x86emu.c revision 1.6 1 1.6 joerg /* $NetBSD: x86emu.c,v 1.6 2009/02/03 19:14:52 joerg Exp $ */
2 1.1 joerg
3 1.1 joerg /****************************************************************************
4 1.1 joerg *
5 1.1 joerg * Realmode X86 Emulator Library
6 1.1 joerg *
7 1.1 joerg * Copyright (C) 1996-1999 SciTech Software, Inc.
8 1.1 joerg * Copyright (C) David Mosberger-Tang
9 1.1 joerg * Copyright (C) 1999 Egbert Eich
10 1.1 joerg * Copyright (C) 2007 Joerg Sonnenberger
11 1.1 joerg *
12 1.1 joerg * ========================================================================
13 1.1 joerg *
14 1.1 joerg * Permission to use, copy, modify, distribute, and sell this software and
15 1.1 joerg * its documentation for any purpose is hereby granted without fee,
16 1.1 joerg * provided that the above copyright notice appear in all copies and that
17 1.1 joerg * both that copyright notice and this permission notice appear in
18 1.1 joerg * supporting documentation, and that the name of the authors not be used
19 1.1 joerg * in advertising or publicity pertaining to distribution of the software
20 1.1 joerg * without specific, written prior permission. The authors makes no
21 1.1 joerg * representations about the suitability of this software for any purpose.
22 1.1 joerg * It is provided "as is" without express or implied warranty.
23 1.1 joerg *
24 1.1 joerg * THE AUTHORS DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
25 1.1 joerg * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
26 1.1 joerg * EVENT SHALL THE AUTHORS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
27 1.1 joerg * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
28 1.1 joerg * USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
29 1.1 joerg * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
30 1.1 joerg * PERFORMANCE OF THIS SOFTWARE.
31 1.1 joerg *
32 1.1 joerg ****************************************************************************/
33 1.1 joerg
34 1.1 joerg #ifndef _KERNEL
35 1.1 joerg #include <stdbool.h>
36 1.1 joerg #endif
37 1.1 joerg
38 1.2 joerg #include <x86emu/x86emu.h>
39 1.2 joerg #include <x86emu/x86emu_regs.h>
40 1.1 joerg
41 1.1 joerg static void x86emu_intr_raise (struct X86EMU *, uint8_t type);
42 1.1 joerg
43 1.1 joerg static void X86EMU_exec_one_byte(struct X86EMU *);
44 1.1 joerg static void X86EMU_exec_two_byte(struct X86EMU *);
45 1.1 joerg
46 1.1 joerg static void fetch_decode_modrm (struct X86EMU *);
47 1.1 joerg static uint8_t fetch_byte_imm (struct X86EMU *);
48 1.1 joerg static uint16_t fetch_word_imm (struct X86EMU *);
49 1.1 joerg static uint32_t fetch_long_imm (struct X86EMU *);
50 1.1 joerg static uint8_t fetch_data_byte (struct X86EMU *, uint32_t offset);
51 1.1 joerg static uint8_t fetch_byte (struct X86EMU *, uint segment, uint32_t offset);
52 1.1 joerg static uint16_t fetch_data_word (struct X86EMU *, uint32_t offset);
53 1.1 joerg static uint16_t fetch_word (struct X86EMU *, uint32_t segment, uint32_t offset);
54 1.1 joerg static uint32_t fetch_data_long (struct X86EMU *, uint32_t offset);
55 1.1 joerg static uint32_t fetch_long (struct X86EMU *, uint32_t segment, uint32_t offset);
56 1.1 joerg static void store_data_byte (struct X86EMU *, uint32_t offset, uint8_t val);
57 1.1 joerg static void store_byte (struct X86EMU *, uint32_t segment, uint32_t offset, uint8_t val);
58 1.1 joerg static void store_data_word (struct X86EMU *, uint32_t offset, uint16_t val);
59 1.1 joerg static void store_word (struct X86EMU *, uint32_t segment, uint32_t offset, uint16_t val);
60 1.1 joerg static void store_data_long (struct X86EMU *, uint32_t offset, uint32_t val);
61 1.1 joerg static void store_long (struct X86EMU *, uint32_t segment, uint32_t offset, uint32_t val);
62 1.1 joerg static uint8_t* decode_rl_byte_register(struct X86EMU *);
63 1.1 joerg static uint16_t* decode_rl_word_register(struct X86EMU *);
64 1.1 joerg static uint32_t* decode_rl_long_register(struct X86EMU *);
65 1.1 joerg static uint8_t* decode_rh_byte_register(struct X86EMU *);
66 1.1 joerg static uint16_t* decode_rh_word_register(struct X86EMU *);
67 1.1 joerg static uint32_t* decode_rh_long_register(struct X86EMU *);
68 1.1 joerg static uint16_t* decode_rh_seg_register(struct X86EMU *);
69 1.1 joerg static uint32_t decode_rl_address(struct X86EMU *);
70 1.1 joerg
71 1.1 joerg static uint8_t decode_and_fetch_byte(struct X86EMU *);
72 1.1 joerg static uint16_t decode_and_fetch_word(struct X86EMU *);
73 1.1 joerg static uint32_t decode_and_fetch_long(struct X86EMU *);
74 1.1 joerg
75 1.1 joerg static uint8_t decode_and_fetch_byte_imm8(struct X86EMU *, uint8_t *);
76 1.1 joerg static uint16_t decode_and_fetch_word_imm8(struct X86EMU *, uint8_t *);
77 1.1 joerg static uint32_t decode_and_fetch_long_imm8(struct X86EMU *, uint8_t *);
78 1.1 joerg
79 1.1 joerg static uint16_t decode_and_fetch_word_disp(struct X86EMU *, int16_t);
80 1.1 joerg static uint32_t decode_and_fetch_long_disp(struct X86EMU *, int16_t);
81 1.1 joerg
82 1.1 joerg static void write_back_byte(struct X86EMU *, uint8_t);
83 1.1 joerg static void write_back_word(struct X86EMU *, uint16_t);
84 1.1 joerg static void write_back_long(struct X86EMU *, uint32_t);
85 1.1 joerg
86 1.1 joerg static uint16_t aaa_word (struct X86EMU *, uint16_t d);
87 1.1 joerg static uint16_t aas_word (struct X86EMU *, uint16_t d);
88 1.1 joerg static uint16_t aad_word (struct X86EMU *, uint16_t d);
89 1.1 joerg static uint16_t aam_word (struct X86EMU *, uint8_t d);
90 1.1 joerg static uint8_t adc_byte (struct X86EMU *, uint8_t d, uint8_t s);
91 1.1 joerg static uint16_t adc_word (struct X86EMU *, uint16_t d, uint16_t s);
92 1.1 joerg static uint32_t adc_long (struct X86EMU *, uint32_t d, uint32_t s);
93 1.1 joerg static uint8_t add_byte (struct X86EMU *, uint8_t d, uint8_t s);
94 1.1 joerg static uint16_t add_word (struct X86EMU *, uint16_t d, uint16_t s);
95 1.1 joerg static uint32_t add_long (struct X86EMU *, uint32_t d, uint32_t s);
96 1.1 joerg static uint8_t and_byte (struct X86EMU *, uint8_t d, uint8_t s);
