 3) & 0x07) {
824 1.1 joerg case 0:
825 1.1 joerg i = emu->x86.R_EAX;
826 1.1 joerg break;
827 1.1 joerg case 1:
828 1.1 joerg i = emu->x86.R_ECX;
829 1.1 joerg break;
830 1.1 joerg case 2:
831 1.1 joerg i = emu->x86.R_EDX;
832 1.1 joerg break;
833 1.1 joerg case 3:
834 1.1 joerg i = emu->x86.R_EBX;
835 1.1 joerg break;
836 1.1 joerg case 4:
837 1.1 joerg i = 0;
838 1.1 joerg break;
839 1.1 joerg case 5:
840 1.1 joerg i = emu->x86.R_EBP;
841 1.1 joerg break;
842 1.1 joerg case 6:
843 1.1 joerg i = emu->x86.R_ESI;
844 1.1 joerg break;
845 1.1 joerg case 7:
846 1.1 joerg i = emu->x86.R_EDI;
847 1.1 joerg break;
848 1.1 joerg }
849 1.1 joerg scale = 1 << ((sib >> 6) & 0x03);
850 1.1 joerg return base + (i * scale);
851 1.1 joerg }
852 1.1 joerg /****************************************************************************
853 1.1 joerg PARAMETERS:
854 1.1 joerg rm - RM value to decode
855 1.1 joerg
856 1.1 joerg RETURNS:
857 1.1 joerg Offset in memory for the address decoding
858 1.1 joerg
859 1.1 joerg REMARKS:
860 1.1 joerg Return the offset given by mod=00, mod=01 or mod=10 addressing.
861 1.1 joerg Also enables the decoding of instructions.
862 1.1 joerg ****************************************************************************/
863 1.1 joerg static uint32_t
864 1.1 joerg decode_rl_address(struct X86EMU *emu)
865 1.1 joerg {
866 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_ADDR) {
867 1.1 joerg uint32_t offset, sib;
868 1.1 joerg /* 32-bit addressing */
869 1.1 joerg switch (emu->cur_rl) {
870 1.1 joerg case 0:
871 1.1 joerg offset = emu->x86.R_EAX;
872 1.1 joerg break;
873 1.1 joerg case 1:
874 1.1 joerg offset = emu->x86.R_ECX;
875 1.1 joerg break;
876 1.1 joerg case 2:
877 1.1 joerg offset = emu->x86.R_EDX;
878 1.1 joerg break;
879 1.1 joerg case 3:
880 1.1 joerg offset = emu->x86.R_EBX;
881 1.1 joerg break;
882 1.1 joerg case 4:
883 1.1 joerg sib = fetch_byte_imm(emu);
884 1.1 joerg offset = decode_sib_address(emu, sib, 0);
885 1.1 joerg break;
886 1.1 joerg case 5:
887 1.1 joerg if (emu->cur_mod == 0)
888 1.1 joerg offset = fetch_long_imm(emu);
889 1.1 joerg else
890 1.1 joerg offset = emu->x86.R_EBP;
891 1.1 joerg break;
892 1.1 joerg case 6:
893 1.1 joerg offset = emu->x86.R_ESI;
894 1.1 joerg break;
895 1.1 joerg case 7:
896 1.1 joerg offset = emu->x86.R_EDI;
897 1.1 joerg break;
898 1.1 joerg default:
899 1.1 joerg X86EMU_halt_sys(emu);
900 1.1 joerg }
901 1.1 joerg if (emu->cur_mod == 1)
902 1.1 joerg offset += (int8_t)fetch_byte_imm(emu);
903 1.1 joerg else if (emu->cur_mod == 2)
904 1.1 joerg offset += fetch_long_imm(emu);
905 1.1 joerg return offset;
906 1.1 joerg } else {
907 1.1 joerg uint16_t offset;
908 1.1 joerg
909 1.1 joerg /* 16-bit addressing */
910 1.1 joerg switch (emu->cur_rl) {
911 1.1 joerg case 0:
912 1.1 joerg offset = emu->x86.R_BX + emu->x86.R_SI;
913 1.1 joerg break;
914 1.1 joerg case 1:
915 1.1 joerg offset = emu->x86.R_BX + emu->x86.R_DI;
916 1.1 joerg break;
917 1.1 joerg case 2:
918 1.1 joerg emu->x86.mode |= SYSMODE_SEG_DS_SS;
919 1.1 joerg offset = emu->x86.R_BP + emu->x86.R_SI;
920 1.1 joerg break;
921 1.1 joerg case 3:
922 1.1 joerg emu->x86.mode |= SYSMODE_SEG_DS_SS;
923 1.1 joerg offset = emu->x86.R_BP + emu->x86.R_DI;
924 1.1 joerg break;
925 1.1 joerg case 4:
926 1.1 joerg offset = emu->x86.R_SI;
927 1.1 joerg break;
928 1.1 joerg case 5:
929 1.1 joerg offset = emu->x86.R_DI;
930 1.1 joerg break;
931 1.1 joerg case 6:
932 1.1 joerg if (emu->cur_mod == 0)
933 1.1 joerg offset = fetch_word_imm(emu);
934 1.1 joerg else
935 1.1 joerg offset = emu->x86.R_BP;
936 1.1 joerg break;
937 1.1 joerg case 7:
938 1.1 joerg offset = emu->x86.R_BX;
939 1.1 joerg break;
940 1.1 joerg default:
941 1.1 joerg X86EMU_halt_sys(emu);
942 1.1 joerg }
943 1.1 joerg if (emu->cur_mod == 1)
944 1.1 joerg offset += (int8_t)fetch_byte_imm(emu);
945 1.1 joerg else if (emu->cur_mod == 2)
946 1.1 joerg offset += fetch_word_imm(emu);
947 1.1 joerg return offset;
948 1.1 joerg }
949 1.1 joerg }
950 1.1 joerg
951 1.1 joerg static uint8_t
952 1.1 joerg decode_and_fetch_byte(struct X86EMU *emu)
953 1.1 joerg {
954 1.1 joerg if (emu->cur_mod != 3) {
955 1.1 joerg emu->cur_offset = decode_rl_address(emu);
956 1.1 joerg return fetch_data_byte(emu, emu->cur_offset);
957 1.1 joerg } else {
958 1.1 joerg return *decode_rl_byte_register(emu);
959 1.1 joerg }
960 1.1 joerg }
961 1.1 joerg
962 1.1 joerg static uint16_t
963 1.1 joerg decode_and_fetch_word_disp(struct X86EMU *emu, int16_t disp)
964 1.1 joerg {
965 1.1 joerg if (emu->cur_mod != 3) {
966 1.1 joerg /* TODO: A20 gate emulation */
967 1.1 joerg emu->cur_offset = decode_rl_address(emu) + disp;
968 1.1 joerg if ((emu->x86.mode & SYSMODE_PREFIX_ADDR) == 0)
969 1.1 joerg emu->cur_offset &= 0xffff;
970 1.1 joerg return fetch_data_word(emu, emu->cur_offset);
971 1.1 joerg } else {
972 1.1 joerg return *decode_rl_word_register(emu);
973 1.1 joerg }
974 1.1 joerg }
975 1.1 joerg
976 1.1 joerg static uint32_t
977 1.1 joerg decode_and_fetch_long_disp(struct X86EMU *emu, int16_t disp)
978 1.1 joerg {
979 1.1 joerg if (emu->cur_mod != 3) {
980 1.1 joerg /* TODO: A20 gate emulation */
981 1.1 joerg emu->cur_offset = decode_rl_address(emu) + disp;
982 1.1 joerg if ((emu->x86.mode & SYSMODE_PREFIX_ADDR) == 0)
983 1.1 joerg emu->cur_offset &= 0xffff;
984 1.1 joerg return fetch_data_long(emu, emu->cur_offset);
985 1.1 joerg } else {
986 1.1 joerg return *decode_rl_long_register(emu);
987 1.1 joerg }
988 1.1 joerg }
989 1.1 joerg
990 1.1 joerg uint16_t
991 1.1 joerg decode_and_fetch_word(struct X86EMU *emu)
992 1.1 joerg {
993 1.1 joerg return decode_and_fetch_word_disp(emu, 0);
994 1.1 joerg }
995 1.1 joerg
996 1.1 joerg uint32_t
997 1.1 joerg decode_and_fetch_long(struct X86EMU *emu)
998 1.1 joerg {
999 1.1 joerg return decode_and_fetch_long_disp(emu, 0);
1000 1.1 joerg }
1001 1.1 joerg
1002 1.1 joerg uint8_t
1003 1.1 joerg decode_and_fetch_byte_imm8(struct X86EMU *emu, uint8_t *imm)
1004 1.1 joerg {
1005 1.1 joerg if (emu->cur_mod != 3) {
1006 1.1 joerg emu->cur_offset = decode_rl_address(emu);
1007 1.1 joerg *imm = fetch_byte_imm(emu);
1008 1.1 joerg return fetch_data_byte(emu, emu->cur_offset);
1009 1.1 joerg } else {
1010 1.1 joerg *imm = fetch_byte_imm(emu);
1011 1.1 joerg return *decode_rl_byte_register(emu);
1012 1.1 joerg }
1013 1.1 joerg }
1014 1.1 joerg
1015 1.1 joerg static uint16_t
1016 1.1 joerg decode_and_fetch_word_imm8(struct X86EMU *emu, uint8_t *imm)
1017 1.1 joerg {
1018 1.1 joerg if (emu->cur_mod != 3) {
1019 1.1 joerg emu->cur_offset = decode_rl_address(emu);
1020 1.1 joerg *imm = fetch_byte_imm(emu);
1021 1.1 joerg return fetch_data_word(emu, emu->cur_offset);
1022 1.1 joerg } else {
1023 1.1 joerg *imm = fetch_byte_imm(emu);
1024 1.1 joerg return *decode_rl_word_register(emu);
1025 1.1 joerg }
1026 1.1 joerg }
1027 1.1 joerg
1028 1.1 joerg static uint32_t
1029 1.1 joerg decode_and_fetch_long_imm8(struct X86EMU *emu, uint8_t *imm)
1030 1.1 joerg {
1031 1.1 joerg if (emu->cur_mod != 3) {
1032 1.1 joerg emu->cur_offset = decode_rl_address(emu);
1033 1.1 joerg *imm = fetch_byte_imm(emu);
1034 1.1 joerg return fetch_data_long(emu, emu->cur_offset);
1035 1.1 joerg } else {
1036 1.1 joerg *imm = fetch_byte_imm(emu);
1037 1.1 joerg return *decode_rl_long_register(emu);
1038 1.1 joerg }
1039 1.1 joerg }
1040 1.1 joerg
1041 1.1 joerg static void
1042 1.1 joerg write_back_byte(struct X86EMU *emu, uint8_t val)
1043 1.1 joerg {
1044 1.1 joerg if (emu->cur_mod != 3)
1045 1.1 joerg store_data_byte(emu, emu->cur_offset, val);
1046 1.1 joerg else
1047 1.1 joerg *decode_rl_byte_register(emu) = val;
1048 1.1 joerg }
1049 1.1 joerg
1050 1.1 joerg static void
1051 1.1 joerg write_back_word(struct X86EMU *emu, uint16_t val)
1052 1.1 joerg {
1053 1.1 joerg if (emu->cur_mod != 3)
1054 1.1 joerg store_data_word(emu, emu->cur_offset, val);
1055 1.1 joerg else
1056 1.1 joerg *decode_rl_word_register(emu) = val;
1057 1.1 joerg }
1058 1.1 joerg
1059 1.1 joerg static void
1060 1.1 joerg write_back_long(struct X86EMU *emu, uint32_t val)
1061 1.1 joerg {
1062 1.1 joerg if (emu->cur_mod != 3)
1063 1.1 joerg store_data_long(emu, emu->cur_offset, val);
1064 1.1 joerg else
1065 1.1 joerg *decode_rl_long_register(emu) = val;
1066 1.1 joerg }
1067 1.1 joerg
1068 1.1 joerg static void
1069 1.1 joerg common_inc_word_long(struct X86EMU *emu, union X86EMU_register *reg)
1070 1.1 joerg {
1071 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1072 1.1 joerg reg->I32_reg.e_reg = inc_long(emu, reg->I32_reg.e_reg);
1073 1.1 joerg else
1074 1.1 joerg reg->I16_reg.x_reg = inc_word(emu, reg->I16_reg.x_reg);
1075 1.1 joerg }
1076 1.1 joerg
1077 1.1 joerg static void
1078 1.1 joerg common_dec_word_long(struct X86EMU *emu, union X86EMU_register *reg)
1079 1.1 joerg {
1080 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1081 1.1 joerg reg->I32_reg.e_reg = dec_long(emu, reg->I32_reg.e_reg);
1082 1.1 joerg else
1083 1.1 joerg reg->I16_reg.x_reg = dec_word(emu, reg->I16_reg.x_reg);
1084 1.1 joerg }
1085 1.1 joerg
1086 1.1 joerg static void
1087 1.1 joerg common_binop_byte_rm_r(struct X86EMU *emu, uint8_t (*binop)(struct X86EMU *, uint8_t, uint8_t))
1088 1.1 joerg {
1089 1.1 joerg uint32_t destoffset;
1090 1.1 joerg uint8_t *destreg, srcval;
1091 1.1 joerg uint8_t destval;
1092 1.1 joerg
1093 1.1 joerg fetch_decode_modrm(emu);
1094 1.1 joerg srcval = *decode_rh_byte_register(emu);
1095 1.1 joerg if (emu->cur_mod != 3) {
1096 1.1 joerg destoffset = decode_rl_address(emu);
1097 1.1 joerg destval = fetch_data_byte(emu, destoffset);
1098 1.1 joerg destval = (*binop)(emu, destval, srcval);
1099 1.1 joerg store_data_byte(emu, destoffset, destval);
1100 1.1 joerg } else {
1101 1.1 joerg destreg = decode_rl_byte_register(emu);
1102 1.1 joerg *destreg = (*binop)(emu, *destreg, srcval);
1103 1.1 joerg }
1104 1.1 joerg }
1105 1.1 joerg
1106 1.1 joerg static void
1107 1.1 joerg common_binop_ns_byte_rm_r(struct X86EMU *emu, void (*binop)(struct X86EMU *, uint8_t, uint8_t))
1108 1.1 joerg {
1109 1.1 joerg uint32_t destoffset;
1110 1.1 joerg uint8_t destval, srcval;
1111 1.1 joerg
1112 1.1 joerg fetch_decode_modrm(emu);
1113 1.1 joerg srcval = *decode_rh_byte_register(emu);
1114 1.1 joerg if (emu->cur_mod != 3) {
1115 1.1 joerg destoffset = decode_rl_address(emu);
1116 1.1 joerg destval = fetch_data_byte(emu, destoffset);
1117 1.1 joerg } else {
1118 1.1 joerg destval = *decode_rl_byte_register(emu);
1119 1.1 joerg }
1120 1.1 joerg (*binop)(emu, destval, srcval);
1121 1.1 joerg }
1122 1.1 joerg
1123 1.1 joerg static void
1124 1.1 joerg common_binop_word_rm_r(struct X86EMU *emu, uint16_t (*binop)(struct X86EMU *, uint16_t, uint16_t))
1125 1.1 joerg {
1126 1.1 joerg uint32_t destoffset;
1127 1.1 joerg uint16_t destval, *destreg, srcval;
1128 1.1 joerg
1129 1.1 joerg fetch_decode_modrm(emu);
1130 1.1 joerg srcval = *decode_rh_word_register(emu);
1131 1.1 joerg if (emu->cur_mod != 3) {
1132 1.1 joerg destoffset = decode_rl_address(emu);
1133 1.1 joerg destval = fetch_data_word(emu, destoffset);
1134 1.1 joerg destval = (*binop)(emu, destval, srcval);
1135 1.1 joerg store_data_word(emu, destoffset, destval);
1136 1.1 joerg } else {
1137 1.1 joerg destreg = decode_rl_word_register(emu);
1138 1.1 joerg *destreg = (*binop)(emu, *destreg, srcval);
1139 1.1 joerg }
1140 1.1 joerg }
1141 1.1 joerg
1142 1.1 joerg static void
1143 1.1 joerg common_binop_byte_r_rm(struct X86EMU *emu, uint8_t (*binop)(struct X86EMU *, uint8_t, uint8_t))
1144 1.1 joerg {
1145 1.1 joerg uint8_t *destreg, srcval;
1146 1.1 joerg uint32_t srcoffset;
1147 1.1 joerg
1148 1.1 joerg fetch_decode_modrm(emu);
1149 1.1 joerg destreg = decode_rh_byte_register(emu);
1150 1.1 joerg if (emu->cur_mod != 3) {
1151 1.1 joerg srcoffset = decode_rl_address(emu);
1152 1.1 joerg srcval = fetch_data_byte(emu, srcoffset);
1153 1.1 joerg } else {
1154 1.1 joerg srcval = *decode_rl_byte_register(emu);
1155 1.1 joerg }
1156 1.1 joerg *destreg = (*binop)(emu, *destreg, srcval);
1157 1.1 joerg }
1158 1.1 joerg
1159 1.1 joerg static void
1160 1.1 joerg common_binop_long_rm_r(struct X86EMU *emu, uint32_t (*binop)(struct X86EMU *, uint32_t, uint32_t))
1161 1.1 joerg {
1162 1.1 joerg uint32_t destoffset;
1163 1.1 joerg uint32_t destval, *destreg, srcval;
1164 1.1 joerg
1165 1.1 joerg fetch_decode_modrm(emu);
1166 1.1 joerg srcval = *decode_rh_long_register(emu);
1167 1.1 joerg if (emu->cur_mod != 3) {
1168 1.1 joerg destoffset = decode_rl_address(emu);
1169 1.1 joerg destval = fetch_data_long(emu, destoffset);
1170 1.1 joerg destval = (*binop)(emu, destval, srcval);
1171 1.1 joerg store_data_long(emu, destoffset, destval);
1172 1.1 joerg } else {
1173 1.1 joerg destreg = decode_rl_long_register(emu);
1174 1.1 joerg *destreg = (*binop)(emu, *destreg, srcval);
1175 1.1 joerg }
1176 1.1 joerg }
1177 1.1 joerg
1178 1.1 joerg static void
1179 1.1 joerg common_binop_word_long_rm_r(struct X86EMU *emu,
1180 1.1 joerg uint16_t (*binop16)(struct X86EMU *, uint16_t, uint16_t), uint32_t (*binop32)(struct X86EMU *, uint32_t, uint32_t))
1181 1.1 joerg {
1182 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1183 1.1 joerg common_binop_long_rm_r(emu, binop32);
1184 1.1 joerg else
1185 1.1 joerg common_binop_word_rm_r(emu, binop16);
1186 1.1 joerg }
1187 1.1 joerg
1188 1.1 joerg static void
1189 1.1 joerg common_binop_ns_word_rm_r(struct X86EMU *emu, void (*binop)(struct X86EMU *, uint16_t, uint16_t))
1190 1.1 joerg {
1191 1.1 joerg uint32_t destoffset;
1192 1.1 joerg uint16_t destval, srcval;
1193 1.1 joerg
1194 1.1 joerg fetch_decode_modrm(emu);
1195 1.1 joerg srcval = *decode_rh_word_register(emu);
1196 1.1 joerg if (emu->cur_mod != 3) {
1197 1.1 joerg destoffset = decode_rl_address(emu);
1198 1.1 joerg destval = fetch_data_word(emu, destoffset);
1199 1.1 joerg } else {
1200 1.1 joerg destval = *decode_rl_word_register(emu);
1201 1.1 joerg }
1202 1.1 joerg (*binop)(emu, destval, srcval);
1203 1.1 joerg }
1204 1.1 joerg
1205 1.1 joerg
1206 1.1 joerg static void
1207 1.1 joerg common_binop_ns_long_rm_r(struct X86EMU *emu, void (*binop)(struct X86EMU *, uint32_t, uint32_t))
1208 1.1 joerg {
1209 1.1 joerg uint32_t destoffset;
1210 1.1 joerg uint32_t destval, srcval;
1211 1.1 joerg
1212 1.1 joerg fetch_decode_modrm(emu);
1213 1.1 joerg srcval = *decode_rh_long_register(emu);
1214 1.1 joerg if (emu->cur_mod != 3) {
1215 1.1 joerg destoffset = decode_rl_address(emu);
1216 1.1 joerg destval = fetch_data_long(emu, destoffset);
1217 1.1 joerg } else {
1218 1.1 joerg destval = *decode_rl_long_register(emu);
1219 1.1 joerg }
1220 1.1 joerg (*binop)(emu, destval, srcval);
1221 1.1 joerg }
1222 1.1 joerg
1223 1.1 joerg static void
1224 1.1 joerg common_binop_ns_word_long_rm_r(struct X86EMU *emu,
1225 1.1 joerg void (*binop16)(struct X86EMU *, uint16_t, uint16_t), void (*binop32)(struct X86EMU *, uint32_t, uint32_t))
1226 1.1 joerg {
1227 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1228 1.1 joerg common_binop_ns_long_rm_r(emu, binop32);
1229 1.1 joerg else
1230 1.1 joerg common_binop_ns_word_rm_r(emu, binop16);
1231 1.1 joerg }
1232 1.1 joerg
1233 1.1 joerg static void
1234 1.1 joerg common_binop_long_r_rm(struct X86EMU *emu, uint32_t (*binop)(struct X86EMU *, uint32_t, uint32_t))
1235 1.1 joerg {
1236 1.1 joerg uint32_t srcoffset;
1237 1.1 joerg uint32_t *destreg, srcval;
1238 1.1 joerg
1239 1.1 joerg fetch_decode_modrm(emu);
1240 1.1 joerg destreg = decode_rh_long_register(emu);
1241 1.1 joerg if (emu->cur_mod != 3) {
1242 1.1 joerg srcoffset = decode_rl_address(emu);
1243 1.1 joerg srcval = fetch_data_long(emu, srcoffset);
1244 1.1 joerg } else {
1245 1.1 joerg srcval = *decode_rl_long_register(emu);
1246 1.1 joerg }
1247 1.1 joerg *destreg = (*binop)(emu, *destreg, srcval);
1248 1.1 joerg }
1249 1.1 joerg
1250 1.1 joerg static void
1251 1.1 joerg common_binop_word_r_rm(struct X86EMU *emu, uint16_t (*binop)(struct X86EMU *, uint16_t, uint16_t))
1252 1.1 joerg {
1253 1.1 joerg uint32_t srcoffset;
1254 1.1 joerg uint16_t *destreg, srcval;
1255 1.1 joerg
1256 1.1 joerg fetch_decode_modrm(emu);
1257 1.1 joerg destreg = decode_rh_word_register(emu);
1258 1.1 joerg if (emu->cur_mod != 3) {
1259 1.1 joerg srcoffset = decode_rl_address(emu);
1260 1.1 joerg srcval = fetch_data_word(emu, srcoffset);
1261 1.1 joerg } else {
1262 1.1 joerg srcval = *decode_rl_word_register(emu);
1263 1.1 joerg }
1264 1.1 joerg *destreg = (*binop)(emu, *destreg, srcval);
1265 1.1 joerg }
1266 1.1 joerg
1267 1.1 joerg static void
1268 1.1 joerg common_binop_word_long_r_rm(struct X86EMU *emu,
1269 1.1 joerg uint16_t (*binop16)(struct X86EMU *, uint16_t, uint16_t), uint32_t (*binop32)(struct X86EMU *, uint32_t, uint32_t))
1270 1.1 joerg {
1271 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1272 1.1 joerg common_binop_long_r_rm(emu, binop32);
1273 1.1 joerg else
1274 1.1 joerg common_binop_word_r_rm(emu, binop16);
1275 1.1 joerg }
1276 1.1 joerg
1277 1.1 joerg static void
1278 1.1 joerg common_binop_byte_imm(struct X86EMU *emu, uint8_t (*binop)(struct X86EMU *, uint8_t, uint8_t))
1279 1.1 joerg {
1280 1.1 joerg uint8_t srcval;
1281 1.1 joerg
1282 1.1 joerg srcval = fetch_byte_imm(emu);
1283 1.1 joerg emu->x86.R_AL = (*binop)(emu, emu->x86.R_AL, srcval);
1284 1.1 joerg }
1285 1.1 joerg
1286 1.1 joerg static void
1287 1.1 joerg common_binop_word_long_imm(struct X86EMU *emu,
1288 1.1 joerg uint16_t (*binop16)(struct X86EMU *, uint16_t, uint16_t), uint32_t (*binop32)(struct X86EMU *, uint32_t, uint32_t))
1289 1.1 joerg {
1290 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
1291 1.1 joerg uint32_t srcval;
1292 1.1 joerg
1293 1.1 joerg srcval = fetch_long_imm(emu);
1294 1.1 joerg emu->x86.R_EAX = (*binop32)(emu, emu->x86.R_EAX, srcval);
1295 1.1 joerg } else {
1296 1.1 joerg uint16_t srcval;
1297 1.1 joerg
1298 1.1 joerg srcval = fetch_word_imm(emu);
1299 1.1 joerg emu->x86.R_AX = (*binop16)(emu, emu->x86.R_AX, srcval);
1300 1.1 joerg }
1301 1.1 joerg }
1302 1.1 joerg
1303 1.1 joerg static void
1304 1.1 joerg common_push_word_long(struct X86EMU *emu, union X86EMU_register *reg)
1305 1.1 joerg {
1306 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1307 1.1 joerg push_long(emu, reg->I32_reg.e_reg);
1308 1.1 joerg else
1309 1.1 joerg push_word(emu, reg->I16_reg.x_reg);
1310 1.1 joerg }
1311 1.1 joerg
1312 1.1 joerg static void
1313 1.1 joerg common_pop_word_long(struct X86EMU *emu, union X86EMU_register *reg)
1314 1.1 joerg {
1315 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1316 1.1 joerg reg->I32_reg.e_reg = pop_long(emu);
1317 1.1 joerg else
1318 1.1 joerg reg->I16_reg.x_reg = pop_word(emu);
1319 1.1 joerg }
1320 1.1 joerg
1321 1.1 joerg static void
1322 1.1 joerg common_imul_long_IMM(struct X86EMU *emu, bool byte_imm)
1323 1.1 joerg {
1324 1.1 joerg uint32_t srcoffset;
1325 1.1 joerg uint32_t *destreg, srcval;
1326 1.1 joerg int32_t imm;
1327 1.1 joerg uint64_t res;
1328 1.1 joerg
1329 1.1 joerg fetch_decode_modrm(emu);
1330 1.1 joerg destreg = decode_rh_long_register(emu);
1331 1.1 joerg if (emu->cur_mod != 3) {
1332 1.1 joerg srcoffset = decode_rl_address(emu);
1333 1.1 joerg srcval = fetch_data_long(emu, srcoffset);
1334 1.1 joerg } else {
1335 1.1 joerg srcval = *decode_rl_long_register(emu);
1336 1.1 joerg }
1337 1.1 joerg
1338 1.1 joerg if (byte_imm)
1339 1.1 joerg imm = (int8_t)fetch_byte_imm(emu);
1340 1.1 joerg else
1341 1.1 joerg imm = fetch_long_imm(emu);
1342 1.1 joerg res = (int32_t)srcval * imm;
1343 1.1 joerg
1344 1.1 joerg if (res > 0xffffffff) {
1345 1.1 joerg SET_FLAG(F_CF);
1346 1.1 joerg SET_FLAG(F_OF);
1347 1.1 joerg } else {
1348 1.1 joerg CLEAR_FLAG(F_CF);
1349 1.1 joerg CLEAR_FLAG(F_OF);
1350 1.1 joerg }
1351 1.1 joerg *destreg = (uint32_t)res;
1352 1.1 joerg }
1353 1.1 joerg
1354 1.1 joerg static void
1355 1.1 joerg common_imul_word_IMM(struct X86EMU *emu, bool byte_imm)
1356 1.1 joerg {
1357 1.1 joerg uint32_t srcoffset;
1358 1.1 joerg uint16_t *destreg, srcval;
1359 1.1 joerg int16_t imm;
1360 1.1 joerg uint32_t res;
1361 1.1 joerg
1362 1.1 joerg fetch_decode_modrm(emu);
1363 1.1 joerg destreg = decode_rh_word_register(emu);
1364 1.1 joerg if (emu->cur_mod != 3) {
1365 1.1 joerg srcoffset = decode_rl_address(emu);
1366 1.1 joerg srcval = fetch_data_word(emu, srcoffset);
1367 1.1 joerg } else {
1368 1.1 joerg srcval = *decode_rl_word_register(emu);
1369 1.1 joerg }
1370 1.1 joerg
1371 1.1 joerg if (byte_imm)
1372 1.1 joerg imm = (int8_t)fetch_byte_imm(emu);
1373 1.1 joerg else
1374 1.1 joerg imm = fetch_word_imm(emu);
1375 1.1 joerg res = (int16_t)srcval * imm;
1376 1.1 joerg
1377 1.1 joerg if (res > 0xffff) {
1378 1.1 joerg SET_FLAG(F_CF);
1379 1.1 joerg SET_FLAG(F_OF);
1380 1.1 joerg } else {
1381 1.1 joerg CLEAR_FLAG(F_CF);
1382 1.1 joerg CLEAR_FLAG(F_OF);
1383 1.1 joerg }
1384 1.1 joerg *destreg = (uint16_t) res;
1385 1.1 joerg }
1386 1.1 joerg
1387 1.1 joerg static void
1388 1.1 joerg common_imul_imm(struct X86EMU *emu, bool byte_imm)
1389 1.1 joerg {
1390 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1391 1.1 joerg common_imul_long_IMM(emu, byte_imm);
1392 1.1 joerg else
1393 1.1 joerg common_imul_word_IMM(emu, byte_imm);
1394 1.1 joerg }
1395 1.1 joerg
1396 1.1 joerg static void
1397 1.1 joerg common_jmp_near(struct X86EMU *emu, bool cond)
1398 1.1 joerg {
1399 1.1 joerg int8_t offset;
1400 1.1 joerg uint16_t target;
1401 1.1 joerg
1402 1.1 joerg offset = (int8_t) fetch_byte_imm(emu);
1403 1.1 joerg target = (uint16_t) (emu->x86.R_IP + (int16_t) offset);
1404 1.1 joerg if (cond)
1405 1.1 joerg emu->x86.R_IP = target;
1406 1.1 joerg }
1407 1.1 joerg
1408 1.1 joerg static void
1409 1.1 joerg common_load_far_pointer(struct X86EMU *emu, uint16_t *seg)
1410 1.1 joerg {
1411 1.1 joerg uint16_t *dstreg;
1412 1.1 joerg uint32_t srcoffset;
1413 1.1 joerg
1414 1.1 joerg fetch_decode_modrm(emu);
1415 1.1 joerg if (emu->cur_mod == 3)
1416 1.1 joerg X86EMU_halt_sys(emu);
1417 1.1 joerg
1418 1.1 joerg dstreg = decode_rh_word_register(emu);
1419 1.1 joerg srcoffset = decode_rl_address(emu);
1420 1.1 joerg *dstreg = fetch_data_word(emu, srcoffset);
1421 1.1 joerg *seg = fetch_data_word(emu, srcoffset + 2);
1422 1.1 joerg }
1423 1.1 joerg
1424 1.1 joerg /*----------------------------- Implementation ----------------------------*/
1425 1.1 joerg /****************************************************************************
1426 1.1 joerg REMARKS:
1427 1.1 joerg Handles opcode 0x3a
1428 1.1 joerg ****************************************************************************/
1429 1.1 joerg static void
1430 1.1 joerg x86emuOp_cmp_byte_R_RM(struct X86EMU *emu)
1431 1.1 joerg {
1432 1.1 joerg uint8_t *destreg, srcval;
1433 1.1 joerg
1434 1.1 joerg fetch_decode_modrm(emu);
1435 1.1 joerg destreg = decode_rh_byte_register(emu);
1436 1.1 joerg srcval = decode_and_fetch_byte(emu);
1437 1.1 joerg cmp_byte(emu, *destreg, srcval);
1438 1.1 joerg }
1439 1.1 joerg /****************************************************************************
1440 1.1 joerg REMARKS:
1441 1.1 joerg Handles opcode 0x3b
1442 1.1 joerg ****************************************************************************/
1443 1.1 joerg static void
1444 1.1 joerg x86emuOp32_cmp_word_R_RM(struct X86EMU *emu)
1445 1.1 joerg {
1446 1.1 joerg uint32_t srcval, *destreg;
1447 1.1 joerg
1448 1.1 joerg fetch_decode_modrm(emu);
1449 1.1 joerg destreg = decode_rh_long_register(emu);
1450 1.1 joerg srcval = decode_and_fetch_long(emu);
1451 1.1 joerg cmp_long(emu, *destreg, srcval);
1452 1.1 joerg }
1453 1.1 joerg
1454 1.1 joerg static void
1455 1.1 joerg x86emuOp16_cmp_word_R_RM(struct X86EMU *emu)
1456 1.1 joerg {
1457 1.1 joerg uint16_t srcval, *destreg;
1458 1.1 joerg
1459 1.1 joerg fetch_decode_modrm(emu);
1460 1.1 joerg destreg = decode_rh_word_register(emu);
1461 1.1 joerg srcval = decode_and_fetch_word(emu);
1462 1.1 joerg cmp_word(emu, *destreg, srcval);
1463 1.1 joerg }
1464 1.1 joerg
1465 1.1 joerg static void
1466 1.1 joerg x86emuOp_cmp_word_R_RM(struct X86EMU *emu)
1467 1.1 joerg {
1468 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1469 1.1 joerg x86emuOp32_cmp_word_R_RM(emu);
1470 1.1 joerg else
1471 1.1 joerg x86emuOp16_cmp_word_R_RM(emu);
1472 1.1 joerg }
1473 1.1 joerg /****************************************************************************
1474 1.1 joerg REMARKS:
1475 1.1 joerg Handles opcode 0x3c
1476 1.1 joerg ****************************************************************************/
1477 1.1 joerg static void
1478 1.1 joerg x86emuOp_cmp_byte_AL_IMM(struct X86EMU *emu)
1479 1.1 joerg {
1480 1.1 joerg uint8_t srcval;
1481 1.1 joerg
1482 1.1 joerg srcval = fetch_byte_imm(emu);
1483 1.1 joerg cmp_byte(emu, emu->x86.R_AL, srcval);
1484 1.1 joerg }
1485 1.1 joerg /****************************************************************************
1486 1.1 joerg REMARKS:
1487 1.1 joerg Handles opcode 0x3d
1488 1.1 joerg ****************************************************************************/
1489 1.1 joerg static void
1490 1.1 joerg x86emuOp32_cmp_word_AX_IMM(struct X86EMU *emu)
1491 1.1 joerg {
1492 1.1 joerg uint32_t srcval;
1493 1.1 joerg
1494 1.1 joerg srcval = fetch_long_imm(emu);
1495 1.1 joerg cmp_long(emu, emu->x86.R_EAX, srcval);
1496 1.1 joerg }
1497 1.1 joerg
1498 1.1 joerg static void
1499 1.1 joerg x86emuOp16_cmp_word_AX_IMM(struct X86EMU *emu)
1500 1.1 joerg {
1501 1.1 joerg uint16_t srcval;
1502 1.1 joerg
1503 1.1 joerg srcval = fetch_word_imm(emu);
1504 1.1 joerg cmp_word(emu, emu->x86.R_AX, srcval);
1505 1.1 joerg }
1506 1.1 joerg
1507 1.1 joerg static void
1508 1.1 joerg x86emuOp_cmp_word_AX_IMM(struct X86EMU *emu)
1509 1.1 joerg {
1510 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1511 1.1 joerg x86emuOp32_cmp_word_AX_IMM(emu);
1512 1.1 joerg else
1513 1.1 joerg x86emuOp16_cmp_word_AX_IMM(emu);
1514 1.1 joerg }
1515 1.1 joerg /****************************************************************************
1516 1.1 joerg REMARKS:
1517 1.1 joerg Handles opcode 0x60
1518 1.1 joerg ****************************************************************************/
1519 1.1 joerg static void
1520 1.1 joerg x86emuOp_push_all(struct X86EMU *emu)
1521 1.1 joerg {
1522 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
1523 1.1 joerg uint32_t old_sp = emu->x86.R_ESP;
1524 1.1 joerg
1525 1.1 joerg push_long(emu, emu->x86.R_EAX);
1526 1.1 joerg push_long(emu, emu->x86.R_ECX);
1527 1.1 joerg push_long(emu, emu->x86.R_EDX);
1528 1.1 joerg push_long(emu, emu->x86.R_EBX);
1529 1.1 joerg push_long(emu, old_sp);
1530 1.1 joerg push_long(emu, emu->x86.R_EBP);
1531 1.1 joerg push_long(emu, emu->x86.R_ESI);
1532 1.1 joerg push_long(emu, emu->x86.R_EDI);
1533 1.1 joerg } else {
1534 1.1 joerg uint16_t old_sp = emu->x86.R_SP;
1535 1.1 joerg
1536 1.1 joerg push_word(emu, emu->x86.R_AX);
1537 1.1 joerg push_word(emu, emu->x86.R_CX);
1538 1.1 joerg push_word(emu, emu->x86.R_DX);
1539 1.1 joerg push_word(emu, emu->x86.R_BX);
1540 1.1 joerg push_word(emu, old_sp);
1541 1.1 joerg push_word(emu, emu->x86.R_BP);
1542 1.1 joerg push_word(emu, emu->x86.R_SI);
1543 1.1 joerg push_word(emu, emu->x86.R_DI);
1544 1.1 joerg }
1545 1.1 joerg }
1546 1.1 joerg /****************************************************************************
1547 1.1 joerg REMARKS:
1548 1.1 joerg Handles opcode 0x61
1549 1.1 joerg ****************************************************************************/
1550 1.1 joerg static void
1551 1.1 joerg x86emuOp_pop_all(struct X86EMU *emu)
1552 1.1 joerg {
1553 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
1554 1.1 joerg emu->x86.R_EDI = pop_long(emu);
1555 1.1 joerg emu->x86.R_ESI = pop_long(emu);
1556 1.1 joerg emu->x86.R_EBP = pop_long(emu);
1557 1.1 joerg emu->x86.R_ESP += 4; /* skip ESP */
1558 1.1 joerg emu->x86.R_EBX = pop_long(emu);
1559 1.1 joerg emu->x86.R_EDX = pop_long(emu);
1560 1.1 joerg emu->x86.R_ECX = pop_long(emu);
1561 1.1 joerg emu->x86.R_EAX = pop_long(emu);
1562 1.1 joerg } else {
1563 1.1 joerg emu->x86.R_DI = pop_word(emu);
1564 1.1 joerg emu->x86.R_SI = pop_word(emu);
1565 1.1 joerg emu->x86.R_BP = pop_word(emu);
1566 1.1 joerg emu->x86.R_SP += 2;/* skip SP */
1567 1.1 joerg emu->x86.R_BX = pop_word(emu);
1568 1.1 joerg emu->x86.R_DX = pop_word(emu);
1569 1.1 joerg emu->x86.R_CX = pop_word(emu);
1570 1.1 joerg emu->x86.R_AX = pop_word(emu);
1571 1.1 joerg }
1572 1.1 joerg }
1573 1.1 joerg /*opcode 0x62 ILLEGAL OP, calls x86emuOp_illegal_op() */
1574 1.1 joerg /*opcode 0x63 ILLEGAL OP, calls x86emuOp_illegal_op() */
1575 1.1 joerg
1576 1.1 joerg /****************************************************************************
1577 1.1 joerg REMARKS:
1578 1.1 joerg Handles opcode 0x68
1579 1.1 joerg ****************************************************************************/
1580 1.1 joerg static void
1581 1.1 joerg x86emuOp_push_word_IMM(struct X86EMU *emu)
1582 1.1 joerg {
1583 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
1584 1.1 joerg uint32_t imm;
1585 1.1 joerg
1586 1.1 joerg imm = fetch_long_imm(emu);
1587 1.1 joerg push_long(emu, imm);
1588 1.1 joerg } else {
1589 1.1 joerg uint16_t imm;
1590 1.1 joerg
1591 1.1 joerg imm = fetch_word_imm(emu);
1592 1.1 joerg push_word(emu, imm);
1593 1.1 joerg }
1594 1.1 joerg }
1595 1.1 joerg /****************************************************************************
1596 1.1 joerg REMARKS:
1597 1.1 joerg Handles opcode 0x6a
1598 1.1 joerg ****************************************************************************/
1599 1.1 joerg static void
1600 1.1 joerg x86emuOp_push_byte_IMM(struct X86EMU *emu)
1601 1.1 joerg {
1602 1.1 joerg int16_t imm;
1603 1.1 joerg
1604 1.1 joerg imm = (int8_t) fetch_byte_imm(emu);
1605 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
1606 1.1 joerg push_long(emu, (int32_t) imm);
1607 1.1 joerg } else {
1608 1.1 joerg push_word(emu, imm);
1609 1.1 joerg }
1610 1.1 joerg }
1611 1.1 joerg /****************************************************************************
1612 1.1 joerg REMARKS:
1613 1.1 joerg Handles opcode 0x6c
1614 1.1 joerg ****************************************************************************/
1615 1.1 joerg /****************************************************************************
1616 1.1 joerg REMARKS:
1617 1.1 joerg Handles opcode 0x6d
1618 1.1 joerg ****************************************************************************/
1619 1.1 joerg static void
1620 1.1 joerg x86emuOp_ins_word(struct X86EMU *emu)
1621 1.1 joerg {
1622 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
1623 1.1 joerg ins(emu, 4);
1624 1.1 joerg } else {
1625 1.1 joerg ins(emu, 2);
1626 1.1 joerg }
1627 1.1 joerg }
1628 1.1 joerg /****************************************************************************
1629 1.1 joerg REMARKS:
1630 1.1 joerg Handles opcode 0x6f
1631 1.1 joerg ****************************************************************************/
1632 1.1 joerg static void
1633 1.1 joerg x86emuOp_outs_word(struct X86EMU *emu)
1634 1.1 joerg {
1635 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
1636 1.1 joerg outs(emu, 4);
1637 1.1 joerg } else {
1638 1.1 joerg outs(emu, 2);
1639 1.1 joerg }
1640 1.1 joerg }
1641 1.1 joerg /****************************************************************************
1642 1.1 joerg REMARKS:
1643 1.1 joerg Handles opcode 0x7c
1644 1.1 joerg ****************************************************************************/
1645 1.1 joerg static void
1646 1.1 joerg x86emuOp_jump_near_L(struct X86EMU *emu)
1647 1.1 joerg {
1648 1.1 joerg bool sf, of;
1649 1.1 joerg
1650 1.1 joerg sf = ACCESS_FLAG(F_SF) != 0;
1651 1.1 joerg of = ACCESS_FLAG(F_OF) != 0;
1652 1.1 joerg
1653 1.1 joerg common_jmp_near(emu, sf != of);
1654 1.1 joerg }
1655 1.1 joerg /****************************************************************************
1656 1.1 joerg REMARKS:
1657 1.1 joerg Handles opcode 0x7d
1658 1.1 joerg ****************************************************************************/
1659 1.1 joerg static void
1660 1.1 joerg x86emuOp_jump_near_NL(struct X86EMU *emu)
1661 1.1 joerg {
1662 1.1 joerg bool sf, of;
1663 1.1 joerg
1664 1.1 joerg sf = ACCESS_FLAG(F_SF) != 0;
1665 1.1 joerg of = ACCESS_FLAG(F_OF) != 0;
1666 1.1 joerg
1667 1.1 joerg common_jmp_near(emu, sf == of);
1668 1.1 joerg }
1669 1.1 joerg /****************************************************************************
1670 1.1 joerg REMARKS:
1671 1.1 joerg Handles opcode 0x7e
1672 1.1 joerg ****************************************************************************/
1673 1.1 joerg static void
1674 1.1 joerg x86emuOp_jump_near_LE(struct X86EMU *emu)
1675 1.1 joerg {
1676 1.1 joerg bool sf, of;
1677 1.1 joerg
1678 1.1 joerg sf = ACCESS_FLAG(F_SF) != 0;
1679 1.1 joerg of = ACCESS_FLAG(F_OF) != 0;
1680 1.1 joerg
1681 1.1 joerg common_jmp_near(emu, sf != of || ACCESS_FLAG(F_ZF));
1682 1.1 joerg }
1683 1.1 joerg /****************************************************************************
1684 1.1 joerg REMARKS:
1685 1.1 joerg Handles opcode 0x7f
1686 1.1 joerg ****************************************************************************/
1687 1.1 joerg static void
1688 1.1 joerg x86emuOp_jump_near_NLE(struct X86EMU *emu)
1689 1.1 joerg {
1690 1.1 joerg bool sf, of;
1691 1.1 joerg
1692 1.1 joerg sf = ACCESS_FLAG(F_SF) != 0;
1693 1.1 joerg of = ACCESS_FLAG(F_OF) != 0;
1694 1.1 joerg
1695 1.1 joerg common_jmp_near(emu, sf == of && !ACCESS_FLAG(F_ZF));
1696 1.1 joerg }
1697 1.1 joerg
1698 1.1 joerg static
1699 1.1 joerg uint8_t(*const opc80_byte_operation[]) (struct X86EMU *, uint8_t d, uint8_t s) =
1700 1.1 joerg {
1701 1.1 joerg add_byte, /* 00 */
1702 1.1 joerg or_byte, /* 01 */
1703 1.1 joerg adc_byte, /* 02 */
1704 1.1 joerg sbb_byte, /* 03 */
1705 1.1 joerg and_byte, /* 04 */
1706 1.1 joerg sub_byte, /* 05 */
1707 1.1 joerg xor_byte, /* 06 */
1708 1.1 joerg cmp_byte, /* 07 */
1709 1.1 joerg };
1710 1.1 joerg /****************************************************************************
1711 1.1 joerg REMARKS:
1712 1.1 joerg Handles opcode 0x80
1713 1.1 joerg ****************************************************************************/
1714 1.1 joerg static void
1715 1.1 joerg x86emuOp_opc80_byte_RM_IMM(struct X86EMU *emu)
1716 1.1 joerg {
1717 1.1 joerg uint8_t imm, destval;
1718 1.1 joerg
1719 1.1 joerg /*
1720 1.1 joerg * Weirdo special case instruction format. Part of the opcode
1721 1.1 joerg * held below in "RH". Doubly nested case would result, except
1722 1.1 joerg * that the decoded instruction
1723 1.1 joerg */
1724 1.1 joerg fetch_decode_modrm(emu);
1725 1.1 joerg destval = decode_and_fetch_byte(emu);
1726 1.1 joerg imm = fetch_byte_imm(emu);
1727 1.1 joerg destval = (*opc80_byte_operation[emu->cur_rh]) (emu, destval, imm);
1728 1.1 joerg if (emu->cur_rh != 7)
1729 1.1 joerg write_back_byte(emu, destval);
1730 1.1 joerg }
1731 1.1 joerg
1732 1.1 joerg static
1733 1.1 joerg uint16_t(* const opc81_word_operation[]) (struct X86EMU *, uint16_t d, uint16_t s) =
1734 1.1 joerg {
1735 1.1 joerg add_word, /* 00 */
1736 1.1 joerg or_word, /* 01 */
1737 1.1 joerg adc_word, /* 02 */
1738 1.1 joerg sbb_word, /* 03 */
1739 1.1 joerg and_word, /* 04 */
1740 1.1 joerg sub_word, /* 05 */
1741 1.1 joerg xor_word, /* 06 */
1742 1.1 joerg cmp_word, /* 07 */
1743 1.1 joerg };
1744 1.1 joerg
1745 1.1 joerg static
1746 1.1 joerg uint32_t(* const opc81_long_operation[]) (struct X86EMU *, uint32_t d, uint32_t s) =
1747 1.1 joerg {
1748 1.1 joerg add_long, /* 00 */
1749 1.1 joerg or_long, /* 01 */
1750 1.1 joerg adc_long, /* 02 */
1751 1.1 joerg sbb_long, /* 03 */
1752 1.1 joerg and_long, /* 04 */
1753 1.1 joerg sub_long, /* 05 */
1754 1.1 joerg xor_long, /* 06 */
1755 1.1 joerg cmp_long, /* 07 */
1756 1.1 joerg };
1757 1.1 joerg /****************************************************************************
1758 1.1 joerg REMARKS:
1759 1.1 joerg Handles opcode 0x81
1760 1.1 joerg ****************************************************************************/
1761 1.1 joerg static void
1762 1.1 joerg x86emuOp32_opc81_word_RM_IMM(struct X86EMU *emu)
1763 1.1 joerg {
1764 1.1 joerg uint32_t destval, imm;
1765 1.1 joerg
1766 1.1 joerg /*
1767 1.1 joerg * Weirdo special case instruction format. Part of the opcode
1768 1.1 joerg * held below in "RH". Doubly nested case would result, except
1769 1.1 joerg * that the decoded instruction
1770 1.1 joerg */
1771 1.1 joerg fetch_decode_modrm(emu);
1772 1.1 joerg destval = decode_and_fetch_long(emu);
1773 1.1 joerg imm = fetch_long_imm(emu);
1774 1.1 joerg destval = (*opc81_long_operation[emu->cur_rh]) (emu, destval, imm);
1775 1.1 joerg if (emu->cur_rh != 7)
1776 1.1 joerg write_back_long(emu, destval);
1777 1.1 joerg }
1778 1.1 joerg
1779 1.1 joerg static void
1780 1.1 joerg x86emuOp16_opc81_word_RM_IMM(struct X86EMU *emu)
1781 1.1 joerg {
1782 1.1 joerg uint16_t destval, imm;
1783 1.1 joerg
1784 1.1 joerg /*
1785 1.1 joerg * Weirdo special case instruction format. Part of the opcode
1786 1.1 joerg * held below in "RH". Doubly nested case would result, except
1787 1.1 joerg * that the decoded instruction
1788 1.1 joerg */
1789 1.1 joerg fetch_decode_modrm(emu);
1790 1.1 joerg destval = decode_and_fetch_word(emu);
1791 1.1 joerg imm = fetch_word_imm(emu);
1792 1.1 joerg destval = (*opc81_word_operation[emu->cur_rh]) (emu, destval, imm);
1793 1.1 joerg if (emu->cur_rh != 7)
1794 1.1 joerg write_back_word(emu, destval);
1795 1.1 joerg }
1796 1.1 joerg
1797 1.1 joerg static void
1798 1.1 joerg x86emuOp_opc81_word_RM_IMM(struct X86EMU *emu)
1799 1.1 joerg {
1800 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1801 1.1 joerg x86emuOp32_opc81_word_RM_IMM(emu);
1802 1.1 joerg else
1803 1.1 joerg x86emuOp16_opc81_word_RM_IMM(emu);
1804 1.1 joerg }
1805 1.1 joerg
1806 1.1 joerg static
1807 1.1 joerg uint8_t(* const opc82_byte_operation[]) (struct X86EMU *, uint8_t s, uint8_t d) =
1808 1.1 joerg {
1809 1.1 joerg add_byte, /* 00 */
1810 1.1 joerg or_byte, /* 01 *//* YYY UNUSED ???? */
1811 1.1 joerg adc_byte, /* 02 */
1812 1.1 joerg sbb_byte, /* 03 */
1813 1.1 joerg and_byte, /* 04 *//* YYY UNUSED ???? */
1814 1.1 joerg sub_byte, /* 05 */
1815 1.1 joerg xor_byte, /* 06 *//* YYY UNUSED ???? */
1816 1.1 joerg cmp_byte, /* 07 */
1817 1.1 joerg };
1818 1.1 joerg /****************************************************************************
1819 1.1 joerg REMARKS:
1820 1.1 joerg Handles opcode 0x82
1821 1.1 joerg ****************************************************************************/
1822 1.1 joerg static void
1823 1.1 joerg x86emuOp_opc82_byte_RM_IMM(struct X86EMU *emu)
1824 1.1 joerg {
1825 1.1 joerg uint8_t imm, destval;
1826 1.1 joerg
1827 1.1 joerg /*
1828 1.1 joerg * Weirdo special case instruction format. Part of the opcode
1829 1.1 joerg * held below in "RH". Doubly nested case would result, except
1830 1.1 joerg * that the decoded instruction Similar to opcode 81, except that
1831 1.1 joerg * the immediate byte is sign extended to a word length.
1832 1.1 joerg */
1833 1.1 joerg fetch_decode_modrm(emu);
1834 1.1 joerg destval = decode_and_fetch_byte(emu);
1835 1.1 joerg imm = fetch_byte_imm(emu);
1836 1.1 joerg destval = (*opc82_byte_operation[emu->cur_rh]) (emu, destval, imm);
1837 1.1 joerg if (emu->cur_rh != 7)
1838 1.1 joerg write_back_byte(emu, destval);
1839 1.1 joerg }
1840 1.1 joerg
1841 1.1 joerg static
1842 1.1 joerg uint16_t(* const opc83_word_operation[]) (struct X86EMU *, uint16_t s, uint16_t d) =
1843 1.1 joerg {
1844 1.1 joerg add_word, /* 00 */
1845 1.1 joerg or_word, /* 01 *//* YYY UNUSED ???? */
1846 1.1 joerg adc_word, /* 02 */
1847 1.1 joerg sbb_word, /* 03 */
1848 1.1 joerg and_word, /* 04 *//* YYY UNUSED ???? */
1849 1.1 joerg sub_word, /* 05 */
1850 1.1 joerg xor_word, /* 06 *//* YYY UNUSED ???? */
1851 1.1 joerg cmp_word, /* 07 */
1852 1.1 joerg };
1853 1.1 joerg
1854 1.1 joerg static
1855 1.1 joerg uint32_t(* const opc83_long_operation[]) (struct X86EMU *, uint32_t s, uint32_t d) =
1856 1.1 joerg {
1857 1.1 joerg add_long, /* 00 */
1858 1.1 joerg or_long, /* 01 *//* YYY UNUSED ???? */
1859 1.1 joerg adc_long, /* 02 */
1860 1.1 joerg sbb_long, /* 03 */
1861 1.1 joerg and_long, /* 04 *//* YYY UNUSED ???? */
1862 1.1 joerg sub_long, /* 05 */
1863 1.1 joerg xor_long, /* 06 *//* YYY UNUSED ???? */
1864 1.1 joerg cmp_long, /* 07 */
1865 1.1 joerg };
1866 1.1 joerg /****************************************************************************
1867 1.1 joerg REMARKS:
1868 1.1 joerg Handles opcode 0x83
1869 1.1 joerg ****************************************************************************/
1870 1.1 joerg static void
1871 1.1 joerg x86emuOp32_opc83_word_RM_IMM(struct X86EMU *emu)
1872 1.1 joerg {
1873 1.1 joerg uint32_t destval, imm;
1874 1.1 joerg
1875 1.1 joerg fetch_decode_modrm(emu);
1876 1.1 joerg destval = decode_and_fetch_long(emu);
1877 1.1 joerg imm = (int8_t) fetch_byte_imm(emu);
1878 1.1 joerg destval = (*opc83_long_operation[emu->cur_rh]) (emu, destval, imm);
1879 1.1 joerg if (emu->cur_rh != 7)
1880 1.1 joerg write_back_long(emu, destval);
1881 1.1 joerg }
1882 1.1 joerg
1883 1.1 joerg static void
1884 1.1 joerg x86emuOp16_opc83_word_RM_IMM(struct X86EMU *emu)
1885 1.1 joerg {
1886 1.1 joerg uint16_t destval, imm;
1887 1.1 joerg
1888 1.1 joerg fetch_decode_modrm(emu);
1889 1.1 joerg destval = decode_and_fetch_word(emu);
1890 1.1 joerg imm = (int8_t) fetch_byte_imm(emu);
1891 1.1 joerg destval = (*opc83_word_operation[emu->cur_rh]) (emu, destval, imm);
1892 1.1 joerg if (emu->cur_rh != 7)
1893 1.1 joerg write_back_word(emu, destval);
1894 1.1 joerg }
1895 1.1 joerg
1896 1.1 joerg static void
1897 1.1 joerg x86emuOp_opc83_word_RM_IMM(struct X86EMU *emu)
1898 1.1 joerg {
1899 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1900 1.1 joerg x86emuOp32_opc83_word_RM_IMM(emu);
1901 1.1 joerg else
1902 1.1 joerg x86emuOp16_opc83_word_RM_IMM(emu);
1903 1.1 joerg }
1904 1.1 joerg /****************************************************************************
1905 1.1 joerg REMARKS:
1906 1.1 joerg Handles opcode 0x86
1907 1.1 joerg ****************************************************************************/
1908 1.1 joerg static void
1909 1.1 joerg x86emuOp_xchg_byte_RM_R(struct X86EMU *emu)
1910 1.1 joerg {
1911 1.1 joerg uint8_t *srcreg, destval, tmp;
1912 1.1 joerg
1913 1.1 joerg fetch_decode_modrm(emu);
1914 1.1 joerg destval = decode_and_fetch_byte(emu);
1915 1.1 joerg srcreg = decode_rh_byte_register(emu);
1916 1.1 joerg tmp = destval;
1917 1.1 joerg destval = *srcreg;
1918 1.1 joerg *srcreg = tmp;
1919 1.1 joerg write_back_byte(emu, destval);
1920 1.1 joerg }
1921 1.1 joerg /****************************************************************************
1922 1.1 joerg REMARKS:
1923 1.1 joerg Handles opcode 0x87
1924 1.1 joerg ****************************************************************************/
1925 1.1 joerg static void
1926 1.1 joerg x86emuOp32_xchg_word_RM_R(struct X86EMU *emu)
1927 1.1 joerg {
1928 1.1 joerg uint32_t *srcreg, destval, tmp;
1929 1.1 joerg
1930 1.1 joerg fetch_decode_modrm(emu);
1931 1.1 joerg destval = decode_and_fetch_long(emu);
1932 1.1 joerg srcreg = decode_rh_long_register(emu);
1933 1.1 joerg tmp = destval;
1934 1.1 joerg destval = *srcreg;
1935 1.1 joerg *srcreg = tmp;
1936 1.1 joerg write_back_long(emu, destval);
1937 1.1 joerg }
1938 1.1 joerg
1939 1.1 joerg static void
1940 1.1 joerg x86emuOp16_xchg_word_RM_R(struct X86EMU *emu)
1941 1.1 joerg {
1942 1.1 joerg uint16_t *srcreg, destval, tmp;
1943 1.1 joerg
1944 1.1 joerg fetch_decode_modrm(emu);
1945 1.1 joerg destval = decode_and_fetch_word(emu);
1946 1.1 joerg srcreg = decode_rh_word_register(emu);
1947 1.1 joerg tmp = destval;
1948 1.1 joerg destval = *srcreg;
1949 1.1 joerg *srcreg = tmp;
1950 1.1 joerg write_back_word(emu, destval);
1951 1.1 joerg }
1952 1.1 joerg
1953 1.1 joerg static void
1954 1.1 joerg x86emuOp_xchg_word_RM_R(struct X86EMU *emu)
1955 1.1 joerg {
1956 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1957 1.1 joerg x86emuOp32_xchg_word_RM_R(emu);
1958 1.1 joerg else
1959 1.1 joerg x86emuOp16_xchg_word_RM_R(emu);
1960 1.1 joerg }
1961 1.1 joerg /****************************************************************************
1962 1.1 joerg REMARKS:
1963 1.1 joerg Handles opcode 0x88
1964 1.1 joerg ****************************************************************************/
1965 1.1 joerg static void
1966 1.1 joerg x86emuOp_mov_byte_RM_R(struct X86EMU *emu)
1967 1.1 joerg {
1968 1.1 joerg uint8_t *destreg, *srcreg;
1969 1.1 joerg uint32_t destoffset;
1970 1.1 joerg
1971 1.1 joerg fetch_decode_modrm(emu);
1972 1.1 joerg srcreg = decode_rh_byte_register(emu);
1973 1.1 joerg if (emu->cur_mod != 3) {
1974 1.1 joerg destoffset = decode_rl_address(emu);
1975 1.1 joerg store_data_byte(emu, destoffset, *srcreg);
1976 1.1 joerg } else {
1977 1.1 joerg destreg = decode_rl_byte_register(emu);
1978 1.1 joerg *destreg = *srcreg;
1979 1.1 joerg }
1980 1.1 joerg }
1981 1.1 joerg /****************************************************************************
1982 1.1 joerg REMARKS:
1983 1.1 joerg Handles opcode 0x89
1984 1.1 joerg ****************************************************************************/
1985 1.1 joerg static void
1986 1.1 joerg x86emuOp32_mov_word_RM_R(struct X86EMU *emu)
1987 1.1 joerg {
1988 1.1 joerg uint32_t destoffset;
1989 1.1 joerg uint32_t *destreg, srcval;
1990 1.1 joerg
1991 1.1 joerg fetch_decode_modrm(emu);
1992 1.1 joerg srcval = *decode_rh_long_register(emu);
1993 1.1 joerg if (emu->cur_mod != 3) {
1994 1.1 joerg destoffset = decode_rl_address(emu);
1995 1.1 joerg store_data_long(emu, destoffset, srcval);
1996 1.1 joerg } else {
1997 1.1 joerg destreg = decode_rl_long_register(emu);
1998 1.1 joerg *destreg = srcval;
1999 1.1 joerg }
2000 1.1 joerg }
2001 1.1 joerg
2002 1.1 joerg static void
2003 1.1 joerg x86emuOp16_mov_word_RM_R(struct X86EMU *emu)
2004 1.1 joerg {
2005 1.1 joerg uint32_t destoffset;
2006 1.1 joerg uint16_t *destreg, srcval;
2007 1.1 joerg
2008 1.1 joerg fetch_decode_modrm(emu);
2009 1.1 joerg srcval = *decode_rh_word_register(emu);
2010 1.1 joerg if (emu->cur_mod != 3) {
2011 1.1 joerg destoffset = decode_rl_address(emu);
2012 1.1 joerg store_data_word(emu, destoffset, srcval);
2013 1.1 joerg } else {
2014 1.1 joerg destreg = decode_rl_word_register(emu);
2015 1.1 joerg *destreg = srcval;
2016 1.1 joerg }
2017 1.1 joerg }
2018 1.1 joerg
2019 1.1 joerg static void
2020 1.1 joerg x86emuOp_mov_word_RM_R(struct X86EMU *emu)
2021 1.1 joerg {
2022 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2023 1.1 joerg x86emuOp32_mov_word_RM_R(emu);
2024 1.1 joerg else
2025 1.1 joerg x86emuOp16_mov_word_RM_R(emu);
2026 1.1 joerg }
2027 1.1 joerg /****************************************************************************
2028 1.1 joerg REMARKS:
2029 1.1 joerg Handles opcode 0x8a
2030 1.1 joerg ****************************************************************************/
2031 1.1 joerg static void
2032 1.1 joerg x86emuOp_mov_byte_R_RM(struct X86EMU *emu)
2033 1.1 joerg {
2034 1.1 joerg uint8_t *destreg;
2035 1.1 joerg
2036 1.1 joerg fetch_decode_modrm(emu);
2037 1.1 joerg destreg = decode_rh_byte_register(emu);
2038 1.1 joerg *destreg = decode_and_fetch_byte(emu);
2039 1.1 joerg }
2040 1.1 joerg /****************************************************************************
2041 1.1 joerg REMARKS:
2042 1.1 joerg Handles opcode 0x8b
2043 1.1 joerg ****************************************************************************/
2044 1.1 joerg static void
2045 1.1 joerg x86emuOp_mov_word_R_RM(struct X86EMU *emu)
2046 1.1 joerg {
2047 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2048 1.1 joerg uint32_t *destreg;
2049 1.1 joerg
2050 1.1 joerg fetch_decode_modrm(emu);
2051 1.1 joerg destreg = decode_rh_long_register(emu);
2052 1.1 joerg *destreg = decode_and_fetch_long(emu);
2053 1.1 joerg } else {
2054 1.1 joerg uint16_t *destreg;
2055 1.1 joerg
2056 1.1 joerg fetch_decode_modrm(emu);
2057 1.1 joerg destreg = decode_rh_word_register(emu);
2058 1.1 joerg *destreg = decode_and_fetch_word(emu);
2059 1.1 joerg }
2060 1.1 joerg }
2061 1.1 joerg /****************************************************************************
2062 1.1 joerg REMARKS:
2063 1.1 joerg Handles opcode 0x8c
2064 1.1 joerg ****************************************************************************/
2065 1.1 joerg static void
2066 1.1 joerg x86emuOp_mov_word_RM_SR(struct X86EMU *emu)
2067 1.1 joerg {
2068 1.1 joerg uint16_t *destreg, srcval;
2069 1.1 joerg uint32_t destoffset;
2070 1.1 joerg
2071 1.1 joerg fetch_decode_modrm(emu);
2072 1.1 joerg srcval = *decode_rh_seg_register(emu);
2073 1.1 joerg if (emu->cur_mod != 3) {
2074 1.1 joerg destoffset = decode_rl_address(emu);
2075 1.1 joerg store_data_word(emu, destoffset, srcval);
2076 1.1 joerg } else {
2077 1.1 joerg destreg = decode_rl_word_register(emu);
2078 1.1 joerg *destreg = srcval;
2079 1.1 joerg }
2080 1.1 joerg }
2081 1.1 joerg /****************************************************************************
2082 1.1 joerg REMARKS:
2083 1.1 joerg Handles opcode 0x8d
2084 1.1 joerg ****************************************************************************/
2085 1.1 joerg static void
2086 1.1 joerg x86emuOp_lea_word_R_M(struct X86EMU *emu)
2087 1.1 joerg {
2088 1.1 joerg uint16_t *srcreg;
2089 1.1 joerg uint32_t destoffset;
2090 1.1 joerg
2091 1.1 joerg /*
2092 1.1 joerg * TODO: Need to handle address size prefix!
2093 1.1 joerg *
2094 1.1 joerg * lea eax,[eax+ebx*2] ??
2095 1.1 joerg */
2096 1.1 joerg fetch_decode_modrm(emu);
2097 1.1 joerg if (emu->cur_mod == 3)
2098 1.1 joerg X86EMU_halt_sys(emu);
2099 1.1 joerg
2100 1.1 joerg srcreg = decode_rh_word_register(emu);
2101 1.1 joerg destoffset = decode_rl_address(emu);
2102 1.1 joerg *srcreg = (uint16_t) destoffset;
2103 1.1 joerg }
2104 1.1 joerg /****************************************************************************
2105 1.1 joerg REMARKS:
2106 1.1 joerg Handles opcode 0x8e
2107 1.1 joerg ****************************************************************************/
2108 1.1 joerg static void
2109 1.1 joerg x86emuOp_mov_word_SR_RM(struct X86EMU *emu)
2110 1.1 joerg {
2111 1.1 joerg uint16_t *destreg;
2112 1.1 joerg
2113 1.1 joerg fetch_decode_modrm(emu);
2114 1.1 joerg destreg = decode_rh_seg_register(emu);
2115 1.1 joerg *destreg = decode_and_fetch_word(emu);
2116 1.1 joerg /*
2117 1.1 joerg * Clean up, and reset all the R_xSP pointers to the correct
2118 1.1 joerg * locations. This is about 3x too much overhead (doing all the
2119 1.1 joerg * segreg ptrs when only one is needed, but this instruction
2120 1.1 joerg * *cannot* be that common, and this isn't too much work anyway.
2121 1.1 joerg */
2122 1.1 joerg }
2123 1.1 joerg /****************************************************************************
2124 1.1 joerg REMARKS:
2125 1.1 joerg Handles opcode 0x8f
2126 1.1 joerg ****************************************************************************/
2127 1.1 joerg static void
2128 1.1 joerg x86emuOp32_pop_RM(struct X86EMU *emu)
2129 1.1 joerg {
2130 1.1 joerg uint32_t destoffset;
2131 1.1 joerg uint32_t destval, *destreg;
2132 1.1 joerg
2133 1.1 joerg fetch_decode_modrm(emu);
2134 1.1 joerg if (emu->cur_mod != 3) {
2135 1.1 joerg destoffset = decode_rl_address(emu);
2136 1.1 joerg destval = pop_long(emu);
2137 1.1 joerg store_data_long(emu, destoffset, destval);
2138 1.1 joerg } else {
2139 1.1 joerg destreg = decode_rl_long_register(emu);
2140 1.1 joerg *destreg = pop_long(emu);
2141 1.1 joerg }
2142 1.1 joerg }
2143 1.1 joerg
2144 1.1 joerg static void
2145 1.1 joerg x86emuOp16_pop_RM(struct X86EMU *emu)
2146 1.1 joerg {
2147 1.1 joerg uint32_t destoffset;
2148 1.1 joerg uint16_t destval, *destreg;
2149 1.1 joerg
2150 1.1 joerg fetch_decode_modrm(emu);
2151 1.1 joerg if (emu->cur_mod != 3) {
2152 1.1 joerg destoffset = decode_rl_address(emu);
2153 1.1 joerg destval = pop_word(emu);
2154 1.1 joerg store_data_word(emu, destoffset, destval);
2155 1.1 joerg } else {
2156 1.1 joerg destreg = decode_rl_word_register(emu);
2157 1.1 joerg *destreg = pop_word(emu);
2158 1.1 joerg }
2159 1.1 joerg }
2160 1.1 joerg
2161 1.1 joerg static void
2162 1.1 joerg x86emuOp_pop_RM(struct X86EMU *emu)
2163 1.1 joerg {
2164 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2165 1.1 joerg x86emuOp32_pop_RM(emu);
2166 1.1 joerg else
2167 1.1 joerg x86emuOp16_pop_RM(emu);
2168 1.1 joerg }
2169 1.1 joerg /****************************************************************************
2170 1.1 joerg REMARKS:
2171 1.1 joerg Handles opcode 0x91
2172 1.1 joerg ****************************************************************************/
2173 1.1 joerg static void
2174 1.1 joerg x86emuOp_xchg_word_AX_CX(struct X86EMU *emu)
2175 1.1 joerg {
2176 1.1 joerg uint32_t tmp;
2177 1.1 joerg
2178 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2179 1.1 joerg tmp = emu->x86.R_EAX;
2180 1.1 joerg emu->x86.R_EAX = emu->x86.R_ECX;
2181 1.1 joerg emu->x86.R_ECX = tmp;
2182 1.1 joerg } else {
2183 1.1 joerg tmp = emu->x86.R_AX;
2184 1.1 joerg emu->x86.R_AX = emu->x86.R_CX;
2185 1.1 joerg emu->x86.R_CX = (uint16_t) tmp;
2186 1.1 joerg }
2187 1.1 joerg }
2188 1.1 joerg /****************************************************************************
2189 1.1 joerg REMARKS:
2190 1.1 joerg Handles opcode 0x92
2191 1.1 joerg ****************************************************************************/
2192 1.1 joerg static void
2193 1.1 joerg x86emuOp_xchg_word_AX_DX(struct X86EMU *emu)
2194 1.1 joerg {
2195 1.1 joerg uint32_t tmp;
2196 1.1 joerg
2197 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2198 1.1 joerg tmp = emu->x86.R_EAX;
2199 1.1 joerg emu->x86.R_EAX = emu->x86.R_EDX;
2200 1.1 joerg emu->x86.R_EDX = tmp;
2201 1.1 joerg } else {
2202 1.1 joerg tmp = emu->x86.R_AX;
2203 1.1 joerg emu->x86.R_AX = emu->x86.R_DX;
2204 1.1 joerg emu->x86.R_DX = (uint16_t) tmp;
2205 1.1 joerg }
2206 1.1 joerg }
2207 1.1 joerg /****************************************************************************
2208 1.1 joerg REMARKS:
2209 1.1 joerg Handles opcode 0x93
2210 1.1 joerg ****************************************************************************/
2211 1.1 joerg static void
2212 1.1 joerg x86emuOp_xchg_word_AX_BX(struct X86EMU *emu)
2213 1.1 joerg {
2214 1.1 joerg uint32_t tmp;
2215 1.1 joerg
2216 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2217 1.1 joerg tmp = emu->x86.R_EAX;
2218 1.1 joerg emu->x86.R_EAX = emu->x86.R_EBX;
2219 1.1 joerg emu->x86.R_EBX = tmp;
2220 1.1 joerg } else {
2221 1.1 joerg tmp = emu->x86.R_AX;
2222 1.1 joerg emu->x86.R_AX = emu->x86.R_BX;
2223 1.1 joerg emu->x86.R_BX = (uint16_t) tmp;
2224 1.1 joerg }
2225 1.1 joerg }
2226 1.1 joerg /****************************************************************************
2227 1.1 joerg REMARKS:
2228 1.1 joerg Handles opcode 0x94
2229 1.1 joerg ****************************************************************************/
2230 1.1 joerg static void
2231 1.1 joerg x86emuOp_xchg_word_AX_SP(struct X86EMU *emu)
2232 1.1 joerg {
2233 1.1 joerg uint32_t tmp;
2234 1.1 joerg
2235 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2236 1.1 joerg tmp = emu->x86.R_EAX;
2237 1.1 joerg emu->x86.R_EAX = emu->x86.R_ESP;
2238 1.1 joerg emu->x86.R_ESP = tmp;
2239 1.1 joerg } else {
2240 1.1 joerg tmp = emu->x86.R_AX;
2241 1.1 joerg emu->x86.R_AX = emu->x86.R_SP;
2242 1.1 joerg emu->x86.R_SP = (uint16_t) tmp;
2243 1.1 joerg }
2244 1.1 joerg }
2245 1.1 joerg /****************************************************************************
2246 1.1 joerg REMARKS:
2247 1.1 joerg Handles opcode 0x95
2248 1.1 joerg ****************************************************************************/
2249 1.1 joerg static void
2250 1.1 joerg x86emuOp_xchg_word_AX_BP(struct X86EMU *emu)
2251 1.1 joerg {
2252 1.1 joerg uint32_t tmp;
2253 1.1 joerg
2254 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2255 1.1 joerg tmp = emu->x86.R_EAX;
2256 1.1 joerg emu->x86.R_EAX = emu->x86.R_EBP;
2257 1.1 joerg emu->x86.R_EBP = tmp;
2258 1.1 joerg } else {
2259 1.1 joerg tmp = emu->x86.R_AX;
2260 1.1 joerg emu->x86.R_AX = emu->x86.R_BP;
2261 1.1 joerg emu->x86.R_BP = (uint16_t) tmp;
2262 1.1 joerg }
2263 1.1 joerg }
2264 1.1 joerg /****************************************************************************
2265 1.1 joerg REMARKS:
2266 1.1 joerg Handles opcode 0x96
2267 1.1 joerg ****************************************************************************/
2268 1.1 joerg static void
2269 1.1 joerg x86emuOp_xchg_word_AX_SI(struct X86EMU *emu)
2270 1.1 joerg {
2271 1.1 joerg uint32_t tmp;
2272 1.1 joerg
2273 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2274 1.1 joerg tmp = emu->x86.R_EAX;
2275 1.1 joerg emu->x86.R_EAX = emu->x86.R_ESI;
2276 1.1 joerg emu->x86.R_ESI = tmp;
2277 1.1 joerg } else {
2278 1.1 joerg tmp = emu->x86.R_AX;
2279 1.1 joerg emu->x86.R_AX = emu->x86.R_SI;
2280 1.1 joerg emu->x86.R_SI = (uint16_t) tmp;
2281 1.1 joerg }
2282 1.1 joerg }
2283 1.1 joerg /****************************************************************************
2284 1.1 joerg REMARKS:
2285 1.1 joerg Handles opcode 0x97
2286 1.1 joerg ****************************************************************************/
2287 1.1 joerg static void
2288 1.1 joerg x86emuOp_xchg_word_AX_DI(struct X86EMU *emu)
2289 1.1 joerg {
2290 1.1 joerg uint32_t tmp;
2291 1.1 joerg
2292 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2293 1.1 joerg tmp = emu->x86.R_EAX;
2294 1.1 joerg emu->x86.R_EAX = emu->x86.R_EDI;
2295 1.1 joerg emu->x86.R_EDI = tmp;
2296 1.1 joerg } else {
2297 1.1 joerg tmp = emu->x86.R_AX;
2298 1.1 joerg emu->x86.R_AX = emu->x86.R_DI;
2299 1.1 joerg emu->x86.R_DI = (uint16_t) tmp;
2300 1.1 joerg }
2301 1.1 joerg }
2302 1.1 joerg /****************************************************************************
2303 1.1 joerg REMARKS:
2304 1.1 joerg Handles opcode 0x98
2305 1.1 joerg ****************************************************************************/
2306 1.1 joerg static void
2307 1.1 joerg x86emuOp_cbw(struct X86EMU *emu)
2308 1.1 joerg {
2309 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2310 1.1 joerg if (emu->x86.R_AX & 0x8000) {
2311 1.1 joerg emu->x86.R_EAX |= 0xffff0000;
2312 1.1 joerg } else {
2313 1.1 joerg emu->x86.R_EAX &= 0x0000ffff;
2314 1.1 joerg }
2315 1.1 joerg } else {
2316 1.1 joerg if (emu->x86.R_AL & 0x80) {
2317 1.1 joerg emu->x86.R_AH = 0xff;
2318 1.1 joerg } else {
2319 1.1 joerg emu->x86.R_AH = 0x0;
2320 1.1 joerg }
2321 1.1 joerg }
2322 1.1 joerg }
2323 1.1 joerg /****************************************************************************
2324 1.1 joerg REMARKS:
2325 1.1 joerg Handles opcode 0x99
2326 1.1 joerg ****************************************************************************/
2327 1.1 joerg static void
2328 1.1 joerg x86emuOp_cwd(struct X86EMU *emu)
2329 1.1 joerg {
2330 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2331 1.1 joerg if (emu->x86.R_EAX & 0x80000000) {
2332 1.1 joerg emu->x86.R_EDX = 0xffffffff;
2333 1.1 joerg } else {
2334 1.1 joerg emu->x86.R_EDX = 0x0;
2335 1.1 joerg }
2336 1.1 joerg } else {
2337 1.1 joerg if (emu->x86.R_AX & 0x8000) {
2338 1.1 joerg emu->x86.R_DX = 0xffff;
2339 1.1 joerg } else {
2340 1.1 joerg emu->x86.R_DX = 0x0;
2341 1.1 joerg }
2342 1.1 joerg }
2343 1.1 joerg }
2344 1.1 joerg /****************************************************************************
2345 1.1 joerg REMARKS:
2346 1.1 joerg Handles opcode 0x9a
2347 1.1 joerg ****************************************************************************/
2348 1.1 joerg static void
2349 1.1 joerg x86emuOp_call_far_IMM(struct X86EMU *emu)
2350 1.1 joerg {
2351 1.1 joerg uint16_t farseg, faroff;
2352 1.1 joerg
2353 1.1 joerg faroff = fetch_word_imm(emu);
2354 1.1 joerg farseg = fetch_word_imm(emu);
2355 1.1 joerg /* XXX
2356 1.1 joerg *
2357 1.1 joerg * Hooked interrupt vectors calling into our "BIOS" will cause problems
2358 1.1 joerg * unless all intersegment stuff is checked for BIOS access. Check
2359 1.1 joerg * needed here. For moment, let it alone. */
2360 1.1 joerg push_word(emu, emu->x86.R_CS);
2361 1.1 joerg emu->x86.R_CS = farseg;
2362 1.1 joerg push_word(emu, emu->x86.R_IP);
2363 1.1 joerg emu->x86.R_IP = faroff;
2364 1.1 joerg }
2365 1.1 joerg /****************************************************************************
2366 1.1 joerg REMARKS:
2367 1.1 joerg Handles opcode 0x9c
2368 1.1 joerg ****************************************************************************/
2369 1.1 joerg static void
2370 1.1 joerg x86emuOp_pushf_word(struct X86EMU *emu)
2371 1.1 joerg {
2372 1.1 joerg uint32_t flags;
2373 1.1 joerg
2374 1.1 joerg /* clear out *all* bits not representing flags, and turn on real bits */
2375 1.1 joerg flags = (emu->x86.R_EFLG & F_MSK) | F_ALWAYS_ON;
2376 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2377 1.1 joerg push_long(emu, flags);
2378 1.1 joerg } else {
2379 1.1 joerg push_word(emu, (uint16_t) flags);
2380 1.1 joerg }
2381 1.1 joerg }
2382 1.1 joerg /****************************************************************************
2383 1.1 joerg REMARKS:
2384 1.1 joerg Handles opcode 0x9d
2385 1.1 joerg ****************************************************************************/
2386 1.1 joerg static void
2387 1.1 joerg x86emuOp_popf_word(struct X86EMU *emu)
2388 1.1 joerg {
2389 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2390 1.1 joerg emu->x86.R_EFLG = pop_long(emu);
2391 1.1 joerg } else {
2392 1.1 joerg emu->x86.R_FLG = pop_word(emu);
2393 1.1 joerg }
2394 1.1 joerg }
2395 1.1 joerg /****************************************************************************
2396 1.1 joerg REMARKS:
2397 1.1 joerg Handles opcode 0x9e
2398 1.1 joerg ****************************************************************************/
2399 1.1 joerg static void
2400 1.1 joerg x86emuOp_sahf(struct X86EMU *emu)
2401 1.1 joerg {
2402 1.1 joerg /* clear the lower bits of the flag register */
2403 1.1 joerg emu->x86.R_FLG &= 0xffffff00;
2404 1.1 joerg /* or in the AH register into the flags register */
2405 1.1 joerg emu->x86.R_FLG |= emu->x86.R_AH;
2406 1.1 joerg }
2407 1.1 joerg /****************************************************************************
2408 1.1 joerg REMARKS:
2409 1.1 joerg Handles opcode 0x9f
2410 1.1 joerg ****************************************************************************/
2411 1.1 joerg static void
2412 1.1 joerg x86emuOp_lahf(struct X86EMU *emu)
2413 1.1 joerg {
2414 1.1 joerg emu->x86.R_AH = (uint8_t) (emu->x86.R_FLG & 0xff);
2415 1.1 joerg /* undocumented TC++ behavior??? Nope. It's documented, but you have
2416 1.1 joerg * too look real hard to notice it. */
2417 1.1 joerg emu->x86.R_AH |= 0x2;
2418 1.1 joerg }
2419 1.1 joerg /****************************************************************************
2420 1.1 joerg REMARKS:
2421 1.1 joerg Handles opcode 0xa0
2422 1.1 joerg ****************************************************************************/
2423 1.1 joerg static void
2424 1.1 joerg x86emuOp_mov_AL_M_IMM(struct X86EMU *emu)
2425 1.1 joerg {
2426 1.1 joerg uint16_t offset;
2427 1.1 joerg
2428 1.1 joerg offset = fetch_word_imm(emu);
2429 1.1 joerg emu->x86.R_AL = fetch_data_byte(emu, offset);
2430 1.1 joerg }
2431 1.1 joerg /****************************************************************************
2432 1.1 joerg REMARKS:
2433 1.1 joerg Handles opcode 0xa1
2434 1.1 joerg ****************************************************************************/
2435 1.1 joerg static void
2436 1.1 joerg x86emuOp_mov_AX_M_IMM(struct X86EMU *emu)
2437 1.1 joerg {
2438 1.1 joerg uint16_t offset;
2439 1.1 joerg
2440 1.1 joerg offset = fetch_word_imm(emu);
2441 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2442 1.1 joerg emu->x86.R_EAX = fetch_data_long(emu, offset);
2443 1.1 joerg } else {
2444 1.1 joerg emu->x86.R_AX = fetch_data_word(emu, offset);
2445 1.1 joerg }
2446 1.1 joerg }
2447 1.1 joerg /****************************************************************************
2448 1.1 joerg REMARKS:
2449 1.1 joerg Handles opcode 0xa2
2450 1.1 joerg ****************************************************************************/
2451 1.1 joerg static void
2452 1.1 joerg x86emuOp_mov_M_AL_IMM(struct X86EMU *emu)
2453 1.1 joerg {
2454 1.1 joerg uint16_t offset;
2455 1.1 joerg
2456 1.1 joerg offset = fetch_word_imm(emu);
2457 1.1 joerg store_data_byte(emu, offset, emu->x86.R_AL);
2458 1.1 joerg }
2459 1.1 joerg /****************************************************************************
2460 1.1 joerg REMARKS:
2461 1.1 joerg Handles opcode 0xa3
2462 1.1 joerg ****************************************************************************/
2463 1.1 joerg static void
2464 1.1 joerg x86emuOp_mov_M_AX_IMM(struct X86EMU *emu)
2465 1.1 joerg {
2466 1.1 joerg uint16_t offset;
2467 1.1 joerg
2468 1.1 joerg offset = fetch_word_imm(emu);
2469 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2470 1.1 joerg store_data_long(emu, offset, emu->x86.R_EAX);
2471 1.1 joerg } else {
2472 1.1 joerg store_data_word(emu, offset, emu->x86.R_AX);
2473 1.1 joerg }
2474 1.1 joerg }
2475 1.1 joerg /****************************************************************************
2476 1.1 joerg REMARKS:
2477 1.1 joerg Handles opcode 0xa4
2478 1.1 joerg ****************************************************************************/
2479 1.1 joerg static void
2480 1.1 joerg x86emuOp_movs_byte(struct X86EMU *emu)
2481 1.1 joerg {
2482 1.1 joerg uint8_t val;
2483 1.1 joerg uint32_t count;
2484 1.1 joerg int inc;
2485 1.1 joerg
2486 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2487 1.1 joerg inc = -1;
2488 1.1 joerg else
2489 1.1 joerg inc = 1;
2490 1.1 joerg count = 1;
2491 1.1 joerg if (emu->x86.mode & (SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE)) {
2492 1.1 joerg /* dont care whether REPE or REPNE */
2493 1.1 joerg /* move them until CX is ZERO. */
2494 1.1 joerg count = emu->x86.R_CX;
2495 1.1 joerg emu->x86.R_CX = 0;
2496 1.1 joerg emu->x86.mode &= ~(SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE);
2497 1.1 joerg }
2498 1.1 joerg while (count--) {
2499 1.1 joerg val = fetch_data_byte(emu, emu->x86.R_SI);
2500 1.1 joerg store_byte(emu, emu->x86.R_ES, emu->x86.R_DI, val);
2501 1.1 joerg emu->x86.R_SI += inc;
2502 1.1 joerg emu->x86.R_DI += inc;
2503 1.1 joerg }
2504 1.1 joerg }
2505 1.1 joerg /****************************************************************************
2506 1.1 joerg REMARKS:
2507 1.1 joerg Handles opcode 0xa5
2508 1.1 joerg ****************************************************************************/
2509 1.1 joerg static void
2510 1.1 joerg x86emuOp_movs_word(struct X86EMU *emu)
2511 1.1 joerg {
2512 1.1 joerg uint32_t val;
2513 1.1 joerg int inc;
2514 1.1 joerg uint32_t count;
2515 1.1 joerg
2516 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2517 1.1 joerg inc = 4;
2518 1.1 joerg else
2519 1.1 joerg inc = 2;
2520 1.1 joerg
2521 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2522 1.1 joerg inc = -inc;
2523 1.1 joerg
2524 1.1 joerg count = 1;
2525 1.1 joerg if (emu->x86.mode & (SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE)) {
2526 1.1 joerg /* dont care whether REPE or REPNE */
2527 1.1 joerg /* move them until CX is ZERO. */
2528 1.1 joerg count = emu->x86.R_CX;
2529 1.1 joerg emu->x86.R_CX = 0;
2530 1.1 joerg emu->x86.mode &= ~(SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE);
2531 1.1 joerg }
2532 1.1 joerg while (count--) {
2533 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2534 1.1 joerg val = fetch_data_long(emu, emu->x86.R_SI);
2535 1.1 joerg store_long(emu, emu->x86.R_ES, emu->x86.R_DI, val);
2536 1.1 joerg } else {
2537 1.1 joerg val = fetch_data_word(emu, emu->x86.R_SI);
2538 1.1 joerg store_word(emu, emu->x86.R_ES, emu->x86.R_DI, (uint16_t) val);
2539 1.1 joerg }
2540 1.1 joerg emu->x86.R_SI += inc;
2541 1.1 joerg emu->x86.R_DI += inc;
2542 1.1 joerg }
2543 1.1 joerg }
2544 1.1 joerg /****************************************************************************
2545 1.1 joerg REMARKS:
2546 1.1 joerg Handles opcode 0xa6
2547 1.1 joerg ****************************************************************************/
2548 1.1 joerg static void
2549 1.1 joerg x86emuOp_cmps_byte(struct X86EMU *emu)
2550 1.1 joerg {
2551 1.1 joerg int8_t val1, val2;
2552 1.1 joerg int inc;
2553 1.1 joerg
2554 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2555 1.1 joerg inc = -1;
2556 1.1 joerg else
2557 1.1 joerg inc = 1;
2558 1.1 joerg
2559 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_REPE) {
2560 1.1 joerg /* REPE */
2561 1.1 joerg /* move them until CX is ZERO. */
2562 1.1 joerg while (emu->x86.R_CX != 0) {
2563 1.1 joerg val1 = fetch_data_byte(emu, emu->x86.R_SI);
2564 1.1 joerg val2 = fetch_byte(emu, emu->x86.R_ES, emu->x86.R_DI);
2565 1.1 joerg cmp_byte(emu, val1, val2);
2566 1.1 joerg emu->x86.R_CX -= 1;
2567 1.1 joerg emu->x86.R_SI += inc;
2568 1.1 joerg emu->x86.R_DI += inc;
2569 1.1 joerg if (ACCESS_FLAG(F_ZF) == 0)
2570 1.1 joerg break;
2571 1.1 joerg }
2572 1.1 joerg emu->x86.mode &= ~SYSMODE_PREFIX_REPE;
2573 1.1 joerg } else if (emu->x86.mode & SYSMODE_PREFIX_REPNE) {
2574 1.1 joerg /* REPNE */
2575 1.1 joerg /* move them until CX is ZERO. */
2576 1.1 joerg while (emu->x86.R_CX != 0) {
2577 1.1 joerg val1 = fetch_data_byte(emu, emu->x86.R_SI);
2578 1.1 joerg val2 = fetch_byte(emu, emu->x86.R_ES, emu->x86.R_DI);
2579 1.1 joerg cmp_byte(emu, val1, val2);
2580 1.1 joerg emu->x86.R_CX -= 1;
2581 1.1 joerg emu->x86.R_SI += inc;
2582 1.1 joerg emu->x86.R_DI += inc;
2583 1.1 joerg if (ACCESS_FLAG(F_ZF))
2584 1.1 joerg break; /* zero flag set means equal */
2585 1.1 joerg }
2586 1.1 joerg emu->x86.mode &= ~SYSMODE_PREFIX_REPNE;
2587 1.1 joerg } else {
2588 1.1 joerg val1 = fetch_data_byte(emu, emu->x86.R_SI);
2589 1.1 joerg val2 = fetch_byte(emu, emu->x86.R_ES, emu->x86.R_DI);
2590 1.1 joerg cmp_byte(emu, val1, val2);
2591 1.1 joerg emu->x86.R_SI += inc;
2592 1.1 joerg emu->x86.R_DI += inc;
2593 1.1 joerg }
2594 1.1 joerg }
2595 1.1 joerg /****************************************************************************
2596 1.1 joerg REMARKS:
2597 1.1 joerg Handles opcode 0xa7
2598 1.1 joerg ****************************************************************************/
2599 1.1 joerg static void
2600 1.1 joerg x86emuOp_cmps_word(struct X86EMU *emu)
2601 1.1 joerg {
2602 1.1 joerg uint32_t val1, val2;
2603 1.1 joerg int inc;
2604 1.1 joerg
2605 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2606 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2607 1.1 joerg inc = -4;
2608 1.1 joerg else
2609 1.1 joerg inc = 4;
2610 1.1 joerg } else {
2611 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2612 1.1 joerg inc = -2;
2613 1.1 joerg else
2614 1.1 joerg inc = 2;
2615 1.1 joerg }
2616 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_REPE) {
2617 1.1 joerg /* REPE */
2618 1.1 joerg /* move them until CX is ZERO. */
2619 1.1 joerg while (emu->x86.R_CX != 0) {
2620 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2621 1.1 joerg val1 = fetch_data_long(emu, emu->x86.R_SI);
2622 1.1 joerg val2 = fetch_long(emu, emu->x86.R_ES, emu->x86.R_DI);
2623 1.1 joerg cmp_long(emu, val1, val2);
2624 1.1 joerg } else {
2625 1.1 joerg val1 = fetch_data_word(emu, emu->x86.R_SI);
2626 1.1 joerg val2 = fetch_word(emu, emu->x86.R_ES, emu->x86.R_DI);
2627 1.1 joerg cmp_word(emu, (uint16_t) val1, (uint16_t) val2);
2628 1.1 joerg }
2629 1.1 joerg emu->x86.R_CX -= 1;
2630 1.1 joerg emu->x86.R_SI += inc;
2631 1.1 joerg emu->x86.R_DI += inc;
2632 1.1 joerg if (ACCESS_FLAG(F_ZF) == 0)
2633 1.1 joerg break;
2634 1.1 joerg }
2635 1.1 joerg emu->x86.mode &= ~SYSMODE_PREFIX_REPE;
2636 1.1 joerg } else if (emu->x86.mode & SYSMODE_PREFIX_REPNE) {
2637 1.1 joerg /* REPNE */
2638 1.1 joerg /* move them until CX is ZERO. */
2639 1.1 joerg while (emu->x86.R_CX != 0) {
2640 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2641 1.1 joerg val1 = fetch_data_long(emu, emu->x86.R_SI);
2642 1.1 joerg val2 = fetch_long(emu, emu->x86.R_ES, emu->x86.R_DI);
2643 1.1 joerg cmp_long(emu, val1, val2);
2644 1.1 joerg } else {
2645 1.1 joerg val1 = fetch_data_word(emu, emu->x86.R_SI);
2646 1.1 joerg val2 = fetch_word(emu, emu->x86.R_ES, emu->x86.R_DI);
2647 1.1 joerg cmp_word(emu, (uint16_t) val1, (uint16_t) val2);
2648 1.1 joerg }
2649 1.1 joerg emu->x86.R_CX -= 1;
2650 1.1 joerg emu->x86.R_SI += inc;
2651 1.1 joerg emu->x86.R_DI += inc;
2652 1.1 joerg if (ACCESS_FLAG(F_ZF))
2653 1.1 joerg break; /* zero flag set means equal */
2654 1.1 joerg }
2655 1.1 joerg emu->x86.mode &= ~SYSMODE_PREFIX_REPNE;
2656 1.1 joerg } else {
2657 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2658 1.1 joerg val1 = fetch_data_long(emu, emu->x86.R_SI);
2659 1.1 joerg val2 = fetch_long(emu, emu->x86.R_ES, emu->x86.R_DI);
2660 1.1 joerg cmp_long(emu, val1, val2);
2661 1.1 joerg } else {
2662 1.1 joerg val1 = fetch_data_word(emu, emu->x86.R_SI);
2663 1.1 joerg val2 = fetch_word(emu, emu->x86.R_ES, emu->x86.R_DI);
2664 1.1 joerg cmp_word(emu, (uint16_t) val1, (uint16_t) val2);
2665 1.1 joerg }
2666 1.1 joerg emu->x86.R_SI += inc;
2667 1.1 joerg emu->x86.R_DI += inc;
2668 1.1 joerg }
2669 1.1 joerg }
2670 1.1 joerg /****************************************************************************
2671 1.1 joerg REMARKS:
2672 1.1 joerg Handles opcode 0xa9