97 1.1 joerg static uint16_t and_word (struct X86EMU *, uint16_t d, uint16_t s);
98 1.1 joerg static uint32_t and_long (struct X86EMU *, uint32_t d, uint32_t s);
99 1.1 joerg static uint8_t cmp_byte (struct X86EMU *, uint8_t d, uint8_t s);
100 1.1 joerg static uint16_t cmp_word (struct X86EMU *, uint16_t d, uint16_t s);
101 1.1 joerg static uint32_t cmp_long (struct X86EMU *, uint32_t d, uint32_t s);
102 1.1 joerg static void cmp_byte_no_return (struct X86EMU *, uint8_t d, uint8_t s);
103 1.1 joerg static void cmp_word_no_return (struct X86EMU *, uint16_t d, uint16_t s);
104 1.1 joerg static void cmp_long_no_return (struct X86EMU *, uint32_t d, uint32_t s);
105 1.1 joerg static uint8_t daa_byte (struct X86EMU *, uint8_t d);
106 1.1 joerg static uint8_t das_byte (struct X86EMU *, uint8_t d);
107 1.1 joerg static uint8_t dec_byte (struct X86EMU *, uint8_t d);
108 1.1 joerg static uint16_t dec_word (struct X86EMU *, uint16_t d);
109 1.1 joerg static uint32_t dec_long (struct X86EMU *, uint32_t d);
110 1.1 joerg static uint8_t inc_byte (struct X86EMU *, uint8_t d);
111 1.1 joerg static uint16_t inc_word (struct X86EMU *, uint16_t d);
112 1.1 joerg static uint32_t inc_long (struct X86EMU *, uint32_t d);
113 1.1 joerg static uint8_t or_byte (struct X86EMU *, uint8_t d, uint8_t s);
114 1.1 joerg static uint16_t or_word (struct X86EMU *, uint16_t d, uint16_t s);
115 1.1 joerg static uint32_t or_long (struct X86EMU *, uint32_t d, uint32_t s);
116 1.1 joerg static uint8_t neg_byte (struct X86EMU *, uint8_t s);
117 1.1 joerg static uint16_t neg_word (struct X86EMU *, uint16_t s);
118 1.1 joerg static uint32_t neg_long (struct X86EMU *, uint32_t s);
119 1.1 joerg static uint8_t rcl_byte (struct X86EMU *, uint8_t d, uint8_t s);
120 1.1 joerg static uint16_t rcl_word (struct X86EMU *, uint16_t d, uint8_t s);
121 1.1 joerg static uint32_t rcl_long (struct X86EMU *, uint32_t d, uint8_t s);
122 1.1 joerg static uint8_t rcr_byte (struct X86EMU *, uint8_t d, uint8_t s);
123 1.1 joerg static uint16_t rcr_word (struct X86EMU *, uint16_t d, uint8_t s);
124 1.1 joerg static uint32_t rcr_long (struct X86EMU *, uint32_t d, uint8_t s);
125 1.1 joerg static uint8_t rol_byte (struct X86EMU *, uint8_t d, uint8_t s);
126 1.1 joerg static uint16_t rol_word (struct X86EMU *, uint16_t d, uint8_t s);
127 1.1 joerg static uint32_t rol_long (struct X86EMU *, uint32_t d, uint8_t s);
128 1.1 joerg static uint8_t ror_byte (struct X86EMU *, uint8_t d, uint8_t s);
129 1.1 joerg static uint16_t ror_word (struct X86EMU *, uint16_t d, uint8_t s);
130 1.1 joerg static uint32_t ror_long (struct X86EMU *, uint32_t d, uint8_t s);
131 1.1 joerg static uint8_t shl_byte (struct X86EMU *, uint8_t d, uint8_t s);
132 1.1 joerg static uint16_t shl_word (struct X86EMU *, uint16_t d, uint8_t s);
133 1.1 joerg static uint32_t shl_long (struct X86EMU *, uint32_t d, uint8_t s);
134 1.1 joerg static uint8_t shr_byte (struct X86EMU *, uint8_t d, uint8_t s);
135 1.1 joerg static uint16_t shr_word (struct X86EMU *, uint16_t d, uint8_t s);
136 1.1 joerg static uint32_t shr_long (struct X86EMU *, uint32_t d, uint8_t s);
137 1.1 joerg static uint8_t sar_byte (struct X86EMU *, uint8_t d, uint8_t s);
138 1.1 joerg static uint16_t sar_word (struct X86EMU *, uint16_t d, uint8_t s);
139 1.1 joerg static uint32_t sar_long (struct X86EMU *, uint32_t d, uint8_t s);
140 1.1 joerg static uint16_t shld_word (struct X86EMU *, uint16_t d, uint16_t fill, uint8_t s);
141 1.1 joerg static uint32_t shld_long (struct X86EMU *, uint32_t d, uint32_t fill, uint8_t s);
142 1.1 joerg static uint16_t shrd_word (struct X86EMU *, uint16_t d, uint16_t fill, uint8_t s);
143 1.1 joerg static uint32_t shrd_long (struct X86EMU *, uint32_t d, uint32_t fill, uint8_t s);
144 1.1 joerg static uint8_t sbb_byte (struct X86EMU *, uint8_t d, uint8_t s);
145 1.1 joerg static uint16_t sbb_word (struct X86EMU *, uint16_t d, uint16_t s);
146 1.1 joerg static uint32_t sbb_long (struct X86EMU *, uint32_t d, uint32_t s);
147 1.1 joerg static uint8_t sub_byte (struct X86EMU *, uint8_t d, uint8_t s);
148 1.1 joerg static uint16_t sub_word (struct X86EMU *, uint16_t d, uint16_t s);
149 1.1 joerg static uint32_t sub_long (struct X86EMU *, uint32_t d, uint32_t s);
150 1.1 joerg static void test_byte (struct X86EMU *, uint8_t d, uint8_t s);
151 1.1 joerg static void test_word (struct X86EMU *, uint16_t d, uint16_t s);
152 1.1 joerg static void test_long (struct X86EMU *, uint32_t d, uint32_t s);
153 1.1 joerg static uint8_t xor_byte (struct X86EMU *, uint8_t d, uint8_t s);
154 1.1 joerg static uint16_t xor_word (struct X86EMU *, uint16_t d, uint16_t s);
155 1.1 joerg static uint32_t xor_long (struct X86EMU *, uint32_t d, uint32_t s);
156 1.1 joerg static void imul_byte (struct X86EMU *, uint8_t s);
157 1.1 joerg static void imul_word (struct X86EMU *, uint16_t s);
158 1.1 joerg static void imul_long (struct X86EMU *, uint32_t s);
159 1.1 joerg static void mul_byte (struct X86EMU *, uint8_t s);
160 1.1 joerg static void mul_word (struct X86EMU *, uint16_t s);
161 1.1 joerg static void mul_long (struct X86EMU *, uint32_t s);
162 1.1 joerg static void idiv_byte (struct X86EMU *, uint8_t s);
163 1.1 joerg static void idiv_word (struct X86EMU *, uint16_t s);
164 1.1 joerg static void idiv_long (struct X86EMU *, uint32_t s);
165 1.1 joerg static void div_byte (struct X86EMU *, uint8_t s);
166 1.1 joerg static void div_word (struct X86EMU *, uint16_t s);
167 1.1 joerg static void div_long (struct X86EMU *, uint32_t s);
168 1.1 joerg static void ins (struct X86EMU *, int size);
169 1.1 joerg static void outs (struct X86EMU *, int size);
170 1.1 joerg static void push_word (struct X86EMU *, uint16_t w);
171 1.1 joerg static void push_long (struct X86EMU *, uint32_t w);
172 1.1 joerg static uint16_t pop_word (struct X86EMU *);
173 1.1 joerg static uint32_t pop_long (struct X86EMU *);
174 1.1 joerg
175 1.1 joerg /****************************************************************************
176 1.1 joerg REMARKS:
177 1.1 joerg Handles any pending asychronous interrupts.