2673 1.1 joerg ****************************************************************************/
2674 1.1 joerg static void
2675 1.1 joerg x86emuOp_test_AX_IMM(struct X86EMU *emu)
2676 1.1 joerg {
2677 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2678 1.1 joerg test_long(emu, emu->x86.R_EAX, fetch_long_imm(emu));
2679 1.1 joerg } else {
2680 1.1 joerg test_word(emu, emu->x86.R_AX, fetch_word_imm(emu));
2681 1.1 joerg }
2682 1.1 joerg }
2683 1.1 joerg /****************************************************************************
2684 1.1 joerg REMARKS:
2685 1.1 joerg Handles opcode 0xaa
2686 1.1 joerg ****************************************************************************/
2687 1.1 joerg static void
2688 1.1 joerg x86emuOp_stos_byte(struct X86EMU *emu)
2689 1.1 joerg {
2690 1.1 joerg int inc;
2691 1.1 joerg
2692 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2693 1.1 joerg inc = -1;
2694 1.1 joerg else
2695 1.1 joerg inc = 1;
2696 1.1 joerg if (emu->x86.mode & (SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE)) {
2697 1.1 joerg /* dont care whether REPE or REPNE */
2698 1.1 joerg /* move them until CX is ZERO. */
2699 1.1 joerg while (emu->x86.R_CX != 0) {
2700 1.1 joerg store_byte(emu, emu->x86.R_ES, emu->x86.R_DI, emu->x86.R_AL);
2701 1.1 joerg emu->x86.R_CX -= 1;
2702 1.1 joerg emu->x86.R_DI += inc;
2703 1.1 joerg }
2704 1.1 joerg emu->x86.mode &= ~(SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE);
2705 1.1 joerg } else {
2706 1.1 joerg store_byte(emu, emu->x86.R_ES, emu->x86.R_DI, emu->x86.R_AL);
2707 1.1 joerg emu->x86.R_DI += inc;
2708 1.1 joerg }
2709 1.1 joerg }
2710 1.1 joerg /****************************************************************************
2711 1.1 joerg REMARKS:
2712 1.1 joerg Handles opcode 0xab
2713 1.1 joerg ****************************************************************************/
2714 1.1 joerg static void
2715 1.1 joerg x86emuOp_stos_word(struct X86EMU *emu)
2716 1.1 joerg {
2717 1.1 joerg int inc;
2718 1.1 joerg uint32_t count;
2719 1.1 joerg
2720 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2721 1.1 joerg inc = 4;
2722 1.1 joerg else
2723 1.1 joerg inc = 2;
2724 1.1 joerg
2725 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2726 1.1 joerg inc = -inc;
2727 1.1 joerg
2728 1.1 joerg count = 1;
2729 1.1 joerg if (emu->x86.mode & (SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE)) {
2730 1.1 joerg /* dont care whether REPE or REPNE */
2731 1.1 joerg /* move them until CX is ZERO. */
2732 1.1 joerg count = emu->x86.R_CX;
2733 1.1 joerg emu->x86.R_CX = 0;
2734 1.1 joerg emu->x86.mode &= ~(SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE);
2735 1.1 joerg }
2736 1.1 joerg while (count--) {
2737 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2738 1.1 joerg store_long(emu, emu->x86.R_ES, emu->x86.R_DI, emu->x86.R_EAX);
2739 1.1 joerg } else {
2740 1.1 joerg store_word(emu, emu->x86.R_ES, emu->x86.R_DI, emu->x86.R_AX);
2741 1.1 joerg }
2742 1.1 joerg emu->x86.R_DI += inc;
2743 1.1 joerg }
2744 1.1 joerg }
2745 1.1 joerg /****************************************************************************
2746 1.1 joerg REMARKS:
2747 1.1 joerg Handles opcode 0xac
2748 1.1 joerg ****************************************************************************/
2749 1.1 joerg static void
2750 1.1 joerg x86emuOp_lods_byte(struct X86EMU *emu)
2751 1.1 joerg {
2752 1.1 joerg int inc;
2753 1.1 joerg
2754 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2755 1.1 joerg inc = -1;
2756 1.1 joerg else
2757 1.1 joerg inc = 1;
2758 1.1 joerg if (emu->x86.mode & (SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE)) {
2759 1.1 joerg /* dont care whether REPE or REPNE */
2760 1.1 joerg /* move them until CX is ZERO. */
2761 1.1 joerg while (emu->x86.R_CX != 0) {
2762 1.1 joerg emu->x86.R_AL = fetch_data_byte(emu, emu->x86.R_SI);
2763 1.1 joerg emu->x86.R_CX -= 1;
2764 1.1 joerg emu->x86.R_SI += inc;
2765 1.1 joerg }
2766 1.1 joerg emu->x86.mode &= ~(SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE);
2767 1.1 joerg } else {
2768 1.1 joerg emu->x86.R_AL = fetch_data_byte(emu, emu->x86.R_SI);
2769 1.1 joerg emu->x86.R_SI += inc;
2770 1.1 joerg }
2771 1.1 joerg }
2772 1.1 joerg /****************************************************************************
2773 1.1 joerg REMARKS:
2774 1.1 joerg Handles opcode 0xad
2775 1.1 joerg ****************************************************************************/
2776 1.1 joerg static void
2777 1.1 joerg x86emuOp_lods_word(struct X86EMU *emu)
2778 1.1 joerg {
2779 1.1 joerg int inc;
2780 1.1 joerg uint32_t count;
2781 1.1 joerg
2782 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2783 1.1 joerg inc = 4;
2784 1.1 joerg else
2785 1.1 joerg inc = 2;
2786 1.1 joerg
2787 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2788 1.1 joerg inc = -inc;
2789 1.1 joerg
2790 1.1 joerg count = 1;
2791 1.1 joerg if (emu->x86.mode & (SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE)) {
2792 1.1 joerg /* dont care whether REPE or REPNE */
2793 1.1 joerg /* move them until CX is ZERO. */
2794 1.1 joerg count = emu->x86.R_CX;
2795 1.1 joerg emu->x86.R_CX = 0;
2796 1.1 joerg emu->x86.mode &= ~(SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE);
2797 1.1 joerg }
2798 1.1 joerg while (count--) {
2799 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2800 1.1 joerg emu->x86.R_EAX = fetch_data_long(emu, emu->x86.R_SI);
2801 1.1 joerg } else {
2802 1.1 joerg emu->x86.R_AX = fetch_data_word(emu, emu->x86.R_SI);
2803 1.1 joerg }
2804 1.1 joerg emu->x86.R_SI += inc;
2805 1.1 joerg }
2806 1.1 joerg }
2807 1.1 joerg /****************************************************************************
2808 1.1 joerg REMARKS:
2809 1.1 joerg Handles opcode 0xae
2810 1.1 joerg ****************************************************************************/
2811 1.1 joerg static void
2812 1.1 joerg x86emuOp_scas_byte(struct X86EMU *emu)
2813 1.1 joerg {
2814 1.1 joerg int8_t val2;
2815 1.1 joerg int inc;
2816 1.1 joerg
2817 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2818 1.1 joerg inc = -1;
2819 1.1 joerg else
2820 1.1 joerg inc = 1;
2821 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_REPE) {
2822 1.1 joerg /* REPE */
2823 1.1 joerg /* move them until CX is ZERO. */
2824 1.1 joerg while (emu->x86.R_CX != 0) {
2825 1.1 joerg val2 = fetch_byte(emu, emu->x86.R_ES, emu->x86.R_DI);
2826 1.1 joerg cmp_byte(emu, emu->x86.R_AL, val2);
2827 1.1 joerg emu->x86.R_CX -= 1;
2828 1.1 joerg emu->x86.R_DI += inc;
2829 1.1 joerg if (ACCESS_FLAG(F_ZF) == 0)
2830 1.1 joerg break;
2831 1.1 joerg }
2832 1.1 joerg emu->x86.mode &= ~SYSMODE_PREFIX_REPE;
2833 1.1 joerg } else if (emu->x86.mode & SYSMODE_PREFIX_REPNE) {
2834 1.1 joerg /* REPNE */
2835 1.1 joerg /* move them until CX is ZERO. */
2836 1.1 joerg while (emu->x86.R_CX != 0) {
2837 1.1 joerg val2 = fetch_byte(emu, emu->x86.R_ES, emu->x86.R_DI);
2838 1.1 joerg cmp_byte(emu, emu->x86.R_AL, val2);
2839 1.1 joerg emu->x86.R_CX -= 1;
2840 1.1 joerg emu->x86.R_DI += inc;
2841 1.1 joerg if (ACCESS_FLAG(F_ZF))
2842 1.1 joerg break; /* zero flag set means equal */
2843 1.1 joerg }
2844 1.1 joerg emu->x86.mode &= ~SYSMODE_PREFIX_REPNE;
2845 1.1 joerg } else {
2846 1.1 joerg val2 = fetch_byte(emu, emu->x86.R_ES, emu->x86.R_DI);
2847 1.1 joerg cmp_byte(emu, emu->x86.R_AL, val2);
2848 1.1 joerg emu->x86.R_DI += inc;
2849 1.1 joerg }
2850 1.1 joerg }
2851 1.1 joerg /****************************************************************************
2852 1.1 joerg REMARKS:
2853 1.1 joerg Handles opcode 0xaf
2854 1.1 joerg ****************************************************************************/
2855 1.1 joerg static void
2856 1.1 joerg x86emuOp_scas_word(struct X86EMU *emu)
2857 1.1 joerg {
2858 1.1 joerg int inc;
2859 1.1 joerg uint32_t val;
2860 1.1 joerg
2861 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2862 1.1 joerg inc = 4;
2863 1.1 joerg else
2864 1.1 joerg inc = 2;
2865 1.1 joerg
2866 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2867 1.1 joerg inc = -inc;
2868 1.1 joerg
2869 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_REPE) {
2870 1.1 joerg /* REPE */
2871 1.1 joerg /* move them until CX is ZERO. */
2872 1.1 joerg while (emu->x86.R_CX != 0) {
2873 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2874 1.1 joerg val = fetch_long(emu, emu->x86.R_ES, emu->x86.R_DI);
2875 1.1 joerg cmp_long(emu, emu->x86.R_EAX, val);
2876 1.1 joerg } else {
2877 1.1 joerg val = fetch_word(emu, emu->x86.R_ES, emu->x86.R_DI);
2878 1.1 joerg cmp_word(emu, emu->x86.R_AX, (uint16_t) val);
2879 1.1 joerg }
2880 1.1 joerg emu->x86.R_CX -= 1;
2881 1.1 joerg emu->x86.R_DI += inc;
2882 1.1 joerg if (ACCESS_FLAG(F_ZF) == 0)
2883 1.1 joerg break;
2884 1.1 joerg }
2885 1.1 joerg emu->x86.mode &= ~SYSMODE_PREFIX_REPE;
2886 1.1 joerg } else if (emu->x86.mode & SYSMODE_PREFIX_REPNE) {
2887 1.1 joerg /* REPNE */
2888 1.1 joerg /* move them until CX is ZERO. */
2889 1.1 joerg while (emu->x86.R_CX != 0) {
2890 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2891 1.1 joerg val = fetch_long(emu, emu->x86.R_ES, emu->x86.R_DI);
2892 1.1 joerg cmp_long(emu, emu->x86.R_EAX, val);
2893 1.1 joerg } else {
2894 1.1 joerg val = fetch_word(emu, emu->x86.R_ES, emu->x86.R_DI);
2895 1.1 joerg cmp_word(emu, emu->x86.R_AX, (uint16_t) val);
2896 1.1 joerg }
2897 1.1 joerg emu->x86.R_CX -= 1;
2898 1.1 joerg emu->x86.R_DI += inc;
2899 1.1 joerg if (ACCESS_FLAG(F_ZF))
2900 1.1 joerg break; /* zero flag set means equal */
2901 1.1 joerg }
2902 1.1 joerg emu->x86.mode &= ~SYSMODE_PREFIX_REPNE;
2903 1.1 joerg } else {
2904 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2905 1.1 joerg val = fetch_long(emu, emu->x86.R_ES, emu->x86.R_DI);
2906 1.1 joerg cmp_long(emu, emu->x86.R_EAX, val);
2907 1.1 joerg } else {
2908 1.1 joerg val = fetch_word(emu, emu->x86.R_ES, emu->x86.R_DI);
2909 1.1 joerg cmp_word(emu, emu->x86.R_AX, (uint16_t) val);
2910 1.1 joerg }
2911 1.1 joerg emu->x86.R_DI += inc;
2912 1.1 joerg }
2913 1.1 joerg }
2914 1.1 joerg /****************************************************************************
2915 1.1 joerg REMARKS:
2916 1.1 joerg Handles opcode 0xb8
2917 1.1 joerg ****************************************************************************/
2918 1.1 joerg static void
2919 1.1 joerg x86emuOp_mov_word_AX_IMM(struct X86EMU *emu)
2920 1.1 joerg {
2921 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2922 1.1 joerg emu->x86.R_EAX = fetch_long_imm(emu);
2923 1.1 joerg else
2924 1.1 joerg emu->x86.R_AX = fetch_word_imm(emu);
2925 1.1 joerg }
2926 1.1 joerg /****************************************************************************
2927 1.1 joerg REMARKS:
2928 1.1 joerg Handles opcode 0xb9
2929 1.1 joerg ****************************************************************************/
2930 1.1 joerg static void
2931 1.1 joerg x86emuOp_mov_word_CX_IMM(struct X86EMU *emu)
2932 1.1 joerg {
2933 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2934 1.1 joerg emu->x86.R_ECX = fetch_long_imm(emu);
2935 1.1 joerg else
2936 1.1 joerg emu->x86.R_CX = fetch_word_imm(emu);
2937 1.1 joerg }
2938 1.1 joerg /****************************************************************************
2939 1.1 joerg REMARKS:
2940 1.1 joerg Handles opcode 0xba
2941 1.1 joerg ****************************************************************************/
2942 1.1 joerg static void
2943 1.1 joerg x86emuOp_mov_word_DX_IMM(struct X86EMU *emu)
2944 1.1 joerg {
2945 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2946 1.1 joerg emu->x86.R_EDX = fetch_long_imm(emu);
2947 1.1 joerg else
2948 1.1 joerg emu->x86.R_DX = fetch_word_imm(emu);
2949 1.1 joerg }
2950 1.1 joerg /****************************************************************************
2951 1.1 joerg REMARKS:
2952 1.1 joerg Handles opcode 0xbb
2953 1.1 joerg ****************************************************************************/
2954 1.1 joerg static void
2955 1.1 joerg x86emuOp_mov_word_BX_IMM(struct X86EMU *emu)
2956 1.1 joerg {
2957 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2958 1.1 joerg emu->x86.R_EBX = fetch_long_imm(emu);
2959 1.1 joerg else
2960 1.1 joerg emu->x86.R_BX = fetch_word_imm(emu);
2961 1.1 joerg }
2962 1.1 joerg /****************************************************************************
2963 1.1 joerg REMARKS:
2964 1.1 joerg Handles opcode 0xbc
2965 1.1 joerg ****************************************************************************/
2966 1.1 joerg static void
2967 1.1 joerg x86emuOp_mov_word_SP_IMM(struct X86EMU *emu)
2968 1.1 joerg {
2969 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2970 1.1 joerg emu->x86.R_ESP = fetch_long_imm(emu);
2971 1.1 joerg else
2972 1.1 joerg emu->x86.R_SP = fetch_word_imm(emu);
2973 1.1 joerg }
2974 1.1 joerg /****************************************************************************
2975 1.1 joerg REMARKS:
2976 1.1 joerg Handles opcode 0xbd
2977 1.1 joerg ****************************************************************************/
2978 1.1 joerg static void
2979 1.1 joerg x86emuOp_mov_word_BP_IMM(struct X86EMU *emu)
2980 1.1 joerg {
2981 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2982 1.1 joerg emu->x86.R_EBP = fetch_long_imm(emu);
2983 1.1 joerg else
2984 1.1 joerg emu->x86.R_BP = fetch_word_imm(emu);
2985 1.1 joerg }
2986 1.1 joerg /****************************************************************************
2987 1.1 joerg REMARKS:
2988 1.1 joerg Handles opcode 0xbe
2989 1.1 joerg ****************************************************************************/
2990 1.1 joerg static void
2991 1.1 joerg x86emuOp_mov_word_SI_IMM(struct X86EMU *emu)
2992 1.1 joerg {
2993 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2994 1.1 joerg emu->x86.R_ESI = fetch_long_imm(emu);
2995 1.1 joerg else
2996 1.1 joerg emu->x86.R_SI = fetch_word_imm(emu);
2997 1.1 joerg }
2998 1.1 joerg /****************************************************************************
2999 1.1 joerg REMARKS:
3000 1.1 joerg Handles opcode 0xbf
3001 1.1 joerg ****************************************************************************/
3002 1.1 joerg static void
3003 1.1 joerg x86emuOp_mov_word_DI_IMM(struct X86EMU *emu)
3004 1.1 joerg {
3005 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
3006 1.1 joerg emu->x86.R_EDI = fetch_long_imm(emu);
3007 1.1 joerg else
3008 1.1 joerg emu->x86.R_DI = fetch_word_imm(emu);
3009 1.1 joerg }
3010 1.1 joerg /* used by opcodes c0, d0, and d2. */
3011 1.1 joerg static
3012 1.1 joerg uint8_t(* const opcD0_byte_operation[]) (struct X86EMU *, uint8_t d, uint8_t s) =
3013 1.1 joerg {
3014 1.1 joerg rol_byte,
3015 1.1 joerg ror_byte,
3016 1.1 joerg rcl_byte,
3017 1.1 joerg rcr_byte,
3018 1.1 joerg shl_byte,
3019 1.1 joerg shr_byte,
3020 1.1 joerg shl_byte, /* sal_byte === shl_byte by definition */
3021 1.1 joerg sar_byte,
3022 1.1 joerg };
3023 1.1 joerg /****************************************************************************
3024 1.1 joerg REMARKS:
3025 1.1 joerg Handles opcode 0xc0
3026 1.1 joerg ****************************************************************************/
3027 1.1 joerg static void
3028 1.1 joerg x86emuOp_opcC0_byte_RM_MEM(struct X86EMU *emu)
3029 1.1 joerg {
3030 1.1 joerg uint8_t destval, amt;
3031 1.1 joerg
3032 1.1 joerg /*
3033 1.1 joerg * Yet another weirdo special case instruction format. Part of
3034 1.1 joerg * the opcode held below in "RH". Doubly nested case would
3035 1.1 joerg * result, except that the decoded instruction
3036 1.1 joerg */
3037 1.1 joerg fetch_decode_modrm(emu);
3038 1.1 joerg /* know operation, decode the mod byte to find the addressing mode. */
3039 1.1 joerg destval = decode_and_fetch_byte_imm8(emu, &amt);
3040 1.1 joerg destval = (*opcD0_byte_operation[emu->cur_rh]) (emu, destval, amt);
3041 1.1 joerg write_back_byte(emu, destval);
3042 1.1 joerg }
3043 1.1 joerg /* used by opcodes c1, d1, and d3. */
3044 1.1 joerg static
3045 1.1 joerg uint16_t(* const opcD1_word_operation[]) (struct X86EMU *, uint16_t s, uint8_t d) =
3046 1.1 joerg {
3047 1.1 joerg rol_word,
3048 1.1 joerg ror_word,
3049 1.1 joerg rcl_word,
3050 1.1 joerg rcr_word,
3051 1.1 joerg shl_word,
3052 1.1 joerg shr_word,
3053 1.1 joerg shl_word, /* sal_byte === shl_byte by definition */
3054 1.1 joerg sar_word,
3055 1.1 joerg };
3056 1.1 joerg /* used by opcodes c1, d1, and d3. */
3057 1.1 joerg static
3058 1.1 joerg uint32_t(* const opcD1_long_operation[]) (struct X86EMU *, uint32_t s, uint8_t d) =
3059 1.1 joerg {
3060 1.1 joerg rol_long,
3061 1.1 joerg ror_long,
3062 1.1 joerg rcl_long,
3063 1.1 joerg rcr_long,
3064 1.1 joerg shl_long,
3065 1.1 joerg shr_long,
3066 1.1 joerg shl_long, /* sal_byte === shl_byte by definition */
3067 1.1 joerg sar_long,
3068 1.1 joerg };
3069 1.1 joerg /****************************************************************************
3070 1.1 joerg REMARKS:
3071 1.1 joerg Handles opcode 0xc1
3072 1.1 joerg ****************************************************************************/
3073 1.1 joerg static void
3074 1.1 joerg x86emuOp_opcC1_word_RM_MEM(struct X86EMU *emu)
3075 1.1 joerg {
3076 1.1 joerg uint8_t amt;
3077 1.1 joerg
3078 1.1 joerg /*
3079 1.1 joerg * Yet another weirdo special case instruction format. Part of
3080 1.1 joerg * the opcode held below in "RH". Doubly nested case would
3081 1.1 joerg * result, except that the decoded instruction
3082 1.1 joerg */
3083 1.1 joerg fetch_decode_modrm(emu);
3084 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
3085 1.1 joerg uint32_t destval;
3086 1.1 joerg
3087 1.1 joerg destval = decode_and_fetch_long_imm8(emu, &amt);
3088 1.1 joerg destval = (*opcD1_long_operation[emu->cur_rh]) (emu, destval, amt);
3089 1.1 joerg write_back_long(emu, destval);
3090 1.1 joerg } else {
3091 1.1 joerg uint16_t destval;
3092 1.1 joerg
3093 1.1 joerg destval = decode_and_fetch_word_imm8(emu, &amt);
3094 1.1 joerg destval = (*opcD1_word_operation[emu->cur_rh]) (emu, destval, amt);
3095 1.1 joerg write_back_word(emu, destval);
3096 1.1 joerg }
3097 1.1 joerg }
3098 1.1 joerg /****************************************************************************
3099 1.1 joerg REMARKS:
3100 1.1 joerg Handles opcode 0xc2
3101 1.1 joerg ****************************************************************************/
3102 1.1 joerg static void
3103 1.1 joerg x86emuOp_ret_near_IMM(struct X86EMU *emu)
3104 1.1 joerg {
3105 1.1 joerg uint16_t imm;
3106 1.1 joerg
3107 1.1 joerg imm = fetch_word_imm(emu);
3108 1.1 joerg emu->x86.R_IP = pop_word(emu);
3109 1.1 joerg emu->x86.R_SP += imm;
3110 1.1 joerg }
3111 1.1 joerg /****************************************************************************
3112 1.1 joerg REMARKS:
3113 1.1 joerg Handles opcode 0xc6
3114 1.1 joerg ****************************************************************************/
3115 1.1 joerg static void
3116 1.1 joerg x86emuOp_mov_byte_RM_IMM(struct X86EMU *emu)
3117 1.1 joerg {
3118 1.1 joerg uint8_t *destreg;
3119 1.1 joerg uint32_t destoffset;
3120 1.1 joerg uint8_t imm;
3121 1.1 joerg
3122 1.1 joerg fetch_decode_modrm(emu);
3123 1.1 joerg if (emu->cur_rh != 0)
3124 1.1 joerg X86EMU_halt_sys(emu);
3125 1.1 joerg if (emu->cur_mod != 3) {
3126 1.1 joerg destoffset = decode_rl_address(emu);
3127 1.1 joerg imm = fetch_byte_imm(emu);
3128 1.1 joerg store_data_byte(emu, destoffset, imm);
3129 1.1 joerg } else {
3130 1.1 joerg destreg = decode_rl_byte_register(emu);
3131 1.1 joerg imm = fetch_byte_imm(emu);
3132 1.1 joerg *destreg = imm;
3133 1.1 joerg }
3134 1.1 joerg }
3135 1.1 joerg /****************************************************************************
3136 1.1 joerg REMARKS:
3137 1.1 joerg Handles opcode 0xc7
3138 1.1 joerg ****************************************************************************/
3139 1.1 joerg static void
3140 1.1 joerg x86emuOp32_mov_word_RM_IMM(struct X86EMU *emu)
3141 1.1 joerg {
3142 1.1 joerg uint32_t destoffset;
3143 1.1 joerg uint32_t imm, *destreg;
3144 1.1 joerg
3145 1.1 joerg fetch_decode_modrm(emu);
3146 1.1 joerg if (emu->cur_rh != 0)
3147 1.1 joerg X86EMU_halt_sys(emu);
3148 1.1 joerg
3149 1.1 joerg if (emu->cur_mod != 3) {
3150 1.1 joerg destoffset = decode_rl_address(emu);
3151 1.1 joerg imm = fetch_long_imm(emu);
3152 1.1 joerg store_data_long(emu, destoffset, imm);
3153 1.1 joerg } else {
3154 1.1 joerg destreg = decode_rl_long_register(emu);
3155 1.1 joerg imm = fetch_long_imm(emu);
3156 1.1 joerg *destreg = imm;
3157 1.1 joerg }
3158 1.1 joerg }
3159 1.1 joerg
3160 1.1 joerg static void
3161 1.1 joerg x86emuOp16_mov_word_RM_IMM(struct X86EMU *emu)
3162 1.1 joerg {
3163 1.1 joerg uint32_t destoffset;
3164 1.1 joerg uint16_t imm, *destreg;
3165 1.1 joerg
3166 1.1 joerg fetch_decode_modrm(emu);
3167 1.1 joerg if (emu->cur_rh != 0)
3168 1.1 joerg X86EMU_halt_sys(emu);
3169 1.1 joerg
3170 1.1 joerg if (emu->cur_mod != 3) {
3171 1.1 joerg destoffset = decode_rl_address(emu);
3172 1.1 joerg imm = fetch_word_imm(emu);
3173 1.1 joerg store_data_word(emu, destoffset, imm);
3174 1.1 joerg } else {
3175 1.1 joerg destreg = decode_rl_word_register(emu);
3176 1.1 joerg imm = fetch_word_imm(emu);
3177 1.1 joerg *destreg = imm;
3178 1.1 joerg }
3179 1.1 joerg }
3180 1.1 joerg
3181 1.1 joerg static void
3182 1.1 joerg x86emuOp_mov_word_RM_IMM(struct X86EMU *emu)
3183 1.1 joerg {
3184 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
3185 1.1 joerg x86emuOp32_mov_word_RM_IMM(emu);
3186 1.1 joerg else
3187 1.1 joerg x86emuOp16_mov_word_RM_IMM(emu);
3188 1.1 joerg }
3189 1.1 joerg /****************************************************************************
3190 1.1 joerg REMARKS:
3191 1.1 joerg Handles opcode 0xc8
3192 1.1 joerg ****************************************************************************/
3193 1.1 joerg static void
3194 1.1 joerg x86emuOp_enter(struct X86EMU *emu)
3195 1.1 joerg {
3196 1.1 joerg uint16_t local, frame_pointer;
3197 1.1 joerg uint8_t nesting;
3198 1.1 joerg int i;
3199 1.1 joerg
3200 1.1 joerg local = fetch_word_imm(emu);
3201 1.1 joerg nesting = fetch_byte_imm(emu);
3202 1.1 joerg push_word(emu, emu->x86.R_BP);
3203 1.1 joerg frame_pointer = emu->x86.R_SP;
3204 1.1 joerg if (nesting > 0) {
3205 1.1 joerg for (i = 1; i < nesting; i++) {
3206 1.1 joerg emu->x86.R_BP -= 2;
3207 1.1 joerg push_word(emu, fetch_word(emu, emu->x86.R_SS, emu->x86.R_BP));
3208 1.1 joerg }
3209 1.1 joerg push_word(emu, frame_pointer);
3210 1.1 joerg }
3211 1.1 joerg emu->x86.R_BP = frame_pointer;
3212 1.1 joerg emu->x86.R_SP = (uint16_t) (emu->x86.R_SP - local);
3213 1.1 joerg }
3214 1.1 joerg /****************************************************************************
3215 1.1 joerg REMARKS:
3216 1.1 joerg Handles opcode 0xc9
3217 1.1 joerg ****************************************************************************/
3218 1.1 joerg static void
3219 1.1 joerg x86emuOp_leave(struct X86EMU *emu)
3220 1.1 joerg {
3221 1.1 joerg emu->x86.R_SP = emu->x86.R_BP;
3222 1.1 joerg emu->x86.R_BP = pop_word(emu);
3223 1.1 joerg }
3224 1.1 joerg /****************************************************************************
3225 1.1 joerg REMARKS:
3226 1.1 joerg Handles opcode 0xca
3227 1.1 joerg ****************************************************************************/
3228 1.1 joerg static void
3229 1.1 joerg x86emuOp_ret_far_IMM(struct X86EMU *emu)
3230 1.1 joerg {
3231 1.1 joerg uint16_t imm;
3232 1.1 joerg
3233 1.1 joerg imm = fetch_word_imm(emu);
3234 1.1 joerg emu->x86.R_IP = pop_word(emu);
3235 1.1 joerg emu->x86.R_CS = pop_word(emu);
3236 1.1 joerg emu->x86.R_SP += imm;
3237 1.1 joerg }
3238 1.1 joerg /****************************************************************************
3239 1.1 joerg REMARKS:
3240 1.1 joerg Handles opcode 0xcb
3241 1.1 joerg ****************************************************************************/
3242 1.1 joerg static void
3243 1.1 joerg x86emuOp_ret_far(struct X86EMU *emu)
3244 1.1 joerg {
3245 1.1 joerg emu->x86.R_IP = pop_word(emu);
3246 1.1 joerg emu->x86.R_CS = pop_word(emu);
3247 1.1 joerg }
3248 1.1 joerg /****************************************************************************
3249 1.1 joerg REMARKS:
3250 1.1 joerg Handles opcode 0xcc
3251 1.1 joerg ****************************************************************************/
3252 1.1 joerg static void
3253 1.1 joerg x86emuOp_int3(struct X86EMU *emu)
3254 1.1 joerg {
3255 1.3 joerg x86emu_intr_dispatch(emu, 3);
3256 1.1 joerg }
3257 1.1 joerg /****************************************************************************
3258 1.1 joerg REMARKS:
3259 1.1 joerg Handles opcode 0xcd
3260 1.1 joerg ****************************************************************************/
3261 1.1 joerg static void
3262 1.1 joerg x86emuOp_int_IMM(struct X86EMU *emu)
3263 1.1 joerg {
3264 1.1 joerg uint8_t intnum;
3265 1.1 joerg
3266 1.1 joerg intnum = fetch_byte_imm(emu);
3267 1.3 joerg x86emu_intr_dispatch(emu, intnum);
3268 1.1 joerg }
3269 1.1 joerg /****************************************************************************
3270 1.1 joerg REMARKS:
3271 1.1 joerg Handles opcode 0xce
3272 1.1 joerg ****************************************************************************/
3273 1.1 joerg static void
3274 1.1 joerg x86emuOp_into(struct X86EMU *emu)
3275 1.1 joerg {
3276 1.3 joerg if (ACCESS_FLAG(F_OF))
3277 1.3 joerg x86emu_intr_dispatch(emu, 4);
3278 1.1 joerg }
3279 1.1 joerg /****************************************************************************
3280 1.1 joerg REMARKS:
3281 1.1 joerg Handles opcode 0xcf
3282 1.1 joerg ****************************************************************************/
3283 1.1 joerg static void
3284 1.1 joerg x86emuOp_iret(struct X86EMU *emu)
3285 1.1 joerg {
3286 1.1 joerg emu->x86.R_IP = pop_word(emu);
3287 1.1 joerg emu->x86.R_CS = pop_word(emu);
3288 1.1 joerg emu->x86.R_FLG = pop_word(emu);
3289 1.1 joerg }
3290 1.1 joerg /****************************************************************************
3291 1.1 joerg REMARKS:
3292 1.1 joerg Handles opcode 0xd0
3293 1.1 joerg ****************************************************************************/
3294 1.1 joerg static void
3295 1.1 joerg x86emuOp_opcD0_byte_RM_1(struct X86EMU *emu)
3296 1.1 joerg {
3297 1.1 joerg uint8_t destval;
3298 1.1 joerg
3299 1.1 joerg fetch_decode_modrm(emu);
3300 1.1 joerg destval = decode_and_fetch_byte(emu);
3301 1.1 joerg destval = (*opcD0_byte_operation[emu->cur_rh]) (emu, destval, 1);
3302 1.1 joerg write_back_byte(emu, destval);
3303 1.1 joerg }
3304 1.1 joerg /****************************************************************************
3305 1.1 joerg REMARKS:
3306 1.1 joerg Handles opcode 0xd1
3307 1.1 joerg ****************************************************************************/
3308 1.1 joerg static void
3309 1.1 joerg x86emuOp_opcD1_word_RM_1(struct X86EMU *emu)
3310 1.1 joerg {
3311 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
3312 1.1 joerg uint32_t destval;
3313 1.1 joerg
3314 1.1 joerg fetch_decode_modrm(emu);
3315 1.1 joerg destval = decode_and_fetch_long(emu);
3316 1.1 joerg destval = (*opcD1_long_operation[emu->cur_rh]) (emu, destval, 1);
3317 1.1 joerg write_back_long(emu, destval);
3318 1.1 joerg } else {
3319 1.1 joerg uint16_t destval;
3320 1.1 joerg
3321 1.1 joerg fetch_decode_modrm(emu);
3322 1.1 joerg destval = decode_and_fetch_word(emu);
3323 1.1 joerg destval = (*opcD1_word_operation[emu->cur_rh]) (emu, destval, 1);
3324 1.1 joerg write_back_word(emu, destval);
3325 1.1 joerg }
3326 1.1 joerg }
3327 1.1 joerg /****************************************************************************
3328 1.1 joerg REMARKS:
3329 1.1 joerg Handles opcode 0xd2
3330 1.1 joerg ****************************************************************************/
3331 1.1 joerg static void
3332 1.1 joerg x86emuOp_opcD2_byte_RM_CL(struct X86EMU *emu)
3333 1.1 joerg {
3334 1.1 joerg uint8_t destval;
3335 1.1 joerg
3336 1.1 joerg fetch_decode_modrm(emu);
3337 1.1 joerg destval = decode_and_fetch_byte(emu);
3338 1.1 joerg destval = (*opcD0_byte_operation[emu->cur_rh]) (emu, destval, emu->x86.R_CL);
3339 1.1 joerg write_back_byte(emu, destval);
3340 1.1 joerg }
3341 1.1 joerg /****************************************************************************
3342 1.1 joerg REMARKS:
3343 1.1 joerg Handles opcode 0xd3
3344 1.1 joerg ****************************************************************************/
3345 1.1 joerg static void
3346 1.1 joerg x86emuOp_opcD3_word_RM_CL(struct X86EMU *emu)
3347 1.1 joerg {
3348 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
3349 1.1 joerg uint32_t destval;
3350 1.1 joerg
3351 1.1 joerg fetch_decode_modrm(emu);
3352 1.1 joerg destval = decode_and_fetch_long(emu);
3353 1.1 joerg destval = (*opcD1_long_operation[emu->cur_rh]) (emu, destval, emu->x86.R_CL);
3354 1.1 joerg write_back_long(emu, destval);
3355 1.1 joerg } else {
3356 1.1 joerg uint16_t destval;
3357 1.1 joerg
3358 1.1 joerg fetch_decode_modrm(emu);
3359 1.1 joerg destval = decode_and_fetch_word(emu);
3360 1.1 joerg destval = (*opcD1_word_operation[emu->cur_rh]) (emu, destval, emu->x86.R_CL);
3361 1.1 joerg write_back_word(emu, destval);
3362 1.1 joerg }
3363 1.1 joerg }
3364 1.1 joerg /****************************************************************************
3365 1.1 joerg REMARKS:
3366 1.1 joerg Handles opcode 0xd4
3367 1.1 joerg ****************************************************************************/
3368 1.1 joerg static void
3369 1.1 joerg x86emuOp_aam(struct X86EMU *emu)
3370 1.1 joerg {
3371 1.1 joerg uint8_t a;
3372 1.1 joerg
3373 1.1 joerg a = fetch_byte_imm(emu); /* this is a stupid encoding. */
3374 1.1 joerg if (a != 10) {
3375 1.1 joerg /* fix: add base decoding aam_word(uint8_t val, int base a) */
3376 1.1 joerg X86EMU_halt_sys(emu);
3377 1.1 joerg }
3378 1.1 joerg /* note the type change here --- returning AL and AH in AX. */
3379 1.1 joerg emu->x86.R_AX = aam_word(emu, emu->x86.R_AL);
3380 1.1 joerg }
3381 1.1 joerg /****************************************************************************
3382 1.1 joerg REMARKS:
3383 1.1 joerg Handles opcode 0xd5
3384 1.1 joerg ****************************************************************************/
3385 1.1 joerg static void
3386 1.1 joerg x86emuOp_aad(struct X86EMU *emu)
3387 1.1 joerg {
3388 1.1 joerg uint8_t a;
3389 1.1 joerg
3390 1.1 joerg a = fetch_byte_imm(emu);
3391 1.1 joerg if (a != 10) {
3392 1.1 joerg /* fix: add base decoding aad_word(uint16_t val, int base a) */
3393 1.1 joerg X86EMU_halt_sys(emu);
3394 1.1 joerg }
3395 1.1 joerg emu->x86.R_AX = aad_word(emu, emu->x86.R_AX);
3396 1.1 joerg }
3397 1.1 joerg /* opcode 0xd6 ILLEGAL OPCODE */
3398 1.1 joerg
3399 1.1 joerg /****************************************************************************
3400 1.1 joerg REMARKS:
3401 1.1 joerg Handles opcode 0xd7
3402 1.1 joerg ****************************************************************************/
3403 1.1 joerg static void
3404 1.1 joerg x86emuOp_xlat(struct X86EMU *emu)
3405 1.1 joerg {
3406 1.1 joerg uint16_t addr;
3407 1.1 joerg
3408 1.1 joerg addr = (uint16_t) (emu->x86.R_BX + (uint8_t) emu->x86.R_AL);
3409 1.1 joerg emu->x86.R_AL = fetch_data_byte(emu, addr);
3410 1.1 joerg }
3411 1.1 joerg
3412 1.1 joerg /* opcode=0xd8 */
3413 1.1 joerg static void
3414 1.1 joerg x86emuOp_esc_coprocess_d8(struct X86EMU *emu)
3415 1.1 joerg {
3416 1.1 joerg }
3417 1.1 joerg /* opcode=0xd9 */
3418 1.1 joerg static void
3419 1.1 joerg x86emuOp_esc_coprocess_d9(struct X86EMU *emu)
3420 1.1 joerg {
3421 1.1 joerg fetch_decode_modrm(emu);
3422 1.1 joerg if (emu->cur_mod != 3)
3423 1.1 joerg decode_rl_address(emu);
3424 1.1 joerg }
3425 1.1 joerg /* opcode=0xda */
3426 1.1 joerg static void
3427 1.1 joerg x86emuOp_esc_coprocess_da(struct X86EMU *emu)
3428 1.1 joerg {
3429 1.1 joerg fetch_decode_modrm(emu);
3430 1.1 joerg if (emu->cur_mod != 3)
3431 1.1 joerg decode_rl_address(emu);
3432 1.1 joerg }
3433 1.1 joerg /* opcode=0xdb */
3434 1.1 joerg static void
3435 1.1 joerg x86emuOp_esc_coprocess_db(struct X86EMU *emu)
3436 1.1 joerg {
3437 1.1 joerg fetch_decode_modrm(emu);
3438 1.1 joerg if (emu->cur_mod != 3)
3439 1.1 joerg decode_rl_address(emu);
3440 1.1 joerg }
3441 1.1 joerg /* opcode=0xdc */
3442 1.1 joerg static void
3443 1.1 joerg x86emuOp_esc_coprocess_dc(struct X86EMU *emu)
3444 1.1 joerg {
3445 1.1 joerg fetch_decode_modrm(emu);
3446 1.1 joerg if (emu->cur_mod != 3)
3447 1.1 joerg decode_rl_address(emu);
3448 1.1 joerg }
3449 1.1 joerg /* opcode=0xdd */
3450 1.1 joerg static void
3451 1.1 joerg x86emuOp_esc_coprocess_dd(struct X86EMU *emu)
3452 1.1 joerg {
3453 1.1 joerg fetch_decode_modrm(emu);
3454 1.1 joerg if (emu->cur_mod != 3)
3455 1.1 joerg decode_rl_address(emu);
3456 1.1 joerg }
3457 1.1 joerg /* opcode=0xde */
3458 1.1 joerg static void
3459 1.1 joerg x86emuOp_esc_coprocess_de(struct X86EMU *emu)
3460 1.1 joerg {
3461 1.1 joerg fetch_decode_modrm(emu);
3462 1.1 joerg if (emu->cur_mod != 3)
3463 1.1 joerg decode_rl_address(emu);
3464 1.1 joerg }
3465 1.1 joerg /* opcode=0xdf */
3466 1.1 joerg static void
3467 1.1 joerg x86emuOp_esc_coprocess_df(struct X86EMU *emu)
3468 1.1 joerg {
3469 1.1 joerg fetch_decode_modrm(emu);
3470 1.1 joerg if (emu->cur_mod != 3)
3471 1.1 joerg decode_rl_address(emu);
3472 1.1 joerg }
3473 1.1 joerg
3474 1.1 joerg /****************************************************************************
3475 1.1 joerg REMARKS:
3476 1.1 joerg Handles opcode 0xe0
3477 1.1 joerg ****************************************************************************/
3478 1.1 joerg static void
3479 1.1 joerg x86emuOp_loopne(struct X86EMU *emu)
3480 1.1 joerg {
3481 1.1 joerg int16_t ip;
3482 1.1 joerg
3483 1.1 joerg ip = (int8_t) fetch_byte_imm(emu);
3484 1.1 joerg ip += (int16_t) emu->x86.R_IP;
3485 1.1 joerg emu->x86.R_CX -= 1;
3486 1.1 joerg if (emu->x86.R_CX != 0 && !ACCESS_FLAG(F_ZF)) /* CX != 0 and !ZF */
3487 1.1 joerg emu->x86.R_IP = ip;
3488 1.1 joerg }
3489 1.1 joerg /****************************************************************************
3490 1.1 joerg REMARKS:
3491 1.1 joerg Handles opcode 0xe1
3492 1.1 joerg ****************************************************************************/
3493 1.1 joerg static void
3494 1.1 joerg x86emuOp_loope(struct X86EMU *emu)
3495 1.1 joerg {
3496 1.1 joerg int16_t ip;
3497 1.1 joerg
3498 1.1 joerg ip = (int8_t) fetch_byte_imm(emu);
3499 1.1 joerg ip += (int16_t) emu->x86.R_IP;
3500 1.1 joerg emu->x86.R_CX -= 1;
3501 1.1 joerg if (emu->x86.R_CX != 0 && ACCESS_FLAG(F_ZF)) /* CX != 0 and ZF */
3502 1.1 joerg emu->x86.R_IP = ip;
3503 1.1 joerg }
3504 1.1 joerg /****************************************************************************
3505 1.1 joerg REMARKS:
3506 1.1 joerg Handles opcode 0xe2
3507 1.1 joerg ****************************************************************************/
3508 1.1 joerg static void
3509 1.1 joerg x86emuOp_loop(struct X86EMU *emu)
3510 1.1 joerg {
3511 1.1 joerg int16_t ip;
3512 1.1 joerg
3513 1.1 joerg ip = (int8_t) fetch_byte_imm(emu);
3514 1.1 joerg ip += (int16_t) emu->x86.R_IP;
3515 1.1 joerg emu->x86.R_CX -= 1;
3516 1.1 joerg if (emu->x86.R_CX != 0)
3517 1.1 joerg emu->x86.R_IP = ip;
3518 1.1 joerg }
3519 1.1 joerg /****************************************************************************
3520 1.1 joerg REMARKS:
3521 1.1 joerg Handles opcode 0xe3
3522 1.1 joerg ****************************************************************************/
3523 1.1 joerg static void
3524 1.1 joerg x86emuOp_jcxz(struct X86EMU *emu)
3525 1.1 joerg {
3526 1.1 joerg uint16_t target;
3527 1.1 joerg int8_t offset;
3528 1.1 joerg
3529 1.1 joerg /* jump to byte offset if overflow flag is set */
3530 1.1 joerg offset = (int8_t) fetch_byte_imm(emu);
3531 1.1 joerg target = (uint16_t) (emu->x86.R_IP + offset);
3532 1.1 joerg if (emu->x86.R_CX == 0)
3533 1.1 joerg emu->x86.R_IP = target;
3534 1.1 joerg }
3535 1.1 joerg /****************************************************************************
3536 1.1 joerg REMARKS:
3537 1.1 joerg Handles opcode 0xe4
3538 1.1 joerg ****************************************************************************/
3539 1.1 joerg static void
3540 1.1 joerg x86emuOp_in_byte_AL_IMM(struct X86EMU *emu)
3541 1.1 joerg {
3542 1.1 joerg uint8_t port;
3543 1.1 joerg
3544 1.1 joerg port = (uint8_t) fetch_byte_imm(emu);
3545 1.1 joerg emu->x86.R_AL = (*emu->emu_inb) (emu, port);
3546 1.1 joerg }
3547 1.1 joerg /****************************************************************************
3548 1.1 joerg REMARKS:
3549 1.1 joerg Handles opcode 0xe5
3550 1.1 joerg ****************************************************************************/
3551 1.1 joerg static void
3552 1.1 joerg x86emuOp_in_word_AX_IMM(struct X86EMU *emu)
3553 1.1 joerg {
3554 1.1 joerg uint8_t port;
3555 1.1 joerg
3556 1.1 joerg port = (uint8_t) fetch_byte_imm(emu);
3557 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
3558 1.1 joerg emu->x86.R_EAX = (*emu->emu_inl) (emu, port);
3559 1.1 joerg } else {
3560 1.1 joerg emu->x86.R_AX = (*emu->emu_inw) (emu, port);
3561 1.1 joerg }
3562 1.1 joerg }
3563 1.1 joerg /****************************************************************************
3564 1.1 joerg REMARKS:
3565 1.1 joerg Handles opcode 0xe6
3566 1.1 joerg ****************************************************************************/
3567 1.1 joerg static void
3568 1.1 joerg x86emuOp_out_byte_IMM_AL(struct X86EMU *emu)
3569 1.1 joerg {
3570 1.1 joerg uint8_t port;
3571 1.1 joerg
3572 1.1 joerg port = (uint8_t) fetch_byte_imm(emu);
3573 1.1 joerg (*emu->emu_outb) (emu, port, emu->x86.R_AL);
3574 1.1 joerg }
3575 1.1 joerg /****************************************************************************
3576 1.1 joerg REMARKS:
3577 1.1 joerg Handles opcode 0xe7
3578 1.1 joerg ****************************************************************************/
3579 1.1 joerg static void
3580 1.1 joerg x86emuOp_out_word_IMM_AX(struct X86EMU *emu)
3581 1.1 joerg {
3582 1.1 joerg uint8_t port;
3583 1.1 joerg
3584 1.1 joerg port = (uint8_t) fetch_byte_imm(emu);
3585 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
3586 1.1 joerg (*emu->emu_outl) (emu, port, emu->x86.R_EAX);
3587 1.1 joerg } else {
3588 1.1 joerg (*emu->emu_outw) (emu, port, emu->x86.R_AX);
3589 1.1 joerg }
3590 1.1 joerg }
3591 1.1 joerg /****************************************************************************
3592 1.1 joerg REMARKS:
3593 1.1 joerg Handles opcode 0xe8
3594 1.1 joerg ****************************************************************************/
3595 1.1 joerg static void
3596 1.1 joerg x86emuOp_call_near_IMM(struct X86EMU *emu)
3597 1.1 joerg {
3598 1.1 joerg int16_t ip;
3599 1.1 joerg
3600 1.1 joerg ip = (int16_t) fetch_word_imm(emu);
3601 1.1 joerg ip += (int16_t) emu->x86.R_IP; /* CHECK SIGN */
3602 1.1 joerg push_word(emu, emu->x86.R_IP);
3603 1.1 joerg emu->x86.R_IP = ip;
3604 1.1 joerg }
3605 1.1 joerg /****************************************************************************
3606 1.1 joerg REMARKS:
3607 1.1 joerg Handles opcode 0xe9
3608 1.1 joerg ****************************************************************************/
3609 1.1 joerg static void
3610 1.1 joerg x86emuOp_jump_near_IMM(struct X86EMU *emu)
3611 1.1 joerg {
3612 1.1 joerg int ip;
3613 1.1 joerg
3614 1.1 joerg ip = (int16_t) fetch_word_imm(emu);
3615 1.1 joerg ip += (int16_t) emu->x86.R_IP;
3616 1.1 joerg emu->x86.R_IP = (uint16_t) ip;
3617 1.1 joerg }
3618 1.1 joerg /****************************************************************************
3619 1.1 joerg REMARKS:
3620 1.1 joerg Handles opcode 0xea
3621 1.1 joerg ****************************************************************************/
3622 1.1 joerg static void
3623 1.1 joerg x86emuOp_jump_far_IMM(struct X86EMU *emu)
3624 1.1 joerg {
3625 1.1 joerg uint16_t cs, ip;
3626 1.1 joerg
3627 1.1 joerg ip = fetch_word_imm(emu);
3628 1.1 joerg cs = fetch_word_imm(emu);
3629 1.1 joerg emu->x86.R_IP = ip;
3630 1.1 joerg emu->x86.R_CS = cs;
3631 1.1 joerg }
3632 1.1 joerg /****************************************************************************
3633 1.1 joerg REMARKS:
3634 1.1 joerg Handles opcode 0xeb
3635 1.1 joerg ****************************************************************************/
3636 1.1 joerg static void
3637 1.1 joerg x86emuOp_jump_byte_IMM(struct X86EMU *emu)
3638 1.1 joerg {
3639 1.1 joerg uint16_t target;
3640 1.1 joerg int8_t offset;
3641 1.1 joerg
3642 1.1 joerg offset = (int8_t) fetch_byte_imm(emu);
3643 1.1 joerg target = (uint16_t) (emu->x86.R_IP + offset);
3644 1.1 joerg emu->x86.R_IP = target;
3645 1.1 joerg }
3646 1.1 joerg /****************************************************************************
3647 1.1 joerg REMARKS:
3648 1.1 joerg Handles opcode 0xec
3649 1.1 joerg ****************************************************************************/
3650 1.1 joerg static void
3651 1.1 joerg x86emuOp_in_byte_AL_DX(struct X86EMU *emu)
3652 1.1 joerg {
3653 1.1 joerg emu->x86.R_AL = (*emu->emu_inb) (emu, emu->x86.R_DX);
3654 1.1 joerg }
3655 1.1 joerg /****************************************************************************
3656 1.1 joerg REMARKS:
3657 1.1 joerg Handles opcode 0xed
3658 1.1 joerg ****************************************************************************/
3659 1.1 joerg static void
3660 1.1 joerg x86emuOp_in_word_AX_DX(struct X86EMU *emu)
3661 1.1 joerg {
3662 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
3663 1.1 joerg emu->x86.R_EAX = (*emu->emu_inl) (emu, emu->x86.R_DX);
3664 1.1 joerg } else {
3665 1.1 joerg emu->x86.R_AX = (*emu->emu_inw) (emu, emu->x86.R_DX);
3666 1.1 joerg }
3667 1.1 joerg }
3668 1.1 joerg /****************************************************************************
3669 1.1 joerg REMARKS:
3670 1.1 joerg Handles opcode 0xee
3671 1.1 joerg ****************************************************************************/
3672 1.1 joerg static void
3673 1.1 joerg x86emuOp_out_byte_DX_AL(struct X86EMU *emu)
3674 1.1 joerg {
3675 1.1 joerg (*emu->emu_outb) (emu, emu->x86.R_DX, emu->x86.R_AL);
3676 1.1 joerg }
3677 1.1 joerg /****************************************************************************
3678 1.1 joerg REMARKS:
3679 1.1 joerg Handles opcode 0xef
3680 1.1 joerg ****************************************************************************/
3681 1.1 joerg static void
3682 1.1 joerg x86emuOp_out_word_DX_AX(struct X86EMU *emu)
3683 1.1 joerg {
3684 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
3685 1.1 joerg (*emu->emu_outl) (emu, emu->x86.R_DX, emu->x86.R_EAX);
3686 1.1 joerg } else {
3687 1.1 joerg (*emu->emu_outw) (emu, emu->x86.R_DX, emu->x86.R_AX);
3688 1.1 joerg }
3689 1.1 joerg }
3690 1.1 joerg /****************************************************************************
3691 1.1 joerg REMARKS:
3692 1.1 joerg Handles opcode 0xf0
3693 1.1 joerg ****************************************************************************/
3694 1.1 joerg static void
3695 1.1 joerg x86emuOp_lock(struct X86EMU *emu)
3696 1.1 joerg {
3697 1.1 joerg }
3698 1.1 joerg /*opcode 0xf1 ILLEGAL OPERATION */
3699 1.1 joerg
3700 1.1 joerg /****************************************************************************
3701 1.1 joerg REMARKS:
3702 1.1 joerg Handles opcode 0xf5
3703 1.1 joerg ****************************************************************************/
3704 1.1 joerg static void
3705 1.1 joerg x86emuOp_cmc(struct X86EMU *emu)
3706 1.1 joerg {
3707 1.1 joerg if (ACCESS_FLAG(F_CF))
3708 1.1 joerg CLEAR_FLAG(F_CF);
3709 1.1 joerg else
3710 1.1 joerg SET_FLAG(F_CF);
3711 1.1 joerg }
3712 1.1 joerg /****************************************************************************
3713 1.1 joerg REMARKS:
3714 1.1 joerg Handles opcode 0xf6
3715 1.1 joerg ****************************************************************************/
3716 1.1 joerg static void
3717 1.1 joerg x86emuOp_opcF6_byte_RM(struct X86EMU *emu)
3718 1.1 joerg {
3719 1.1 joerg uint8_t destval, srcval;
3720 1.1 joerg
3721 1.1 joerg /* long, drawn out code follows. Double switch for a total of 32
3722 1.1 joerg * cases. */
3723 1.1 joerg fetch_decode_modrm(emu);
3724 1.1 joerg if (emu->cur_rh == 1)
3725 1.1 joerg X86EMU_halt_sys(emu);
3726 1.1 joerg
3727 1.1 joerg if (emu->cur_rh == 0) {
3728 1.1 joerg destval = decode_and_fetch_byte_imm8(emu, &srcval);
3729 1.1 joerg test_byte(emu, destval, srcval);
3730 1.1 joerg return;
3731 1.1 joerg }
3732 1.1 joerg destval = decode_and_fetch_byte(emu);
3733 1.1 joerg switch (emu->cur_rh) {
3734 1.1 joerg case 2:
3735 1.1 joerg destval = ~destval;
3736 1.1 joerg write_back_byte(emu, destval);
3737 1.1 joerg break;
3738 1.1 joerg case 3:
3739 1.1 joerg destval = neg_byte(emu, destval);
3740 1.1 joerg write_back_byte(emu, destval);
3741 1.1 joerg break;
3742 1.1 joerg case 4:
3743 1.1 joerg mul_byte(emu, destval);
3744 1.1 joerg break;
3745 1.1 joerg case 5:
3746 1.1 joerg imul_byte(emu, destval);
3747 1.1 joerg break;
3748 1.1 joerg case 6:
3749 1.1 joerg div_byte(emu, destval);
3750 1.1 joerg break;
3751 1.1 joerg case 7:
3752 1.1 joerg idiv_byte(emu, destval);
3753 1.1 joerg break;
3754 1.1 joerg }
3755 1.1 joerg }
3756 1.1 joerg /****************************************************************************
3757 1.1 joerg REMARKS:
3758 1.1 joerg Handles opcode 0xf7
3759 1.1 joerg ****************************************************************************/
3760 1.1 joerg static void
3761 1.1 joerg x86emuOp32_opcF7_word_RM(struct X86EMU *emu)
3762 1.1 joerg {
3763 1.1 joerg uint32_t destval, srcval;
3764 1.1 joerg
3765 1.1 joerg /* long, drawn out code follows. Double switch for a total of 32
3766 1.1 joerg * cases. */
3767 1.1 joerg fetch_decode_modrm(emu);
3768 1.1 joerg if (emu->cur_rh == 1)
3769 1.1 joerg X86EMU_halt_sys(emu);
3770 1.1 joerg
3771 1.1 joerg if (emu->cur_rh == 0) {
3772 1.1 joerg if (emu->cur_mod != 3) {
3773 1.1 joerg uint32_t destoffset;
3774 1.1 joerg
3775 1.1 joerg destoffset = decode_rl_address(emu);
3776 1.1 joerg srcval = fetch_long_imm(emu);
3777 1.1 joerg destval = fetch_data_long(emu, destoffset);
3778 1.1 joerg } else {
3779 1.1 joerg srcval = fetch_long_imm(emu);
3780 1.1 joerg destval = *decode_rl_long_register(emu);
3781 1.1 joerg }
3782 1.1 joerg test_long(emu, destval, srcval);
3783 1.1 joerg return;
3784 1.1 joerg }
3785 1.1 joerg destval = decode_and_fetch_long(emu);
3786 1.1 joerg switch (emu->cur_rh) {
3787 1.1 joerg case 2:
3788 1.1 joerg destval = ~destval;
3789 1.1 joerg write_back_long(emu, destval);
3790 1.1 joerg break;
3791 1.1 joerg case 3:
3792 1.1 joerg destval = neg_long(emu, destval);
3793 1.1 joerg write_back_long(emu, destval);
3794 1.1 joerg break;
3795 1.1 joerg case 4:
3796 1.1 joerg mul_long(emu, destval);
3797 1.1 joerg break;
3798 1.1 joerg case 5:
3799 1.1 joerg imul_long(emu, destval);
3800 1.1 joerg break;
3801 1.1 joerg case 6:
3802 1.1 joerg div_long(emu, destval);
3803 1.1 joerg break;
3804 1.1 joerg case 7:
3805 1.1 joerg idiv_long(emu, destval);
3806 1.1 joerg break;
3807 1.1 joerg }
3808 1.1 joerg }
3809 1.1 joerg static void
3810 1.1 joerg x86emuOp16_opcF7_word_RM(struct X86EMU *emu)
3811 1.1 joerg {
3812 1.1 joerg uint16_t destval, srcval;
3813 1.1 joerg
3814 1.1 joerg /* long, drawn out code follows. Double switch for a total of 32
3815 1.1 joerg * cases. */
3816 1.1 joerg fetch_decode_modrm(emu);
3817 1.1 joerg if (emu->cur_rh == 1)
3818 1.1 joerg X86EMU_halt_sys(emu);
3819 1.1 joerg
3820 1.1 joerg if (emu->cur_rh == 0) {
3821 1.1 joerg if (emu->cur_mod != 3) {
3822 1.1 joerg uint32_t destoffset;
3823 1.1 joerg
3824 1.1 joerg destoffset = decode_rl_address(emu);
3825 1.1 joerg srcval = fetch_word_imm(emu);
3826 1.1 joerg destval = fetch_data_word(emu, destoffset);
3827 1.1 joerg } else {
3828 1.1 joerg srcval = fetch_word_imm(emu);
3829 1.1 joerg destval = *decode_rl_word_register(emu);
3830 1.1 joerg }
3831 1.1 joerg test_word(emu, destval, srcval);
3832 1.1 joerg return;
3833 1.1 joerg }
3834 1.1 joerg destval = decode_and_fetch_word(emu);
3835 1.1 joerg switch (emu->cur_rh) {
3836 1.1 joerg case 2:
3837 1.1 joerg destval = ~destval;
3838 1.1 joerg write_back_word(emu, destval);
3839 1.1 joerg break;
3840 1.1 joerg case 3:
3841 1.1 joerg destval = neg_word(emu, destval);
3842 1.1 joerg write_back_word(emu, destval);
3843 1.1 joerg break;
3844 1.1 joerg case 4:
3845 1.1 joerg mul_word(emu, destval);
3846 1.1 joerg break;
3847 1.1 joerg case 5:
3848 1.1 joerg imul_word(emu, destval);
3849 1.1 joerg break;
3850 1.1 joerg case 6:
3851 1.1 joerg div_word(emu, destval);
3852 1.1 joerg break;
3853 1.1 joerg case 7:
3854 1.1 joerg idiv_word(emu, destval);
3855 1.1 joerg break;
3856 1.1 joerg }
3857 1.1 joerg }
3858 1.1 joerg static void
3859 1.1 joerg x86emuOp_opcF7_word_RM(struct X86EMU *emu)
3860 1.1 joerg {
3861 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
3862 1.1 joerg x86emuOp32_opcF7_word_RM(emu);
3863 1.1 joerg else
3864 1.1 joerg x86emuOp16_opcF7_word_RM(emu);
3865 1.1 joerg }
3866 1.1 joerg /****************************************************************************
3867 1.1 joerg REMARKS:
3868 1.1 joerg Handles opcode 0xfe
3869 1.1 joerg ****************************************************************************/
3870 1.1 joerg static void
3871 1.1 joerg x86emuOp_opcFE_byte_RM(struct X86EMU *emu)
3872 1.1 joerg {
3873 1.1 joerg uint8_t destval;
3874 1.1 joerg uint32_t destoffset;
3875 1.1 joerg uint8_t *destreg;
3876 1.1 joerg
3877 1.1 joerg /* Yet another special case instruction. */
3878 1.1 joerg fetch_decode_modrm(emu);
3879 1.1 joerg if (emu->cur_mod != 3) {
3880 1.1 joerg destoffset = decode_rl_address(emu);
3881 1.1 joerg switch (emu->cur_rh) {
3882 1.1 joerg case 0: /* inc word ptr ... */
3883 1.1 joerg destval = fetch_data_byte(emu, destoffset);
3884 1.1 joerg destval = inc_byte(emu, destval);
3885 1.1 joerg store_data_byte(emu, destoffset, destval);
3886 1.1 joerg break;
3887 1.1 joerg case 1: /* dec word ptr ... */
3888 1.1 joerg destval = fetch_data_byte(emu, destoffset);
3889 1.1 joerg destval = dec_byte(emu, destval);
3890 1.1 joerg store_data_byte(emu, destoffset, destval);
3891 1.1 joerg break;
3892 1.1 joerg }
3893 1.1 joerg } else {
3894 1.1 joerg destreg = decode_rl_byte_register(emu);
3895 1.1 joerg switch (emu->cur_rh) {
3896 1.1 joerg case 0:
3897 1.1 joerg *destreg = inc_byte(emu, *destreg);
3898 1.1 joerg break;
3899 1.1 joerg case 1:
3900 1.1 joerg *destreg = dec_byte(emu, *destreg);
3901 1.1 joerg break;
3902 1.1 joerg }
3903 1.1 joerg }
3904 1.1 joerg }
3905 1.1 joerg /****************************************************************************
3906 1.1 joerg REMARKS:
3907 1.1 joerg Handles opcode 0xff
3908 1.1 joerg ****************************************************************************/
3909 1.1 joerg static void
3910 1.1 joerg x86emuOp32_opcFF_word_RM(struct X86EMU *emu)
3911 1.1 joerg {
3912 1.1 joerg uint32_t destoffset = 0;
3913 1.1 joerg uint32_t destval, *destreg;
3914 1.1 joerg
3915 1.1 joerg if (emu->cur_mod != 3) {
3916 1.1 joerg destoffset = decode_rl_address(emu);
3917 1.1 joerg destval = fetch_data_long(emu, destoffset);
3918 1.1 joerg switch (emu->cur_rh) {
3919 1.1 joerg case 0: /* inc word ptr ... */
3920 1.1 joerg destval = inc_long(emu, destval);
3921 1.1 joerg store_data_long(emu, destoffset, destval);
3922 1.1 joerg break;
3923 1.1 joerg case 1: /* dec word ptr ... */
3924 1.1 joerg destval = dec_long(emu, destval);
3925 1.1 joerg store_data_long(emu, destoffset, destval);
3926 1.1 joerg break;
3927 1.1 joerg case 6: /* push word ptr ... */
3928 1.1 joerg push_long(emu, destval);
3929 1.1 joerg break;
3930 1.1 joerg }
3931 1.1 joerg } else {
3932 1.1 joerg destreg = decode_rl_long_register(emu);
3933 1.1 joerg switch (emu->cur_rh) {
3934 1.1 joerg case 0:
3935 1.1 joerg *destreg = inc_long(emu, *destreg);
3936 1.1 joerg break;
3937 1.1 joerg case 1:
3938 1.1 joerg *destreg = dec_long(emu, *destreg);
3939 1.1 joerg break;
3940 1.1 joerg case 6:
3941 1.1 joerg push_long(emu, *destreg);
3942 1.1 joerg break;
3943 1.1 joerg }
3944 1.1 joerg }
3945 1.1 joerg }
3946 1.1 joerg
3947 1.1 joerg static void
3948 1.1 joerg x86emuOp16_opcFF_word_RM(struct X86EMU *emu)
3949 1.1 joerg {
3950 1.1 joerg uint32_t destoffset = 0;
3951 1.1 joerg uint16_t *destreg;
3952 1.1 joerg uint16_t destval;
3953 1.1 joerg
3954 1.1 joerg if (emu->cur_mod != 3) {
3955 1.1 joerg destoffset = decode_rl_address(emu);
3956 1.1 joerg destval = fetch_data_word(emu, destoffset);
3957 1.1 joerg switch (emu->cur_rh) {
3958 1.1 joerg case 0:
3959 1.1 joerg destval = inc_word(emu, destval);
3960 1.1 joerg store_data_word(emu, destoffset, destval);
3961 1.1 joerg break;
3962 1.1 joerg case 1: /* dec word ptr ... */
3963 1.1 joerg destval = dec_word(emu, destval);
3964 1.1 joerg store_data_word(emu, destoffset, destval);
3965 1.1 joerg break;
3966 1.1 joerg case 6: /* push word ptr ... */
3967 1.1 joerg push_word(emu, destval);
3968 1.1 joerg break;
3969 1.1 joerg }
3970 1.1 joerg } else {
3971 1.1 joerg destreg = decode_rl_word_register(emu);
3972 1.1 joerg switch (emu->cur_rh) {
3973 1.1 joerg case 0:
3974 1.1 joerg *destreg = inc_word(emu, *destreg);
3975 1.1 joerg break;
3976 1.1 joerg case 1:
3977 1.1 joerg *destreg = dec_word(emu, *destreg);
3978 1.1 joerg break;
3979 1.1 joerg case 6:
3980 1.1 joerg push_word(emu, *destreg);
3981 1.1 joerg break;
3982 1.1 joerg }
3983 1.1 joerg }
3984 1.1 joerg }
3985 1.1 joerg
3986 1.1 joerg static void
3987 1.1 joerg x86emuOp_opcFF_word_RM(struct X86EMU *emu)
3988 1.1 joerg {
3989 1.1 joerg uint32_t destoffset = 0;
3990 1.1 joerg uint16_t destval, destval2;
3991 1.1 joerg
3992 1.1 joerg /* Yet another special case instruction. */
3993 1.1 joerg fetch_decode_modrm(emu);
3994 1.1 joerg if ((emu->cur_mod == 3 && (emu->cur_rh == 3 || emu->cur_rh == 5)) || emu->cur_rh == 7)
3995 1.1 joerg X86EMU_halt_sys(emu);
3996 1.1 joerg if (emu->cur_rh == 0 || emu->cur_rh == 1 || emu->cur_rh == 6) {
3997 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
3998 1.1 joerg x86emuOp32_opcFF_word_RM(emu);
3999 1.1 joerg else
4000 1.1 joerg x86emuOp16_opcFF_word_RM(emu);
4001 1.1 joerg return;
4002 1.1 joerg }
4003 1.1 joerg
4004 1.1 joerg if (emu->cur_mod != 3) {
4005 1.1 joerg destoffset = decode_rl_address(emu);
4006 1.1 joerg destval = fetch_data_word(emu, destoffset);
4007 1.1 joerg switch (emu->cur_rh) {
4008 1.1 joerg case 3: /* call far ptr ... */
4009 1.1 joerg destval2 = fetch_data_word(emu, destoffset + 2);
4010 1.1 joerg push_word(emu, emu->x86.R_CS);
4011 1.1 joerg emu->x86.R_CS = destval2;
4012 1.1 joerg push_word(emu, emu->x86.R_IP);
4013 1.1 joerg emu->x86.R_IP = destval;
4014 1.1 joerg break;
4015 1.1 joerg case 5: /* jmp far ptr ... */
4016 1.1 joerg destval2 = fetch_data_word(emu, destoffset + 2);
4017 1.1 joerg emu->x86.R_IP = destval;
4018 1.1 joerg emu->x86.R_CS = destval2;
4019 1.1 joerg break;
4020 1.1 joerg }
4021 1.1 joerg } else {
4022 1.1 joerg destval = *decode_rl_word_register(emu);
4023 1.1 joerg }
4024 1.1 joerg
4025 1.1 joerg switch (emu->cur_rh) {
4026 1.1 joerg case 2: /* call word ptr */
4027 1.1 joerg push_word(emu, emu->x86.R_IP);
4028 1.1 joerg emu->x86.R_IP = destval;
4029 1.1 joerg break;
4030 1.1 joerg case 4: /* jmp */
4031 1.1 joerg emu->x86.R_IP = destval;
4032 1.1 joerg break;
4033 1.1 joerg }
4034 1.1 joerg }
4035 1.1 joerg /***************************************************************************
4036 1.1 joerg * Single byte operation code table:
4037 1.1 joerg **************************************************************************/
4038 1.1 joerg static void
4039 1.1 joerg X86EMU_exec_one_byte(struct X86EMU * emu)
4040 1.1 joerg {
4041 1.1 joerg uint8_t op1;
4042 1.1 joerg
4043 1.1 joerg op1 = fetch_byte_imm(emu);
4044 1.1 joerg
4045 1.1 joerg switch (op1) {
4046 1.1 joerg case 0x00:
4047 1.1 joerg common_binop_byte_rm_r(emu, add_byte);
4048 1.1 joerg break;
4049 1.1 joerg case 0x01:
4050 1.1 joerg common_binop_word_long_rm_r(emu, add_word, add_long);
4051 1.1 joerg break;
4052 1.1 joerg case 0x02:
4053 1.1 joerg common_binop_byte_r_rm(emu, add_byte);
4054 1.1 joerg break;
4055 1.1 joerg case 0x03:
4056 1.1 joerg common_binop_word_long_r_rm(emu, add_word, add_long);
4057 1.1 joerg break;
4058 1.1 joerg case 0x04:
4059 1.1 joerg common_binop_byte_imm(emu, add_byte);
4060 1.1 joerg break;
4061 1.1 joerg case 0x05:
4062 1.1 joerg common_binop_word_long_imm(emu, add_word, add_long);
4063 1.1 joerg break;
4064 1.1 joerg case 0x06:
4065 1.1 joerg push_word(emu, emu->x86.R_ES);
4066 1.1 joerg break;
4067 1.1 joerg case 0x07:
4068 1.1 joerg emu->x86.R_ES = pop_word(emu);
4069 1.1 joerg break;
4070 1.1 joerg
4071 1.1 joerg case 0x08:
4072 1.1 joerg common_binop_byte_rm_r(emu, or_byte);
4073 1.1 joerg break;
4074 1.1 joerg case 0x09:
4075 1.1 joerg common_binop_word_long_rm_r(emu, or_word, or_long);
4076 1.1 joerg break;
4077 1.1 joerg case 0x0a:
4078 1.1 joerg common_binop_byte_r_rm(emu, or_byte);
4079 1.1 joerg break;
4080 1.1 joerg case 0x0b:
4081 1.1 joerg common_binop_word_long_r_rm(emu, or_word, or_long);
4082 1.1 joerg break;
4083 1.1 joerg case 0x0c:
4084 1.1 joerg common_binop_byte_imm(emu, or_byte);
4085 1.1 joerg break;
4086 1.1 joerg case 0x0d:
4087 1.1 joerg common_binop_word_long_imm(emu, or_word, or_long);
4088 1.1 joerg break;
4089 1.1 joerg case 0x0e:
4090 1.1 joerg push_word(emu, emu->x86.R_CS);
4091 1.1 joerg break;
4092 1.1 joerg case 0x0f:
4093 1.1 joerg X86EMU_exec_two_byte(emu);
4094 1.1 joerg break;
4095 1.1 joerg
4096 1.1 joerg case 0x10:
4097 1.1 joerg common_binop_byte_rm_r(emu, adc_byte);
4098 1.1 joerg break;
4099 1.1 joerg case 0x11:
4100 1.1 joerg common_binop_word_long_rm_r(emu, adc_word, adc_long);
4101 1.1 joerg break;
4102 1.1 joerg case 0x12:
4103 1.1 joerg common_binop_byte_r_rm(emu, adc_byte);
4104 1.1 joerg break;
4105 1.1 joerg case 0x13:
4106 1.1 joerg common_binop_word_long_r_rm(emu, adc_word, adc_long);
4107 1.1 joerg break;
4108 1.1 joerg case 0x14:
4109 1.1 joerg common_binop_byte_imm(emu, adc_byte);
4110 1.1 joerg break;
4111 1.1 joerg case 0x15:
4112 1.1 joerg common_binop_word_long_imm(emu, adc_word, adc_long);
4113 1.1 joerg break;
4114 1.1 joerg case 0x16:
4115 1.1 joerg push_word(emu, emu->x86.R_SS);
4116 1.1 joerg break;
4117 1.1 joerg case 0x17:
4118 1.1 joerg emu->x86.R_SS = pop_word(emu);
4119 1.1 joerg break;
4120 1.1 joerg
4121 1.1 joerg case 0x18:
4122 1.1 joerg common_binop_byte_rm_r(emu, sbb_byte);
4123 1.1 joerg break;
4124 1.1 joerg case 0x19:
4125 1.1 joerg common_binop_word_long_rm_r(emu, sbb_word, sbb_long);
4126 1.1 joerg break;
4127 1.1 joerg case 0x1a:
4128 1.1 joerg common_binop_byte_r_rm(emu, sbb_byte);
4129 1.1 joerg break;
4130 1.1 joerg case 0x1b:
4131 1.1 joerg common_binop_word_long_r_rm(emu, sbb_word, sbb_long);
4132 1.1 joerg break;
4133 1.1 joerg case 0x1c:
4134 1.1 joerg common_binop_byte_imm(emu, sbb_byte);
4135 1.1 joerg break;
4136 1.1 joerg case 0x1d:
4137 1.1 joerg common_binop_word_long_imm(emu, sbb_word, sbb_long);
4138 1.1 joerg break;
4139 1.1 joerg case 0x1e:
4140 1.1 joerg push_word(emu, emu->x86.R_DS);
4141 1.1 joerg break;
4142 1.1 joerg case 0x1f:
4143 1.1 joerg emu->x86.R_DS = pop_word(emu);
4144 1.1 joerg break;
4145 1.1 joerg
4146 1.1 joerg case 0x20:
4147 1.1 joerg common_binop_byte_rm_r(emu, and_byte);
4148 1.1 joerg break;
4149 1.1 joerg case 0x21:
4150 1.1 joerg common_binop_word_long_rm_r(emu, and_word, and_long);
4151 1.1 joerg break;
4152 1.1 joerg case 0x22:
4153 1.1 joerg common_binop_byte_r_rm(emu, and_byte);
4154 1.1 joerg break;
4155 1.1 joerg case 0x23:
4156 1.1 joerg common_binop_word_long_r_rm(emu, and_word, and_long);
4157 1.1 joerg break;
4158 1.1 joerg case 0x24:
4159 1.1 joerg common_binop_byte_imm(emu, and_byte);
4160 1.1 joerg break;
4161 1.1 joerg case 0x25:
4162 1.1 joerg common_binop_word_long_imm(emu, and_word, and_long);
4163 1.1 joerg break;
4164 1.1 joerg case 0x26:
4165 1.1 joerg emu->x86.mode |= SYSMODE_SEGOVR_ES;
4166 1.1 joerg break;
4167 1.1 joerg case 0x27:
4168 1.1 joerg emu->x86.R_AL = daa_byte(emu, emu->x86.R_AL);
4169 1.1 joerg break;
4170 1.1 joerg
4171 1.1 joerg case 0x28:
4172 1.1 joerg common_binop_byte_rm_r(emu, sub_byte);
4173 1.1 joerg break;
4174 1.1 joerg case 0x29:
4175 1.1 joerg common_binop_word_long_rm_r(emu, sub_word, sub_long);
4176 1.1 joerg break;
4177 1.1 joerg case 0x2a:
4178 1.1 joerg common_binop_byte_r_rm(emu, sub_byte);
4179 1.1 joerg break;
4180 1.1 joerg case 0x2b:
4181 1.1 joerg common_binop_word_long_r_rm(emu, sub_word, sub_long);
4182 1.1 joerg break;
4183 1.1 joerg case 0x2c:
4184 1.1 joerg common_binop_byte_imm(emu, sub_byte);
4185 1.1 joerg break;
4186 1.1 joerg case 0x2d:
4187 1.1 joerg common_binop_word_long_imm(emu, sub_word, sub_long);
4188 1.1 joerg break;
4189 1.1 joerg case 0x2e:
4190 1.1 joerg emu->x86.mode |= SYSMODE_SEGOVR_CS;
4191 1.1 joerg break;
4192 1.1 joerg case 0x2f:
4193 1.1 joerg emu->x86.R_AL = das_byte(emu, emu->x86.R_AL);
4194 1.1 joerg break;
4195 1.1 joerg
4196 1.1 joerg case 0x30:
4197 1.1 joerg common_binop_byte_rm_r(emu, xor_byte);
4198 1.1 joerg break;
4199 1.1 joerg case 0x31:
4200 1.1 joerg common_binop_word_long_rm_r(emu, xor_word, xor_long);
4201 1.1 joerg break;
4202 1.1 joerg case 0x32:
4203 1.1 joerg common_binop_byte_r_rm(emu, xor_byte);
4204 1.1 joerg break;
4205 1.1 joerg case 0x33:
4206 1.1 joerg common_binop_word_long_r_rm(emu, xor_word, xor_long);
4207 1.1 joerg break;
4208 1.1 joerg case 0x34:
4209 1.1 joerg common_binop_byte_imm(emu, xor_byte);
4210 1.1 joerg break;
4211 1.1 joerg case 0x35:
4212 1.1 joerg common_binop_word_long_imm(emu, xor_word, xor_long);
4213 1.1 joerg break;
4214 1.1 joerg case 0x36:
4215 1.1 joerg emu->x86.mode |= SYSMODE_SEGOVR_SS;
4216 1.1 joerg break;
4217 1.1 joerg case 0x37:
4218 1.1 joerg emu->x86.R_AX = aaa_word(emu, emu->x86.R_AX);
4219 1.1 joerg break;
4220 1.1 joerg
4221 1.1 joerg case 0x38:
4222 1.1 joerg common_binop_ns_byte_rm_r(emu, cmp_byte_no_return);
4223 1.1 joerg break;
4224 1.1 joerg case 0x39:
4225 1.1 joerg common_binop_ns_word_long_rm_r(emu, cmp_word_no_return,
4226 1.1 joerg cmp_long_no_return);
4227 1.1 joerg break;
4228 1.1 joerg case 0x3a:
4229 1.1 joerg x86emuOp_cmp_byte_R_RM(emu);
4230 1.1 joerg break;
4231 1.1 joerg case 0x3b:
4232 1.1 joerg x86emuOp_cmp_word_R_RM(emu);
4233 1.1 joerg break;
4234 1.1 joerg case 0x3c:
4235 1.1 joerg x86emuOp_cmp_byte_AL_IMM(emu);
4236 1.1 joerg break;
4237 1.1 joerg case 0x3d:
4238 1.1 joerg x86emuOp_cmp_word_AX_IMM(emu);
4239 1.1 joerg break;
4240 1.1 joerg case 0x3e:
4241 1.1 joerg emu->x86.mode |= SYSMODE_SEGOVR_DS;
4242 1.1 joerg break;
4243 1.1 joerg case 0x3f:
4244 1.1 joerg emu->x86.R_AX = aas_word(emu, emu->x86.R_AX);
4245 1.1 joerg break;
4246 1.1 joerg
4247 1.1 joerg case 0x40:
4248 1.1 joerg common_inc_word_long(emu, &emu->x86.register_a);
4249 1.1 joerg break;
4250 1.1 joerg case 0x41:
4251 1.1 joerg common_inc_word_long(emu, &emu->x86.register_c);
4252 1.1 joerg break;
4253 1.1 joerg case 0x42:
4254 1.1 joerg common_inc_word_long(emu, &emu->x86.register_d);
4255 1.1 joerg break;
4256 1.1 joerg case 0x43:
4257 1.1 joerg common_inc_word_long(emu, &emu->x86.register_b);
4258 1.1 joerg break;
4259 1.1 joerg case 0x44:
4260 1.1 joerg common_inc_word_long(emu, &emu->x86.register_sp);
4261 1.1 joerg break;
4262 1.1 joerg case 0x45:
4263 1.1 joerg common_inc_word_long(emu, &emu->x86.register_bp);
4264 1.1 joerg break;
4265 1.1 joerg case 0x46:
4266 1.1 joerg common_inc_word_long(emu, &emu->x86.register_si);
4267 1.1 joerg break;
4268 1.1 joerg case 0x47:
4269 1.1 joerg common_inc_word_long(emu, &emu->x86.register_di);
4270 1.1 joerg break;
4271 1.1 joerg
4272 1.1 joerg case 0x48:
4273 1.1 joerg common_dec_word_long(emu, &emu->x86.register_a);
4274 1.1 joerg break;
4275 1.1 joerg case 0x49:
4276 1.1 joerg common_dec_word_long(emu, &emu->x86.register_c);
4277 1.1 joerg break;
4278 1.1 joerg case 0x4a:
4279 1.1 joerg common_dec_word_long(emu, &emu->x86.register_d);
4280 1.1 joerg break;
4281 1.1 joerg case 0x4b:
4282 1.1 joerg common_dec_word_long(emu, &emu->x86.register_b);
4283 1.1 joerg break;
4284 1.1 joerg case 0x4c:
4285 1.1 joerg common_dec_word_long(emu, &emu->x86.register_sp);
4286 1.1 joerg break;
4287 1.1 joerg case 0x4d:
4288 1.1 joerg common_dec_word_long(emu, &emu->x86.register_bp);
4289 1.1 joerg break;
4290 1.1 joerg case 0x4e:
4291 1.1 joerg common_dec_word_long(emu, &emu->x86.register_si);
4292 1.1 joerg break;
4293 1.1 joerg case 0x4f:
4294 1.1 joerg common_dec_word_long(emu, &emu->x86.register_di);
4295 1.1 joerg break;
4296 1.1 joerg
4297 1.1 joerg case 0x50:
4298 1.1 joerg common_push_word_long(emu, &emu->x86.register_a);
4299 1.1 joerg break;
4300 1.1 joerg case 0x51:
4301 1.1 joerg common_push_word_long(emu, &emu->x86.register_c);
4302 1.1 joerg break;
4303 1.1 joerg case 0x52:
4304 1.1 joerg common_push_word_long(emu, &emu->x86.register_d);
4305 1.1 joerg break;
4306 1.1 joerg case 0x53:
4307 1.1 joerg common_push_word_long(emu, &emu->x86.register_b);
4308 1.1 joerg break;
4309 1.1 joerg case 0x54:
4310 1.1 joerg common_push_word_long(emu, &emu->x86.register_sp);
4311 1.1 joerg break;
4312 1.1 joerg case 0x55:
4313 1.1 joerg common_push_word_long(emu, &emu->x86.register_bp);
4314 1.1 joerg break;
4315 1.1 joerg case 0x56:
4316 1.1 joerg common_push_word_long(emu, &emu->x86.register_si);
4317 1.1 joerg break;
4318 1.1 joerg case 0x57:
4319 1.1 joerg common_push_word_long(emu, &emu->x86.register_di);
4320 1.1 joerg break;
4321 1.1 joerg
4322 1.1 joerg case 0x58:
4323 1.1 joerg common_pop_word_long(emu, &emu->x86.register_a);
4324 1.1 joerg break;
4325 1.1 joerg case 0x59:
4326 1.1 joerg common_pop_word_long(emu, &emu->x86.register_c);
4327 1.1 joerg break;
4328 1.1 joerg case 0x5a:
4329 1.1 joerg common_pop_word_long(emu, &emu->x86.register_d);
4330 1.1 joerg break;
4331 1.1 joerg case 0x5b:
4332 1.1 joerg common_pop_word_long(emu, &emu->x86.register_b);
4333 1.1 joerg break;
4334 1.1 joerg case 0x5c:
4335 1.1 joerg common_pop_word_long(emu, &emu->x86.register_sp);
4336 1.1 joerg break;
4337 1.1 joerg case 0x5d:
4338 1.1 joerg common_pop_word_long(emu, &emu->x86.register_bp);
4339 1.1 joerg break;
4340 1.1 joerg case 0x5e:
4341 1.1 joerg common_pop_word_long(emu, &emu->x86.register_si);
4342 1.1 joerg break;
4343 1.1 joerg case 0x5f:
4344 1.1 joerg common_pop_word_long(emu, &emu->x86.register_di);
4345 1.1 joerg break;
4346 1.1 joerg
4347 1.1 joerg case 0x60:
4348 1.1 joerg x86emuOp_push_all(emu);
4349 1.1 joerg break;
4350 1.1 joerg case 0x61:
4351 1.1 joerg x86emuOp_pop_all(emu);
4352 1.1 joerg break;
4353 1.1 joerg /* 0x62 bound */
4354 1.1 joerg /* 0x63 arpl */
4355 1.1 joerg case 0x64:
4356 1.1 joerg emu->x86.mode |= SYSMODE_SEGOVR_FS;
4357 1.1 joerg break;
4358 1.1 joerg case 0x65:
4359 1.1 joerg emu->x86.mode |= SYSMODE_SEGOVR_GS;
4360 1.1 joerg break;
4361 1.1 joerg case 0x66:
4362 1.1 joerg emu->x86.mode |= SYSMODE_PREFIX_DATA;
4363 1.1 joerg break;
4364 1.1 joerg case 0x67:
4365 1.1 joerg emu->x86.mode |= SYSMODE_PREFIX_ADDR;
4366 1.1 joerg break;
4367 1.1 joerg
4368 1.1 joerg case 0x68:
4369 1.1 joerg x86emuOp_push_word_IMM(emu);
4370 1.1 joerg break;
4371 1.1 joerg case 0x69:
4372 1.1 joerg common_imul_imm(emu, false);
4373 1.1 joerg break;
4374 1.1 joerg case 0x6a:
4375 1.1 joerg x86emuOp_push_byte_IMM(emu);
4376 1.1 joerg break;
4377 1.1 joerg case 0x6b:
4378 1.1 joerg common_imul_imm(emu, true);
4379 1.1 joerg break;
4380 1.1 joerg case 0x6c:
4381 1.1 joerg ins(emu, 1);
4382 1.1 joerg break;
4383 1.1 joerg case 0x6d:
4384 1.1 joerg x86emuOp_ins_word(emu);
4385 1.1 joerg break;
4386 1.1 joerg case 0x6e:
4387 1.1 joerg outs(emu, 1);
4388 1.1 joerg break;
4389 1.1 joerg case 0x6f:
4390 1.1 joerg x86emuOp_outs_word(emu);
4391 1.1 joerg break;
4392 1.1 joerg
4393 1.1 joerg case 0x70:
4394 1.1 joerg common_jmp_near(emu, ACCESS_FLAG(F_OF));
4395 1.1 joerg break;
4396 1.1 joerg case 0x71:
4397 1.1 joerg common_jmp_near(emu, !ACCESS_FLAG(F_OF));
4398 1.1 joerg break;
4399 1.1 joerg case 0x72:
4400 1.1 joerg common_jmp_near(emu, ACCESS_FLAG(F_CF));
4401 1.1 joerg break;
4402 1.1 joerg case 0x73:
4403 1.1 joerg common_jmp_near(emu, !ACCESS_FLAG(F_CF));
4404 1.1 joerg break;
4405 1.1 joerg case 0x74:
4406 1.1 joerg common_jmp_near(emu, ACCESS_FLAG(F_ZF));
4407 1.1 joerg break;
4408 1.1 joerg case 0x75:
4409 1.1 joerg common_jmp_near(emu, !ACCESS_FLAG(F_ZF));
4410 1.1 joerg break;
4411 1.1 joerg case 0x76:
4412 1.1 joerg common_jmp_near(emu, ACCESS_FLAG(F_CF) || ACCESS_FLAG(F_ZF));
4413 1.1 joerg break;
4414 1.1 joerg case 0x77:
4415 1.1 joerg common_jmp_near(emu, !ACCESS_FLAG(F_CF) && !ACCESS_FLAG(F_ZF));
4416 1.1 joerg break;
4417 1.1 joerg
4418 1.1 joerg case 0x78:
4419 1.1 joerg common_jmp_near(emu, ACCESS_FLAG(F_SF));
4420 1.1 joerg break;
4421 1.1 joerg case 0x79:
4422 1.1 joerg common_jmp_near(emu, !ACCESS_FLAG(F_SF));
4423 1.1 joerg break;
4424 1.1 joerg case 0x7a:
4425 1.1 joerg common_jmp_near(emu, ACCESS_FLAG(F_PF));
4426 1.1 joerg break;