178 1.1 joerg ****************************************************************************/
179 1.3 joerg static void
180 1.3 joerg x86emu_intr_dispatch(struct X86EMU *emu, uint8_t intno)
181 1.3 joerg {
182 1.3 joerg if (emu->_X86EMU_intrTab[intno]) {
183 1.3 joerg (*emu->_X86EMU_intrTab[intno]) (emu, intno);
184 1.3 joerg } else {
185 1.3 joerg push_word(emu, (uint16_t) emu->x86.R_FLG);
186 1.3 joerg CLEAR_FLAG(F_IF);
187 1.3 joerg CLEAR_FLAG(F_TF);
188 1.3 joerg push_word(emu, emu->x86.R_CS);
189 1.3 joerg emu->x86.R_CS = fetch_word(emu, 0, intno * 4 + 2);
190 1.3 joerg push_word(emu, emu->x86.R_IP);
191 1.3 joerg emu->x86.R_IP = fetch_word(emu, 0, intno * 4);
192 1.3 joerg }
193 1.3 joerg }
194 1.3 joerg
195 1.1 joerg static void
196 1.1 joerg x86emu_intr_handle(struct X86EMU *emu)
197 1.1 joerg {
198 1.1 joerg uint8_t intno;
199 1.1 joerg
200 1.1 joerg if (emu->x86.intr & INTR_SYNCH) {
201 1.1 joerg intno = emu->x86.intno;
202 1.3 joerg emu->x86.intr = 0;
203 1.3 joerg x86emu_intr_dispatch(emu, intno);
204 1.1 joerg }
205 1.1 joerg }
206 1.1 joerg /****************************************************************************
207 1.1 joerg PARAMETERS:
208 1.1 joerg intrnum - Interrupt number to raise
209 1.1 joerg
210 1.1 joerg REMARKS:
211 1.1 joerg Raise the specified interrupt to be handled before the execution of the
212 1.1 joerg next instruction.
213 1.1 joerg ****************************************************************************/
214 1.1 joerg void
215 1.1 joerg x86emu_intr_raise(struct X86EMU *emu, uint8_t intrnum)
216 1.1 joerg {
217 1.1 joerg emu->x86.intno = intrnum;
218 1.1 joerg emu->x86.intr |= INTR_SYNCH;
219 1.1 joerg }
220 1.1 joerg /****************************************************************************
221 1.1 joerg REMARKS:
222 1.1 joerg Main execution loop for the emulator. We return from here when the system
223 1.1 joerg halts, which is normally caused by a stack fault when we return from the
224 1.1 joerg original real mode call.
225 1.1 joerg ****************************************************************************/
226 1.1 joerg void
227 1.1 joerg X86EMU_exec(struct X86EMU *emu)
228 1.1 joerg {
229 1.1 joerg emu->x86.intr = 0;
230 1.1 joerg
231 1.1 joerg #ifdef _KERNEL
232 1.1 joerg if (setjmp(&emu->exec_state))
233 1.1 joerg return;
234 1.1 joerg #else
235 1.1 joerg if (setjmp(emu->exec_state))
236 1.1 joerg return;
237 1.1 joerg #endif
238 1.1 joerg
239 1.1 joerg for (;;) {
240 1.1 joerg if (emu->x86.intr) {
241 1.1 joerg if (((emu->x86.intr & INTR_SYNCH) && (emu->x86.intno == 0 || emu->x86.intno == 2)) ||
242 1.1 joerg !ACCESS_FLAG(F_IF)) {
243 1.1 joerg x86emu_intr_handle(emu);
244 1.1 joerg }
245 1.1 joerg }
246 1.1 joerg X86EMU_exec_one_byte(emu);
247 1.1 joerg ++emu->cur_cycles;
248 1.1 joerg }
249 1.1 joerg }
250 1.1 joerg
251 1.1 joerg void
252 1.1 joerg X86EMU_exec_call(struct X86EMU *emu, uint16_t seg, uint16_t off)
253 1.1 joerg {
254 1.1 joerg push_word(emu, 0);
255 1.1 joerg push_word(emu, 0);
256 1.1 joerg emu->x86.R_CS = seg;
257 1.1 joerg emu->x86.R_IP = off;
258 1.1 joerg
259 1.1 joerg X86EMU_exec(emu);
260 1.1 joerg }
261 1.1 joerg
262 1.1 joerg void
263 1.1 joerg X86EMU_exec_intr(struct X86EMU *emu, uint8_t intr)
264 1.1 joerg {
265 1.1 joerg push_word(emu, emu->x86.R_FLG);
266 1.1 joerg CLEAR_FLAG(F_IF);
267 1.1 joerg CLEAR_FLAG(F_TF);
268 1.1 joerg push_word(emu, 0);
269 1.1 joerg push_word(emu, 0);
270 1.1 joerg emu->x86.R_CS = (*emu->emu_rdw)(emu, intr * 4 + 2);
271 1.1 joerg emu->x86.R_IP = (*emu->emu_rdw)(emu, intr * 4);
272 1.1 joerg emu->x86.intr = 0;
273 1.1 joerg
274 1.1 joerg X86EMU_exec(emu);
275 1.1 joerg }
276 1.1 joerg /****************************************************************************
277 1.1 joerg REMARKS:
278 1.1 joerg Halts the system by setting the halted system flag.
279 1.1 joerg ****************************************************************************/
280 1.1 joerg void
281 1.1 joerg X86EMU_halt_sys(struct X86EMU *emu)
282 1.1 joerg {
283 1.1 joerg #ifdef _KERNEL
284 1.1 joerg longjmp(&emu->exec_state);
285 1.1 joerg #else
286 1.1 joerg longjmp(emu->exec_state, 1);
287 1.1 joerg #endif
288 1.1 joerg }
289 1.1 joerg /****************************************************************************
290 1.1 joerg PARAMETERS:
291 1.1 joerg mod - Mod value from decoded byte
292 1.1 joerg regh - Reg h value from decoded byte
293 1.1 joerg regl - Reg l value from decoded byte
294 1.1 joerg
295 1.1 joerg REMARKS:
296 1.1 joerg Raise the specified interrupt to be handled before the execution of the
297 1.1 joerg next instruction.
298 1.1 joerg
299 1.1 joerg NOTE: Do not inline this function, as (*emu->emu_rdb) is already inline!
300 1.1 joerg ****************************************************************************/
301 1.1 joerg static void
302 1.1 joerg fetch_decode_modrm(struct X86EMU *emu)
303 1.1 joerg {
304 1.1 joerg int fetched;
305 1.1 joerg
306 1.1 joerg fetched = fetch_byte_imm(emu);
307 1.1 joerg emu->cur_mod = (fetched >> 6) & 0x03;
308 1.1 joerg emu->cur_rh = (fetched >> 3) & 0x07;
309 1.1 joerg emu->cur_rl = (fetched >> 0) & 0x07;
310 1.1 joerg }
311 1.1 joerg /****************************************************************************
312 1.1 joerg RETURNS:
313 1.1 joerg Immediate byte value read from instruction queue
314 1.1 joerg
315 1.1 joerg REMARKS:
316 1.1 joerg This function returns the immediate byte from the instruction queue, and
317 1.1 joerg moves the instruction pointer to the next value.
318 1.1 joerg
319 1.1 joerg NOTE: Do not inline this function, as (*emu->emu_rdb) is already inline!
320 1.1 joerg ****************************************************************************/
321 1.1 joerg static uint8_t
322 1.1 joerg fetch_byte_imm(struct X86EMU *emu)
323 1.1 joerg {
324 1.1 joerg uint8_t fetched;
325 1.1 joerg
326 1.1 joerg fetched = fetch_byte(emu, emu->x86.R_CS, emu->x86.R_IP);
327 1.1 joerg emu->x86.R_IP++;
328 1.1 joerg return fetched;
329 1.1 joerg }
330 1.1 joerg /****************************************************************************
331 1.1 joerg RETURNS:
332 1.1 joerg Immediate word value read from instruction queue
333 1.1 joerg
334 1.1 joerg REMARKS:
335 1.1 joerg This function returns the immediate byte from the instruction queue, and
336 1.1 joerg moves the instruction pointer to the next value.
337 1.1 joerg
338 1.1 joerg NOTE: Do not inline this function, as (*emu->emu_rdw) is already inline!