4427 1.1 joerg case 0x7b:
4428 1.1 joerg common_jmp_near(emu, !ACCESS_FLAG(F_PF));
4429 1.1 joerg break;
4430 1.1 joerg case 0x7c:
4431 1.1 joerg x86emuOp_jump_near_L(emu);
4432 1.1 joerg break;
4433 1.1 joerg case 0x7d:
4434 1.1 joerg x86emuOp_jump_near_NL(emu);
4435 1.1 joerg break;
4436 1.1 joerg case 0x7e:
4437 1.1 joerg x86emuOp_jump_near_LE(emu);
4438 1.1 joerg break;
4439 1.1 joerg case 0x7f:
4440 1.1 joerg x86emuOp_jump_near_NLE(emu);
4441 1.1 joerg break;
4442 1.1 joerg
4443 1.1 joerg case 0x80:
4444 1.1 joerg x86emuOp_opc80_byte_RM_IMM(emu);
4445 1.1 joerg break;
4446 1.1 joerg case 0x81:
4447 1.1 joerg x86emuOp_opc81_word_RM_IMM(emu);
4448 1.1 joerg break;
4449 1.1 joerg case 0x82:
4450 1.1 joerg x86emuOp_opc82_byte_RM_IMM(emu);
4451 1.1 joerg break;
4452 1.1 joerg case 0x83:
4453 1.1 joerg x86emuOp_opc83_word_RM_IMM(emu);
4454 1.1 joerg break;
4455 1.1 joerg case 0x84:
4456 1.1 joerg common_binop_ns_byte_rm_r(emu, test_byte);
4457 1.1 joerg break;
4458 1.1 joerg case 0x85:
4459 1.1 joerg common_binop_ns_word_long_rm_r(emu, test_word, test_long);
4460 1.1 joerg break;
4461 1.1 joerg case 0x86:
4462 1.1 joerg x86emuOp_xchg_byte_RM_R(emu);
4463 1.1 joerg break;
4464 1.1 joerg case 0x87:
4465 1.1 joerg x86emuOp_xchg_word_RM_R(emu);
4466 1.1 joerg break;
4467 1.1 joerg
4468 1.1 joerg case 0x88:
4469 1.1 joerg x86emuOp_mov_byte_RM_R(emu);
4470 1.1 joerg break;
4471 1.1 joerg case 0x89:
4472 1.1 joerg x86emuOp_mov_word_RM_R(emu);
4473 1.1 joerg break;
4474 1.1 joerg case 0x8a:
4475 1.1 joerg x86emuOp_mov_byte_R_RM(emu);
4476 1.1 joerg break;
4477 1.1 joerg case 0x8b:
4478 1.1 joerg x86emuOp_mov_word_R_RM(emu);
4479 1.1 joerg break;
4480 1.1 joerg case 0x8c:
4481 1.1 joerg x86emuOp_mov_word_RM_SR(emu);
4482 1.1 joerg break;
4483 1.1 joerg case 0x8d:
4484 1.1 joerg x86emuOp_lea_word_R_M(emu);
4485 1.1 joerg break;
4486 1.1 joerg case 0x8e:
4487 1.1 joerg x86emuOp_mov_word_SR_RM(emu);
4488 1.1 joerg break;
4489 1.1 joerg case 0x8f:
4490 1.1 joerg x86emuOp_pop_RM(emu);
4491 1.1 joerg break;
4492 1.1 joerg
4493 1.1 joerg case 0x90:
4494 1.1 joerg /* nop */
4495 1.1 joerg break;
4496 1.1 joerg case 0x91:
4497 1.1 joerg x86emuOp_xchg_word_AX_CX(emu);
4498 1.1 joerg break;
4499 1.1 joerg case 0x92:
4500 1.1 joerg x86emuOp_xchg_word_AX_DX(emu);
4501 1.1 joerg break;
4502 1.1 joerg case 0x93:
4503 1.1 joerg x86emuOp_xchg_word_AX_BX(emu);
4504 1.1 joerg break;
4505 1.1 joerg case 0x94:
4506 1.1 joerg x86emuOp_xchg_word_AX_SP(emu);
4507 1.1 joerg break;
4508 1.1 joerg case 0x95:
4509 1.1 joerg x86emuOp_xchg_word_AX_BP(emu);
4510 1.1 joerg break;
4511 1.1 joerg case 0x96:
4512 1.1 joerg x86emuOp_xchg_word_AX_SI(emu);
4513 1.1 joerg break;
4514 1.1 joerg case 0x97:
4515 1.1 joerg x86emuOp_xchg_word_AX_DI(emu);
4516 1.1 joerg break;
4517 1.1 joerg
4518 1.1 joerg case 0x98:
4519 1.1 joerg x86emuOp_cbw(emu);
4520 1.1 joerg break;
4521 1.1 joerg case 0x99:
4522 1.1 joerg x86emuOp_cwd(emu);
4523 1.1 joerg break;
4524 1.1 joerg case 0x9a:
4525 1.1 joerg x86emuOp_call_far_IMM(emu);
4526 1.1 joerg break;
4527 1.1 joerg case 0x9b:
4528 1.1 joerg /* wait */
4529 1.1 joerg break;
4530 1.1 joerg case 0x9c:
4531 1.1 joerg x86emuOp_pushf_word(emu);
4532 1.1 joerg break;
4533 1.1 joerg case 0x9d:
4534 1.1 joerg x86emuOp_popf_word(emu);
4535 1.1 joerg break;
4536 1.1 joerg case 0x9e:
4537 1.1 joerg x86emuOp_sahf(emu);
4538 1.1 joerg break;
4539 1.1 joerg case 0x9f:
4540 1.1 joerg x86emuOp_lahf(emu);
4541 1.1 joerg break;
4542 1.1 joerg
4543 1.1 joerg case 0xa0:
4544 1.1 joerg x86emuOp_mov_AL_M_IMM(emu);
4545 1.1 joerg break;
4546 1.1 joerg case 0xa1:
4547 1.1 joerg x86emuOp_mov_AX_M_IMM(emu);
4548 1.1 joerg break;
4549 1.1 joerg case 0xa2:
4550 1.1 joerg x86emuOp_mov_M_AL_IMM(emu);
4551 1.1 joerg break;
4552 1.1 joerg case 0xa3:
4553 1.1 joerg x86emuOp_mov_M_AX_IMM(emu);
4554 1.1 joerg break;
4555 1.1 joerg case 0xa4:
4556 1.1 joerg x86emuOp_movs_byte(emu);
4557 1.1 joerg break;
4558 1.1 joerg case 0xa5:
4559 1.1 joerg x86emuOp_movs_word(emu);
4560 1.1 joerg break;
4561 1.1 joerg case 0xa6:
4562 1.1 joerg x86emuOp_cmps_byte(emu);
4563 1.1 joerg break;
4564 1.1 joerg case 0xa7:
4565 1.1 joerg x86emuOp_cmps_word(emu);
4566 1.1 joerg break;
4567 1.1 joerg
4568 1.1 joerg case 0xa8:
4569 1.1 joerg test_byte(emu, emu->x86.R_AL, fetch_byte_imm(emu));
4570 1.1 joerg break;
4571 1.1 joerg case 0xa9:
4572 1.1 joerg x86emuOp_test_AX_IMM(emu);
4573 1.1 joerg break;
4574 1.1 joerg case 0xaa:
4575 1.1 joerg x86emuOp_stos_byte(emu);
4576 1.1 joerg break;
4577 1.1 joerg case 0xab:
4578 1.1 joerg x86emuOp_stos_word(emu);
4579 1.1 joerg break;
4580 1.1 joerg case 0xac:
4581 1.1 joerg x86emuOp_lods_byte(emu);
4582 1.1 joerg break;
4583 1.1 joerg case 0xad:
4584 1.1 joerg x86emuOp_lods_word(emu);
4585 1.1 joerg break;
4586 1.1 joerg case 0xae:
4587 1.1 joerg x86emuOp_scas_byte(emu);
4588 1.1 joerg break;
4589 1.1 joerg case 0xaf:
4590 1.1 joerg x86emuOp_scas_word(emu);
4591 1.1 joerg break;
4592 1.1 joerg
4593 1.1 joerg case 0xb0:
4594 1.1 joerg emu->x86.R_AL = fetch_byte_imm(emu);
4595 1.1 joerg break;
4596 1.1 joerg case 0xb1:
4597 1.1 joerg emu->x86.R_CL = fetch_byte_imm(emu);
4598 1.1 joerg break;
4599 1.1 joerg case 0xb2:
4600 1.1 joerg emu->x86.R_DL = fetch_byte_imm(emu);
4601 1.1 joerg break;
4602 1.1 joerg case 0xb3:
4603 1.1 joerg emu->x86.R_BL = fetch_byte_imm(emu);
4604 1.1 joerg break;
4605 1.1 joerg case 0xb4:
4606 1.1 joerg emu->x86.R_AH = fetch_byte_imm(emu);
4607 1.1 joerg break;
4608 1.1 joerg case 0xb5:
4609 1.1 joerg emu->x86.R_CH = fetch_byte_imm(emu);
4610 1.1 joerg break;
4611 1.1 joerg case 0xb6:
4612 1.1 joerg emu->x86.R_DH = fetch_byte_imm(emu);
4613 1.1 joerg break;
4614 1.1 joerg case 0xb7:
4615 1.1 joerg emu->x86.R_BH = fetch_byte_imm(emu);
4616 1.1 joerg break;
4617 1.1 joerg
4618 1.1 joerg case 0xb8:
4619 1.1 joerg x86emuOp_mov_word_AX_IMM(emu);
4620 1.1 joerg break;
4621 1.1 joerg case 0xb9:
4622 1.1 joerg x86emuOp_mov_word_CX_IMM(emu);
4623 1.1 joerg break;
4624 1.1 joerg case 0xba:
4625 1.1 joerg x86emuOp_mov_word_DX_IMM(emu);
4626 1.1 joerg break;
4627 1.1 joerg case 0xbb:
4628 1.1 joerg x86emuOp_mov_word_BX_IMM(emu);
4629 1.1 joerg break;
4630 1.1 joerg case 0xbc:
4631 1.1 joerg x86emuOp_mov_word_SP_IMM(emu);
4632 1.1 joerg break;
4633 1.1 joerg case 0xbd:
4634 1.1 joerg x86emuOp_mov_word_BP_IMM(emu);
4635 1.1 joerg break;
4636 1.1 joerg case 0xbe:
4637 1.1 joerg x86emuOp_mov_word_SI_IMM(emu);
4638 1.1 joerg break;
4639 1.1 joerg case 0xbf:
4640 1.1 joerg x86emuOp_mov_word_DI_IMM(emu);
4641 1.1 joerg break;
4642 1.1 joerg
4643 1.1 joerg case 0xc0:
4644 1.1 joerg x86emuOp_opcC0_byte_RM_MEM(emu);
4645 1.1 joerg break;
4646 1.1 joerg case 0xc1:
4647 1.1 joerg x86emuOp_opcC1_word_RM_MEM(emu);
4648 1.1 joerg break;
4649 1.1 joerg case 0xc2:
4650 1.1 joerg x86emuOp_ret_near_IMM(emu);
4651 1.1 joerg break;
4652 1.1 joerg case 0xc3:
4653 1.1 joerg emu->x86.R_IP = pop_word(emu);
4654 1.1 joerg break;
4655 1.1 joerg case 0xc4:
4656 1.1 joerg common_load_far_pointer(emu, &emu->x86.R_ES);
4657 1.1 joerg break;
4658 1.1 joerg case 0xc5:
4659 1.1 joerg common_load_far_pointer(emu, &emu->x86.R_DS);
4660 1.1 joerg break;
4661 1.1 joerg case 0xc6:
4662 1.1 joerg x86emuOp_mov_byte_RM_IMM(emu);
4663 1.1 joerg break;
4664 1.1 joerg case 0xc7:
4665 1.1 joerg x86emuOp_mov_word_RM_IMM(emu);
4666 1.1 joerg break;
4667 1.1 joerg case 0xc8:
4668 1.1 joerg x86emuOp_enter(emu);
4669 1.1 joerg break;
4670 1.1 joerg case 0xc9:
4671 1.1 joerg x86emuOp_leave(emu);
4672 1.1 joerg break;
4673 1.1 joerg case 0xca:
4674 1.1 joerg x86emuOp_ret_far_IMM(emu);
4675 1.1 joerg break;
4676 1.1 joerg case 0xcb:
4677 1.1 joerg x86emuOp_ret_far(emu);
4678 1.1 joerg break;
4679 1.1 joerg case 0xcc:
4680 1.1 joerg x86emuOp_int3(emu);
4681 1.1 joerg break;
4682 1.1 joerg case 0xcd:
4683 1.1 joerg x86emuOp_int_IMM(emu);
4684 1.1 joerg break;
4685 1.1 joerg case 0xce:
4686 1.1 joerg x86emuOp_into(emu);
4687 1.1 joerg break;
4688 1.1 joerg case 0xcf:
4689 1.1 joerg x86emuOp_iret(emu);
4690 1.1 joerg break;
4691 1.1 joerg
4692 1.1 joerg case 0xd0:
4693 1.1 joerg x86emuOp_opcD0_byte_RM_1(emu);
4694 1.1 joerg break;
4695 1.1 joerg case 0xd1:
4696 1.1 joerg x86emuOp_opcD1_word_RM_1(emu);
4697 1.1 joerg break;
4698 1.1 joerg case 0xd2:
4699 1.1 joerg x86emuOp_opcD2_byte_RM_CL(emu);
4700 1.1 joerg break;
4701 1.1 joerg case 0xd3:
4702 1.1 joerg x86emuOp_opcD3_word_RM_CL(emu);
4703 1.1 joerg break;
4704 1.1 joerg case 0xd4:
4705 1.1 joerg x86emuOp_aam(emu);
4706 1.1 joerg break;
4707 1.1 joerg case 0xd5:
4708 1.1 joerg x86emuOp_aad(emu);
4709 1.1 joerg break;
4710 1.1 joerg /* 0xd6 Undocumented SETALC instruction */
4711 1.1 joerg case 0xd7:
4712 1.1 joerg x86emuOp_xlat(emu);
4713 1.1 joerg break;
4714 1.1 joerg case 0xd8:
4715 1.1 joerg x86emuOp_esc_coprocess_d8(emu);
4716 1.1 joerg break;
4717 1.1 joerg case 0xd9:
4718 1.1 joerg x86emuOp_esc_coprocess_d9(emu);
4719 1.1 joerg break;
4720 1.1 joerg case 0xda:
4721 1.1 joerg x86emuOp_esc_coprocess_da(emu);
4722 1.1 joerg break;
4723 1.1 joerg case 0xdb:
4724 1.1 joerg x86emuOp_esc_coprocess_db(emu);
4725 1.1 joerg break;
4726 1.1 joerg case 0xdc:
4727 1.1 joerg x86emuOp_esc_coprocess_dc(emu);
4728 1.1 joerg break;
4729 1.1 joerg case 0xdd:
4730 1.1 joerg x86emuOp_esc_coprocess_dd(emu);
4731 1.1 joerg break;
4732 1.1 joerg case 0xde:
4733 1.1 joerg x86emuOp_esc_coprocess_de(emu);
4734 1.1 joerg break;
4735 1.1 joerg case 0xdf:
4736 1.1 joerg x86emuOp_esc_coprocess_df(emu);
4737 1.1 joerg break;
4738 1.1 joerg
4739 1.1 joerg case 0xe0:
4740 1.1 joerg x86emuOp_loopne(emu);
4741 1.1 joerg break;
4742 1.1 joerg case 0xe1:
4743 1.1 joerg x86emuOp_loope(emu);
4744 1.1 joerg break;
4745 1.1 joerg case 0xe2:
4746 1.1 joerg x86emuOp_loop(emu);
4747 1.1 joerg break;
4748 1.1 joerg case 0xe3:
4749 1.1 joerg x86emuOp_jcxz(emu);
4750 1.1 joerg break;
4751 1.1 joerg case 0xe4:
4752 1.1 joerg x86emuOp_in_byte_AL_IMM(emu);
4753 1.1 joerg break;
4754 1.1 joerg case 0xe5:
4755 1.1 joerg x86emuOp_in_word_AX_IMM(emu);
4756 1.1 joerg break;
4757 1.1 joerg case 0xe6:
4758 1.1 joerg x86emuOp_out_byte_IMM_AL(emu);
4759 1.1 joerg break;
4760 1.1 joerg case 0xe7:
4761 1.1 joerg x86emuOp_out_word_IMM_AX(emu);
4762 1.1 joerg break;
4763 1.1 joerg
4764 1.1 joerg case 0xe8:
4765 1.1 joerg x86emuOp_call_near_IMM(emu);
4766 1.1 joerg break;
4767 1.1 joerg case 0xe9:
4768 1.1 joerg x86emuOp_jump_near_IMM(emu);
4769 1.1 joerg break;
4770 1.1 joerg case 0xea:
4771 1.1 joerg x86emuOp_jump_far_IMM(emu);
4772 1.1 joerg break;
4773 1.1 joerg case 0xeb:
4774 1.1 joerg x86emuOp_jump_byte_IMM(emu);
4775 1.1 joerg break;
4776 1.1 joerg case 0xec:
4777 1.1 joerg x86emuOp_in_byte_AL_DX(emu);
4778 1.1 joerg break;
4779 1.1 joerg case 0xed:
4780 1.1 joerg x86emuOp_in_word_AX_DX(emu);
4781 1.1 joerg break;
4782 1.1 joerg case 0xee:
4783 1.1 joerg x86emuOp_out_byte_DX_AL(emu);
4784 1.1 joerg break;
4785 1.1 joerg case 0xef:
4786 1.1 joerg x86emuOp_out_word_DX_AX(emu);
4787 1.1 joerg break;
4788 1.1 joerg
4789 1.1 joerg case 0xf0:
4790 1.1 joerg x86emuOp_lock(emu);
4791 1.1 joerg break;
4792 1.1 joerg case 0xf2:
4793 1.1 joerg emu->x86.mode |= SYSMODE_PREFIX_REPNE;
4794 1.1 joerg break;
4795 1.1 joerg case 0xf3:
4796 1.1 joerg emu->x86.mode |= SYSMODE_PREFIX_REPE;
4797 1.1 joerg break;
4798 1.1 joerg case 0xf4:
4799 1.1 joerg X86EMU_halt_sys(emu);
4800 1.1 joerg break;
4801 1.1 joerg case 0xf5:
4802 1.1 joerg x86emuOp_cmc(emu);
4803 1.1 joerg break;
4804 1.1 joerg case 0xf6:
4805 1.1 joerg x86emuOp_opcF6_byte_RM(emu);
4806 1.1 joerg break;
4807 1.1 joerg case 0xf7:
4808 1.1 joerg x86emuOp_opcF7_word_RM(emu);
4809 1.1 joerg break;
4810 1.1 joerg
4811 1.1 joerg case 0xf8:
4812 1.1 joerg CLEAR_FLAG(F_CF);
4813 1.1 joerg break;
4814 1.1 joerg case 0xf9:
4815 1.1 joerg SET_FLAG(F_CF);
4816 1.1 joerg break;
4817 1.1 joerg case 0xfa:
4818 1.1 joerg CLEAR_FLAG(F_IF);
4819 1.1 joerg break;
4820 1.1 joerg case 0xfb:
4821 1.1 joerg SET_FLAG(F_IF);
4822 1.1 joerg break;
4823 1.1 joerg case 0xfc:
4824 1.1 joerg CLEAR_FLAG(F_DF);
4825 1.1 joerg break;
4826 1.1 joerg case 0xfd:
4827 1.1 joerg SET_FLAG(F_DF);
4828 1.1 joerg break;
4829 1.1 joerg case 0xfe:
4830 1.1 joerg x86emuOp_opcFE_byte_RM(emu);
4831 1.1 joerg break;
4832 1.1 joerg case 0xff:
4833 1.1 joerg x86emuOp_opcFF_word_RM(emu);
4834 1.1 joerg break;
4835 1.1 joerg default:
4836 1.1 joerg X86EMU_halt_sys(emu);
4837 1.1 joerg break;
4838 1.1 joerg }
4839 1.1 joerg if (op1 != 0x26 && op1 != 0x2e && op1 != 0x36 && op1 != 0x3e &&
4840 1.1 joerg (op1 | 3) != 0x67)
4841 1.1 joerg emu->x86.mode &= ~SYSMODE_CLRMASK;
4842 1.1 joerg }
4843 1.1 joerg
4844 1.1 joerg static void
4845 1.1 joerg common_jmp_long(struct X86EMU *emu, bool cond)
4846 1.1 joerg {
4847 1.1 joerg int16_t target;
4848 1.1 joerg
4849 1.1 joerg target = (int16_t) fetch_word_imm(emu);
4850 1.1 joerg target += (int16_t) emu->x86.R_IP;
4851 1.1 joerg if (cond)
4852 1.1 joerg emu->x86.R_IP = (uint16_t) target;
4853 1.1 joerg }
4854 1.1 joerg
4855 1.1 joerg static void
4856 1.1 joerg common_set_byte(struct X86EMU *emu, bool cond)
4857 1.1 joerg {
4858 1.1 joerg uint32_t destoffset;
4859 1.1 joerg uint8_t *destreg, destval;
4860 1.1 joerg
4861 1.1 joerg fetch_decode_modrm(emu);
4862 1.1 joerg destval = cond ? 0x01 : 0x00;
4863 1.1 joerg if (emu->cur_mod != 3) {
4864 1.1 joerg destoffset = decode_rl_address(emu);
4865 1.1 joerg store_data_byte(emu, destoffset, destval);
4866 1.1 joerg } else {
4867 1.1 joerg destreg = decode_rl_byte_register(emu);
4868 1.1 joerg *destreg = destval;
4869 1.1 joerg }
4870 1.1 joerg }
4871 1.1 joerg
4872 1.1 joerg static void
4873 1.1 joerg common_bitstring32(struct X86EMU *emu, int op)
4874 1.1 joerg {
4875 1.1 joerg int bit;
4876 1.1 joerg uint32_t srcval, *shiftreg, mask;
4877 1.1 joerg
4878 1.1 joerg fetch_decode_modrm(emu);
4879 1.1 joerg shiftreg = decode_rh_long_register(emu);
4880 1.1 joerg srcval = decode_and_fetch_long_disp(emu, (int16_t) *shiftreg >> 5);
4881 1.1 joerg bit = *shiftreg & 0x1F;
4882 1.1 joerg mask = 0x1 << bit;
4883 1.1 joerg CONDITIONAL_SET_FLAG(srcval & mask, F_CF);
4884 1.1 joerg
4885 1.1 joerg switch (op) {
4886 1.1 joerg case 0:
4887 1.1 joerg break;
4888 1.1 joerg case 1:
4889 1.1 joerg write_back_long(emu, srcval | mask);
4890 1.1 joerg break;
4891 1.1 joerg case 2:
4892 1.1 joerg write_back_long(emu, srcval & ~mask);
4893 1.1 joerg break;
4894 1.1 joerg case 3:
4895 1.1 joerg write_back_long(emu, srcval ^ mask);
4896 1.1 joerg break;
4897 1.1 joerg }
4898 1.1 joerg }
4899 1.1 joerg
4900 1.1 joerg static void
4901 1.1 joerg common_bitstring16(struct X86EMU *emu, int op)
4902 1.1 joerg {
4903 1.1 joerg int bit;
4904 1.1 joerg uint16_t srcval, *shiftreg, mask;
4905 1.1 joerg
4906 1.1 joerg fetch_decode_modrm(emu);
4907 1.1 joerg shiftreg = decode_rh_word_register(emu);
4908 1.1 joerg srcval = decode_and_fetch_word_disp(emu, (int16_t) *shiftreg >> 4);
4909 1.1 joerg bit = *shiftreg & 0xF;
4910 1.1 joerg mask = 0x1 << bit;
4911 1.1 joerg CONDITIONAL_SET_FLAG(srcval & mask, F_CF);
4912 1.1 joerg
4913 1.1 joerg switch (op) {
4914 1.1 joerg case 0:
4915 1.1 joerg break;
4916 1.1 joerg case 1:
4917 1.1 joerg write_back_word(emu, srcval | mask);
4918 1.1 joerg break;
4919 1.1 joerg case 2:
4920 1.1 joerg write_back_word(emu, srcval & ~mask);
4921 1.1 joerg break;
4922 1.1 joerg case 3:
4923 1.1 joerg write_back_word(emu, srcval ^ mask);
4924 1.1 joerg break;
4925 1.1 joerg }
4926 1.1 joerg }
4927 1.1 joerg
4928 1.1 joerg static void
4929 1.1 joerg common_bitstring(struct X86EMU *emu, int op)
4930 1.1 joerg {
4931 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
4932 1.1 joerg common_bitstring32(emu, op);
4933 1.1 joerg else
4934 1.1 joerg common_bitstring16(emu, op);
4935 1.1 joerg }
4936 1.1 joerg
4937 1.1 joerg static void
4938 1.1 joerg common_bitsearch32(struct X86EMU *emu, int diff)
4939 1.1 joerg {
4940 1.1 joerg uint32_t srcval, *dstreg;
4941 1.1 joerg
4942 1.1 joerg fetch_decode_modrm(emu);
4943 1.1 joerg dstreg = decode_rh_long_register(emu);
4944 1.1 joerg srcval = decode_and_fetch_long(emu);
4945 1.1 joerg CONDITIONAL_SET_FLAG(srcval == 0, F_ZF);
4946 1.1 joerg for (*dstreg = 0; *dstreg < 32; *dstreg += diff) {
4947 1.1 joerg if ((srcval >> *dstreg) & 1)
4948 1.1 joerg break;
4949 1.1 joerg }
4950 1.1 joerg }
4951 1.1 joerg
4952 1.1 joerg static void
4953 1.1 joerg common_bitsearch16(struct X86EMU *emu, int diff)
4954 1.1 joerg {
4955 1.1 joerg uint16_t srcval, *dstreg;
4956 1.1 joerg
4957 1.1 joerg fetch_decode_modrm(emu);
4958 1.1 joerg dstreg = decode_rh_word_register(emu);
4959 1.1 joerg srcval = decode_and_fetch_word(emu);
4960 1.1 joerg CONDITIONAL_SET_FLAG(srcval == 0, F_ZF);
4961 1.1 joerg for (*dstreg = 0; *dstreg < 16; *dstreg += diff) {
4962 1.1 joerg if ((srcval >> *dstreg) & 1)
4963 1.1 joerg break;
4964 1.1 joerg }
4965 1.1 joerg }
4966 1.1 joerg
4967 1.1 joerg static void
4968 1.1 joerg common_bitsearch(struct X86EMU *emu, int diff)
4969 1.1 joerg {
4970 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
4971 1.1 joerg common_bitsearch32(emu, diff);
4972 1.1 joerg else
4973 1.1 joerg common_bitsearch16(emu, diff);
4974 1.1 joerg }
4975 1.1 joerg
4976 1.1 joerg static void
4977 1.1 joerg common_shift32(struct X86EMU *emu, bool shift_left, bool use_cl)
4978 1.1 joerg {
4979 1.1 joerg uint8_t shift;
4980 1.1 joerg uint32_t destval, *shiftreg;
4981 1.1 joerg
4982 1.1 joerg fetch_decode_modrm(emu);
4983 1.1 joerg shiftreg = decode_rh_long_register(emu);
4984 1.1 joerg if (use_cl) {
4985 1.1 joerg destval = decode_and_fetch_long(emu);
4986 1.1 joerg shift = emu->x86.R_CL;
4987 1.1 joerg } else {
4988 1.1 joerg destval = decode_and_fetch_long_imm8(emu, &shift);
4989 1.1 joerg }
4990 1.1 joerg if (shift_left)
4991 1.1 joerg destval = shld_long(emu, destval, *shiftreg, shift);
4992 1.1 joerg else
4993 1.1 joerg destval = shrd_long(emu, destval, *shiftreg, shift);
4994 1.1 joerg write_back_long(emu, destval);
4995 1.1 joerg }
4996 1.1 joerg
4997 1.1 joerg static void
4998 1.1 joerg common_shift16(struct X86EMU *emu, bool shift_left, bool use_cl)
4999 1.1 joerg {
5000 1.1 joerg uint8_t shift;
5001 1.1 joerg uint16_t destval, *shiftreg;
5002 1.1 joerg
5003 1.1 joerg fetch_decode_modrm(emu);
5004 1.1 joerg shiftreg = decode_rh_word_register(emu);
5005 1.1 joerg if (use_cl) {
5006 1.1 joerg destval = decode_and_fetch_word(emu);
5007 1.1 joerg shift = emu->x86.R_CL;
5008 1.1 joerg } else {
5009 1.1 joerg destval = decode_and_fetch_word_imm8(emu, &shift);
5010 1.1 joerg }
5011 1.1 joerg if (shift_left)
5012 1.1 joerg destval = shld_word(emu, destval, *shiftreg, shift);
5013 1.1 joerg else
5014 1.1 joerg destval = shrd_word(emu, destval, *shiftreg, shift);
5015 1.1 joerg write_back_word(emu, destval);
5016 1.1 joerg }
5017 1.1 joerg
5018 1.1 joerg static void
5019 1.1 joerg common_shift(struct X86EMU *emu, bool shift_left, bool use_cl)
5020 1.1 joerg {
5021 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
5022 1.1 joerg common_shift32(emu, shift_left, use_cl);
5023 1.1 joerg else
5024 1.1 joerg common_shift16(emu, shift_left, use_cl);
5025 1.1 joerg }
5026 1.1 joerg
5027 1.1 joerg /*----------------------------- Implementation ----------------------------*/
5028 1.1 joerg #define xorl(a,b) ((a) && !(b)) || (!(a) && (b))
5029 1.1 joerg
5030 1.1 joerg /****************************************************************************
5031 1.1 joerg REMARKS:
5032 1.1 joerg Handles opcode 0x0f,0x31
5033 1.1 joerg ****************************************************************************/
5034 1.1 joerg static void
5035 1.1 joerg x86emuOp2_rdtsc(struct X86EMU *emu)
5036 1.1 joerg {
5037 1.1 joerg emu->x86.R_EAX = emu->cur_cycles & 0xffffffff;
5038 1.1 joerg emu->x86.R_EDX = emu->cur_cycles >> 32;
5039 1.1 joerg }
5040 1.1 joerg /****************************************************************************
5041 1.1 joerg REMARKS:
5042 1.1 joerg Handles opcode 0x0f,0xa0
5043 1.1 joerg ****************************************************************************/
5044 1.1 joerg static void
5045 1.1 joerg x86emuOp2_push_FS(struct X86EMU *emu)
5046 1.1 joerg {
5047 1.1 joerg push_word(emu, emu->x86.R_FS);
5048 1.1 joerg }
5049 1.1 joerg /****************************************************************************
5050 1.1 joerg REMARKS:
5051 1.1 joerg Handles opcode 0x0f,0xa1
5052 1.1 joerg ****************************************************************************/
5053 1.1 joerg static void
5054 1.1 joerg x86emuOp2_pop_FS(struct X86EMU *emu)
5055 1.1 joerg {
5056 1.1 joerg emu->x86.R_FS = pop_word(emu);
5057 1.1 joerg }
5058 1.1 joerg /****************************************************************************
5059 1.1 joerg REMARKS:
5060 1.1 joerg Handles opcode 0x0f,0xa3
5061 1.1 joerg ****************************************************************************/
5062 1.1 joerg static void
5063 1.1 joerg x86emuOp2_bt_R(struct X86EMU *emu)
5064 1.1 joerg {
5065 1.1 joerg common_bitstring(emu, 0);
5066 1.1 joerg }
5067 1.1 joerg /****************************************************************************
5068 1.1 joerg REMARKS:
5069 1.1 joerg Handles opcode 0x0f,0xa4
5070 1.1 joerg ****************************************************************************/
5071 1.1 joerg static void
5072 1.1 joerg x86emuOp2_shld_IMM(struct X86EMU *emu)
5073 1.1 joerg {
5074 1.1 joerg common_shift(emu, true, false);
5075 1.1 joerg }
5076 1.1 joerg /****************************************************************************
5077 1.1 joerg REMARKS:
5078 1.1 joerg Handles opcode 0x0f,0xa5
5079 1.1 joerg ****************************************************************************/
5080 1.1 joerg static void
5081 1.1 joerg x86emuOp2_shld_CL(struct X86EMU *emu)
5082 1.1 joerg {
5083 1.1 joerg common_shift(emu, true, true);
5084 1.1 joerg }
5085 1.1 joerg /****************************************************************************
5086 1.1 joerg REMARKS:
5087 1.1 joerg Handles opcode 0x0f,0xa8
5088 1.1 joerg ****************************************************************************/
5089 1.1 joerg static void
5090 1.1 joerg x86emuOp2_push_GS(struct X86EMU *emu)
5091 1.1 joerg {
5092 1.1 joerg push_word(emu, emu->x86.R_GS);
5093 1.1 joerg }
5094 1.1 joerg /****************************************************************************
5095 1.1 joerg REMARKS:
5096 1.1 joerg Handles opcode 0x0f,0xa9
5097 1.1 joerg ****************************************************************************/
5098 1.1 joerg static void
5099 1.1 joerg x86emuOp2_pop_GS(struct X86EMU *emu)
5100 1.1 joerg {
5101 1.1 joerg emu->x86.R_GS = pop_word(emu);
5102 1.1 joerg }
5103 1.1 joerg /****************************************************************************
5104 1.1 joerg REMARKS:
5105 1.1 joerg Handles opcode 0x0f,0xab
5106 1.1 joerg ****************************************************************************/
5107 1.1 joerg static void
5108 1.1 joerg x86emuOp2_bts_R(struct X86EMU *emu)
5109 1.1 joerg {
5110 1.1 joerg common_bitstring(emu, 1);
5111 1.1 joerg }
5112 1.1 joerg /****************************************************************************
5113 1.1 joerg REMARKS:
5114 1.1 joerg Handles opcode 0x0f,0xac
5115 1.1 joerg ****************************************************************************/
5116 1.1 joerg static void
5117 1.1 joerg x86emuOp2_shrd_IMM(struct X86EMU *emu)
5118 1.1 joerg {
5119 1.1 joerg common_shift(emu, false, false);
5120 1.1 joerg }
5121 1.1 joerg /****************************************************************************
5122 1.1 joerg REMARKS:
5123 1.1 joerg Handles opcode 0x0f,0xad
5124 1.1 joerg ****************************************************************************/
5125 1.1 joerg static void
5126 1.1 joerg x86emuOp2_shrd_CL(struct X86EMU *emu)
5127 1.1 joerg {
5128 1.1 joerg common_shift(emu, false, true);
5129 1.1 joerg }
5130 1.1 joerg /****************************************************************************
5131 1.1 joerg REMARKS:
5132 1.1 joerg Handles opcode 0x0f,0xaf
5133 1.1 joerg ****************************************************************************/
5134 1.1 joerg static void
5135 1.1 joerg x86emuOp2_32_imul_R_RM(struct X86EMU *emu)
5136 1.1 joerg {
5137 1.1 joerg uint32_t *destreg, srcval;
5138 1.1 joerg uint64_t res;
5139 1.1 joerg
5140 1.1 joerg fetch_decode_modrm(emu);
5141 1.1 joerg destreg = decode_rh_long_register(emu);
5142 1.1 joerg srcval = decode_and_fetch_long(emu);
5143 1.1 joerg res = (int32_t) *destreg * (int32_t)srcval;
5144 1.1 joerg if (res > 0xffffffff) {
5145 1.1 joerg SET_FLAG(F_CF);
5146 1.1 joerg SET_FLAG(F_OF);
5147 1.1 joerg } else {
5148 1.1 joerg CLEAR_FLAG(F_CF);
5149 1.1 joerg CLEAR_FLAG(F_OF);
5150 1.1 joerg }
5151 1.1 joerg *destreg = (uint32_t) res;
5152 1.1 joerg }
5153 1.1 joerg
5154 1.1 joerg static void
5155 1.1 joerg x86emuOp2_16_imul_R_RM(struct X86EMU *emu)
5156 1.1 joerg {
5157 1.1 joerg uint16_t *destreg, srcval;
5158 1.1 joerg uint32_t res;
5159 1.1 joerg
5160 1.1 joerg fetch_decode_modrm(emu);
5161 1.1 joerg destreg = decode_rh_word_register(emu);
5162 1.1 joerg srcval = decode_and_fetch_word(emu);
5163 1.1 joerg res = (int16_t) * destreg * (int16_t)srcval;
5164 1.1 joerg if (res > 0xFFFF) {
5165 1.1 joerg SET_FLAG(F_CF);
5166 1.1 joerg SET_FLAG(F_OF);
5167 1.1 joerg } else {
5168 1.1 joerg CLEAR_FLAG(F_CF);
5169 1.1 joerg CLEAR_FLAG(F_OF);
5170 1.1 joerg }
5171 1.1 joerg *destreg = (uint16_t) res;
5172 1.1 joerg }
5173 1.1 joerg
5174 1.1 joerg static void
5175 1.1 joerg x86emuOp2_imul_R_RM(struct X86EMU *emu)
5176 1.1 joerg {
5177 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
5178 1.1 joerg x86emuOp2_32_imul_R_RM(emu);
5179 1.1 joerg else
5180 1.1 joerg x86emuOp2_16_imul_R_RM(emu);
5181 1.1 joerg }
5182 1.1 joerg /****************************************************************************
5183 1.1 joerg REMARKS:
5184 1.1 joerg Handles opcode 0x0f,0xb2
5185 1.1 joerg ****************************************************************************/
5186 1.1 joerg static void
5187 1.1 joerg x86emuOp2_lss_R_IMM(struct X86EMU *emu)
5188 1.1 joerg {
5189 1.1 joerg common_load_far_pointer(emu, &emu->x86.R_SS);
5190 1.1 joerg }
5191 1.1 joerg /****************************************************************************
5192 1.1 joerg REMARKS:
5193 1.1 joerg Handles opcode 0x0f,0xb3
5194 1.1 joerg ****************************************************************************/
5195 1.1 joerg static void
5196 1.1 joerg x86emuOp2_btr_R(struct X86EMU *emu)
5197 1.1 joerg {
5198 1.1 joerg common_bitstring(emu, 2);
5199 1.1 joerg }
5200 1.1 joerg /****************************************************************************
5201 1.1 joerg REMARKS:
5202 1.1 joerg Handles opcode 0x0f,0xb4
5203 1.1 joerg ****************************************************************************/
5204 1.1 joerg static void
5205 1.1 joerg x86emuOp2_lfs_R_IMM(struct X86EMU *emu)
5206 1.1 joerg {
5207 1.1 joerg common_load_far_pointer(emu, &emu->x86.R_FS);
5208 1.1 joerg }
5209 1.1 joerg /****************************************************************************
5210 1.1 joerg REMARKS:
5211 1.1 joerg Handles opcode 0x0f,0xb5
5212 1.1 joerg ****************************************************************************/
5213 1.1 joerg static void
5214 1.1 joerg x86emuOp2_lgs_R_IMM(struct X86EMU *emu)
5215 1.1 joerg {
5216 1.1 joerg common_load_far_pointer(emu, &emu->x86.R_GS);
5217 1.1 joerg }
5218 1.1 joerg /****************************************************************************
5219 1.1 joerg REMARKS:
5220 1.1 joerg Handles opcode 0x0f,0xb6
5221 1.1 joerg ****************************************************************************/
5222 1.1 joerg static void
5223 1.1 joerg x86emuOp2_32_movzx_byte_R_RM(struct X86EMU *emu)
5224 1.1 joerg {
5225 1.1 joerg uint32_t *destreg;
5226 1.1 joerg
5227 1.1 joerg fetch_decode_modrm(emu);
5228 1.1 joerg destreg = decode_rh_long_register(emu);
5229 1.1 joerg *destreg = decode_and_fetch_byte(emu);
5230 1.1 joerg }
5231 1.1 joerg
5232 1.1 joerg static void
5233 1.1 joerg x86emuOp2_16_movzx_byte_R_RM(struct X86EMU *emu)
5234 1.1 joerg {
5235 1.1 joerg uint16_t *destreg;
5236 1.1 joerg
5237 1.1 joerg fetch_decode_modrm(emu);
5238 1.1 joerg destreg = decode_rh_word_register(emu);
5239 1.1 joerg *destreg = decode_and_fetch_byte(emu);
5240 1.1 joerg }
5241 1.1 joerg
5242 1.1 joerg static void
5243 1.1 joerg x86emuOp2_movzx_byte_R_RM(struct X86EMU *emu)
5244 1.1 joerg {
5245 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
5246 1.1 joerg x86emuOp2_32_movzx_byte_R_RM(emu);
5247 1.1 joerg else
5248 1.1 joerg x86emuOp2_16_movzx_byte_R_RM(emu);
5249 1.1 joerg }
5250 1.1 joerg /****************************************************************************
5251 1.1 joerg REMARKS:
5252 1.1 joerg Handles opcode 0x0f,0xb7
5253 1.1 joerg ****************************************************************************/
5254 1.1 joerg static void
5255 1.1 joerg x86emuOp2_movzx_word_R_RM(struct X86EMU *emu)
5256 1.1 joerg {
5257 1.1 joerg uint32_t *destreg;
5258 1.1 joerg
5259 1.1 joerg fetch_decode_modrm(emu);
5260 1.1 joerg destreg = decode_rh_long_register(emu);
5261 1.1 joerg *destreg = decode_and_fetch_word(emu);
5262 1.1 joerg }
5263 1.1 joerg /****************************************************************************
5264 1.1 joerg REMARKS:
5265 1.1 joerg Handles opcode 0x0f,0xba
5266 1.1 joerg ****************************************************************************/
5267 1.1 joerg static void
5268 1.1 joerg x86emuOp2_32_btX_I(struct X86EMU *emu)
5269 1.1 joerg {
5270 1.1 joerg int bit;
5271 1.1 joerg uint32_t srcval, mask;
5272 1.1 joerg uint8_t shift;
5273 1.1 joerg
5274 1.1 joerg fetch_decode_modrm(emu);
5275 1.1 joerg if (emu->cur_rh < 4)
5276 1.1 joerg X86EMU_halt_sys(emu);
5277 1.1 joerg
5278 1.1 joerg srcval = decode_and_fetch_long_imm8(emu, &shift);
5279 1.1 joerg bit = shift & 0x1F;
5280 1.1 joerg mask = (0x1 << bit);
5281 1.1 joerg
5282 1.1 joerg switch (emu->cur_rh) {
5283 1.1 joerg case 5:
5284 1.1 joerg write_back_long(emu, srcval | mask);
5285 1.1 joerg break;
5286 1.1 joerg case 6:
5287 1.1 joerg write_back_long(emu, srcval & ~mask);
5288 1.1 joerg break;
5289 1.1 joerg case 7:
5290 1.1 joerg write_back_long(emu, srcval ^ mask);
5291 1.1 joerg break;
5292 1.1 joerg }
5293 1.1 joerg CONDITIONAL_SET_FLAG(srcval & mask, F_CF);
5294 1.1 joerg }
5295 1.1 joerg
5296 1.1 joerg static void
5297 1.1 joerg x86emuOp2_16_btX_I(struct X86EMU *emu)
5298 1.1 joerg {
5299 1.1 joerg int bit;
5300 1.1 joerg
5301 1.1 joerg uint16_t srcval, mask;
5302 1.1 joerg uint8_t shift;
5303 1.1 joerg
5304 1.1 joerg fetch_decode_modrm(emu);
5305 1.1 joerg if (emu->cur_rh < 4)
5306 1.1 joerg X86EMU_halt_sys(emu);
5307 1.1 joerg
5308 1.1 joerg srcval = decode_and_fetch_word_imm8(emu, &shift);
5309 1.1 joerg bit = shift & 0xF;
5310 1.1 joerg mask = (0x1 << bit);
5311 1.1 joerg switch (emu->cur_rh) {
5312 1.1 joerg case 5:
5313 1.1 joerg write_back_word(emu, srcval | mask);
5314 1.1 joerg break;
5315 1.1 joerg case 6:
5316 1.1 joerg write_back_word(emu, srcval & ~mask);
5317 1.1 joerg break;
5318 1.1 joerg case 7:
5319 1.1 joerg write_back_word(emu, srcval ^ mask);
5320 1.1 joerg break;
5321 1.1 joerg }
5322 1.1 joerg CONDITIONAL_SET_FLAG(srcval & mask, F_CF);
5323 1.1 joerg }
5324 1.1 joerg
5325 1.1 joerg static void
5326 1.1 joerg x86emuOp2_btX_I(struct X86EMU *emu)
5327 1.1 joerg {
5328 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
5329 1.1 joerg x86emuOp2_32_btX_I(emu);
5330 1.1 joerg else
5331 1.1 joerg x86emuOp2_16_btX_I(emu);
5332 1.1 joerg }
5333 1.1 joerg /****************************************************************************
5334 1.1 joerg REMARKS:
5335 1.1 joerg Handles opcode 0x0f,0xbb
5336 1.1 joerg ****************************************************************************/
5337 1.1 joerg static void
5338 1.1 joerg x86emuOp2_btc_R(struct X86EMU *emu)
5339 1.1 joerg {
5340 1.1 joerg common_bitstring(emu, 3);
5341 1.1 joerg }
5342 1.1 joerg /****************************************************************************
5343 1.1 joerg REMARKS:
5344 1.1 joerg Handles opcode 0x0f,0xbc
5345 1.1 joerg ****************************************************************************/
5346 1.1 joerg static void
5347 1.1 joerg x86emuOp2_bsf(struct X86EMU *emu)
5348 1.1 joerg {
5349 1.1 joerg common_bitsearch(emu, +1);
5350 1.1 joerg }
5351 1.1 joerg /****************************************************************************
5352 1.1 joerg REMARKS:
5353 1.1 joerg Handles opcode 0x0f,0xbd
5354 1.1 joerg ****************************************************************************/
5355 1.1 joerg static void
5356 1.1 joerg x86emuOp2_bsr(struct X86EMU *emu)
5357 1.1 joerg {
5358 1.1 joerg common_bitsearch(emu, -1);
5359 1.1 joerg }
5360 1.1 joerg /****************************************************************************
5361 1.1 joerg REMARKS:
5362 1.1 joerg Handles opcode 0x0f,0xbe
5363 1.1 joerg ****************************************************************************/
5364 1.1 joerg static void
5365 1.1 joerg x86emuOp2_32_movsx_byte_R_RM(struct X86EMU *emu)
5366 1.1 joerg {
5367 1.1 joerg uint32_t *destreg;
5368 1.1 joerg
5369 1.1 joerg destreg = decode_rh_long_register(emu);
5370 1.1 joerg *destreg = (int32_t)(int8_t)decode_and_fetch_byte(emu);
5371 1.1 joerg }
5372 1.1 joerg
5373 1.1 joerg static void
5374 1.1 joerg x86emuOp2_16_movsx_byte_R_RM(struct X86EMU *emu)
5375 1.1 joerg {
5376 1.1 joerg uint16_t *destreg;
5377 1.1 joerg
5378 1.1 joerg fetch_decode_modrm(emu);
5379 1.1 joerg destreg = decode_rh_word_register(emu);
5380 1.1 joerg *destreg = (int16_t)(int8_t)decode_and_fetch_byte(emu);
5381 1.1 joerg }
5382 1.1 joerg
5383 1.1 joerg static void
5384 1.1 joerg x86emuOp2_movsx_byte_R_RM(struct X86EMU *emu)
5385 1.1 joerg {
5386 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
5387 1.1 joerg x86emuOp2_32_movsx_byte_R_RM(emu);
5388 1.1 joerg else
5389 1.1 joerg x86emuOp2_16_movsx_byte_R_RM(emu);
5390 1.1 joerg }
5391 1.1 joerg /****************************************************************************
5392 1.1 joerg REMARKS:
5393 1.1 joerg Handles opcode 0x0f,0xbf
5394 1.1 joerg ****************************************************************************/
5395 1.1 joerg static void
5396 1.1 joerg x86emuOp2_movsx_word_R_RM(struct X86EMU *emu)
5397 1.1 joerg {
5398 1.1 joerg uint32_t *destreg;
5399 1.1 joerg
5400 1.1 joerg fetch_decode_modrm(emu);
5401 1.1 joerg destreg = decode_rh_long_register(emu);
5402 1.1 joerg *destreg = (int32_t)(int16_t)decode_and_fetch_word(emu);
5403 1.1 joerg }
5404 1.1 joerg
5405 1.1 joerg static void
5406 1.1 joerg X86EMU_exec_two_byte(struct X86EMU * emu)
5407 1.1 joerg {
5408 1.1 joerg uint8_t op2;
5409 1.1 joerg
5410 1.1 joerg op2 = fetch_byte_imm(emu);
5411 1.1 joerg
5412 1.1 joerg switch (op2) {
5413 1.1 joerg /* 0x00 Group F (ring 0 PM) */
5414 1.1 joerg /* 0x01 Group G (ring 0 PM) */
5415 1.1 joerg /* 0x02 lar (ring 0 PM) */
5416 1.1 joerg /* 0x03 lsl (ring 0 PM) */
5417 1.1 joerg /* 0x05 loadall (undocumented) */
5418 1.1 joerg /* 0x06 clts (ring 0 PM) */
5419 1.1 joerg /* 0x07 loadall (undocumented) */
5420 1.1 joerg /* 0x08 invd (ring 0 PM) */
5421 1.1 joerg /* 0x09 wbinvd (ring 0 PM) */
5422 1.1 joerg
5423 1.1 joerg /* 0x20 mov reg32(op2); break;creg (ring 0 PM) */
5424 1.1 joerg /* 0x21 mov reg32(op2); break;dreg (ring 0 PM) */
5425 1.1 joerg /* 0x22 mov creg(op2); break;reg32 (ring 0 PM) */
5426 1.1 joerg /* 0x23 mov dreg(op2); break;reg32 (ring 0 PM) */
5427 1.1 joerg /* 0x24 mov reg32(op2); break;treg (ring 0 PM) */
5428 1.1 joerg /* 0x26 mov treg(op2); break;reg32 (ring 0 PM) */
5429 1.1 joerg
5430 1.1 joerg case 0x31:
5431 1.1 joerg x86emuOp2_rdtsc(emu);
5432 1.1 joerg break;
5433 1.1 joerg
5434 1.1 joerg case 0x80:
5435 1.1 joerg common_jmp_long(emu, ACCESS_FLAG(F_OF));
5436 1.1 joerg break;
5437 1.1 joerg case 0x81:
5438 1.1 joerg common_jmp_long(emu, !ACCESS_FLAG(F_OF));
5439 1.1 joerg break;
5440 1.1 joerg case 0x82:
5441 1.1 joerg common_jmp_long(emu, ACCESS_FLAG(F_CF));
5442 1.1 joerg break;
5443 1.1 joerg case 0x83:
5444 1.1 joerg common_jmp_long(emu, !ACCESS_FLAG(F_CF));
5445 1.1 joerg break;
5446 1.1 joerg case 0x84:
5447 1.1 joerg common_jmp_long(emu, ACCESS_FLAG(F_ZF));
5448 1.1 joerg break;
5449 1.1 joerg case 0x85:
5450 1.1 joerg common_jmp_long(emu, !ACCESS_FLAG(F_ZF));
5451 1.1 joerg break;
5452 1.1 joerg case 0x86:
5453 1.1 joerg common_jmp_long(emu, ACCESS_FLAG(F_CF) || ACCESS_FLAG(F_ZF));
5454 1.1 joerg break;
5455 1.1 joerg case 0x87:
5456 1.1 joerg common_jmp_long(emu, !(ACCESS_FLAG(F_CF) || ACCESS_FLAG(F_ZF)));
5457 1.1 joerg break;
5458 1.1 joerg case 0x88:
5459 1.1 joerg common_jmp_long(emu, ACCESS_FLAG(F_SF));
5460 1.1 joerg break;
5461 1.1 joerg case 0x89:
5462 1.1 joerg common_jmp_long(emu, !ACCESS_FLAG(F_SF));
5463 1.1 joerg break;
5464 1.1 joerg case 0x8a:
5465 1.1 joerg common_jmp_long(emu, ACCESS_FLAG(F_PF));
5466 1.1 joerg break;
5467 1.1 joerg case 0x8b:
5468 1.1 joerg common_jmp_long(emu, !ACCESS_FLAG(F_PF));
5469 1.1 joerg break;
5470 1.1 joerg case 0x8c:
5471 1.1 joerg common_jmp_long(emu, xorl(ACCESS_FLAG(F_SF), ACCESS_FLAG(F_OF)));
5472 1.1 joerg break;
5473 1.1 joerg case 0x8d:
5474 1.1 joerg common_jmp_long(emu, !(xorl(ACCESS_FLAG(F_SF), ACCESS_FLAG(F_OF))));
5475 1.1 joerg break;
5476 1.1 joerg case 0x8e:
5477 1.1 joerg common_jmp_long(emu,
5478 1.1 joerg (xorl(ACCESS_FLAG(F_SF), ACCESS_FLAG(F_OF)) || ACCESS_FLAG(F_ZF)));
5479 1.1 joerg break;
5480 1.1 joerg case 0x8f:
5481 1.1 joerg common_jmp_long(emu,
5482 1.1 joerg !(xorl(ACCESS_FLAG(F_SF), ACCESS_FLAG(F_OF)) || ACCESS_FLAG(F_ZF)));
5483 1.1 joerg break;
5484 1.1 joerg
5485 1.1 joerg case 0x90:
5486 1.1 joerg common_set_byte(emu, ACCESS_FLAG(F_OF));
5487 1.1 joerg break;
5488 1.1 joerg case 0x91:
5489 1.1 joerg common_set_byte(emu, !ACCESS_FLAG(F_OF));
5490 1.1 joerg break;
5491 1.1 joerg case 0x92:
5492 1.1 joerg common_set_byte(emu, ACCESS_FLAG(F_CF));
5493 1.1 joerg break;
5494 1.1 joerg case 0x93:
5495 1.1 joerg common_set_byte(emu, !ACCESS_FLAG(F_CF));
5496 1.1 joerg break;
5497 1.1 joerg case 0x94:
5498 1.1 joerg common_set_byte(emu, ACCESS_FLAG(F_ZF));
5499 1.1 joerg break;
5500 1.1 joerg case 0x95:
5501 1.1 joerg common_set_byte(emu, !ACCESS_FLAG(F_ZF));
5502 1.1 joerg break;
5503 1.1 joerg case 0x96:
5504 1.1 joerg common_set_byte(emu, ACCESS_FLAG(F_CF) || ACCESS_FLAG(F_ZF));
5505 1.1 joerg break;
5506 1.1 joerg case 0x97:
5507 1.1 joerg common_set_byte(emu, !(ACCESS_FLAG(F_CF) || ACCESS_FLAG(F_ZF)));
5508 1.1 joerg break;
5509 1.1 joerg case 0x98:
5510 1.1 joerg common_set_byte(emu, ACCESS_FLAG(F_SF));
5511 1.1 joerg break;
5512 1.1 joerg case 0x99:
5513 1.1 joerg common_set_byte(emu, !ACCESS_FLAG(F_SF));
5514 1.1 joerg break;
5515 1.1 joerg case 0x9a:
5516 1.1 joerg common_set_byte(emu, ACCESS_FLAG(F_PF));
5517 1.1 joerg break;
5518 1.1 joerg case 0x9b:
5519 1.1 joerg common_set_byte(emu, !ACCESS_FLAG(F_PF));
5520 1.1 joerg break;
5521 1.1 joerg case 0x9c:
5522 1.1 joerg common_set_byte(emu, xorl(ACCESS_FLAG(F_SF), ACCESS_FLAG(F_OF)));
5523 1.1 joerg break;
5524 1.1 joerg case 0x9d:
5525 1.1 joerg common_set_byte(emu, xorl(ACCESS_FLAG(F_SF), ACCESS_FLAG(F_OF)));
5526 1.1 joerg break;
5527 1.1 joerg case 0x9e:
5528 1.1 joerg common_set_byte(emu,
5529 1.1 joerg (xorl(ACCESS_FLAG(F_SF), ACCESS_FLAG(F_OF)) ||
5530 1.1 joerg ACCESS_FLAG(F_ZF)));
5531 1.1 joerg break;
5532 1.1 joerg case 0x9f:
5533 1.1 joerg common_set_byte(emu,
5534 1.1 joerg !(xorl(ACCESS_FLAG(F_SF), ACCESS_FLAG(F_OF)) ||
5535 1.1 joerg ACCESS_FLAG(F_ZF)));
5536 1.1 joerg break;
5537 1.1 joerg
5538 1.1 joerg case 0xa0:
5539 1.1 joerg x86emuOp2_push_FS(emu);
5540 1.1 joerg break;
5541 1.1 joerg case 0xa1:
5542 1.1 joerg x86emuOp2_pop_FS(emu);
5543 1.1 joerg break;
5544 1.1 joerg case 0xa3:
5545 1.1 joerg x86emuOp2_bt_R(emu);
5546 1.1 joerg break;
5547 1.1 joerg case 0xa4:
5548 1.1 joerg x86emuOp2_shld_IMM(emu);
5549 1.1 joerg break;
5550 1.1 joerg case 0xa5:
5551 1.1 joerg x86emuOp2_shld_CL(emu);
5552 1.1 joerg break;
5553 1.1 joerg case 0xa8:
5554 1.1 joerg x86emuOp2_push_GS(emu);
5555 1.1 joerg break;
5556 1.1 joerg case 0xa9:
5557 1.1 joerg x86emuOp2_pop_GS(emu);
5558 1.1 joerg break;
5559 1.1 joerg case 0xab:
5560 1.1 joerg x86emuOp2_bts_R(emu);
5561 1.1 joerg break;
5562 1.1 joerg case 0xac:
5563 1.1 joerg x86emuOp2_shrd_IMM(emu);
5564 1.1 joerg break;
5565 1.1 joerg case 0xad:
5566 1.1 joerg x86emuOp2_shrd_CL(emu);
5567 1.1 joerg break;
5568 1.1 joerg case 0xaf:
5569 1.1 joerg x86emuOp2_imul_R_RM(emu);
5570 1.1 joerg break;
5571 1.1 joerg
5572 1.1 joerg /* 0xb0 TODO: cmpxchg */
5573 1.1 joerg /* 0xb1 TODO: cmpxchg */
5574 1.1 joerg case 0xb2:
5575 1.1 joerg x86emuOp2_lss_R_IMM(emu);
5576 1.1 joerg break;
5577 1.1 joerg case 0xb3:
5578 1.1 joerg x86emuOp2_btr_R(emu);
5579 1.1 joerg break;
5580 1.1 joerg case 0xb4:
5581 1.1 joerg x86emuOp2_lfs_R_IMM(emu);
5582 1.1 joerg break;
5583 1.1 joerg case 0xb5:
5584 1.1 joerg x86emuOp2_lgs_R_IMM(emu);
5585 1.1 joerg break;
5586 1.1 joerg case 0xb6:
5587 1.1 joerg x86emuOp2_movzx_byte_R_RM(emu);
5588 1.1 joerg break;
5589 1.1 joerg case 0xb7:
5590 1.1 joerg x86emuOp2_movzx_word_R_RM(emu);
5591 1.1 joerg break;
5592 1.1 joerg case 0xba:
5593 1.1 joerg x86emuOp2_btX_I(emu);
5594 1.1 joerg break;
5595 1.1 joerg case 0xbb:
5596 1.1 joerg x86emuOp2_btc_R(emu);
5597 1.1 joerg break;
5598 1.1 joerg case 0xbc:
5599 1.1 joerg x86emuOp2_bsf(emu);
5600 1.1 joerg break;
5601 1.1 joerg case 0xbd:
5602 1.1 joerg x86emuOp2_bsr(emu);
5603 1.1 joerg break;
5604 1.1 joerg case 0xbe:
5605 1.1 joerg x86emuOp2_movsx_byte_R_RM(emu);
5606 1.1 joerg break;
5607 1.1 joerg case 0xbf:
5608 1.1 joerg x86emuOp2_movsx_word_R_RM(emu);
5609 1.1 joerg break;
5610 1.1 joerg
5611 1.1 joerg /* 0xc0 TODO: xadd */
5612 1.1 joerg /* 0xc1 TODO: xadd */
5613 1.1 joerg /* 0xc8 TODO: bswap */
5614 1.1 joerg /* 0xc9 TODO: bswap */
5615 1.1 joerg /* 0xca TODO: bswap */
5616 1.1 joerg /* 0xcb TODO: bswap */
5617 1.1 joerg /* 0xcc TODO: bswap */
5618 1.1 joerg /* 0xcd TODO: bswap */
5619 1.1 joerg /* 0xce TODO: bswap */
5620 1.1 joerg /* 0xcf TODO: bswap */
5621 1.1 joerg
5622 1.1 joerg default:
5623 1.1 joerg X86EMU_halt_sys(emu);
5624 1.1 joerg break;
5625 1.1 joerg }
5626 1.1 joerg }
5627 1.1 joerg
5628 1.1 joerg /*
5629 1.1 joerg * Carry Chain Calculation
5630 1.1 joerg *
5631 1.1 joerg * This represents a somewhat expensive calculation which is
5632 1.1 joerg * apparently required to emulate the setting of the OF and AF flag.
5633 1.1 joerg * The latter is not so important, but the former is. The overflow
5634 1.1 joerg * flag is the XOR of the top two bits of the carry chain for an
5635 1.1 joerg * addition (similar for subtraction). Since we do not want to
5636 1.1 joerg * simulate the addition in a bitwise manner, we try to calculate the
5637 1.1 joerg * carry chain given the two operands and the result.
5638 1.1 joerg *
5639 1.1 joerg * So, given the following table, which represents the addition of two
5640 1.1 joerg * bits, we can derive a formula for the carry chain.
5641 1.1 joerg *
5642 1.1 joerg * a b cin r cout
5643 1.1 joerg * 0 0 0 0 0
5644 1.1 joerg * 0 0 1 1 0
5645 1.1 joerg * 0 1 0 1 0
5646 1.1 joerg * 0 1 1 0 1
5647 1.1 joerg * 1 0 0 1 0
5648 1.1 joerg * 1 0 1 0 1
5649 1.1 joerg * 1 1 0 0 1
5650 1.1 joerg * 1 1 1 1 1
5651 1.1 joerg *
5652 1.1 joerg * Construction of table for cout:
5653 1.1 joerg *
5654 1.1 joerg * ab
5655 1.1 joerg * r \ 00 01 11 10
5656 1.1 joerg * |------------------
5657 1.1 joerg * 0 | 0 1 1 1
5658 1.1 joerg * 1 | 0 0 1 0
5659 1.1 joerg *
5660 1.1 joerg * By inspection, one gets: cc = ab + r'(a + b)
5661 1.1 joerg *
5662 1.1 joerg * That represents alot of operations, but NO CHOICE....
5663 1.1 joerg *
5664 1.1 joerg * Borrow Chain Calculation.
5665 1.1 joerg *
5666 1.1 joerg * The following table represents the subtraction of two bits, from
5667 1.1 joerg * which we can derive a formula for the borrow chain.
5668 1.1 joerg *
5669 1.1 joerg * a b bin r bout
5670 1.1 joerg * 0 0 0 0 0
5671 1.1 joerg * 0 0 1 1 1
5672 1.1 joerg * 0 1 0 1 1
5673 1.1 joerg * 0 1 1 0 1
5674 1.1 joerg * 1 0 0 1 0
5675 1.1 joerg * 1 0 1 0 0
5676 1.1 joerg * 1 1 0 0 0
5677 1.1 joerg * 1 1 1 1 1
5678 1.1 joerg *
5679 1.1 joerg * Construction of table for cout:
5680 1.1 joerg *
5681 1.1 joerg * ab
5682 1.1 joerg * r \ 00 01 11 10
5683 1.1 joerg * |------------------
5684 1.1 joerg * 0 | 0 1 0 0
5685 1.1 joerg * 1 | 1 1 1 0
5686 1.1 joerg *
5687 1.1 joerg * By inspection, one gets: bc = a'b + r(a' + b)
5688 1.1 joerg *
5689 1.1 joerg ****************************************************************************/
5690 1.1 joerg
5691 1.1 joerg /*------------------------- Global Variables ------------------------------*/
5692 1.1 joerg
5693 1.1 joerg static uint32_t x86emu_parity_tab[8] =
5694 1.1 joerg {
5695 1.1 joerg 0x96696996,
5696 1.1 joerg 0x69969669,
5697 1.1 joerg 0x69969669,
5698 1.1 joerg 0x96696996,
5699 1.1 joerg 0x69969669,
5700 1.1 joerg 0x96696996,
5701 1.1 joerg 0x96696996,
5702 1.1 joerg 0x69969669,
5703 1.1 joerg };
5704 1.1 joerg #define PARITY(x) (((x86emu_parity_tab[(x) / 32] >> ((x) % 32)) & 1) == 0)
5705 1.1 joerg #define XOR2(x) (((x) ^ ((x)>>1)) & 0x1)
5706 1.1 joerg
5707 1.1 joerg /****************************************************************************
5708 1.1 joerg REMARKS:
5709 1.1 joerg Implements the AAA instruction and side effects.
5710 1.1 joerg ****************************************************************************/
5711 1.1 joerg static uint16_t
5712 1.1 joerg aaa_word(struct X86EMU *emu, uint16_t d)
5713 1.1 joerg {
5714 1.1 joerg uint16_t res;
5715 1.1 joerg if ((d & 0xf) > 0x9 || ACCESS_FLAG(F_AF)) {
5716 1.1 joerg d += 0x6;
5717 1.1 joerg d += 0x100;
5718 1.1 joerg SET_FLAG(F_AF);
5719 1.1 joerg SET_FLAG(F_CF);
5720 1.1 joerg } else {
5721 1.1 joerg CLEAR_FLAG(F_CF);
5722 1.1 joerg CLEAR_FLAG(F_AF);
5723 1.1 joerg }
5724 1.1 joerg res = (uint16_t) (d & 0xFF0F);
5725 1.1 joerg CLEAR_FLAG(F_SF);
5726 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
5727 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
5728 1.1 joerg return res;
5729 1.1 joerg }
5730 1.1 joerg /****************************************************************************
5731 1.1 joerg REMARKS:
5732 1.1 joerg Implements the AAA instruction and side effects.
5733 1.1 joerg ****************************************************************************/
5734 1.1 joerg static uint16_t
5735 1.1 joerg aas_word(struct X86EMU *emu, uint16_t d)
5736 1.1 joerg {
5737 1.1 joerg uint16_t res;
5738 1.1 joerg if ((d & 0xf) > 0x9 || ACCESS_FLAG(F_AF)) {
5739 1.1 joerg d -= 0x6;
5740 1.1 joerg d -= 0x100;
5741 1.1 joerg SET_FLAG(F_AF);
5742 1.1 joerg SET_FLAG(F_CF);
5743 1.1 joerg } else {
5744 1.1 joerg CLEAR_FLAG(F_CF);
5745 1.1 joerg CLEAR_FLAG(F_AF);
5746 1.1 joerg }
5747 1.1 joerg res = (uint16_t) (d & 0xFF0F);
5748 1.1 joerg CLEAR_FLAG(F_SF);
5749 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
5750 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
5751 1.1 joerg return res;
5752 1.1 joerg }
5753 1.1 joerg /****************************************************************************
5754 1.1 joerg REMARKS:
5755 1.1 joerg Implements the AAD instruction and side effects.
5756 1.1 joerg ****************************************************************************/
5757 1.1 joerg static uint16_t
5758 1.1 joerg aad_word(struct X86EMU *emu, uint16_t d)
5759 1.1 joerg {
5760 1.1 joerg uint16_t l;
5761 1.1 joerg uint8_t hb, lb;
5762 1.1 joerg
5763 1.1 joerg hb = (uint8_t) ((d >> 8) & 0xff);
5764 1.1 joerg lb = (uint8_t) ((d & 0xff));
5765 1.1 joerg l = (uint16_t) ((lb + 10 * hb) & 0xFF);
5766 1.1 joerg
5767 1.1 joerg CLEAR_FLAG(F_CF);
5768 1.1 joerg CLEAR_FLAG(F_AF);
5769 1.1 joerg CLEAR_FLAG(F_OF);
5770 1.1 joerg CONDITIONAL_SET_FLAG(l & 0x80, F_SF);
5771 1.1 joerg CONDITIONAL_SET_FLAG(l == 0, F_ZF);
5772 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(l & 0xff), F_PF);
5773 1.1 joerg return l;
5774 1.1 joerg }
5775 1.1 joerg /****************************************************************************
5776 1.1 joerg REMARKS:
5777 1.1 joerg Implements the AAM instruction and side effects.
5778 1.1 joerg ****************************************************************************/
5779 1.1 joerg static uint16_t
5780 1.1 joerg aam_word(struct X86EMU *emu, uint8_t d)
5781 1.1 joerg {
5782 1.1 joerg uint16_t h, l;
5783 1.1 joerg
5784 1.1 joerg h = (uint16_t) (d / 10);
5785 1.1 joerg l = (uint16_t) (d % 10);
5786 1.1 joerg l |= (uint16_t) (h << 8);
5787 1.1 joerg
5788 1.1 joerg CLEAR_FLAG(F_CF);
5789 1.1 joerg CLEAR_FLAG(F_AF);
5790 1.1 joerg CLEAR_FLAG(F_OF);
5791 1.1 joerg CONDITIONAL_SET_FLAG(l & 0x80, F_SF);
5792 1.1 joerg CONDITIONAL_SET_FLAG(l == 0, F_ZF);
5793 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(l & 0xff), F_PF);
5794 1.1 joerg return l;
5795 1.1 joerg }
5796 1.1 joerg /****************************************************************************
5797 1.1 joerg REMARKS:
5798 1.1 joerg Implements the ADC instruction and side effects.
5799 1.1 joerg ****************************************************************************/
5800 1.1 joerg static uint8_t
5801 1.1 joerg adc_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
5802 1.1 joerg {
5803 1.1 joerg uint32_t res; /* all operands in native machine order */
5804 1.1 joerg uint32_t cc;
5805 1.1 joerg
5806 1.1 joerg if (ACCESS_FLAG(F_CF))
5807 1.1 joerg res = 1 + d + s;
5808 1.1 joerg else
5809 1.1 joerg res = d + s;
5810 1.1 joerg
5811 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x100, F_CF);
5812 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
5813 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
5814 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
5815 1.1 joerg
5816 1.1 joerg /* calculate the carry chain SEE NOTE AT TOP. */
5817 1.1 joerg cc = (s & d) | ((~res) & (s | d));
5818 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(cc >> 6), F_OF);
5819 1.1 joerg CONDITIONAL_SET_FLAG(cc & 0x8, F_AF);
5820 1.1 joerg return (uint8_t) res;
5821 1.1 joerg }
5822 1.1 joerg /****************************************************************************
5823 1.1 joerg REMARKS:
5824 1.1 joerg Implements the ADC instruction and side effects.
5825 1.1 joerg ****************************************************************************/
5826 1.1 joerg static uint16_t
5827 1.1 joerg adc_word(struct X86EMU *emu, uint16_t d, uint16_t s)
5828 1.1 joerg {
5829 1.1 joerg uint32_t res; /* all operands in native machine order */
5830 1.1 joerg uint32_t cc;
5831 1.1 joerg
5832 1.1 joerg if (ACCESS_FLAG(F_CF))
5833 1.1 joerg res = 1 + d + s;
5834 1.1 joerg else
5835 1.1 joerg res = d + s;
5836 1.1 joerg
5837 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x10000, F_CF);
5838 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
5839 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
5840 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
5841 1.1 joerg
5842 1.1 joerg /* calculate the carry chain SEE NOTE AT TOP. */
5843 1.1 joerg cc = (s & d) | ((~res) & (s | d));
5844 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(cc >> 14), F_OF);
5845 1.1 joerg CONDITIONAL_SET_FLAG(cc & 0x8, F_AF);
5846 1.1 joerg return (uint16_t) res;
5847 1.1 joerg }
5848 1.1 joerg /****************************************************************************
5849 1.1 joerg REMARKS:
5850 1.1 joerg Implements the ADC instruction and side effects.
5851 1.1 joerg ****************************************************************************/
5852 1.1 joerg static uint32_t
5853 1.1 joerg adc_long(struct X86EMU *emu, uint32_t d, uint32_t s)
5854 1.1 joerg {
5855 1.1 joerg uint32_t lo; /* all operands in native machine order */
5856 1.1 joerg uint32_t hi;
5857 1.1 joerg uint32_t res;
5858 1.1 joerg uint32_t cc;
5859 1.1 joerg
5860 1.1 joerg if (ACCESS_FLAG(F_CF)) {
5861 1.1 joerg lo = 1 + (d & 0xFFFF) + (s & 0xFFFF);
5862 1.1 joerg res = 1 + d + s;
5863 1.1 joerg } else {
5864 1.1 joerg lo = (d & 0xFFFF) + (s & 0xFFFF);
5865 1.1 joerg res = d + s;
5866 1.1 joerg }
5867 1.1 joerg hi = (lo >> 16) + (d >> 16) + (s >> 16);
5868 1.1 joerg
5869 1.1 joerg CONDITIONAL_SET_FLAG(hi & 0x10000, F_CF);
5870 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
5871 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
5872 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
5873 1.1 joerg
5874 1.1 joerg /* calculate the carry chain SEE NOTE AT TOP. */
5875 1.1 joerg cc = (s & d) | ((~res) & (s | d));
5876 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(cc >> 30), F_OF);
5877 1.1 joerg CONDITIONAL_SET_FLAG(cc & 0x8, F_AF);
5878 1.1 joerg return res;
5879 1.1 joerg }
5880 1.1 joerg /****************************************************************************
5881 1.1 joerg REMARKS:
5882 1.1 joerg Implements the ADD instruction and side effects.
5883 1.1 joerg ****************************************************************************/
5884 1.1 joerg static uint8_t
5885 1.1 joerg add_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
5886 1.1 joerg {
5887 1.1 joerg uint32_t res; /* all operands in native machine order */
5888 1.1 joerg uint32_t cc;
5889 1.1 joerg
5890 1.1 joerg res = d + s;
5891 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x100, F_CF);
5892 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
5893 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
5894 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
5895 1.1 joerg
5896 1.1 joerg /* calculate the carry chain SEE NOTE AT TOP. */
5897 1.1 joerg cc = (s & d) | ((~res) & (s | d));
5898 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(cc >> 6), F_OF);
5899 1.1 joerg CONDITIONAL_SET_FLAG(cc & 0x8, F_AF);
5900 1.1 joerg return (uint8_t) res;
5901 1.1 joerg }
5902 1.1 joerg /****************************************************************************
5903 1.1 joerg REMARKS:
5904 1.1 joerg Implements the ADD instruction and side effects.
5905 1.1 joerg ****************************************************************************/
5906 1.1 joerg static uint16_t
5907 1.1 joerg add_word(struct X86EMU *emu, uint16_t d, uint16_t s)
5908 1.1 joerg {
5909 1.1 joerg uint32_t res; /* all operands in native machine order */
5910 1.1 joerg uint32_t cc;
5911 1.1 joerg
5912 1.1 joerg res = d + s;
5913 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x10000, F_CF);
5914 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
5915 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
5916 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
5917 1.1 joerg
5918 1.1 joerg /* calculate the carry chain SEE NOTE AT TOP. */
5919 1.1 joerg cc = (s & d) | ((~res) & (s | d));
5920 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(cc >> 14), F_OF);
5921 1.1 joerg CONDITIONAL_SET_FLAG(cc & 0x8, F_AF);
5922 1.1 joerg return (uint16_t) res;
5923 1.1 joerg }
5924 1.1 joerg /****************************************************************************
5925 1.1 joerg REMARKS:
5926 1.1 joerg Implements the ADD instruction and side effects.
5927 1.1 joerg ****************************************************************************/
5928 1.1 joerg static uint32_t
5929 1.1 joerg add_long(struct X86EMU *emu, uint32_t d, uint32_t s)
5930 1.1 joerg {
5931 1.1 joerg uint32_t lo; /* all operands in native machine order */
5932 1.1 joerg uint32_t hi;
5933 1.1 joerg uint32_t res;
5934 1.1 joerg uint32_t cc;
5935 1.1 joerg
5936 1.1 joerg lo = (d & 0xFFFF) + (s & 0xFFFF);
5937 1.1 joerg res = d + s;
5938 1.1 joerg hi = (lo >> 16) + (d >> 16) + (s >> 16);
5939 1.1 joerg
5940 1.1 joerg CONDITIONAL_SET_FLAG(hi & 0x10000, F_CF);
5941 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
5942 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
5943 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
5944 1.1 joerg
5945 1.1 joerg /* calculate the carry chain SEE NOTE AT TOP. */
5946 1.1 joerg cc = (s & d) | ((~res) & (s | d));
5947 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(cc >> 30), F_OF);
5948 1.1 joerg CONDITIONAL_SET_FLAG(cc & 0x8, F_AF);
5949 1.1 joerg
5950 1.1 joerg return res;
5951 1.1 joerg }
5952 1.1 joerg /****************************************************************************
5953 1.1 joerg REMARKS:
5954 1.1 joerg Implements the AND instruction and side effects.
5955 1.1 joerg ****************************************************************************/
5956 1.1 joerg static uint8_t
5957 1.1 joerg and_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
5958 1.1 joerg {
5959 1.1 joerg uint8_t res; /* all operands in native machine order */
5960 1.1 joerg
5961 1.1 joerg res = d & s;
5962 1.1 joerg
5963 1.1 joerg /* set the flags */
5964 1.1 joerg CLEAR_FLAG(F_OF);
5965 1.1 joerg CLEAR_FLAG(F_CF);
5966 1.1 joerg CLEAR_FLAG(F_AF);
5967 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
5968 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
5969 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res), F_PF);
5970 1.1 joerg return res;
5971 1.1 joerg }
5972 1.1 joerg /****************************************************************************
5973 1.1 joerg REMARKS:
5974 1.1 joerg Implements the AND instruction and side effects.
5975 1.1 joerg ****************************************************************************/
5976 1.1 joerg static uint16_t
5977 1.1 joerg and_word(struct X86EMU *emu, uint16_t d, uint16_t s)
5978 1.1 joerg {
5979 1.1 joerg uint16_t res; /* all operands in native machine order */
5980 1.1 joerg
5981 1.1 joerg res = d & s;
5982 1.1 joerg
5983 1.1 joerg /* set the flags */
5984 1.1 joerg CLEAR_FLAG(F_OF);
5985 1.1 joerg CLEAR_FLAG(F_CF);
5986 1.1 joerg CLEAR_FLAG(F_AF);
5987 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
5988 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
5989 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
5990 1.1 joerg return res;
5991 1.1 joerg }
5992 1.1 joerg /****************************************************************************
5993 1.1 joerg REMARKS:
5994 1.1 joerg Implements the AND instruction and side effects.
5995 1.1 joerg ****************************************************************************/
5996 1.1 joerg static uint32_t
5997 1.1 joerg and_long(struct X86EMU *emu, uint32_t d, uint32_t s)
5998 1.1 joerg {
5999 1.1 joerg uint32_t res; /* all operands in native machine order */
6000 1.1 joerg
6001 1.1 joerg res = d & s;
6002 1.1 joerg
6003 1.1 joerg /* set the flags */
6004 1.1 joerg CLEAR_FLAG(F_OF);
6005 1.1 joerg CLEAR_FLAG(F_CF);
6006 1.1 joerg CLEAR_FLAG(F_AF);
6007 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
6008 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
6009 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6010 1.1 joerg return res;
6011 1.1 joerg }
6012 1.1 joerg /****************************************************************************
6013 1.1 joerg REMARKS:
6014 1.1 joerg Implements the CMP instruction and side effects.
6015 1.1 joerg ****************************************************************************/
6016 1.1 joerg static uint8_t
6017 1.1 joerg cmp_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
6018 1.1 joerg {
6019 1.1 joerg uint32_t res; /* all operands in native machine order */
6020 1.1 joerg uint32_t bc;
6021 1.1 joerg
6022 1.1 joerg res = d - s;
6023 1.1 joerg CLEAR_FLAG(F_CF);
6024 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
6025 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
6026 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6027 1.1 joerg
6028 1.1 joerg /* calculate the borrow chain. See note at top */
6029 1.1 joerg bc = (res & (~d | s)) | (~d & s);
6030 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x80, F_CF);
6031 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 6), F_OF);
6032 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
6033 1.1 joerg return d;
6034 1.1 joerg }
6035 1.1 joerg
6036 1.1 joerg static void
6037 1.1 joerg cmp_byte_no_return(struct X86EMU *emu, uint8_t d, uint8_t s)
6038 1.1 joerg {
6039 1.1 joerg cmp_byte(emu, d, s);
6040 1.1 joerg }
6041 1.1 joerg /****************************************************************************
6042 1.1 joerg REMARKS:
6043 1.1 joerg Implements the CMP instruction and side effects.
6044 1.1 joerg ****************************************************************************/
6045 1.1 joerg static uint16_t
6046 1.1 joerg cmp_word(struct X86EMU *emu, uint16_t d, uint16_t s)
6047 1.1 joerg {
6048 1.1 joerg uint32_t res; /* all operands in native machine order */
6049 1.1 joerg uint32_t bc;
6050 1.1 joerg
6051 1.1 joerg res = d - s;
6052 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
6053 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
6054 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6055 1.1 joerg
6056 1.1 joerg /* calculate the borrow chain. See note at top */
6057 1.1 joerg bc = (res & (~d | s)) | (~d & s);
6058 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8000, F_CF);
6059 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 14), F_OF);
6060 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
6061 1.1 joerg return d;
6062 1.1 joerg }
6063 1.1 joerg
6064 1.1 joerg static void
6065 1.1 joerg cmp_word_no_return(struct X86EMU *emu, uint16_t d, uint16_t s)
6066 1.1 joerg {
6067 1.1 joerg cmp_word(emu, d, s);
6068 1.1 joerg }
6069 1.1 joerg /****************************************************************************
6070 1.1 joerg REMARKS:
6071 1.1 joerg Implements the CMP instruction and side effects.
6072 1.1 joerg ****************************************************************************/
6073 1.1 joerg static uint32_t
6074 1.1 joerg cmp_long(struct X86EMU *emu, uint32_t d, uint32_t s)
6075 1.1 joerg {
6076 1.1 joerg uint32_t res; /* all operands in native machine order */
6077 1.1 joerg uint32_t bc;
6078 1.1 joerg
6079 1.1 joerg res = d - s;
6080 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
6081 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
6082 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6083 1.1 joerg
6084 1.1 joerg /* calculate the borrow chain. See note at top */
6085 1.1 joerg bc = (res & (~d | s)) | (~d & s);
6086 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x80000000, F_CF);
6087 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 30), F_OF);
6088 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
6089 1.1 joerg return d;
6090 1.1 joerg }
6091 1.1 joerg
6092 1.1 joerg static void
6093 1.1 joerg cmp_long_no_return(struct X86EMU *emu, uint32_t d, uint32_t s)
6094 1.1 joerg {
6095 1.1 joerg cmp_long(emu, d, s);
6096 1.1 joerg }
6097 1.1 joerg /****************************************************************************
6098 1.1 joerg REMARKS:
6099 1.1 joerg Implements the DAA instruction and side effects.
6100 1.1 joerg ****************************************************************************/
6101 1.1 joerg static uint8_t
6102 1.1 joerg daa_byte(struct X86EMU *emu, uint8_t d)
6103 1.1 joerg {
6104 1.1 joerg uint32_t res = d;
6105 1.1 joerg if ((d & 0xf) > 9 || ACCESS_FLAG(F_AF)) {
6106 1.1 joerg res += 6;
6107 1.1 joerg SET_FLAG(F_AF);
6108 1.1 joerg }
6109 1.1 joerg if (res > 0x9F || ACCESS_FLAG(F_CF)) {
6110 1.1 joerg res += 0x60;
6111 1.1 joerg SET_FLAG(F_CF);
6112 1.1 joerg }
6113 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
6114 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xFF) == 0, F_ZF);
6115 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6116 1.1 joerg return (uint8_t) res;
6117 1.1 joerg }
6118 1.1 joerg /****************************************************************************
6119 1.1 joerg REMARKS:
6120 1.1 joerg Implements the DAS instruction and side effects.
6121 1.1 joerg ****************************************************************************/
6122 1.1 joerg static uint8_t
6123 1.1 joerg das_byte(struct X86EMU *emu, uint8_t d)
6124 1.1 joerg {
6125 1.1 joerg if ((d & 0xf) > 9 || ACCESS_FLAG(F_AF)) {
6126 1.1 joerg d -= 6;
6127 1.1 joerg SET_FLAG(F_AF);
6128 1.1 joerg }
6129 1.1 joerg if (d > 0x9F || ACCESS_FLAG(F_CF)) {
6130 1.1 joerg d -= 0x60;
6131 1.1 joerg SET_FLAG(F_CF);
6132 1.1 joerg }
6133 1.1 joerg CONDITIONAL_SET_FLAG(d & 0x80, F_SF);
6134 1.1 joerg CONDITIONAL_SET_FLAG(d == 0, F_ZF);
6135 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(d & 0xff), F_PF);
6136 1.1 joerg return d;
6137 1.1 joerg }
6138 1.1 joerg /****************************************************************************
6139 1.1 joerg REMARKS:
6140 1.1 joerg Implements the DEC instruction and side effects.
6141 1.1 joerg ****************************************************************************/
6142 1.1 joerg static uint8_t
6143 1.1 joerg dec_byte(struct X86EMU *emu, uint8_t d)
6144 1.1 joerg {
6145 1.1 joerg uint32_t res; /* all operands in native machine order */
6146 1.1 joerg uint32_t bc;
6147 1.1 joerg
6148 1.1 joerg res = d - 1;
6149 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
6150 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
6151 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6152 1.1 joerg
6153 1.1 joerg /* calculate the borrow chain. See note at top */
6154 1.1 joerg /* based on sub_byte, uses s==1. */
6155 1.1 joerg bc = (res & (~d | 1)) | (~d & 1);
6156 1.1 joerg /* carry flag unchanged */
6157 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 6), F_OF);
6158 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
6159 1.1 joerg return (uint8_t) res;
6160 1.1 joerg }
6161 1.1 joerg /****************************************************************************
6162 1.1 joerg REMARKS:
6163 1.1 joerg Implements the DEC instruction and side effects.
6164 1.1 joerg ****************************************************************************/
6165 1.1 joerg static uint16_t
6166 1.1 joerg dec_word(struct X86EMU *emu, uint16_t d)
6167 1.1 joerg {
6168 1.1 joerg uint32_t res; /* all operands in native machine order */
6169 1.1 joerg uint32_t bc;
6170 1.1 joerg
6171 1.1 joerg res = d - 1;
6172 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
6173 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
6174 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6175 1.1 joerg
6176 1.1 joerg /* calculate the borrow chain. See note at top */
6177 1.1 joerg /* based on the sub_byte routine, with s==1 */
6178 1.1 joerg bc = (res & (~d | 1)) | (~d & 1);
6179 1.1 joerg /* carry flag unchanged */
6180 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 14), F_OF);
6181 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
6182 1.1 joerg return (uint16_t) res;
6183 1.1 joerg }
6184 1.1 joerg /****************************************************************************
6185 1.1 joerg REMARKS:
6186 1.1 joerg Implements the DEC instruction and side effects.
6187 1.1 joerg ****************************************************************************/
6188 1.1 joerg static uint32_t
6189 1.1 joerg dec_long(struct X86EMU *emu, uint32_t d)
6190 1.1 joerg {
6191 1.1 joerg uint32_t res; /* all operands in native machine order */
6192 1.1 joerg uint32_t bc;
6193 1.1 joerg
6194 1.1 joerg res = d - 1;
6195 1.1 joerg
6196 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
6197 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
6198 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6199 1.1 joerg
6200 1.1 joerg /* calculate the borrow chain. See note at top */
6201 1.1 joerg bc = (res & (~d | 1)) | (~d & 1);
6202 1.1 joerg /* carry flag unchanged */
6203 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 30), F_OF);
6204 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
6205 1.1 joerg return res;
6206 1.1 joerg }
6207 1.1 joerg /****************************************************************************
6208 1.1 joerg REMARKS:
6209 1.1 joerg Implements the INC instruction and side effects.
6210 1.1 joerg ****************************************************************************/
6211 1.1 joerg static uint8_t
6212 1.1 joerg inc_byte(struct X86EMU *emu, uint8_t d)
6213 1.1 joerg {
6214 1.1 joerg uint32_t res; /* all operands in native machine order */
6215 1.1 joerg uint32_t cc;
6216 1.1 joerg
6217 1.1 joerg res = d + 1;
6218 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
6219 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
6220 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6221 1.1 joerg
6222 1.1 joerg /* calculate the carry chain SEE NOTE AT TOP. */
6223 1.1 joerg cc = ((1 & d) | (~res)) & (1 | d);
6224 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(cc >> 6), F_OF);
6225 1.1 joerg CONDITIONAL_SET_FLAG(cc & 0x8, F_AF);
6226 1.1 joerg return (uint8_t) res;
6227 1.1 joerg }
6228 1.1 joerg /****************************************************************************
6229 1.1 joerg REMARKS:
6230 1.1 joerg Implements the INC instruction and side effects.