339 1.1 joerg ****************************************************************************/
340 1.1 joerg static uint16_t
341 1.1 joerg fetch_word_imm(struct X86EMU *emu)
342 1.1 joerg {
343 1.1 joerg uint16_t fetched;
344 1.1 joerg
345 1.1 joerg fetched = fetch_word(emu, emu->x86.R_CS, emu->x86.R_IP);
346 1.1 joerg emu->x86.R_IP += 2;
347 1.1 joerg return fetched;
348 1.1 joerg }
349 1.1 joerg /****************************************************************************
350 1.1 joerg RETURNS:
351 1.1 joerg Immediate lone value read from instruction queue
352 1.1 joerg
353 1.1 joerg REMARKS:
354 1.1 joerg This function returns the immediate byte from the instruction queue, and
355 1.1 joerg moves the instruction pointer to the next value.
356 1.1 joerg
357 1.1 joerg NOTE: Do not inline this function, as (*emu->emu_rdw) is already inline!
358 1.1 joerg ****************************************************************************/
359 1.1 joerg static uint32_t
360 1.1 joerg fetch_long_imm(struct X86EMU *emu)
361 1.1 joerg {
362 1.1 joerg uint32_t fetched;
363 1.1 joerg
364 1.1 joerg fetched = fetch_long(emu, emu->x86.R_CS, emu->x86.R_IP);
365 1.1 joerg emu->x86.R_IP += 4;
366 1.1 joerg return fetched;
367 1.1 joerg }
368 1.1 joerg /****************************************************************************
369 1.1 joerg RETURNS:
370 1.1 joerg Value of the default data segment
371 1.1 joerg
372 1.1 joerg REMARKS:
373 1.1 joerg Inline function that returns the default data segment for the current
374 1.1 joerg instruction.
375 1.1 joerg
376 1.1 joerg On the x86 processor, the default segment is not always DS if there is
377 1.1 joerg no segment override. Address modes such as -3[BP] or 10[BP+SI] all refer to
378 1.1 joerg addresses relative to SS (ie: on the stack). So, at the minimum, all
379 1.1 joerg decodings of addressing modes would have to set/clear a bit describing
380 1.1 joerg whether the access is relative to DS or SS. That is the function of the
381 1.1 joerg cpu-state-varible emu->x86.mode. There are several potential states:
382 1.1 joerg
383 1.1 joerg repe prefix seen (handled elsewhere)
384 1.1 joerg repne prefix seen (ditto)
385 1.1 joerg
386 1.1 joerg cs segment override
387 1.1 joerg ds segment override
388 1.1 joerg es segment override
389 1.1 joerg fs segment override
390 1.1 joerg gs segment override
391 1.1 joerg ss segment override
392 1.1 joerg
393 1.1 joerg ds/ss select (in absense of override)
394 1.1 joerg
395 1.1 joerg Each of the above 7 items are handled with a bit in the mode field.
396 1.1 joerg ****************************************************************************/
397 1.1 joerg static uint32_t
398 1.1 joerg get_data_segment(struct X86EMU *emu)
399 1.1 joerg {
400 1.1 joerg switch (emu->x86.mode & SYSMODE_SEGMASK) {
401 1.1 joerg case 0: /* default case: use ds register */
402 1.1 joerg case SYSMODE_SEGOVR_DS:
403 1.1 joerg case SYSMODE_SEGOVR_DS | SYSMODE_SEG_DS_SS:
404 1.1 joerg return emu->x86.R_DS;
405 1.1 joerg case SYSMODE_SEG_DS_SS:/* non-overridden, use ss register */
406 1.1 joerg return emu->x86.R_SS;
407 1.1 joerg case SYSMODE_SEGOVR_CS:
408 1.1 joerg case SYSMODE_SEGOVR_CS | SYSMODE_SEG_DS_SS:
409 1.1 joerg return emu->x86.R_CS;
410 1.1 joerg case SYSMODE_SEGOVR_ES:
411 1.1 joerg case SYSMODE_SEGOVR_ES | SYSMODE_SEG_DS_SS:
412 1.1 joerg return emu->x86.R_ES;
413 1.1 joerg case SYSMODE_SEGOVR_FS:
414 1.1 joerg case SYSMODE_SEGOVR_FS | SYSMODE_SEG_DS_SS:
415 1.1 joerg return emu->x86.R_FS;
416 1.1 joerg case SYSMODE_SEGOVR_GS:
417 1.1 joerg case SYSMODE_SEGOVR_GS | SYSMODE_SEG_DS_SS:
418 1.1 joerg return emu->x86.R_GS;
419 1.1 joerg case SYSMODE_SEGOVR_SS:
420 1.1 joerg case SYSMODE_SEGOVR_SS | SYSMODE_SEG_DS_SS:
421 1.1 joerg return emu->x86.R_SS;
422 1.1 joerg }
423 1.1 joerg X86EMU_halt_sys(emu);
424 1.1 joerg }
425 1.1 joerg /****************************************************************************
426 1.1 joerg PARAMETERS:
427 1.1 joerg offset - Offset to load data from
428 1.1 joerg
429 1.1 joerg RETURNS:
430 1.1 joerg Byte value read from the absolute memory location.
431 1.1 joerg
432 1.1 joerg NOTE: Do not inline this function as (*emu->emu_rdX) is already inline!
433 1.1 joerg ****************************************************************************/
434 1.1 joerg static uint8_t
435 1.1 joerg fetch_data_byte(struct X86EMU *emu, uint32_t offset)
436 1.1 joerg {
437 1.1 joerg return fetch_byte(emu, get_data_segment(emu), offset);
438 1.1 joerg }
439 1.1 joerg /****************************************************************************
440 1.1 joerg PARAMETERS:
441 1.1 joerg offset - Offset to load data from
442 1.1 joerg
443 1.1 joerg RETURNS:
444 1.1 joerg Word value read from the absolute memory location.
445 1.1 joerg
446 1.1 joerg NOTE: Do not inline this function as (*emu->emu_rdX) is already inline!
447 1.1 joerg ****************************************************************************/
448 1.1 joerg static uint16_t
449 1.1 joerg fetch_data_word(struct X86EMU *emu, uint32_t offset)
450 1.1 joerg {
451 1.1 joerg return fetch_word(emu, get_data_segment(emu), offset);
452 1.1 joerg }
453 1.1 joerg /****************************************************************************
454 1.1 joerg PARAMETERS:
455 1.1 joerg offset - Offset to load data from
456 1.1 joerg
457 1.1 joerg RETURNS:
458 1.1 joerg Long value read from the absolute memory location.
459 1.1 joerg
460 1.1 joerg NOTE: Do not inline this function as (*emu->emu_rdX) is already inline!
461 1.1 joerg ****************************************************************************/
462 1.1 joerg static uint32_t
463 1.1 joerg fetch_data_long(struct X86EMU *emu, uint32_t offset)
464 1.1 joerg {
465 1.1 joerg return fetch_long(emu, get_data_segment(emu), offset);
466 1.1 joerg }
467 1.1 joerg /****************************************************************************
468 1.1 joerg PARAMETERS:
469 1.1 joerg segment - Segment to load data from
470 1.1 joerg offset - Offset to load data from
471 1.1 joerg
472 1.1 joerg RETURNS:
473 1.1 joerg Byte value read from the absolute memory location.
474 1.1 joerg
475 1.1 joerg NOTE: Do not inline this function as (*emu->emu_rdX) is already inline!
476 1.1 joerg ****************************************************************************/
477 1.1 joerg static uint8_t
478 1.1 joerg fetch_byte(struct X86EMU *emu, uint32_t segment, uint32_t offset)
479 1.1 joerg {
480 1.1 joerg return (*emu->emu_rdb) (emu, ((uint32_t) segment << 4) + offset);
481 1.1 joerg }
482 1.1 joerg /****************************************************************************
483 1.1 joerg PARAMETERS:
484 1.1 joerg segment - Segment to load data from
485 1.1 joerg offset - Offset to load data from
486 1.1 joerg
487 1.1 joerg RETURNS:
488 1.1 joerg Word value read from the absolute memory location.