6231 1.1 joerg ****************************************************************************/
6232 1.1 joerg static uint16_t
6233 1.1 joerg inc_word(struct X86EMU *emu, uint16_t d)
6234 1.1 joerg {
6235 1.1 joerg uint32_t res; /* all operands in native machine order */
6236 1.1 joerg uint32_t cc;
6237 1.1 joerg
6238 1.1 joerg res = d + 1;
6239 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
6240 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
6241 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6242 1.1 joerg
6243 1.1 joerg /* calculate the carry chain SEE NOTE AT TOP. */
6244 1.1 joerg cc = (1 & d) | ((~res) & (1 | d));
6245 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(cc >> 14), F_OF);
6246 1.1 joerg CONDITIONAL_SET_FLAG(cc & 0x8, F_AF);
6247 1.1 joerg return (uint16_t) res;
6248 1.1 joerg }
6249 1.1 joerg /****************************************************************************
6250 1.1 joerg REMARKS:
6251 1.1 joerg Implements the INC instruction and side effects.
6252 1.1 joerg ****************************************************************************/
6253 1.1 joerg static uint32_t
6254 1.1 joerg inc_long(struct X86EMU *emu, uint32_t d)
6255 1.1 joerg {
6256 1.1 joerg uint32_t res; /* all operands in native machine order */
6257 1.1 joerg uint32_t cc;
6258 1.1 joerg
6259 1.1 joerg res = d + 1;
6260 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
6261 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
6262 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6263 1.1 joerg
6264 1.1 joerg /* calculate the carry chain SEE NOTE AT TOP. */
6265 1.1 joerg cc = (1 & d) | ((~res) & (1 | d));
6266 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(cc >> 30), F_OF);
6267 1.1 joerg CONDITIONAL_SET_FLAG(cc & 0x8, F_AF);
6268 1.1 joerg return res;
6269 1.1 joerg }
6270 1.1 joerg /****************************************************************************
6271 1.1 joerg REMARKS:
6272 1.1 joerg Implements the OR instruction and side effects.
6273 1.1 joerg ****************************************************************************/
6274 1.1 joerg static uint8_t
6275 1.1 joerg or_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
6276 1.1 joerg {
6277 1.1 joerg uint8_t res; /* all operands in native machine order */
6278 1.1 joerg
6279 1.1 joerg res = d | s;
6280 1.1 joerg CLEAR_FLAG(F_OF);
6281 1.1 joerg CLEAR_FLAG(F_CF);
6282 1.1 joerg CLEAR_FLAG(F_AF);
6283 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
6284 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
6285 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res), F_PF);
6286 1.1 joerg return res;
6287 1.1 joerg }
6288 1.1 joerg /****************************************************************************
6289 1.1 joerg REMARKS:
6290 1.1 joerg Implements the OR instruction and side effects.
6291 1.1 joerg ****************************************************************************/
6292 1.1 joerg static uint16_t
6293 1.1 joerg or_word(struct X86EMU *emu, uint16_t d, uint16_t s)
6294 1.1 joerg {
6295 1.1 joerg uint16_t res; /* all operands in native machine order */
6296 1.1 joerg
6297 1.1 joerg res = d | s;
6298 1.1 joerg /* set the carry flag to be bit 8 */
6299 1.1 joerg CLEAR_FLAG(F_OF);
6300 1.1 joerg CLEAR_FLAG(F_CF);
6301 1.1 joerg CLEAR_FLAG(F_AF);
6302 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
6303 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
6304 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6305 1.1 joerg return res;
6306 1.1 joerg }
6307 1.1 joerg /****************************************************************************
6308 1.1 joerg REMARKS:
6309 1.1 joerg Implements the OR instruction and side effects.
6310 1.1 joerg ****************************************************************************/
6311 1.1 joerg static uint32_t
6312 1.1 joerg or_long(struct X86EMU *emu, uint32_t d, uint32_t s)
6313 1.1 joerg {
6314 1.1 joerg uint32_t res; /* all operands in native machine order */
6315 1.1 joerg
6316 1.1 joerg res = d | s;
6317 1.1 joerg
6318 1.1 joerg /* set the carry flag to be bit 8 */
6319 1.1 joerg CLEAR_FLAG(F_OF);
6320 1.1 joerg CLEAR_FLAG(F_CF);
6321 1.1 joerg CLEAR_FLAG(F_AF);
6322 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
6323 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
6324 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6325 1.1 joerg return res;
6326 1.1 joerg }
6327 1.1 joerg /****************************************************************************
6328 1.1 joerg REMARKS:
6329 1.1 joerg Implements the OR instruction and side effects.
6330 1.1 joerg ****************************************************************************/
6331 1.1 joerg static uint8_t
6332 1.1 joerg neg_byte(struct X86EMU *emu, uint8_t s)
6333 1.1 joerg {
6334 1.1 joerg uint8_t res;
6335 1.1 joerg uint8_t bc;
6336 1.1 joerg
6337 1.1 joerg CONDITIONAL_SET_FLAG(s != 0, F_CF);
6338 1.1 joerg res = (uint8_t) - s;
6339 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
6340 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
6341 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res), F_PF);
6342 1.1 joerg /* calculate the borrow chain --- modified such that d=0.
6343 1.1 joerg * substitutiing d=0 into bc= res&(~d|s)|(~d&s); (the one used for
6344 1.1 joerg * sub) and simplifying, since ~d=0xff..., ~d|s == 0xffff..., and
6345 1.1 joerg * res&0xfff... == res. Similarly ~d&s == s. So the simplified
6346 1.1 joerg * result is: */
6347 1.1 joerg bc = res | s;
6348 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 6), F_OF);
6349 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
6350 1.1 joerg return res;
6351 1.1 joerg }
6352 1.1 joerg /****************************************************************************
6353 1.1 joerg REMARKS:
6354 1.1 joerg Implements the OR instruction and side effects.
6355 1.1 joerg ****************************************************************************/
6356 1.1 joerg static uint16_t
6357 1.1 joerg neg_word(struct X86EMU *emu, uint16_t s)
6358 1.1 joerg {
6359 1.1 joerg uint16_t res;
6360 1.1 joerg uint16_t bc;
6361 1.1 joerg
6362 1.1 joerg CONDITIONAL_SET_FLAG(s != 0, F_CF);
6363 1.1 joerg res = (uint16_t) - s;
6364 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
6365 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
6366 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6367 1.1 joerg
6368 1.1 joerg /* calculate the borrow chain --- modified such that d=0.
6369 1.1 joerg * substitutiing d=0 into bc= res&(~d|s)|(~d&s); (the one used for
6370 1.1 joerg * sub) and simplifying, since ~d=0xff..., ~d|s == 0xffff..., and
6371 1.1 joerg * res&0xfff... == res. Similarly ~d&s == s. So the simplified
6372 1.1 joerg * result is: */
6373 1.1 joerg bc = res | s;
6374 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 14), F_OF);
6375 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
6376 1.1 joerg return res;
6377 1.1 joerg }
6378 1.1 joerg /****************************************************************************
6379 1.1 joerg REMARKS:
6380 1.1 joerg Implements the OR instruction and side effects.
6381 1.1 joerg ****************************************************************************/
6382 1.1 joerg static uint32_t
6383 1.1 joerg neg_long(struct X86EMU *emu, uint32_t s)
6384 1.1 joerg {
6385 1.1 joerg uint32_t res;
6386 1.1 joerg uint32_t bc;
6387 1.1 joerg
6388 1.1 joerg CONDITIONAL_SET_FLAG(s != 0, F_CF);
6389 1.1 joerg res = (uint32_t) - s;
6390 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
6391 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
6392 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6393 1.1 joerg
6394 1.1 joerg /* calculate the borrow chain --- modified such that d=0.
6395 1.1 joerg * substitutiing d=0 into bc= res&(~d|s)|(~d&s); (the one used for
6396 1.1 joerg * sub) and simplifying, since ~d=0xff..., ~d|s == 0xffff..., and
6397 1.1 joerg * res&0xfff... == res. Similarly ~d&s == s. So the simplified
6398 1.1 joerg * result is: */
6399 1.1 joerg bc = res | s;
6400 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 30), F_OF);
6401 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
6402 1.1 joerg return res;
6403 1.1 joerg }
6404 1.1 joerg /****************************************************************************
6405 1.1 joerg REMARKS:
6406 1.1 joerg Implements the RCL instruction and side effects.
6407 1.1 joerg ****************************************************************************/
6408 1.1 joerg static uint8_t
6409 1.1 joerg rcl_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
6410 1.1 joerg {
6411 1.1 joerg unsigned int res, cnt, mask, cf;
6412 1.1 joerg
6413 1.1 joerg /* s is the rotate distance. It varies from 0 - 8. */
6414 1.1 joerg /* have
6415 1.1 joerg *
6416 1.1 joerg * CF B_7 B_6 B_5 B_4 B_3 B_2 B_1 B_0
6417 1.1 joerg *
6418 1.1 joerg * want to rotate through the carry by "s" bits. We could loop, but
6419 1.1 joerg * that's inefficient. So the width is 9, and we split into three
6420 1.1 joerg * parts:
6421 1.1 joerg *
6422 1.1 joerg * The new carry flag (was B_n) the stuff in B_n-1 .. B_0 the stuff in
6423 1.1 joerg * B_7 .. B_n+1
6424 1.1 joerg *
6425 1.1 joerg * The new rotate is done mod 9, and given this, for a rotation of n bits
6426 1.1 joerg * (mod 9) the new carry flag is then located n bits from the MSB.
6427 1.1 joerg * The low part is then shifted up cnt bits, and the high part is or'd
6428 1.1 joerg * in. Using CAPS for new values, and lowercase for the original
6429 1.1 joerg * values, this can be expressed as:
6430 1.1 joerg *
6431 1.1 joerg * IF n > 0 1) CF <- b_(8-n) 2) B_(7) .. B_(n) <- b_(8-(n+1)) .. b_0
6432 1.1 joerg * 3) B_(n-1) <- cf 4) B_(n-2) .. B_0 <- b_7 .. b_(8-(n-1)) */
6433 1.1 joerg res = d;
6434 1.1 joerg if ((cnt = s % 9) != 0) {
6435 1.1 joerg /* extract the new CARRY FLAG. */
6436 1.1 joerg /* CF <- b_(8-n) */
6437 1.1 joerg cf = (d >> (8 - cnt)) & 0x1;
6438 1.1 joerg
6439 1.1 joerg /* get the low stuff which rotated into the range B_7 .. B_cnt */
6440 1.1 joerg /* B_(7) .. B_(n) <- b_(8-(n+1)) .. b_0 */
6441 1.1 joerg /* note that the right hand side done by the mask */
6442 1.1 joerg res = (d << cnt) & 0xff;
6443 1.1 joerg
6444 1.1 joerg /* now the high stuff which rotated around into the positions
6445 1.1 joerg * B_cnt-2 .. B_0 */
6446 1.1 joerg /* B_(n-2) .. B_0 <- b_7 .. b_(8-(n-1)) */
6447 1.1 joerg /* shift it downward, 7-(n-2) = 9-n positions. and mask off
6448 1.1 joerg * the result before or'ing in. */
6449 1.1 joerg mask = (1 << (cnt - 1)) - 1;
6450 1.1 joerg res |= (d >> (9 - cnt)) & mask;
6451 1.1 joerg
6452 1.1 joerg /* if the carry flag was set, or it in. */
6453 1.1 joerg if (ACCESS_FLAG(F_CF)) { /* carry flag is set */
6454 1.1 joerg /* B_(n-1) <- cf */
6455 1.1 joerg res |= 1 << (cnt - 1);
6456 1.1 joerg }
6457 1.1 joerg /* set the new carry flag, based on the variable "cf" */
6458 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
6459 1.1 joerg /* OVERFLOW is set *IFF* cnt==1, then it is the xor of CF and
6460 1.1 joerg * the most significant bit. Blecck. */
6461 1.1 joerg /* parenthesized this expression since it appears to be
6462 1.1 joerg * causing OF to be misset */
6463 1.1 joerg CONDITIONAL_SET_FLAG(cnt == 1 && XOR2(cf + ((res >> 6) & 0x2)),
6464 1.1 joerg F_OF);
6465 1.1 joerg
6466 1.1 joerg }
6467 1.1 joerg return (uint8_t) res;
6468 1.1 joerg }
6469 1.1 joerg /****************************************************************************
6470 1.1 joerg REMARKS:
6471 1.1 joerg Implements the RCL instruction and side effects.
6472 1.1 joerg ****************************************************************************/
6473 1.1 joerg static uint16_t
6474 1.1 joerg rcl_word(struct X86EMU *emu, uint16_t d, uint8_t s)
6475 1.1 joerg {
6476 1.1 joerg unsigned int res, cnt, mask, cf;
6477 1.1 joerg
6478 1.1 joerg res = d;
6479 1.1 joerg if ((cnt = s % 17) != 0) {
6480 1.1 joerg cf = (d >> (16 - cnt)) & 0x1;
6481 1.1 joerg res = (d << cnt) & 0xffff;
6482 1.1 joerg mask = (1 << (cnt - 1)) - 1;
6483 1.1 joerg res |= (d >> (17 - cnt)) & mask;
6484 1.1 joerg if (ACCESS_FLAG(F_CF)) {
6485 1.1 joerg res |= 1 << (cnt - 1);
6486 1.1 joerg }
6487 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
6488 1.1 joerg CONDITIONAL_SET_FLAG(cnt == 1 && XOR2(cf + ((res >> 14) & 0x2)),
6489 1.1 joerg F_OF);
6490 1.1 joerg }
6491 1.1 joerg return (uint16_t) res;
6492 1.1 joerg }
6493 1.1 joerg /****************************************************************************
6494 1.1 joerg REMARKS:
6495 1.1 joerg Implements the RCL instruction and side effects.
6496 1.1 joerg ****************************************************************************/
6497 1.1 joerg static uint32_t
6498 1.1 joerg rcl_long(struct X86EMU *emu, uint32_t d, uint8_t s)
6499 1.1 joerg {
6500 1.1 joerg uint32_t res, cnt, mask, cf;
6501 1.1 joerg
6502 1.1 joerg res = d;
6503 1.1 joerg if ((cnt = s % 33) != 0) {
6504 1.1 joerg cf = (d >> (32 - cnt)) & 0x1;
6505 1.1 joerg res = (d << cnt) & 0xffffffff;
6506 1.1 joerg mask = (1 << (cnt - 1)) - 1;
6507 1.1 joerg res |= (d >> (33 - cnt)) & mask;
6508 1.1 joerg if (ACCESS_FLAG(F_CF)) { /* carry flag is set */
6509 1.1 joerg res |= 1 << (cnt - 1);
6510 1.1 joerg }
6511 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
6512 1.1 joerg CONDITIONAL_SET_FLAG(cnt == 1 && XOR2(cf + ((res >> 30) & 0x2)),
6513 1.1 joerg F_OF);
6514 1.1 joerg }
6515 1.1 joerg return res;
6516 1.1 joerg }
6517 1.1 joerg /****************************************************************************
6518 1.1 joerg REMARKS:
6519 1.1 joerg Implements the RCR instruction and side effects.
6520 1.1 joerg ****************************************************************************/
6521 1.1 joerg static uint8_t
6522 1.1 joerg rcr_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
6523 1.1 joerg {
6524 1.1 joerg uint32_t res, cnt;
6525 1.1 joerg uint32_t mask, cf, ocf = 0;
6526 1.1 joerg
6527 1.1 joerg /* rotate right through carry */
6528 1.1 joerg /* s is the rotate distance. It varies from 0 - 8. d is the byte
6529 1.1 joerg * object rotated.
6530 1.1 joerg *
6531 1.1 joerg * have
6532 1.1 joerg *
6533 1.1 joerg * CF B_7 B_6 B_5 B_4 B_3 B_2 B_1 B_0
6534 1.1 joerg *
6535 1.1 joerg * The new rotate is done mod 9, and given this, for a rotation of n bits
6536 1.1 joerg * (mod 9) the new carry flag is then located n bits from the LSB.
6537 1.1 joerg * The low part is then shifted up cnt bits, and the high part is or'd
6538 1.1 joerg * in. Using CAPS for new values, and lowercase for the original
6539 1.1 joerg * values, this can be expressed as:
6540 1.1 joerg *
6541 1.1 joerg * IF n > 0 1) CF <- b_(n-1) 2) B_(8-(n+1)) .. B_(0) <- b_(7) .. b_(n)
6542 1.1 joerg * 3) B_(8-n) <- cf 4) B_(7) .. B_(8-(n-1)) <- b_(n-2) .. b_(0) */
6543 1.1 joerg res = d;
6544 1.1 joerg if ((cnt = s % 9) != 0) {
6545 1.1 joerg /* extract the new CARRY FLAG. */
6546 1.1 joerg /* CF <- b_(n-1) */
6547 1.1 joerg if (cnt == 1) {
6548 1.1 joerg cf = d & 0x1;
6549 1.1 joerg /* note hackery here. Access_flag(..) evaluates to
6550 1.1 joerg * either 0 if flag not set non-zero if flag is set.
6551 1.1 joerg * doing access_flag(..) != 0 casts that into either
6552 1.1 joerg * 0..1 in any representation of the flags register
6553 1.1 joerg * (i.e. packed bit array or unpacked.) */
6554 1.1 joerg ocf = ACCESS_FLAG(F_CF) != 0;
6555 1.1 joerg } else
6556 1.1 joerg cf = (d >> (cnt - 1)) & 0x1;
6557 1.1 joerg
6558 1.1 joerg /* B_(8-(n+1)) .. B_(0) <- b_(7) .. b_n */
6559 1.1 joerg /* note that the right hand side done by the mask This is
6560 1.1 joerg * effectively done by shifting the object to the right. The
6561 1.1 joerg * result must be masked, in case the object came in and was
6562 1.1 joerg * treated as a negative number. Needed??? */
6563 1.1 joerg
6564 1.1 joerg mask = (1 << (8 - cnt)) - 1;
6565 1.1 joerg res = (d >> cnt) & mask;
6566 1.1 joerg
6567 1.1 joerg /* now the high stuff which rotated around into the positions
6568 1.1 joerg * B_cnt-2 .. B_0 */
6569 1.1 joerg /* B_(7) .. B_(8-(n-1)) <- b_(n-2) .. b_(0) */
6570 1.1 joerg /* shift it downward, 7-(n-2) = 9-n positions. and mask off
6571 1.1 joerg * the result before or'ing in. */
6572 1.1 joerg res |= (d << (9 - cnt));
6573 1.1 joerg
6574 1.1 joerg /* if the carry flag was set, or it in. */
6575 1.1 joerg if (ACCESS_FLAG(F_CF)) { /* carry flag is set */
6576 1.1 joerg /* B_(8-n) <- cf */
6577 1.1 joerg res |= 1 << (8 - cnt);
6578 1.1 joerg }
6579 1.1 joerg /* set the new carry flag, based on the variable "cf" */
6580 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
6581 1.1 joerg /* OVERFLOW is set *IFF* cnt==1, then it is the xor of CF and
6582 1.1 joerg * the most significant bit. Blecck. */
6583 1.1 joerg /* parenthesized... */
6584 1.1 joerg if (cnt == 1) {
6585 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(ocf + ((d >> 6) & 0x2)),
6586 1.1 joerg F_OF);
6587 1.1 joerg }
6588 1.1 joerg }
6589 1.1 joerg return (uint8_t) res;
6590 1.1 joerg }
6591 1.1 joerg /****************************************************************************
6592 1.1 joerg REMARKS:
6593 1.1 joerg Implements the RCR instruction and side effects.
6594 1.1 joerg ****************************************************************************/
6595 1.1 joerg static uint16_t
6596 1.1 joerg rcr_word(struct X86EMU *emu, uint16_t d, uint8_t s)
6597 1.1 joerg {
6598 1.1 joerg uint32_t res, cnt;
6599 1.1 joerg uint32_t mask, cf, ocf = 0;
6600 1.1 joerg
6601 1.1 joerg /* rotate right through carry */
6602 1.1 joerg res = d;
6603 1.1 joerg if ((cnt = s % 17) != 0) {
6604 1.1 joerg if (cnt == 1) {
6605 1.1 joerg cf = d & 0x1;
6606 1.1 joerg ocf = ACCESS_FLAG(F_CF) != 0;
6607 1.1 joerg } else
6608 1.1 joerg cf = (d >> (cnt - 1)) & 0x1;
6609 1.1 joerg mask = (1 << (16 - cnt)) - 1;
6610 1.1 joerg res = (d >> cnt) & mask;
6611 1.1 joerg res |= (d << (17 - cnt));
6612 1.1 joerg if (ACCESS_FLAG(F_CF)) {
6613 1.1 joerg res |= 1 << (16 - cnt);
6614 1.1 joerg }
6615 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
6616 1.1 joerg if (cnt == 1) {
6617 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(ocf + ((d >> 14) & 0x2)),
6618 1.1 joerg F_OF);
6619 1.1 joerg }
6620 1.1 joerg }
6621 1.1 joerg return (uint16_t) res;
6622 1.1 joerg }
6623 1.1 joerg /****************************************************************************
6624 1.1 joerg REMARKS:
6625 1.1 joerg Implements the RCR instruction and side effects.
6626 1.1 joerg ****************************************************************************/
6627 1.1 joerg static uint32_t
6628 1.1 joerg rcr_long(struct X86EMU *emu, uint32_t d, uint8_t s)
6629 1.1 joerg {
6630 1.1 joerg uint32_t res, cnt;
6631 1.1 joerg uint32_t mask, cf, ocf = 0;
6632 1.1 joerg
6633 1.1 joerg /* rotate right through carry */
6634 1.1 joerg res = d;
6635 1.1 joerg if ((cnt = s % 33) != 0) {
6636 1.1 joerg if (cnt == 1) {
6637 1.1 joerg cf = d & 0x1;
6638 1.1 joerg ocf = ACCESS_FLAG(F_CF) != 0;
6639 1.1 joerg } else
6640 1.1 joerg cf = (d >> (cnt - 1)) & 0x1;
6641 1.1 joerg mask = (1 << (32 - cnt)) - 1;
6642 1.1 joerg res = (d >> cnt) & mask;
6643 1.1 joerg if (cnt != 1)
6644 1.1 joerg res |= (d << (33 - cnt));
6645 1.1 joerg if (ACCESS_FLAG(F_CF)) { /* carry flag is set */
6646 1.1 joerg res |= 1 << (32 - cnt);
6647 1.1 joerg }
6648 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
6649 1.1 joerg if (cnt == 1) {
6650 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(ocf + ((d >> 30) & 0x2)),
6651 1.1 joerg F_OF);
6652 1.1 joerg }
6653 1.1 joerg }
6654 1.1 joerg return res;
6655 1.1 joerg }
6656 1.1 joerg /****************************************************************************
6657 1.1 joerg REMARKS:
6658 1.1 joerg Implements the ROL instruction and side effects.
6659 1.1 joerg ****************************************************************************/
6660 1.1 joerg static uint8_t
6661 1.1 joerg rol_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
6662 1.1 joerg {
6663 1.1 joerg unsigned int res, cnt, mask;
6664 1.1 joerg
6665 1.1 joerg /* rotate left */
6666 1.1 joerg /* s is the rotate distance. It varies from 0 - 8. d is the byte
6667 1.1 joerg * object rotated.
6668 1.1 joerg *
6669 1.1 joerg * have
6670 1.1 joerg *
6671 1.1 joerg * CF B_7 ... B_0
6672 1.1 joerg *
6673 1.1 joerg * The new rotate is done mod 8. Much simpler than the "rcl" or "rcr"
6674 1.1 joerg * operations.
6675 1.1 joerg *
6676 1.1 joerg * IF n > 0 1) B_(7) .. B_(n) <- b_(8-(n+1)) .. b_(0) 2) B_(n-1) ..
6677 1.1 joerg * B_(0) <- b_(7) .. b_(8-n) */
6678 1.1 joerg res = d;
6679 1.1 joerg if ((cnt = s % 8) != 0) {
6680 1.1 joerg /* B_(7) .. B_(n) <- b_(8-(n+1)) .. b_(0) */
6681 1.1 joerg res = (d << cnt);
6682 1.1 joerg
6683 1.1 joerg /* B_(n-1) .. B_(0) <- b_(7) .. b_(8-n) */
6684 1.1 joerg mask = (1 << cnt) - 1;
6685 1.1 joerg res |= (d >> (8 - cnt)) & mask;
6686 1.1 joerg
6687 1.1 joerg /* set the new carry flag, Note that it is the low order bit
6688 1.1 joerg * of the result!!! */
6689 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x1, F_CF);
6690 1.1 joerg /* OVERFLOW is set *IFF* s==1, then it is the xor of CF and
6691 1.1 joerg * the most significant bit. Blecck. */
6692 1.1 joerg CONDITIONAL_SET_FLAG(s == 1 &&
6693 1.1 joerg XOR2((res & 0x1) + ((res >> 6) & 0x2)),
6694 1.1 joerg F_OF);
6695 1.1 joerg } if (s != 0) {
6696 1.1 joerg /* set the new carry flag, Note that it is the low order bit
6697 1.1 joerg * of the result!!! */
6698 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x1, F_CF);
6699 1.1 joerg }
6700 1.1 joerg return (uint8_t) res;
6701 1.1 joerg }
6702 1.1 joerg /****************************************************************************
6703 1.1 joerg REMARKS:
6704 1.1 joerg Implements the ROL instruction and side effects.
6705 1.1 joerg ****************************************************************************/
6706 1.1 joerg static uint16_t
6707 1.1 joerg rol_word(struct X86EMU *emu, uint16_t d, uint8_t s)
6708 1.1 joerg {
6709 1.1 joerg unsigned int res, cnt, mask;
6710 1.1 joerg
6711 1.1 joerg res = d;
6712 1.1 joerg if ((cnt = s % 16) != 0) {
6713 1.1 joerg res = (d << cnt);
6714 1.1 joerg mask = (1 << cnt) - 1;
6715 1.1 joerg res |= (d >> (16 - cnt)) & mask;
6716 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x1, F_CF);
6717 1.1 joerg CONDITIONAL_SET_FLAG(s == 1 &&
6718 1.1 joerg XOR2((res & 0x1) + ((res >> 14) & 0x2)),
6719 1.1 joerg F_OF);
6720 1.1 joerg } if (s != 0) {
6721 1.1 joerg /* set the new carry flag, Note that it is the low order bit
6722 1.1 joerg * of the result!!! */
6723 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x1, F_CF);
6724 1.1 joerg }
6725 1.1 joerg return (uint16_t) res;
6726 1.1 joerg }
6727 1.1 joerg /****************************************************************************
6728 1.1 joerg REMARKS:
6729 1.1 joerg Implements the ROL instruction and side effects.
6730 1.1 joerg ****************************************************************************/
6731 1.1 joerg static uint32_t
6732 1.1 joerg rol_long(struct X86EMU *emu, uint32_t d, uint8_t s)
6733 1.1 joerg {
6734 1.1 joerg uint32_t res, cnt, mask;
6735 1.1 joerg
6736 1.1 joerg res = d;
6737 1.1 joerg if ((cnt = s % 32) != 0) {
6738 1.1 joerg res = (d << cnt);
6739 1.1 joerg mask = (1 << cnt) - 1;
6740 1.1 joerg res |= (d >> (32 - cnt)) & mask;
6741 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x1, F_CF);
6742 1.1 joerg CONDITIONAL_SET_FLAG(s == 1 &&
6743 1.1 joerg XOR2((res & 0x1) + ((res >> 30) & 0x2)),
6744 1.1 joerg F_OF);
6745 1.1 joerg } if (s != 0) {
6746 1.1 joerg /* set the new carry flag, Note that it is the low order bit
6747 1.1 joerg * of the result!!! */
6748 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x1, F_CF);
6749 1.1 joerg }
6750 1.1 joerg return res;
6751 1.1 joerg }
6752 1.1 joerg /****************************************************************************
6753 1.1 joerg REMARKS:
6754 1.1 joerg Implements the ROR instruction and side effects.
6755 1.1 joerg ****************************************************************************/
6756 1.1 joerg static uint8_t
6757 1.1 joerg ror_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
6758 1.1 joerg {
6759 1.1 joerg unsigned int res, cnt, mask;
6760 1.1 joerg
6761 1.1 joerg /* rotate right */
6762 1.1 joerg /* s is the rotate distance. It varies from 0 - 8. d is the byte
6763 1.1 joerg * object rotated.
6764 1.1 joerg *
6765 1.1 joerg * have
6766 1.1 joerg *
6767 1.1 joerg * B_7 ... B_0
6768 1.1 joerg *
6769 1.1 joerg * The rotate is done mod 8.
6770 1.1 joerg *
6771 1.1 joerg * IF n > 0 1) B_(8-(n+1)) .. B_(0) <- b_(7) .. b_(n) 2) B_(7) ..
6772 1.1 joerg * B_(8-n) <- b_(n-1) .. b_(0) */
6773 1.1 joerg res = d;
6774 1.1 joerg if ((cnt = s % 8) != 0) { /* not a typo, do nada if cnt==0 */
6775 1.1 joerg /* B_(7) .. B_(8-n) <- b_(n-1) .. b_(0) */
6776 1.1 joerg res = (d << (8 - cnt));
6777 1.1 joerg
6778 1.1 joerg /* B_(8-(n+1)) .. B_(0) <- b_(7) .. b_(n) */
6779 1.1 joerg mask = (1 << (8 - cnt)) - 1;
6780 1.1 joerg res |= (d >> (cnt)) & mask;
6781 1.1 joerg
6782 1.1 joerg /* set the new carry flag, Note that it is the low order bit
6783 1.1 joerg * of the result!!! */
6784 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_CF);
6785 1.1 joerg /* OVERFLOW is set *IFF* s==1, then it is the xor of the two
6786 1.1 joerg * most significant bits. Blecck. */
6787 1.1 joerg CONDITIONAL_SET_FLAG(s == 1 && XOR2(res >> 6), F_OF);
6788 1.1 joerg } else if (s != 0) {
6789 1.1 joerg /* set the new carry flag, Note that it is the low order bit
6790 1.1 joerg * of the result!!! */
6791 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_CF);
6792 1.1 joerg }
6793 1.1 joerg return (uint8_t) res;
6794 1.1 joerg }
6795 1.1 joerg /****************************************************************************
6796 1.1 joerg REMARKS:
6797 1.1 joerg Implements the ROR instruction and side effects.
6798 1.1 joerg ****************************************************************************/
6799 1.1 joerg static uint16_t
6800 1.1 joerg ror_word(struct X86EMU *emu, uint16_t d, uint8_t s)
6801 1.1 joerg {
6802 1.1 joerg unsigned int res, cnt, mask;
6803 1.1 joerg
6804 1.1 joerg res = d;
6805 1.1 joerg if ((cnt = s % 16) != 0) {
6806 1.1 joerg res = (d << (16 - cnt));
6807 1.1 joerg mask = (1 << (16 - cnt)) - 1;
6808 1.1 joerg res |= (d >> (cnt)) & mask;
6809 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_CF);
6810 1.1 joerg CONDITIONAL_SET_FLAG(s == 1 && XOR2(res >> 14), F_OF);
6811 1.1 joerg } else if (s != 0) {
6812 1.1 joerg /* set the new carry flag, Note that it is the low order bit
6813 1.1 joerg * of the result!!! */
6814 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_CF);
6815 1.1 joerg }
6816 1.1 joerg return (uint16_t) res;
6817 1.1 joerg }
6818 1.1 joerg /****************************************************************************
6819 1.1 joerg REMARKS:
6820 1.1 joerg Implements the ROR instruction and side effects.
6821 1.1 joerg ****************************************************************************/
6822 1.1 joerg static uint32_t
6823 1.1 joerg ror_long(struct X86EMU *emu, uint32_t d, uint8_t s)
6824 1.1 joerg {
6825 1.1 joerg uint32_t res, cnt, mask;
6826 1.1 joerg
6827 1.1 joerg res = d;
6828 1.1 joerg if ((cnt = s % 32) != 0) {
6829 1.1 joerg res = (d << (32 - cnt));
6830 1.1 joerg mask = (1 << (32 - cnt)) - 1;
6831 1.1 joerg res |= (d >> (cnt)) & mask;
6832 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_CF);
6833 1.1 joerg CONDITIONAL_SET_FLAG(s == 1 && XOR2(res >> 30), F_OF);
6834 1.1 joerg } else if (s != 0) {
6835 1.1 joerg /* set the new carry flag, Note that it is the low order bit
6836 1.1 joerg * of the result!!! */
6837 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_CF);
6838 1.1 joerg }
6839 1.1 joerg return res;
6840 1.1 joerg }
6841 1.1 joerg /****************************************************************************
6842 1.1 joerg REMARKS:
6843 1.1 joerg Implements the SHL instruction and side effects.
6844 1.1 joerg ****************************************************************************/
6845 1.1 joerg static uint8_t
6846 1.1 joerg shl_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
6847 1.1 joerg {
6848 1.1 joerg unsigned int cnt, res, cf;
6849 1.1 joerg
6850 1.1 joerg if (s < 8) {
6851 1.1 joerg cnt = s % 8;
6852 1.1 joerg
6853 1.1 joerg /* last bit shifted out goes into carry flag */
6854 1.1 joerg if (cnt > 0) {
6855 1.1 joerg res = d << cnt;
6856 1.1 joerg cf = d & (1 << (8 - cnt));
6857 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
6858 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
6859 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
6860 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6861 1.1 joerg } else {
6862 1.1 joerg res = (uint8_t) d;
6863 1.1 joerg }
6864 1.1 joerg
6865 1.1 joerg if (cnt == 1) {
6866 1.1 joerg /* Needs simplification. */
6867 1.1 joerg CONDITIONAL_SET_FLAG(
6868 1.1 joerg (((res & 0x80) == 0x80) ^
6869 1.1 joerg (ACCESS_FLAG(F_CF) != 0)),
6870 1.1 joerg /* was (emu->x86.R_FLG&F_CF)==F_CF)), */
6871 1.1 joerg F_OF);
6872 1.1 joerg } else {
6873 1.1 joerg CLEAR_FLAG(F_OF);
6874 1.1 joerg }
6875 1.1 joerg } else {
6876 1.1 joerg res = 0;
6877 1.1 joerg CONDITIONAL_SET_FLAG((d << (s - 1)) & 0x80, F_CF);
6878 1.1 joerg CLEAR_FLAG(F_OF);
6879 1.1 joerg CLEAR_FLAG(F_SF);
6880 1.1 joerg SET_FLAG(F_PF);
6881 1.1 joerg SET_FLAG(F_ZF);
6882 1.1 joerg }
6883 1.1 joerg return (uint8_t) res;
6884 1.1 joerg }
6885 1.1 joerg /****************************************************************************
6886 1.1 joerg REMARKS:
6887 1.1 joerg Implements the SHL instruction and side effects.
6888 1.1 joerg ****************************************************************************/
6889 1.1 joerg static uint16_t
6890 1.1 joerg shl_word(struct X86EMU *emu, uint16_t d, uint8_t s)
6891 1.1 joerg {
6892 1.1 joerg unsigned int cnt, res, cf;
6893 1.1 joerg
6894 1.1 joerg if (s < 16) {
6895 1.1 joerg cnt = s % 16;
6896 1.1 joerg if (cnt > 0) {
6897 1.1 joerg res = d << cnt;
6898 1.1 joerg cf = d & (1 << (16 - cnt));
6899 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
6900 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
6901 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
6902 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6903 1.1 joerg } else {
6904 1.1 joerg res = (uint16_t) d;
6905 1.1 joerg }
6906 1.1 joerg
6907 1.1 joerg if (cnt == 1) {
6908 1.1 joerg CONDITIONAL_SET_FLAG(
6909 1.1 joerg (((res & 0x8000) == 0x8000) ^
6910 1.1 joerg (ACCESS_FLAG(F_CF) != 0)),
6911 1.1 joerg F_OF);
6912 1.1 joerg } else {
6913 1.1 joerg CLEAR_FLAG(F_OF);
6914 1.1 joerg }
6915 1.1 joerg } else {
6916 1.1 joerg res = 0;
6917 1.1 joerg CONDITIONAL_SET_FLAG((d << (s - 1)) & 0x8000, F_CF);
6918 1.1 joerg CLEAR_FLAG(F_OF);
6919 1.1 joerg CLEAR_FLAG(F_SF);
6920 1.1 joerg SET_FLAG(F_PF);
6921 1.1 joerg SET_FLAG(F_ZF);
6922 1.1 joerg }
6923 1.1 joerg return (uint16_t) res;
6924 1.1 joerg }
6925 1.1 joerg /****************************************************************************
6926 1.1 joerg REMARKS:
6927 1.1 joerg Implements the SHL instruction and side effects.
6928 1.1 joerg ****************************************************************************/
6929 1.1 joerg static uint32_t
6930 1.1 joerg shl_long(struct X86EMU *emu, uint32_t d, uint8_t s)
6931 1.1 joerg {
6932 1.1 joerg unsigned int cnt, res, cf;
6933 1.1 joerg
6934 1.1 joerg if (s < 32) {
6935 1.1 joerg cnt = s % 32;
6936 1.1 joerg if (cnt > 0) {
6937 1.1 joerg res = d << cnt;
6938 1.1 joerg cf = d & (1 << (32 - cnt));
6939 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
6940 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
6941 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
6942 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6943 1.1 joerg } else {
6944 1.1 joerg res = d;
6945 1.1 joerg }
6946 1.1 joerg if (cnt == 1) {
6947 1.1 joerg CONDITIONAL_SET_FLAG((((res & 0x80000000) == 0x80000000) ^
6948 1.1 joerg (ACCESS_FLAG(F_CF) != 0)), F_OF);
6949 1.1 joerg } else {
6950 1.1 joerg CLEAR_FLAG(F_OF);
6951 1.1 joerg }
6952 1.1 joerg } else {
6953 1.1 joerg res = 0;
6954 1.1 joerg CONDITIONAL_SET_FLAG((d << (s - 1)) & 0x80000000, F_CF);
6955 1.1 joerg CLEAR_FLAG(F_OF);
6956 1.1 joerg CLEAR_FLAG(F_SF);
6957 1.1 joerg SET_FLAG(F_PF);
6958 1.1 joerg SET_FLAG(F_ZF);
6959 1.1 joerg }
6960 1.1 joerg return res;
6961 1.1 joerg }
6962 1.1 joerg /****************************************************************************
6963 1.1 joerg REMARKS:
6964 1.1 joerg Implements the SHR instruction and side effects.
6965 1.1 joerg ****************************************************************************/
6966 1.1 joerg static uint8_t
6967 1.1 joerg shr_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
6968 1.1 joerg {
6969 1.1 joerg unsigned int cnt, res, cf;
6970 1.1 joerg
6971 1.1 joerg if (s < 8) {
6972 1.1 joerg cnt = s % 8;
6973 1.1 joerg if (cnt > 0) {
6974 1.1 joerg cf = d & (1 << (cnt - 1));
6975 1.1 joerg res = d >> cnt;
6976 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
6977 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
6978 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
6979 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6980 1.1 joerg } else {
6981 1.1 joerg res = (uint8_t) d;
6982 1.1 joerg }
6983 1.1 joerg
6984 1.1 joerg if (cnt == 1) {
6985 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(res >> 6), F_OF);
6986 1.1 joerg } else {
6987 1.1 joerg CLEAR_FLAG(F_OF);
6988 1.1 joerg }
6989 1.1 joerg } else {
6990 1.1 joerg res = 0;
6991 1.1 joerg CONDITIONAL_SET_FLAG((d >> (s - 1)) & 0x1, F_CF);
6992 1.1 joerg CLEAR_FLAG(F_OF);
6993 1.1 joerg CLEAR_FLAG(F_SF);
6994 1.1 joerg SET_FLAG(F_PF);
6995 1.1 joerg SET_FLAG(F_ZF);
6996 1.1 joerg }
6997 1.1 joerg return (uint8_t) res;
6998 1.1 joerg }
6999 1.1 joerg /****************************************************************************
7000 1.1 joerg REMARKS:
7001 1.1 joerg Implements the SHR instruction and side effects.
7002 1.1 joerg ****************************************************************************/
7003 1.1 joerg static uint16_t
7004 1.1 joerg shr_word(struct X86EMU *emu, uint16_t d, uint8_t s)
7005 1.1 joerg {
7006 1.1 joerg unsigned int cnt, res, cf;
7007 1.1 joerg
7008 1.1 joerg if (s < 16) {
7009 1.1 joerg cnt = s % 16;
7010 1.1 joerg if (cnt > 0) {
7011 1.1 joerg cf = d & (1 << (cnt - 1));
7012 1.1 joerg res = d >> cnt;
7013 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
7014 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
7015 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
7016 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7017 1.1 joerg } else {
7018 1.1 joerg res = d;
7019 1.1 joerg }
7020 1.1 joerg
7021 1.1 joerg if (cnt == 1) {
7022 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(res >> 14), F_OF);
7023 1.1 joerg } else {
7024 1.1 joerg CLEAR_FLAG(F_OF);
7025 1.1 joerg }
7026 1.1 joerg } else {
7027 1.1 joerg res = 0;
7028 1.1 joerg CLEAR_FLAG(F_CF);
7029 1.1 joerg CLEAR_FLAG(F_OF);
7030 1.1 joerg SET_FLAG(F_ZF);
7031 1.1 joerg CLEAR_FLAG(F_SF);
7032 1.1 joerg CLEAR_FLAG(F_PF);
7033 1.1 joerg }
7034 1.1 joerg return (uint16_t) res;
7035 1.1 joerg }
7036 1.1 joerg /****************************************************************************
7037 1.1 joerg REMARKS:
7038 1.1 joerg Implements the SHR instruction and side effects.
7039 1.1 joerg ****************************************************************************/
7040 1.1 joerg static uint32_t
7041 1.1 joerg shr_long(struct X86EMU *emu, uint32_t d, uint8_t s)
7042 1.1 joerg {
7043 1.1 joerg unsigned int cnt, res, cf;
7044 1.1 joerg
7045 1.1 joerg if (s < 32) {
7046 1.1 joerg cnt = s % 32;
7047 1.1 joerg if (cnt > 0) {
7048 1.1 joerg cf = d & (1 << (cnt - 1));
7049 1.1 joerg res = d >> cnt;
7050 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
7051 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
7052 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
7053 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7054 1.1 joerg } else {
7055 1.1 joerg res = d;
7056 1.1 joerg }
7057 1.1 joerg if (cnt == 1) {
7058 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(res >> 30), F_OF);
7059 1.1 joerg } else {
7060 1.1 joerg CLEAR_FLAG(F_OF);
7061 1.1 joerg }
7062 1.1 joerg } else {
7063 1.1 joerg res = 0;
7064 1.1 joerg CLEAR_FLAG(F_CF);
7065 1.1 joerg CLEAR_FLAG(F_OF);
7066 1.1 joerg SET_FLAG(F_ZF);
7067 1.1 joerg CLEAR_FLAG(F_SF);
7068 1.1 joerg CLEAR_FLAG(F_PF);
7069 1.1 joerg }
7070 1.1 joerg return res;
7071 1.1 joerg }
7072 1.1 joerg /****************************************************************************
7073 1.1 joerg REMARKS:
7074 1.1 joerg Implements the SAR instruction and side effects.
7075 1.1 joerg ****************************************************************************/
7076 1.1 joerg static uint8_t
7077 1.1 joerg sar_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
7078 1.1 joerg {
7079 1.1 joerg unsigned int cnt, res, cf, mask, sf;
7080 1.1 joerg
7081 1.1 joerg res = d;
7082 1.1 joerg sf = d & 0x80;
7083 1.1 joerg cnt = s % 8;
7084 1.1 joerg if (cnt > 0 && cnt < 8) {
7085 1.1 joerg mask = (1 << (8 - cnt)) - 1;
7086 1.1 joerg cf = d & (1 << (cnt - 1));
7087 1.1 joerg res = (d >> cnt) & mask;
7088 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
7089 1.1 joerg if (sf) {
7090 1.1 joerg res |= ~mask;
7091 1.1 joerg }
7092 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
7093 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7094 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
7095 1.1 joerg } else if (cnt >= 8) {
7096 1.1 joerg if (sf) {
7097 1.1 joerg res = 0xff;
7098 1.1 joerg SET_FLAG(F_CF);
7099 1.1 joerg CLEAR_FLAG(F_ZF);
7100 1.1 joerg SET_FLAG(F_SF);
7101 1.1 joerg SET_FLAG(F_PF);
7102 1.1 joerg } else {
7103 1.1 joerg res = 0;
7104 1.1 joerg CLEAR_FLAG(F_CF);
7105 1.1 joerg SET_FLAG(F_ZF);
7106 1.1 joerg CLEAR_FLAG(F_SF);
7107 1.1 joerg CLEAR_FLAG(F_PF);
7108 1.1 joerg }
7109 1.1 joerg }
7110 1.1 joerg return (uint8_t) res;
7111 1.1 joerg }
7112 1.1 joerg /****************************************************************************
7113 1.1 joerg REMARKS:
7114 1.1 joerg Implements the SAR instruction and side effects.