489 1.1 joerg
490 1.1 joerg NOTE: Do not inline this function as (*emu->emu_rdX) is already inline!
491 1.1 joerg ****************************************************************************/
492 1.1 joerg static uint16_t
493 1.1 joerg fetch_word(struct X86EMU *emu, uint32_t segment, uint32_t offset)
494 1.1 joerg {
495 1.1 joerg return (*emu->emu_rdw) (emu, ((uint32_t) segment << 4) + offset);
496 1.1 joerg }
497 1.1 joerg /****************************************************************************
498 1.1 joerg PARAMETERS:
499 1.1 joerg segment - Segment to load data from
500 1.1 joerg offset - Offset to load data from
501 1.1 joerg
502 1.1 joerg RETURNS:
503 1.1 joerg Long value read from the absolute memory location.
504 1.1 joerg
505 1.1 joerg NOTE: Do not inline this function as (*emu->emu_rdX) is already inline!
506 1.1 joerg ****************************************************************************/
507 1.1 joerg static uint32_t
508 1.1 joerg fetch_long(struct X86EMU *emu, uint32_t segment, uint32_t offset)
509 1.1 joerg {
510 1.1 joerg return (*emu->emu_rdl) (emu, ((uint32_t) segment << 4) + offset);
511 1.1 joerg }
512 1.1 joerg /****************************************************************************
513 1.1 joerg PARAMETERS:
514 1.1 joerg offset - Offset to store data at
515 1.1 joerg val - Value to store
516 1.1 joerg
517 1.1 joerg REMARKS:
518 1.1 joerg Writes a word value to an segmented memory location. The segment used is
519 1.1 joerg the current 'default' segment, which may have been overridden.
520 1.1 joerg
521 1.1 joerg NOTE: Do not inline this function as (*emu->emu_wrX) is already inline!
522 1.1 joerg ****************************************************************************/
523 1.1 joerg static void
524 1.1 joerg store_data_byte(struct X86EMU *emu, uint32_t offset, uint8_t val)
525 1.1 joerg {
526 1.1 joerg store_byte(emu, get_data_segment(emu), offset, val);
527 1.1 joerg }
528 1.1 joerg /****************************************************************************
529 1.1 joerg PARAMETERS:
530 1.1 joerg offset - Offset to store data at
531 1.1 joerg val - Value to store
532 1.1 joerg
533 1.1 joerg REMARKS:
534 1.1 joerg Writes a word value to an segmented memory location. The segment used is
535 1.1 joerg the current 'default' segment, which may have been overridden.
536 1.1 joerg
537 1.1 joerg NOTE: Do not inline this function as (*emu->emu_wrX) is already inline!
538 1.1 joerg ****************************************************************************/
539 1.1 joerg static void
540 1.1 joerg store_data_word(struct X86EMU *emu, uint32_t offset, uint16_t val)
541 1.1 joerg {
542 1.1 joerg store_word(emu, get_data_segment(emu), offset, val);
543 1.1 joerg }
544 1.1 joerg /****************************************************************************
545 1.1 joerg PARAMETERS:
546 1.1 joerg offset - Offset to store data at
547 1.1 joerg val - Value to store
548 1.1 joerg
549 1.1 joerg REMARKS:
550 1.1 joerg Writes a long value to an segmented memory location. The segment used is
551 1.1 joerg the current 'default' segment, which may have been overridden.
552 1.1 joerg
553 1.1 joerg NOTE: Do not inline this function as (*emu->emu_wrX) is already inline!
554 1.1 joerg ****************************************************************************/
555 1.1 joerg static void
556 1.1 joerg store_data_long(struct X86EMU *emu, uint32_t offset, uint32_t val)
557 1.1 joerg {
558 1.1 joerg store_long(emu, get_data_segment(emu), offset, val);
559 1.1 joerg }
560 1.1 joerg /****************************************************************************
561 1.1 joerg PARAMETERS:
562 1.1 joerg segment - Segment to store data at
563 1.1 joerg offset - Offset to store data at
564 1.1 joerg val - Value to store
565 1.1 joerg
566 1.1 joerg REMARKS:
567 1.1 joerg Writes a byte value to an absolute memory location.
568 1.1 joerg
569 1.1 joerg NOTE: Do not inline this function as (*emu->emu_wrX) is already inline!
570 1.1 joerg ****************************************************************************/
571 1.1 joerg static void
572 1.1 joerg store_byte(struct X86EMU *emu, uint32_t segment, uint32_t offset, uint8_t val)
573 1.1 joerg {
574 1.1 joerg (*emu->emu_wrb) (emu, ((uint32_t) segment << 4) + offset, val);
575 1.1 joerg }
576 1.1 joerg /****************************************************************************
577 1.1 joerg PARAMETERS:
578 1.1 joerg segment - Segment to store data at
579 1.1 joerg offset - Offset to store data at
580 1.1 joerg val - Value to store
581 1.1 joerg
582 1.1 joerg REMARKS:
583 1.1 joerg Writes a word value to an absolute memory location.
584 1.1 joerg
585 1.1 joerg NOTE: Do not inline this function as (*emu->emu_wrX) is already inline!
586 1.1 joerg ****************************************************************************/
587 1.1 joerg static void
588 1.1 joerg store_word(struct X86EMU *emu, uint32_t segment, uint32_t offset, uint16_t val)
589 1.1 joerg {
590 1.1 joerg (*emu->emu_wrw) (emu, ((uint32_t) segment << 4) + offset, val);
591 1.1 joerg }
592 1.1 joerg /****************************************************************************
593 1.1 joerg PARAMETERS:
594 1.1 joerg segment - Segment to store data at
595 1.1 joerg offset - Offset to store data at
596 1.1 joerg val - Value to store
597 1.1 joerg
598 1.1 joerg REMARKS:
599 1.1 joerg Writes a long value to an absolute memory location.
600 1.1 joerg
601 1.1 joerg NOTE: Do not inline this function as (*emu->emu_wrX) is already inline!
602 1.1 joerg ****************************************************************************/
603 1.1 joerg static void
604 1.1 joerg store_long(struct X86EMU *emu, uint32_t segment, uint32_t offset, uint32_t val)
605 1.1 joerg {
606 1.1 joerg (*emu->emu_wrl) (emu, ((uint32_t) segment << 4) + offset, val);
607 1.1 joerg }
608 1.1 joerg /****************************************************************************
609 1.1 joerg PARAMETERS:
610 1.1 joerg reg - Register to decode
611 1.1 joerg
612 1.1 joerg RETURNS:
613 1.1 joerg Pointer to the appropriate register
614 1.1 joerg
615 1.1 joerg REMARKS:
616 1.1 joerg Return a pointer to the register given by the R/RM field of the
617 1.1 joerg modrm byte, for byte operands. Also enables the decoding of instructions.
618 1.1 joerg ****************************************************************************/
619 1.1 joerg static uint8_t *
620 1.1 joerg decode_rm_byte_register(struct X86EMU *emu, int reg)
621 1.1 joerg {
622 1.1 joerg switch (reg) {
623 1.1 joerg case 0:
624 1.1 joerg return &emu->x86.R_AL;
625 1.1 joerg case 1:
626 1.1 joerg return &emu->x86.R_CL;
627 1.1 joerg case 2:
628 1.1 joerg return &emu->x86.R_DL;
629 1.1 joerg case 3:
630 1.1 joerg return &emu->x86.R_BL;
631 1.1 joerg case 4:
632 1.1 joerg return &emu->x86.R_AH;
633 1.1 joerg case 5:
634 1.1 joerg return &emu->x86.R_CH;
635 1.1 joerg case 6:
636 1.1 joerg return &emu->x86.R_DH;
637 1.1 joerg case 7:
638 1.1 joerg return &emu->x86.R_BH;
639 1.1 joerg default:
640 1.1 joerg X86EMU_halt_sys(emu);
641 1.1 joerg }
642 1.1 joerg }
643 1.1 joerg
644 1.1 joerg static uint8_t *
645 1.1 joerg decode_rl_byte_register(struct X86EMU *emu)
646 1.1 joerg {
647 1.1 joerg return decode_rm_byte_register(emu, emu->cur_rl);
648 1.1 joerg }
649 1.1 joerg
650 1.1 joerg static uint8_t *
651 1.1 joerg decode_rh_byte_register(struct X86EMU *emu)
652 1.1 joerg {
653 1.1 joerg return decode_rm_byte_register(emu, emu->cur_rh);
654 1.1 joerg }
655 1.1 joerg /****************************************************************************
656 1.1 joerg PARAMETERS:
657 1.1 joerg reg - Register to decode
658 1.1 joerg
659 1.1 joerg RETURNS:
660 1.1 joerg Pointer to the appropriate register
661 1.1 joerg
662 1.1 joerg REMARKS:
663 1.1 joerg Return a pointer to the register given by the R/RM field of the
664 1.1 joerg modrm byte, for word operands. Also enables the decoding of instructions.
665 1.1 joerg ****************************************************************************/
666 1.1 joerg static uint16_t *
667 1.1 joerg decode_rm_word_register(struct X86EMU *emu, int reg)
668 1.1 joerg {
669 1.1 joerg switch (reg) {
670 1.1 joerg case 0:
671 1.1 joerg return &emu->x86.R_AX;
672 1.1 joerg case 1:
673 1.1 joerg return &emu->x86.R_CX;
674 1.1 joerg case 2:
675 1.1 joerg return &emu->x86.R_DX;
676 1.1 joerg case 3:
677 1.1 joerg return &emu->x86.R_BX;
678 1.1 joerg case 4:
679 1.1 joerg return &emu->x86.R_SP;
680 1.1 joerg case 5:
681 1.1 joerg return &emu->x86.R_BP;
682 1.1 joerg case 6:
683 1.1 joerg return &emu->x86.R_SI;
684 1.1 joerg case 7:
685 1.1 joerg return &emu->x86.R_DI;
686 1.1 joerg default:
687 1.1 joerg X86EMU_halt_sys(emu);
688 1.1 joerg }
689 1.1 joerg }
690 1.1 joerg
691 1.1 joerg static uint16_t *
692 1.1 joerg decode_rl_word_register(struct X86EMU *emu)
693 1.1 joerg {
694 1.1 joerg return decode_rm_word_register(emu, emu->cur_rl);
695 1.1 joerg }
696 1.1 joerg
697 1.1 joerg static uint16_t *
698 1.1 joerg decode_rh_word_register(struct X86EMU *emu)
699 1.1 joerg {
700 1.1 joerg return decode_rm_word_register(emu, emu->cur_rh);
701 1.1 joerg }
702 1.1 joerg /****************************************************************************
703 1.1 joerg PARAMETERS:
704 1.1 joerg reg - Register to decode
705 1.1 joerg
706 1.1 joerg RETURNS:
707 1.1 joerg Pointer to the appropriate register
708 1.1 joerg
709 1.1 joerg REMARKS:
710 1.1 joerg Return a pointer to the register given by the R/RM field of the
711 1.1 joerg modrm byte, for dword operands. Also enables the decoding of instructions.
712 1.1 joerg ****************************************************************************/
713 1.1 joerg static uint32_t *
714 1.1 joerg decode_rm_long_register(struct X86EMU *emu, int reg)
715 1.1 joerg {
716 1.1 joerg switch (reg) {
717 1.1 joerg case 0:
718 1.1 joerg return &emu->x86.R_EAX;
719 1.1 joerg case 1:
720 1.1 joerg return &emu->x86.R_ECX;
721 1.1 joerg case 2:
722 1.1 joerg return &emu->x86.R_EDX;
723 1.1 joerg case 3:
724 1.1 joerg return &emu->x86.R_EBX;
725 1.1 joerg case 4:
726 1.1 joerg return &emu->x86.R_ESP;
727 1.1 joerg case 5:
728 1.1 joerg return &emu->x86.R_EBP;
729 1.1 joerg case 6:
730 1.1 joerg return &emu->x86.R_ESI;
731 1.1 joerg case 7:
732 1.1 joerg return &emu->x86.R_EDI;
733 1.1 joerg default:
734 1.1 joerg X86EMU_halt_sys(emu);
735 1.1 joerg }
736 1.1 joerg }
737 1.1 joerg
738 1.1 joerg static uint32_t *
739 1.1 joerg decode_rl_long_register(struct X86EMU *emu)
740 1.1 joerg {
741 1.1 joerg return decode_rm_long_register(emu, emu->cur_rl);
742 1.1 joerg }
743 1.1 joerg
744 1.1 joerg static uint32_t *
745 1.1 joerg decode_rh_long_register(struct X86EMU *emu)
746 1.1 joerg {
747 1.1 joerg return decode_rm_long_register(emu, emu->cur_rh);
748 1.1 joerg }
749 1.1 joerg
750 1.1 joerg /****************************************************************************
751 1.1 joerg PARAMETERS:
752 1.1 joerg reg - Register to decode
753 1.1 joerg
754 1.1 joerg RETURNS:
755 1.1 joerg Pointer to the appropriate register
756 1.1 joerg
757 1.1 joerg REMARKS:
758 1.1 joerg Return a pointer to the register given by the R/RM field of the
759 1.1 joerg modrm byte, for word operands, modified from above for the weirdo
760 1.1 joerg special case of segreg operands. Also enables the decoding of instructions.
761 1.1 joerg ****************************************************************************/
762 1.1 joerg static uint16_t *
763 1.1 joerg decode_rh_seg_register(struct X86EMU *emu)
764 1.1 joerg {
765 1.1 joerg switch (emu->cur_rh) {
766 1.1 joerg case 0:
767 1.1 joerg return &emu->x86.R_ES;
768 1.1 joerg case 1:
769 1.1 joerg return &emu->x86.R_CS;
770 1.1 joerg case 2:
771 1.1 joerg return &emu->x86.R_SS;
772 1.1 joerg case 3:
773 1.1 joerg return &emu->x86.R_DS;
774 1.1 joerg case 4:
775 1.1 joerg return &emu->x86.R_FS;
776 1.1 joerg case 5:
777 1.1 joerg return &emu->x86.R_GS;
778 1.1 joerg default:
779 1.1 joerg X86EMU_halt_sys(emu);
780 1.1 joerg }
781 1.1 joerg }
782 1.1 joerg /*
783 1.1 joerg *
784 1.1 joerg * return offset from the SIB Byte
785 1.1 joerg */
786 1.1 joerg static uint32_t
787 1.1 joerg decode_sib_address(struct X86EMU *emu, int sib, int mod)
788 1.1 joerg {
789 1.1 joerg uint32_t base = 0, i = 0, scale = 1;
790 1.1 joerg
791 1.1 joerg switch (sib & 0x07) {
792 1.1 joerg case 0:
793 1.1 joerg base = emu->x86.R_EAX;
794 1.1 joerg break;
795 1.1 joerg case 1:
796 1.1 joerg base = emu->x86.R_ECX;
797 1.1 joerg break;
798 1.1 joerg case 2:
799 1.1 joerg base = emu->x86.R_EDX;
800 1.1 joerg break;
801 1.1 joerg case 3:
802 1.1 joerg base = emu->x86.R_EBX;
803 1.1 joerg break;
804 1.1 joerg case 4:
805 1.1 joerg base = emu->x86.R_ESP;
806 1.1 joerg emu->x86.mode |= SYSMODE_SEG_DS_SS;
807 1.1 joerg break;
808 1.1 joerg case 5:
809 1.1 joerg if (mod == 0) {
810 1.1 joerg base = fetch_long_imm(emu);
811 1.1 joerg } else {
812 1.6 joerg base = emu->x86.R_EBP;
813 1.1 joerg emu->x86.mode |= SYSMODE_SEG_DS_SS;
814 1.1 joerg }
815 1.1 joerg break;
816 1.1 joerg case 6:
817 1.1 joerg base = emu->x86.R_ESI;
818 1.1 joerg break;
819 1.1 joerg case 7:
820 1.1 joerg base = emu->x86.R_EDI;
821 1.1 joerg break;
822 1.1 joerg }
823 1.1 joerg switch ((sib >> 3) & 0x07) {
824 1.1 joerg case 0:
825 1.1 joerg i = emu->x86.R_EAX;
826 1.1 joerg break;
827 1.1 joerg case 1:
828 1.1 joerg i = emu->x86.R_ECX;
829 1.1 joerg break;
830 1.1 joerg case 2:
831 1.1 joerg i = emu->x86.R_EDX;
832 1.1 joerg break;
833 1.1 joerg case 3:
834 1.1 joerg i = emu->x86.R_EBX;
835 1.1 joerg break;
836 1.1 joerg case 4:
837 1.1 joerg i = 0;
838 1.1 joerg break;
839 1.1 joerg case 5:
840 1.1 joerg i = emu->x86.R_EBP;
841 1.1 joerg break;
842 1.1 joerg case 6:
843 1.1 joerg i = emu->x86.R_ESI;
844 1.1 joerg break;
845 1.1 joerg case 7:
846 1.1 joerg i = emu->x86.R_EDI;
847 1.1 joerg break;
848 1.1 joerg }
849 1.1 joerg scale = 1 << ((sib >> 6) & 0x03);
850 1.1 joerg return base + (i * scale);
851 1.1 joerg }
852 1.1 joerg /****************************************************************************
853 1.1 joerg PARAMETERS:
854 1.1 joerg rm - RM value to decode
855 1.1 joerg
856 1.1 joerg RETURNS:
857 1.1 joerg Offset in memory for the address decoding
858 1.1 joerg
859 1.1 joerg REMARKS:
860 1.1 joerg Return the offset given by mod=00, mod=01 or mod=10 addressing.