7115 1.1 joerg ****************************************************************************/
7116 1.1 joerg static uint16_t
7117 1.1 joerg sar_word(struct X86EMU *emu, uint16_t d, uint8_t s)
7118 1.1 joerg {
7119 1.1 joerg unsigned int cnt, res, cf, mask, sf;
7120 1.1 joerg
7121 1.1 joerg sf = d & 0x8000;
7122 1.1 joerg cnt = s % 16;
7123 1.1 joerg res = d;
7124 1.1 joerg if (cnt > 0 && cnt < 16) {
7125 1.1 joerg mask = (1 << (16 - cnt)) - 1;
7126 1.1 joerg cf = d & (1 << (cnt - 1));
7127 1.1 joerg res = (d >> cnt) & mask;
7128 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
7129 1.1 joerg if (sf) {
7130 1.1 joerg res |= ~mask;
7131 1.1 joerg }
7132 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
7133 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
7134 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7135 1.1 joerg } else if (cnt >= 16) {
7136 1.1 joerg if (sf) {
7137 1.1 joerg res = 0xffff;
7138 1.1 joerg SET_FLAG(F_CF);
7139 1.1 joerg CLEAR_FLAG(F_ZF);
7140 1.1 joerg SET_FLAG(F_SF);
7141 1.1 joerg SET_FLAG(F_PF);
7142 1.1 joerg } else {
7143 1.1 joerg res = 0;
7144 1.1 joerg CLEAR_FLAG(F_CF);
7145 1.1 joerg SET_FLAG(F_ZF);
7146 1.1 joerg CLEAR_FLAG(F_SF);
7147 1.1 joerg CLEAR_FLAG(F_PF);
7148 1.1 joerg }
7149 1.1 joerg }
7150 1.1 joerg return (uint16_t) res;
7151 1.1 joerg }
7152 1.1 joerg /****************************************************************************
7153 1.1 joerg REMARKS:
7154 1.1 joerg Implements the SAR instruction and side effects.
7155 1.1 joerg ****************************************************************************/
7156 1.1 joerg static uint32_t
7157 1.1 joerg sar_long(struct X86EMU *emu, uint32_t d, uint8_t s)
7158 1.1 joerg {
7159 1.1 joerg uint32_t cnt, res, cf, mask, sf;
7160 1.1 joerg
7161 1.1 joerg sf = d & 0x80000000;
7162 1.1 joerg cnt = s % 32;
7163 1.1 joerg res = d;
7164 1.1 joerg if (cnt > 0 && cnt < 32) {
7165 1.1 joerg mask = (1 << (32 - cnt)) - 1;
7166 1.1 joerg cf = d & (1 << (cnt - 1));
7167 1.1 joerg res = (d >> cnt) & mask;
7168 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
7169 1.1 joerg if (sf) {
7170 1.1 joerg res |= ~mask;
7171 1.1 joerg }
7172 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
7173 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
7174 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7175 1.1 joerg } else if (cnt >= 32) {
7176 1.1 joerg if (sf) {
7177 1.1 joerg res = 0xffffffff;
7178 1.1 joerg SET_FLAG(F_CF);
7179 1.1 joerg CLEAR_FLAG(F_ZF);
7180 1.1 joerg SET_FLAG(F_SF);
7181 1.1 joerg SET_FLAG(F_PF);
7182 1.1 joerg } else {
7183 1.1 joerg res = 0;
7184 1.1 joerg CLEAR_FLAG(F_CF);
7185 1.1 joerg SET_FLAG(F_ZF);
7186 1.1 joerg CLEAR_FLAG(F_SF);
7187 1.1 joerg CLEAR_FLAG(F_PF);
7188 1.1 joerg }
7189 1.1 joerg }
7190 1.1 joerg return res;
7191 1.1 joerg }
7192 1.1 joerg /****************************************************************************
7193 1.1 joerg REMARKS:
7194 1.1 joerg Implements the SHLD instruction and side effects.
7195 1.1 joerg ****************************************************************************/
7196 1.1 joerg static uint16_t
7197 1.1 joerg shld_word(struct X86EMU *emu, uint16_t d, uint16_t fill, uint8_t s)
7198 1.1 joerg {
7199 1.1 joerg unsigned int cnt, res, cf;
7200 1.1 joerg
7201 1.1 joerg if (s < 16) {
7202 1.1 joerg cnt = s % 16;
7203 1.1 joerg if (cnt > 0) {
7204 1.1 joerg res = (d << cnt) | (fill >> (16 - cnt));
7205 1.1 joerg cf = d & (1 << (16 - cnt));
7206 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
7207 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
7208 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
7209 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7210 1.1 joerg } else {
7211 1.1 joerg res = d;
7212 1.1 joerg }
7213 1.1 joerg if (cnt == 1) {
7214 1.1 joerg CONDITIONAL_SET_FLAG((((res & 0x8000) == 0x8000) ^
7215 1.1 joerg (ACCESS_FLAG(F_CF) != 0)), F_OF);
7216 1.1 joerg } else {
7217 1.1 joerg CLEAR_FLAG(F_OF);
7218 1.1 joerg }
7219 1.1 joerg } else {
7220 1.1 joerg res = 0;
7221 1.1 joerg CONDITIONAL_SET_FLAG((d << (s - 1)) & 0x8000, F_CF);
7222 1.1 joerg CLEAR_FLAG(F_OF);
7223 1.1 joerg CLEAR_FLAG(F_SF);
7224 1.1 joerg SET_FLAG(F_PF);
7225 1.1 joerg SET_FLAG(F_ZF);
7226 1.1 joerg }
7227 1.1 joerg return (uint16_t) res;
7228 1.1 joerg }
7229 1.1 joerg /****************************************************************************
7230 1.1 joerg REMARKS:
7231 1.1 joerg Implements the SHLD instruction and side effects.
7232 1.1 joerg ****************************************************************************/
7233 1.1 joerg static uint32_t
7234 1.1 joerg shld_long(struct X86EMU *emu, uint32_t d, uint32_t fill, uint8_t s)
7235 1.1 joerg {
7236 1.1 joerg unsigned int cnt, res, cf;
7237 1.1 joerg
7238 1.1 joerg if (s < 32) {
7239 1.1 joerg cnt = s % 32;
7240 1.1 joerg if (cnt > 0) {
7241 1.1 joerg res = (d << cnt) | (fill >> (32 - cnt));
7242 1.1 joerg cf = d & (1 << (32 - cnt));
7243 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
7244 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
7245 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
7246 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7247 1.1 joerg } else {
7248 1.1 joerg res = d;
7249 1.1 joerg }
7250 1.1 joerg if (cnt == 1) {
7251 1.1 joerg CONDITIONAL_SET_FLAG((((res & 0x80000000) == 0x80000000) ^
7252 1.1 joerg (ACCESS_FLAG(F_CF) != 0)), F_OF);
7253 1.1 joerg } else {
7254 1.1 joerg CLEAR_FLAG(F_OF);
7255 1.1 joerg }
7256 1.1 joerg } else {
7257 1.1 joerg res = 0;
7258 1.1 joerg CONDITIONAL_SET_FLAG((d << (s - 1)) & 0x80000000, F_CF);
7259 1.1 joerg CLEAR_FLAG(F_OF);
7260 1.1 joerg CLEAR_FLAG(F_SF);
7261 1.1 joerg SET_FLAG(F_PF);
7262 1.1 joerg SET_FLAG(F_ZF);
7263 1.1 joerg }
7264 1.1 joerg return res;
7265 1.1 joerg }
7266 1.1 joerg /****************************************************************************
7267 1.1 joerg REMARKS:
7268 1.1 joerg Implements the SHRD instruction and side effects.
7269 1.1 joerg ****************************************************************************/
7270 1.1 joerg static uint16_t
7271 1.1 joerg shrd_word(struct X86EMU *emu, uint16_t d, uint16_t fill, uint8_t s)
7272 1.1 joerg {
7273 1.1 joerg unsigned int cnt, res, cf;
7274 1.1 joerg
7275 1.1 joerg if (s < 16) {
7276 1.1 joerg cnt = s % 16;
7277 1.1 joerg if (cnt > 0) {
7278 1.1 joerg cf = d & (1 << (cnt - 1));
7279 1.1 joerg res = (d >> cnt) | (fill << (16 - cnt));
7280 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
7281 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
7282 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
7283 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7284 1.1 joerg } else {
7285 1.1 joerg res = d;
7286 1.1 joerg }
7287 1.1 joerg
7288 1.1 joerg if (cnt == 1) {
7289 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(res >> 14), F_OF);
7290 1.1 joerg } else {
7291 1.1 joerg CLEAR_FLAG(F_OF);
7292 1.1 joerg }
7293 1.1 joerg } else {
7294 1.1 joerg res = 0;
7295 1.1 joerg CLEAR_FLAG(F_CF);
7296 1.1 joerg CLEAR_FLAG(F_OF);
7297 1.1 joerg SET_FLAG(F_ZF);
7298 1.1 joerg CLEAR_FLAG(F_SF);
7299 1.1 joerg CLEAR_FLAG(F_PF);
7300 1.1 joerg }
7301 1.1 joerg return (uint16_t) res;
7302 1.1 joerg }
7303 1.1 joerg /****************************************************************************
7304 1.1 joerg REMARKS:
7305 1.1 joerg Implements the SHRD instruction and side effects.
7306 1.1 joerg ****************************************************************************/
7307 1.1 joerg static uint32_t
7308 1.1 joerg shrd_long(struct X86EMU *emu, uint32_t d, uint32_t fill, uint8_t s)
7309 1.1 joerg {
7310 1.1 joerg unsigned int cnt, res, cf;
7311 1.1 joerg
7312 1.1 joerg if (s < 32) {
7313 1.1 joerg cnt = s % 32;
7314 1.1 joerg if (cnt > 0) {
7315 1.1 joerg cf = d & (1 << (cnt - 1));
7316 1.1 joerg res = (d >> cnt) | (fill << (32 - cnt));
7317 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
7318 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
7319 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
7320 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7321 1.1 joerg } else {
7322 1.1 joerg res = d;
7323 1.1 joerg }
7324 1.1 joerg if (cnt == 1) {
7325 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(res >> 30), F_OF);
7326 1.1 joerg } else {
7327 1.1 joerg CLEAR_FLAG(F_OF);
7328 1.1 joerg }
7329 1.1 joerg } else {
7330 1.1 joerg res = 0;
7331 1.1 joerg CLEAR_FLAG(F_CF);
7332 1.1 joerg CLEAR_FLAG(F_OF);
7333 1.1 joerg SET_FLAG(F_ZF);
7334 1.1 joerg CLEAR_FLAG(F_SF);
7335 1.1 joerg CLEAR_FLAG(F_PF);
7336 1.1 joerg }
7337 1.1 joerg return res;
7338 1.1 joerg }
7339 1.1 joerg /****************************************************************************
7340 1.1 joerg REMARKS:
7341 1.1 joerg Implements the SBB instruction and side effects.
7342 1.1 joerg ****************************************************************************/
7343 1.1 joerg static uint8_t
7344 1.1 joerg sbb_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
7345 1.1 joerg {
7346 1.1 joerg uint32_t res; /* all operands in native machine order */
7347 1.1 joerg uint32_t bc;
7348 1.1 joerg
7349 1.1 joerg if (ACCESS_FLAG(F_CF))
7350 1.1 joerg res = d - s - 1;
7351 1.1 joerg else
7352 1.1 joerg res = d - s;
7353 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
7354 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
7355 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7356 1.1 joerg
7357 1.1 joerg /* calculate the borrow chain. See note at top */
7358 1.1 joerg bc = (res & (~d | s)) | (~d & s);
7359 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x80, F_CF);
7360 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 6), F_OF);
7361 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
7362 1.1 joerg return (uint8_t) res;
7363 1.1 joerg }
7364 1.1 joerg /****************************************************************************
7365 1.1 joerg REMARKS:
7366 1.1 joerg Implements the SBB instruction and side effects.
7367 1.1 joerg ****************************************************************************/
7368 1.1 joerg static uint16_t
7369 1.1 joerg sbb_word(struct X86EMU *emu, uint16_t d, uint16_t s)
7370 1.1 joerg {
7371 1.1 joerg uint32_t res; /* all operands in native machine order */
7372 1.1 joerg uint32_t bc;
7373 1.1 joerg
7374 1.1 joerg if (ACCESS_FLAG(F_CF))
7375 1.1 joerg res = d - s - 1;
7376 1.1 joerg else
7377 1.1 joerg res = d - s;
7378 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
7379 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
7380 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7381 1.1 joerg
7382 1.1 joerg /* calculate the borrow chain. See note at top */
7383 1.1 joerg bc = (res & (~d | s)) | (~d & s);
7384 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8000, F_CF);
7385 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 14), F_OF);
7386 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
7387 1.1 joerg return (uint16_t) res;
7388 1.1 joerg }
7389 1.1 joerg /****************************************************************************
7390 1.1 joerg REMARKS:
7391 1.1 joerg Implements the SBB instruction and side effects.
7392 1.1 joerg ****************************************************************************/
7393 1.1 joerg static uint32_t
7394 1.1 joerg sbb_long(struct X86EMU *emu, uint32_t d, uint32_t s)
7395 1.1 joerg {
7396 1.1 joerg uint32_t res; /* all operands in native machine order */
7397 1.1 joerg uint32_t bc;
7398 1.1 joerg
7399 1.1 joerg if (ACCESS_FLAG(F_CF))
7400 1.1 joerg res = d - s - 1;
7401 1.1 joerg else
7402 1.1 joerg res = d - s;
7403 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
7404 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
7405 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7406 1.1 joerg
7407 1.1 joerg /* calculate the borrow chain. See note at top */
7408 1.1 joerg bc = (res & (~d | s)) | (~d & s);
7409 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x80000000, F_CF);
7410 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 30), F_OF);
7411 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
7412 1.1 joerg return res;
7413 1.1 joerg }
7414 1.1 joerg /****************************************************************************
7415 1.1 joerg REMARKS:
7416 1.1 joerg Implements the SUB instruction and side effects.
7417 1.1 joerg ****************************************************************************/
7418 1.1 joerg static uint8_t
7419 1.1 joerg sub_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
7420 1.1 joerg {
7421 1.1 joerg uint32_t res; /* all operands in native machine order */
7422 1.1 joerg uint32_t bc;
7423 1.1 joerg
7424 1.1 joerg res = d - s;
7425 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
7426 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
7427 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7428 1.1 joerg
7429 1.1 joerg /* calculate the borrow chain. See note at top */
7430 1.1 joerg bc = (res & (~d | s)) | (~d & s);
7431 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x80, F_CF);
7432 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 6), F_OF);
7433 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
7434 1.1 joerg return (uint8_t) res;
7435 1.1 joerg }
7436 1.1 joerg /****************************************************************************
7437 1.1 joerg REMARKS:
7438 1.1 joerg Implements the SUB instruction and side effects.
7439 1.1 joerg ****************************************************************************/
7440 1.1 joerg static uint16_t
7441 1.1 joerg sub_word(struct X86EMU *emu, uint16_t d, uint16_t s)
7442 1.1 joerg {
7443 1.1 joerg uint32_t res; /* all operands in native machine order */
7444 1.1 joerg uint32_t bc;
7445 1.1 joerg
7446 1.1 joerg res = d - s;
7447 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
7448 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
7449 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7450 1.1 joerg
7451 1.1 joerg /* calculate the borrow chain. See note at top */
7452 1.1 joerg bc = (res & (~d | s)) | (~d & s);
7453 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8000, F_CF);
7454 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 14), F_OF);
7455 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
7456 1.1 joerg return (uint16_t) res;
7457 1.1 joerg }
7458 1.1 joerg /****************************************************************************
7459 1.1 joerg REMARKS:
7460 1.1 joerg Implements the SUB instruction and side effects.
7461 1.1 joerg ****************************************************************************/
7462 1.1 joerg static uint32_t
7463 1.1 joerg sub_long(struct X86EMU *emu, uint32_t d, uint32_t s)
7464 1.1 joerg {
7465 1.1 joerg uint32_t res; /* all operands in native machine order */
7466 1.1 joerg uint32_t bc;
7467 1.1 joerg
7468 1.1 joerg res = d - s;
7469 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
7470 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
7471 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7472 1.1 joerg
7473 1.1 joerg /* calculate the borrow chain. See note at top */
7474 1.1 joerg bc = (res & (~d | s)) | (~d & s);
7475 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x80000000, F_CF);
7476 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 30), F_OF);
7477 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
7478 1.1 joerg return res;
7479 1.1 joerg }
7480 1.1 joerg /****************************************************************************
7481 1.1 joerg REMARKS:
7482 1.1 joerg Implements the TEST instruction and side effects.
7483 1.1 joerg ****************************************************************************/
7484 1.1 joerg static void
7485 1.1 joerg test_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
7486 1.1 joerg {
7487 1.1 joerg uint32_t res; /* all operands in native machine order */
7488 1.1 joerg
7489 1.1 joerg res = d & s;
7490 1.1 joerg
7491 1.1 joerg CLEAR_FLAG(F_OF);
7492 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
7493 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
7494 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7495 1.1 joerg /* AF == dont care */
7496 1.1 joerg CLEAR_FLAG(F_CF);
7497 1.1 joerg }
7498 1.1 joerg /****************************************************************************
7499 1.1 joerg REMARKS:
7500 1.1 joerg Implements the TEST instruction and side effects.
7501 1.1 joerg ****************************************************************************/
7502 1.1 joerg static void
7503 1.1 joerg test_word(struct X86EMU *emu, uint16_t d, uint16_t s)
7504 1.1 joerg {
7505 1.1 joerg uint32_t res; /* all operands in native machine order */
7506 1.1 joerg
7507 1.1 joerg res = d & s;
7508 1.1 joerg
7509 1.1 joerg CLEAR_FLAG(F_OF);
7510 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
7511 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
7512 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7513 1.1 joerg /* AF == dont care */
7514 1.1 joerg CLEAR_FLAG(F_CF);
7515 1.1 joerg }
7516 1.1 joerg /****************************************************************************
7517 1.1 joerg REMARKS:
7518 1.1 joerg Implements the TEST instruction and side effects.
7519 1.1 joerg ****************************************************************************/
7520 1.1 joerg static void
7521 1.1 joerg test_long(struct X86EMU *emu, uint32_t d, uint32_t s)
7522 1.1 joerg {
7523 1.1 joerg uint32_t res; /* all operands in native machine order */
7524 1.1 joerg
7525 1.1 joerg res = d & s;
7526 1.1 joerg
7527 1.1 joerg CLEAR_FLAG(F_OF);
7528 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
7529 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
7530 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7531 1.1 joerg /* AF == dont care */
7532 1.1 joerg CLEAR_FLAG(F_CF);
7533 1.1 joerg }
7534 1.1 joerg /****************************************************************************
7535 1.1 joerg REMARKS:
7536 1.1 joerg Implements the XOR instruction and side effects.
7537 1.1 joerg ****************************************************************************/
7538 1.1 joerg static uint8_t
7539 1.1 joerg xor_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
7540 1.1 joerg {
7541 1.1 joerg uint8_t res; /* all operands in native machine order */
7542 1.1 joerg
7543 1.1 joerg res = d ^ s;
7544 1.1 joerg CLEAR_FLAG(F_OF);
7545 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
7546 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
7547 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res), F_PF);
7548 1.1 joerg CLEAR_FLAG(F_CF);
7549 1.1 joerg CLEAR_FLAG(F_AF);
7550 1.1 joerg return res;
7551 1.1 joerg }
7552 1.1 joerg /****************************************************************************
7553 1.1 joerg REMARKS:
7554 1.1 joerg Implements the XOR instruction and side effects.
7555 1.1 joerg ****************************************************************************/
7556 1.1 joerg static uint16_t
7557 1.1 joerg xor_word(struct X86EMU *emu, uint16_t d, uint16_t s)
7558 1.1 joerg {
7559 1.1 joerg uint16_t res; /* all operands in native machine order */
7560 1.1 joerg
7561 1.1 joerg res = d ^ s;
7562 1.1 joerg CLEAR_FLAG(F_OF);
7563 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
7564 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
7565 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7566 1.1 joerg CLEAR_FLAG(F_CF);
7567 1.1 joerg CLEAR_FLAG(F_AF);
7568 1.1 joerg return res;
7569 1.1 joerg }
7570 1.1 joerg /****************************************************************************
7571 1.1 joerg REMARKS:
7572 1.1 joerg Implements the XOR instruction and side effects.
7573 1.1 joerg ****************************************************************************/
7574 1.1 joerg static uint32_t
7575 1.1 joerg xor_long(struct X86EMU *emu, uint32_t d, uint32_t s)
7576 1.1 joerg {
7577 1.1 joerg uint32_t res; /* all operands in native machine order */
7578 1.1 joerg
7579 1.1 joerg res = d ^ s;
7580 1.1 joerg CLEAR_FLAG(F_OF);
7581 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
7582 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
7583 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7584 1.1 joerg CLEAR_FLAG(F_CF);
7585 1.1 joerg CLEAR_FLAG(F_AF);
7586 1.1 joerg return res;
7587 1.1 joerg }
7588 1.1 joerg /****************************************************************************
7589 1.1 joerg REMARKS:
7590 1.1 joerg Implements the IMUL instruction and side effects.
7591 1.1 joerg ****************************************************************************/
7592 1.1 joerg static void
7593 1.1 joerg imul_byte(struct X86EMU *emu, uint8_t s)
7594 1.1 joerg {
7595 1.1 joerg int16_t res = (int16_t) ((int8_t) emu->x86.R_AL * (int8_t) s);
7596 1.1 joerg
7597 1.1 joerg emu->x86.R_AX = res;
7598 1.1 joerg if (((emu->x86.R_AL & 0x80) == 0 && emu->x86.R_AH == 0x00) ||
7599 1.1 joerg ((emu->x86.R_AL & 0x80) != 0 && emu->x86.R_AH == 0xFF)) {
7600 1.1 joerg CLEAR_FLAG(F_CF);
7601 1.1 joerg CLEAR_FLAG(F_OF);
7602 1.1 joerg } else {
7603 1.1 joerg SET_FLAG(F_CF);
7604 1.1 joerg SET_FLAG(F_OF);
7605 1.1 joerg }
7606 1.1 joerg }
7607 1.1 joerg /****************************************************************************
7608 1.1 joerg REMARKS:
7609 1.1 joerg Implements the IMUL instruction and side effects.
7610 1.1 joerg ****************************************************************************/
7611 1.1 joerg static void
7612 1.1 joerg imul_word(struct X86EMU *emu, uint16_t s)
7613 1.1 joerg {
7614 1.1 joerg int32_t res = (int16_t) emu->x86.R_AX * (int16_t) s;
7615 1.1 joerg
7616 1.1 joerg emu->x86.R_AX = (uint16_t) res;
7617 1.1 joerg emu->x86.R_DX = (uint16_t) (res >> 16);
7618 1.1 joerg if (((emu->x86.R_AX & 0x8000) == 0 && emu->x86.R_DX == 0x00) ||
7619 1.1 joerg ((emu->x86.R_AX & 0x8000) != 0 && emu->x86.R_DX == 0xFF)) {
7620 1.1 joerg CLEAR_FLAG(F_CF);
7621 1.1 joerg CLEAR_FLAG(F_OF);
7622 1.1 joerg } else {
7623 1.1 joerg SET_FLAG(F_CF);
7624 1.1 joerg SET_FLAG(F_OF);
7625 1.1 joerg }
7626 1.1 joerg }
7627 1.1 joerg /****************************************************************************
7628 1.1 joerg REMARKS:
7629 1.1 joerg Implements the IMUL instruction and side effects.
7630 1.1 joerg ****************************************************************************/
7631 1.1 joerg static void
7632 1.1 joerg imul_long(struct X86EMU *emu, uint32_t s)
7633 1.1 joerg {
7634 1.1 joerg int64_t res;
7635 1.1 joerg
7636 1.1 joerg res = (int64_t)(int32_t)emu->x86.R_EAX * (int32_t)s;
7637 1.1 joerg emu->x86.R_EAX = (uint32_t)res;
7638 1.1 joerg emu->x86.R_EDX = ((uint64_t)res) >> 32;
7639 1.1 joerg if (((emu->x86.R_EAX & 0x80000000) == 0 && emu->x86.R_EDX == 0x00) ||
7640 1.1 joerg ((emu->x86.R_EAX & 0x80000000) != 0 && emu->x86.R_EDX == 0xFF)) {
7641 1.1 joerg CLEAR_FLAG(F_CF);
7642 1.1 joerg CLEAR_FLAG(F_OF);
7643 1.1 joerg } else {
7644 1.1 joerg SET_FLAG(F_CF);
7645 1.1 joerg SET_FLAG(F_OF);
7646 1.1 joerg }
7647 1.1 joerg }
7648 1.1 joerg /****************************************************************************
7649 1.1 joerg REMARKS:
7650 1.1 joerg Implements the MUL instruction and side effects.
7651 1.1 joerg ****************************************************************************/
7652 1.1 joerg static void
7653 1.1 joerg mul_byte(struct X86EMU *emu, uint8_t s)
7654 1.1 joerg {
7655 1.1 joerg uint16_t res = (uint16_t) (emu->x86.R_AL * s);
7656 1.1 joerg
7657 1.1 joerg emu->x86.R_AX = res;
7658 1.1 joerg if (emu->x86.R_AH == 0) {
7659 1.1 joerg CLEAR_FLAG(F_CF);
7660 1.1 joerg CLEAR_FLAG(F_OF);
7661 1.1 joerg } else {
7662 1.1 joerg SET_FLAG(F_CF);
7663 1.1 joerg SET_FLAG(F_OF);
7664 1.1 joerg }
7665 1.1 joerg }
7666 1.1 joerg /****************************************************************************
7667 1.1 joerg REMARKS:
7668 1.1 joerg Implements the MUL instruction and side effects.
7669 1.1 joerg ****************************************************************************/
7670 1.1 joerg static void
7671 1.1 joerg mul_word(struct X86EMU *emu, uint16_t s)
7672 1.1 joerg {
7673 1.1 joerg uint32_t res = emu->x86.R_AX * s;
7674 1.1 joerg
7675 1.1 joerg emu->x86.R_AX = (uint16_t) res;
7676 1.1 joerg emu->x86.R_DX = (uint16_t) (res >> 16);
7677 1.1 joerg if (emu->x86.R_DX == 0) {
7678 1.1 joerg CLEAR_FLAG(F_CF);
7679 1.1 joerg CLEAR_FLAG(F_OF);
7680 1.1 joerg } else {
7681 1.1 joerg SET_FLAG(F_CF);
7682 1.1 joerg SET_FLAG(F_OF);
7683 1.1 joerg }
7684 1.1 joerg }
7685 1.1 joerg /****************************************************************************
7686 1.1 joerg REMARKS:
7687 1.1 joerg Implements the MUL instruction and side effects.
7688 1.1 joerg ****************************************************************************/
7689 1.1 joerg static void
7690 1.1 joerg mul_long(struct X86EMU *emu, uint32_t s)
7691 1.1 joerg {
7692 1.1 joerg uint64_t res = (uint64_t) emu->x86.R_EAX * s;
7693 1.1 joerg
7694 1.1 joerg emu->x86.R_EAX = (uint32_t) res;
7695 1.1 joerg emu->x86.R_EDX = (uint32_t) (res >> 32);
7696 1.1 joerg
7697 1.1 joerg if (emu->x86.R_EDX == 0) {
7698 1.1 joerg CLEAR_FLAG(F_CF);
7699 1.1 joerg CLEAR_FLAG(F_OF);
7700 1.1 joerg } else {
7701 1.1 joerg SET_FLAG(F_CF);
7702 1.1 joerg SET_FLAG(F_OF);
7703 1.1 joerg }
7704 1.1 joerg }
7705 1.1 joerg /****************************************************************************
7706 1.1 joerg REMARKS:
7707 1.1 joerg Implements the IDIV instruction and side effects.
7708 1.1 joerg ****************************************************************************/
7709 1.1 joerg static void
7710 1.1 joerg idiv_byte(struct X86EMU *emu, uint8_t s)
7711 1.1 joerg {
7712 1.1 joerg int32_t dvd, div, mod;
7713 1.1 joerg
7714 1.1 joerg dvd = (int16_t) emu->x86.R_AX;
7715 1.1 joerg if (s == 0) {
7716 1.1 joerg x86emu_intr_raise(emu, 0);
7717 1.1 joerg return;
7718 1.1 joerg }
7719 1.1 joerg div = dvd / (int8_t) s;
7720 1.1 joerg mod = dvd % (int8_t) s;
7721 1.1 joerg if (div > 0x7f || div < -0x7f) {
7722 1.1 joerg x86emu_intr_raise(emu, 0);
7723 1.1 joerg return;
7724 1.1 joerg }
7725 1.1 joerg emu->x86.R_AL = (int8_t) div;
7726 1.1 joerg emu->x86.R_AH = (int8_t) mod;
7727 1.1 joerg }
7728 1.1 joerg /****************************************************************************
7729 1.1 joerg REMARKS:
7730 1.1 joerg Implements the IDIV instruction and side effects.
7731 1.1 joerg ****************************************************************************/
7732 1.1 joerg static void
7733 1.1 joerg idiv_word(struct X86EMU *emu, uint16_t s)
7734 1.1 joerg {
7735 1.1 joerg int32_t dvd, div, mod;
7736 1.1 joerg
7737 1.1 joerg dvd = (((int32_t) emu->x86.R_DX) << 16) | emu->x86.R_AX;
7738 1.1 joerg if (s == 0) {
7739 1.1 joerg x86emu_intr_raise(emu, 0);
7740 1.1 joerg return;
7741 1.1 joerg }
7742 1.1 joerg div = dvd / (int16_t) s;
7743 1.1 joerg mod = dvd % (int16_t) s;
7744 1.1 joerg if (div > 0x7fff || div < -0x7fff) {
7745 1.1 joerg x86emu_intr_raise(emu, 0);
7746 1.1 joerg return;
7747 1.1 joerg }
7748 1.1 joerg CLEAR_FLAG(F_CF);
7749 1.1 joerg CLEAR_FLAG(F_SF);
7750 1.1 joerg CONDITIONAL_SET_FLAG(div == 0, F_ZF);
7751 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(mod & 0xff), F_PF);
7752 1.1 joerg
7753 1.1 joerg emu->x86.R_AX = (uint16_t) div;
7754 1.1 joerg emu->x86.R_DX = (uint16_t) mod;
7755 1.1 joerg }
7756 1.1 joerg /****************************************************************************
7757 1.1 joerg REMARKS:
7758 1.1 joerg Implements the IDIV instruction and side effects.
7759 1.1 joerg ****************************************************************************/
7760 1.1 joerg static void
7761 1.1 joerg idiv_long(struct X86EMU *emu, uint32_t s)
7762 1.1 joerg {
7763 1.1 joerg int64_t dvd, div, mod;
7764 1.1 joerg
7765 1.1 joerg dvd = (((int64_t) emu->x86.R_EDX) << 32) | emu->x86.R_EAX;
7766 1.1 joerg if (s == 0) {
7767 1.1 joerg x86emu_intr_raise(emu, 0);
7768 1.1 joerg return;
7769 1.1 joerg }
7770 1.1 joerg div = dvd / (int32_t) s;
7771 1.1 joerg mod = dvd % (int32_t) s;
7772 1.1 joerg if (div > 0x7fffffff || div < -0x7fffffff) {
7773 1.1 joerg x86emu_intr_raise(emu, 0);
7774 1.1 joerg return;
7775 1.1 joerg }
7776 1.1 joerg CLEAR_FLAG(F_CF);
7777 1.1 joerg CLEAR_FLAG(F_AF);
7778 1.1 joerg CLEAR_FLAG(F_SF);
7779 1.1 joerg SET_FLAG(F_ZF);
7780 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(mod & 0xff), F_PF);
7781 1.1 joerg
7782 1.1 joerg emu->x86.R_EAX = (uint32_t) div;
7783 1.1 joerg emu->x86.R_EDX = (uint32_t) mod;
7784 1.1 joerg }
7785 1.1 joerg /****************************************************************************
7786 1.1 joerg REMARKS:
7787 1.1 joerg Implements the DIV instruction and side effects.
7788 1.1 joerg ****************************************************************************/
7789 1.1 joerg static void
7790 1.1 joerg div_byte(struct X86EMU *emu, uint8_t s)
7791 1.1 joerg {
7792 1.1 joerg uint32_t dvd, div, mod;
7793 1.1 joerg
7794 1.1 joerg dvd = emu->x86.R_AX;
7795 1.1 joerg if (s == 0) {
7796 1.1 joerg x86emu_intr_raise(emu, 0);
7797 1.1 joerg return;
7798 1.1 joerg }
7799 1.1 joerg div = dvd / (uint8_t) s;
7800 1.1 joerg mod = dvd % (uint8_t) s;
7801 1.1 joerg if (div > 0xff) {
7802 1.1 joerg x86emu_intr_raise(emu, 0);
7803 1.1 joerg return;
7804 1.1 joerg }
7805 1.1 joerg emu->x86.R_AL = (uint8_t) div;
7806 1.1 joerg emu->x86.R_AH = (uint8_t) mod;
7807 1.1 joerg }
7808 1.1 joerg /****************************************************************************
7809 1.1 joerg REMARKS:
7810 1.1 joerg Implements the DIV instruction and side effects.
7811 1.1 joerg ****************************************************************************/
7812 1.1 joerg static void
7813 1.1 joerg div_word(struct X86EMU *emu, uint16_t s)
7814 1.1 joerg {
7815 1.1 joerg uint32_t dvd, div, mod;
7816 1.1 joerg
7817 1.1 joerg dvd = (((uint32_t) emu->x86.R_DX) << 16) | emu->x86.R_AX;
7818 1.1 joerg if (s == 0) {
7819 1.1 joerg x86emu_intr_raise(emu, 0);
7820 1.1 joerg return;
7821 1.1 joerg }
7822 1.1 joerg div = dvd / (uint16_t) s;
7823 1.1 joerg mod = dvd % (uint16_t) s;
7824 1.1 joerg if (div > 0xffff) {
7825 1.1 joerg x86emu_intr_raise(emu, 0);
7826 1.1 joerg return;
7827 1.1 joerg }
7828 1.1 joerg CLEAR_FLAG(F_CF);
7829 1.1 joerg CLEAR_FLAG(F_SF);
7830 1.1 joerg CONDITIONAL_SET_FLAG(div == 0, F_ZF);
7831 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(mod & 0xff), F_PF);
7832 1.1 joerg
7833 1.1 joerg emu->x86.R_AX = (uint16_t) div;
7834 1.1 joerg emu->x86.R_DX = (uint16_t) mod;
7835 1.1 joerg }
7836 1.1 joerg /****************************************************************************
7837 1.1 joerg REMARKS:
7838 1.1 joerg Implements the DIV instruction and side effects.
7839 1.1 joerg ****************************************************************************/
7840 1.1 joerg static void
7841 1.1 joerg div_long(struct X86EMU *emu, uint32_t s)
7842 1.1 joerg {
7843 1.1 joerg uint64_t dvd, div, mod;
7844 1.1 joerg
7845 1.1 joerg dvd = (((uint64_t) emu->x86.R_EDX) << 32) | emu->x86.R_EAX;
7846 1.1 joerg if (s == 0) {
7847 1.1 joerg x86emu_intr_raise(emu, 0);
7848 1.1 joerg return;
7849 1.1 joerg }
7850 1.1 joerg div = dvd / (uint32_t) s;
7851 1.1 joerg mod = dvd % (uint32_t) s;
7852 1.1 joerg if (div > 0xffffffff) {
7853 1.1 joerg x86emu_intr_raise(emu, 0);
7854 1.1 joerg return;
7855 1.1 joerg }
7856 1.1 joerg CLEAR_FLAG(F_CF);
7857 1.1 joerg CLEAR_FLAG(F_AF);
7858 1.1 joerg CLEAR_FLAG(F_SF);
7859 1.1 joerg SET_FLAG(F_ZF);
7860 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(mod & 0xff), F_PF);
7861 1.1 joerg
7862 1.1 joerg emu->x86.R_EAX = (uint32_t) div;
7863 1.1 joerg emu->x86.R_EDX = (uint32_t) mod;
7864 1.1 joerg }
7865 1.1 joerg /****************************************************************************
7866 1.1 joerg REMARKS:
7867 1.1 joerg Implements the IN string instruction and side effects.
7868 1.1 joerg ****************************************************************************/
7869 1.1 joerg static void
7870 1.1 joerg ins(struct X86EMU *emu, int size)
7871 1.1 joerg {
7872 1.1 joerg int inc = size;
7873 1.1 joerg
7874 1.1 joerg if (ACCESS_FLAG(F_DF)) {
7875 1.1 joerg inc = -size;
7876 1.1 joerg }
7877 1.1 joerg if (emu->x86.mode & (SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE)) {
7878 1.1 joerg /* dont care whether REPE or REPNE */
7879 1.1 joerg /* in until CX is ZERO. */
7880 1.1 joerg uint32_t count = ((emu->x86.mode & SYSMODE_PREFIX_DATA) ?
7881 1.1 joerg emu->x86.R_ECX : emu->x86.R_CX);
7882 1.1 joerg switch (size) {
7883 1.1 joerg case 1:
7884 1.1 joerg while (count--) {
7885 1.1 joerg store_byte(emu, emu->x86.R_ES, emu->x86.R_DI,
7886 1.1 joerg (*emu->emu_inb) (emu, emu->x86.R_DX));
7887 1.1 joerg emu->x86.R_DI += inc;
7888 1.1 joerg }
7889 1.1 joerg break;
7890 1.1 joerg
7891 1.1 joerg case 2:
7892 1.1 joerg while (count--) {
7893 1.1 joerg store_word(emu, emu->x86.R_ES, emu->x86.R_DI,
7894 1.1 joerg (*emu->emu_inw) (emu, emu->x86.R_DX));
7895 1.1 joerg emu->x86.R_DI += inc;
7896 1.1 joerg }
7897 1.1 joerg break;
7898 1.1 joerg case 4:
7899 1.1 joerg while (count--) {
7900 1.1 joerg store_long(emu, emu->x86.R_ES, emu->x86.R_DI,
7901 1.1 joerg (*emu->emu_inl) (emu, emu->x86.R_DX));
7902 1.1 joerg emu->x86.R_DI += inc;
7903 1.1 joerg break;
7904 1.1 joerg }
7905 1.1 joerg }
7906 1.1 joerg emu->x86.R_CX = 0;
7907 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
7908 1.1 joerg emu->x86.R_ECX = 0;
7909 1.1 joerg }
7910 1.1 joerg emu->x86.mode &= ~(SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE);
7911 1.1 joerg } else {
7912 1.1 joerg switch (size) {
7913 1.1 joerg case 1:
7914 1.1 joerg store_byte(emu, emu->x86.R_ES, emu->x86.R_DI,
7915 1.1 joerg (*emu->emu_inb) (emu, emu->x86.R_DX));
7916 1.1 joerg break;
7917 1.1 joerg case 2:
7918 1.1 joerg store_word(emu, emu->x86.R_ES, emu->x86.R_DI,
7919 1.1 joerg (*emu->emu_inw) (emu, emu->x86.R_DX));
7920 1.1 joerg break;
7921 1.1 joerg case 4:
7922 1.1 joerg store_long(emu, emu->x86.R_ES, emu->x86.R_DI,
7923 1.1 joerg (*emu->emu_inl) (emu, emu->x86.R_DX));
7924 1.1 joerg break;
7925 1.1 joerg }
7926 1.1 joerg emu->x86.R_DI += inc;
7927 1.1 joerg }
7928 1.1 joerg }
7929 1.1 joerg /****************************************************************************
7930 1.1 joerg REMARKS:
7931 1.1 joerg Implements the OUT string instruction and side effects.
7932 1.1 joerg ****************************************************************************/
7933 1.1 joerg static void
7934 1.1 joerg outs(struct X86EMU *emu, int size)
7935 1.1 joerg {
7936 1.1 joerg int inc = size;
7937 1.1 joerg
7938 1.1 joerg if (ACCESS_FLAG(F_DF)) {
7939 1.1 joerg inc = -size;
7940 1.1 joerg }
7941 1.1 joerg if (emu->x86.mode & (SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE)) {
7942 1.1 joerg /* dont care whether REPE or REPNE */
7943 1.1 joerg /* out until CX is ZERO. */
7944 1.1 joerg uint32_t count = ((emu->x86.mode & SYSMODE_PREFIX_DATA) ?
7945 1.1 joerg emu->x86.R_ECX : emu->x86.R_CX);
7946 1.1 joerg switch (size) {
7947 1.1 joerg case 1:
7948 1.1 joerg while (count--) {
7949 1.1 joerg (*emu->emu_outb) (emu, emu->x86.R_DX,
7950 1.1 joerg fetch_byte(emu, emu->x86.R_ES, emu->x86.R_SI));
7951 1.1 joerg emu->x86.R_SI += inc;
7952 1.1 joerg }
7953 1.1 joerg break;
7954 1.1 joerg
7955 1.1 joerg case 2:
7956 1.1 joerg while (count--) {
7957 1.1 joerg (*emu->emu_outw) (emu, emu->x86.R_DX,
7958 1.1 joerg fetch_word(emu, emu->x86.R_ES, emu->x86.R_SI));
7959 1.1 joerg emu->x86.R_SI += inc;
7960 1.1 joerg }
7961 1.1 joerg break;
7962 1.1 joerg case 4:
7963 1.1 joerg while (count--) {
7964 1.1 joerg (*emu->emu_outl) (emu, emu->x86.R_DX,
7965 1.1 joerg fetch_long(emu, emu->x86.R_ES, emu->x86.R_SI));
7966 1.1 joerg emu->x86.R_SI += inc;
7967 1.1 joerg break;
7968 1.1 joerg }
7969 1.1 joerg }
7970 1.1 joerg emu->x86.R_CX = 0;
7971 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
7972 1.1 joerg emu->x86.R_ECX = 0;
7973 1.1 joerg }
7974 1.1 joerg emu->x86.mode &= ~(SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE);
7975 1.1 joerg } else {
7976 1.1 joerg switch (size) {
7977 1.1 joerg case 1:
7978 1.1 joerg (*emu->emu_outb) (emu, emu->x86.R_DX,
7979 1.1 joerg fetch_byte(emu, emu->x86.R_ES, emu->x86.R_SI));
7980 1.1 joerg break;
7981 1.1 joerg case 2:
7982 1.1 joerg (*emu->emu_outw) (emu, emu->x86.R_DX,
7983 1.1 joerg fetch_word(emu, emu->x86.R_ES, emu->x86.R_SI));
7984 1.1 joerg break;
7985 1.1 joerg case 4:
7986 1.1 joerg (*emu->emu_outl) (emu, emu->x86.R_DX,
7987 1.1 joerg fetch_long(emu, emu->x86.R_ES, emu->x86.R_SI));
7988 1.1 joerg break;
7989 1.1 joerg }
7990 1.1 joerg emu->x86.R_SI += inc;
7991 1.1 joerg }
7992 1.1 joerg }
7993 1.1 joerg /****************************************************************************
7994 1.1 joerg REMARKS:
7995 1.1 joerg Pushes a word onto the stack.
7996 1.1 joerg
7997 1.1 joerg NOTE: Do not inline this, as (*emu->emu_wrX) is already inline!
7998 1.1 joerg ****************************************************************************/
7999 1.1 joerg static void
8000 1.1 joerg push_word(struct X86EMU *emu, uint16_t w)
8001 1.1 joerg {
8002 1.1 joerg emu->x86.R_SP -= 2;
8003 1.1 joerg store_word(emu, emu->x86.R_SS, emu->x86.R_SP, w);
8004 1.1 joerg }
8005 1.1 joerg /****************************************************************************
8006 1.1 joerg REMARKS:
8007 1.1 joerg Pushes a long onto the stack.
8008 1.1 joerg
8009 1.1 joerg NOTE: Do not inline this, as (*emu->emu_wrX) is already inline!
8010 1.1 joerg ****************************************************************************/
8011 1.1 joerg static void
8012 1.1 joerg push_long(struct X86EMU *emu, uint32_t w)
8013 1.1 joerg {
8014 1.1 joerg emu->x86.R_SP -= 4;
8015 1.1 joerg store_long(emu, emu->x86.R_SS, emu->x86.R_SP, w);
8016 1.1 joerg }
8017 1.1 joerg /****************************************************************************
8018 1.1 joerg REMARKS:
8019 1.1 joerg Pops a word from the stack.
8020 1.1 joerg
8021 1.1 joerg NOTE: Do not inline this, as (*emu->emu_rdX) is already inline!
8022 1.1 joerg ****************************************************************************/
8023 1.1 joerg static uint16_t
8024 1.1 joerg pop_word(struct X86EMU *emu)
8025 1.1 joerg {
8026 1.1 joerg uint16_t res;
8027 1.1 joerg
8028 1.1 joerg res = fetch_word(emu, emu->x86.R_SS, emu->x86.R_SP);
8029 1.1 joerg emu->x86.R_SP += 2;
8030 1.1 joerg return res;
8031 1.1 joerg }
8032 1.1 joerg /****************************************************************************
8033 1.1 joerg REMARKS:
8034 1.1 joerg Pops a long from the stack.
8035 1.1 joerg
8036 1.1 joerg NOTE: Do not inline this, as (*emu->emu_rdX) is already inline!
8037 1.1 joerg ****************************************************************************/
8038 1.1 joerg static uint32_t
8039 1.1 joerg pop_long(struct X86EMU *emu)
8040 1.1 joerg {
8041 1.1 joerg uint32_t res;
8042 1.1 joerg
8043 1.1 joerg res = fetch_long(emu, emu->x86.R_SS, emu->x86.R_SP);
8044 1.1 joerg emu->x86.R_SP += 4;
8045 1.1 joerg return res;
8046 1.1 joerg }
8047