861 1.1 joerg Also enables the decoding of instructions.
862 1.1 joerg ****************************************************************************/
863 1.1 joerg static uint32_t
864 1.1 joerg decode_rl_address(struct X86EMU *emu)
865 1.1 joerg {
866 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_ADDR) {
867 1.1 joerg uint32_t offset, sib;
868 1.1 joerg /* 32-bit addressing */
869 1.1 joerg switch (emu->cur_rl) {
870 1.1 joerg case 0:
871 1.1 joerg offset = emu->x86.R_EAX;
872 1.1 joerg break;
873 1.1 joerg case 1:
874 1.1 joerg offset = emu->x86.R_ECX;
875 1.1 joerg break;
876 1.1 joerg case 2:
877 1.1 joerg offset = emu->x86.R_EDX;
878 1.1 joerg break;
879 1.1 joerg case 3:
880 1.1 joerg offset = emu->x86.R_EBX;
881 1.1 joerg break;
882 1.1 joerg case 4:
883 1.1 joerg sib = fetch_byte_imm(emu);
884 1.1 joerg offset = decode_sib_address(emu, sib, 0);
885 1.1 joerg break;
886 1.1 joerg case 5:
887 1.6 joerg if (emu->cur_mod == 0) {
888 1.1 joerg offset = fetch_long_imm(emu);
889 1.6 joerg } else {
890 1.6 joerg emu->x86.mode |= SYSMODE_SEG_DS_SS;
891 1.1 joerg offset = emu->x86.R_EBP;
892 1.6 joerg }
893 1.1 joerg break;
894 1.1 joerg case 6:
895 1.1 joerg offset = emu->x86.R_ESI;
896 1.1 joerg break;
897 1.1 joerg case 7:
898 1.1 joerg offset = emu->x86.R_EDI;
899 1.1 joerg break;
900 1.1 joerg default:
901 1.1 joerg X86EMU_halt_sys(emu);
902 1.1 joerg }
903 1.1 joerg if (emu->cur_mod == 1)
904 1.1 joerg offset += (int8_t)fetch_byte_imm(emu);
905 1.1 joerg else if (emu->cur_mod == 2)
906 1.1 joerg offset += fetch_long_imm(emu);
907 1.1 joerg return offset;
908 1.1 joerg } else {
909 1.1 joerg uint16_t offset;
910 1.1 joerg
911 1.1 joerg /* 16-bit addressing */
912 1.1 joerg switch (emu->cur_rl) {
913 1.1 joerg case 0:
914 1.1 joerg offset = emu->x86.R_BX + emu->x86.R_SI;
915 1.1 joerg break;
916 1.1 joerg case 1:
917 1.1 joerg offset = emu->x86.R_BX + emu->x86.R_DI;
918 1.1 joerg break;
919 1.1 joerg case 2:
920 1.1 joerg emu->x86.mode |= SYSMODE_SEG_DS_SS;
921 1.1 joerg offset = emu->x86.R_BP + emu->x86.R_SI;
922 1.1 joerg break;
923 1.1 joerg case 3:
924 1.1 joerg emu->x86.mode |= SYSMODE_SEG_DS_SS;
925 1.1 joerg offset = emu->x86.R_BP + emu->x86.R_DI;
926 1.1 joerg break;
927 1.1 joerg case 4:
928 1.1 joerg offset = emu->x86.R_SI;
929 1.1 joerg break;
930 1.1 joerg case 5:
931 1.1 joerg offset = emu->x86.R_DI;
932 1.1 joerg break;
933 1.1 joerg case 6:
934 1.6 joerg if (emu->cur_mod == 0) {
935 1.1 joerg offset = fetch_word_imm(emu);
936 1.6 joerg } else {
937 1.6 joerg emu->x86.mode |= SYSMODE_SEG_DS_SS;
938 1.1 joerg offset = emu->x86.R_BP;
939 1.6 joerg }
940 1.1 joerg break;
941 1.1 joerg case 7:
942 1.1 joerg offset = emu->x86.R_BX;
943 1.1 joerg break;
944 1.1 joerg default:
945 1.1 joerg X86EMU_halt_sys(emu);
946 1.1 joerg }
947 1.1 joerg if (emu->cur_mod == 1)
948 1.1 joerg offset += (int8_t)fetch_byte_imm(emu);
949 1.1 joerg else if (emu->cur_mod == 2)
950 1.1 joerg offset += fetch_word_imm(emu);
951 1.1 joerg return offset;
952 1.1 joerg }
953 1.1 joerg }
954 1.1 joerg
955 1.1 joerg static uint8_t
956 1.1 joerg decode_and_fetch_byte(struct X86EMU *emu)
957 1.1 joerg {
958 1.1 joerg if (emu->cur_mod != 3) {
959 1.1 joerg emu->cur_offset = decode_rl_address(emu);
960 1.1 joerg return fetch_data_byte(emu, emu->cur_offset);
961 1.1 joerg } else {
962 1.1 joerg return *decode_rl_byte_register(emu);
963 1.1 joerg }
964 1.1 joerg }
965 1.1 joerg
966 1.1 joerg static uint16_t
967 1.1 joerg decode_and_fetch_word_disp(struct X86EMU *emu, int16_t disp)
968 1.1 joerg {
969 1.1 joerg if (emu->cur_mod != 3) {
970 1.1 joerg /* TODO: A20 gate emulation */
971 1.1 joerg emu->cur_offset = decode_rl_address(emu) + disp;
972 1.1 joerg if ((emu->x86.mode & SYSMODE_PREFIX_ADDR) == 0)
973 1.1 joerg emu->cur_offset &= 0xffff;
974 1.1 joerg return fetch_data_word(emu, emu->cur_offset);
975 1.1 joerg } else {
976 1.1 joerg return *decode_rl_word_register(emu);
977 1.1 joerg }
978 1.1 joerg }
979 1.1 joerg
980 1.1 joerg static uint32_t
981 1.1 joerg decode_and_fetch_long_disp(struct X86EMU *emu, int16_t disp)
982 1.1 joerg {
983 1.1 joerg if (emu->cur_mod != 3) {
984 1.1 joerg /* TODO: A20 gate emulation */
985 1.1 joerg emu->cur_offset = decode_rl_address(emu) + disp;
986 1.1 joerg if ((emu->x86.mode & SYSMODE_PREFIX_ADDR) == 0)
987 1.1 joerg emu->cur_offset &= 0xffff;
988 1.1 joerg return fetch_data_long(emu, emu->cur_offset);
989 1.1 joerg } else {
990 1.1 joerg return *decode_rl_long_register(emu);
991 1.1 joerg }
992 1.1 joerg }
993 1.1 joerg
994 1.1 joerg uint16_t
995 1.1 joerg decode_and_fetch_word(struct X86EMU *emu)
996 1.1 joerg {
997 1.1 joerg return decode_and_fetch_word_disp(emu, 0);
998 1.1 joerg }
999 1.1 joerg
1000 1.1 joerg uint32_t
1001 1.1 joerg decode_and_fetch_long(struct X86EMU *emu)
1002 1.1 joerg {
1003 1.1 joerg return decode_and_fetch_long_disp(emu, 0);
1004 1.1 joerg }
1005 1.1 joerg
1006 1.1 joerg uint8_t
1007 1.1 joerg decode_and_fetch_byte_imm8(struct X86EMU *emu, uint8_t *imm)
1008 1.1 joerg {
1009 1.1 joerg if (emu->cur_mod != 3) {
1010 1.1 joerg emu->cur_offset = decode_rl_address(emu);
1011 1.1 joerg *imm = fetch_byte_imm(emu);
1012 1.1 joerg return fetch_data_byte(emu, emu->cur_offset);
1013 1.1 joerg } else {
1014 1.1 joerg *imm = fetch_byte_imm(emu);
1015 1.1 joerg return *decode_rl_byte_register(emu);
1016 1.1 joerg }
1017 1.1 joerg }
1018 1.1 joerg
1019 1.1 joerg static uint16_t
1020 1.1 joerg decode_and_fetch_word_imm8(struct X86EMU *emu, uint8_t *imm)
1021 1.1 joerg {
1022 1.1 joerg if (emu->cur_mod != 3) {
1023 1.1 joerg emu->cur_offset = decode_rl_address(emu);
1024 1.1 joerg *imm = fetch_byte_imm(emu);
1025 1.1 joerg return fetch_data_word(emu, emu->cur_offset);
1026 1.1 joerg } else {
1027 1.1 joerg *imm = fetch_byte_imm(emu);
1028 1.1 joerg return *decode_rl_word_register(emu);
1029 1.1 joerg }
1030 1.1 joerg }
1031 1.1 joerg
1032 1.1 joerg static uint32_t
1033 1.1 joerg decode_and_fetch_long_imm8(struct X86EMU *emu, uint8_t *imm)
1034 1.1 joerg {
1035 1.1 joerg if (emu->cur_mod != 3) {
1036 1.1 joerg emu->cur_offset = decode_rl_address(emu);
1037 1.1 joerg *imm = fetch_byte_imm(emu);
1038 1.1 joerg return fetch_data_long(emu, emu->cur_offset);
1039 1.1 joerg } else {
1040 1.1 joerg *imm = fetch_byte_imm(emu);
1041 1.1 joerg return *decode_rl_long_register(emu);
1042 1.1 joerg }
1043 1.1 joerg }
1044 1.1 joerg
1045 1.1 joerg static void
1046 1.1 joerg write_back_byte(struct X86EMU *emu, uint8_t val)
1047 1.1 joerg {
1048 1.1 joerg if (emu->cur_mod != 3)
1049 1.1 joerg store_data_byte(emu, emu->cur_offset, val);
1050 1.1 joerg else
1051 1.1 joerg *decode_rl_byte_register(emu) = val;
1052 1.1 joerg }
1053 1.1 joerg
1054 1.1 joerg static void
1055 1.1 joerg write_back_word(struct X86EMU *emu, uint16_t val)
1056 1.1 joerg {
1057 1.1 joerg if (emu->cur_mod != 3)
1058 1.1 joerg store_data_word(emu, emu->cur_offset, val);
1059 1.1 joerg else
1060 1.1 joerg *decode_rl_word_register(emu) = val;
1061 1.1 joerg }
1062 1.1 joerg
1063 1.1 joerg static void
1064 1.1 joerg write_back_long(struct X86EMU *emu, uint32_t val)
1065 1.1 joerg {
1066 1.1 joerg if (emu->cur_mod != 3)
1067 1.1 joerg store_data_long(emu, emu->cur_offset, val);
1068 1.1 joerg else
1069 1.1 joerg *decode_rl_long_register(emu) = val;
1070 1.1 joerg }
1071 1.1 joerg
1072 1.1 joerg static void
1073 1.1 joerg common_inc_word_long(struct X86EMU *emu, union X86EMU_register *reg)
1074 1.1 joerg {
1075 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1076 1.1 joerg reg->I32_reg.e_reg = inc_long(emu, reg->I32_reg.e_reg);
1077 1.1 joerg else
1078 1.1 joerg reg->I16_reg.x_reg = inc_word(emu, reg->I16_reg.x_reg);
1079 1.1 joerg }
1080 1.1 joerg
1081 1.1 joerg static void
1082 1.1 joerg common_dec_word_long(struct X86EMU *emu, union X86EMU_register *reg)
1083 1.1 joerg {
1084 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1085 1.1 joerg reg->I32_reg.e_reg = dec_long(emu, reg->I32_reg.e_reg);
1086 1.1 joerg else
1087 1.1 joerg reg->I16_reg.x_reg = dec_word(emu, reg->I16_reg.x_reg);
1088 1.1 joerg }
1089 1.1 joerg
1090 1.1 joerg static void
1091 1.1 joerg common_binop_byte_rm_r(struct X86EMU *emu, uint8_t (*binop)(struct X86EMU *, uint8_t, uint8_t))
1092 1.1 joerg {
1093 1.1 joerg uint32_t destoffset;
1094 1.1 joerg uint8_t *destreg, srcval;
1095 1.1 joerg uint8_t destval;
1096 1.1 joerg
1097 1.1 joerg fetch_decode_modrm(emu);
1098 1.1 joerg srcval = *decode_rh_byte_register(emu);
1099 1.1 joerg if (emu->cur_mod != 3) {
1100 1.1 joerg destoffset = decode_rl_address(emu);
1101 1.1 joerg destval = fetch_data_byte(emu, destoffset);
1102 1.1 joerg destval = (*binop)(emu, destval, srcval);
1103 1.1 joerg store_data_byte(emu, destoffset, destval);
1104 1.1 joerg } else {
1105 1.1 joerg destreg = decode_rl_byte_register(emu);
1106 1.1 joerg *destreg = (*binop)(emu, *destreg, srcval);
1107 1.1 joerg }
1108 1.1 joerg }
1109 1.1 joerg
1110 1.1 joerg static void
1111 1.1 joerg common_binop_ns_byte_rm_r(struct X86EMU *emu, void (*binop)(struct X86EMU *, uint8_t, uint8_t))
1112 1.1 joerg {
1113 1.1 joerg uint32_t destoffset;
1114 1.1 joerg uint8_t destval, srcval;
1115 1.1 joerg
1116 1.1 joerg fetch_decode_modrm(emu);
1117 1.1 joerg srcval = *decode_rh_byte_register(emu);
1118 1.1 joerg if (emu->cur_mod != 3) {
1119 1.1 joerg destoffset = decode_rl_address(emu);
1120 1.1 joerg destval = fetch_data_byte(emu, destoffset);
1121 1.1 joerg } else {
1122 1.1 joerg destval = *decode_rl_byte_register(emu);
1123 1.1 joerg }
1124 1.1 joerg (*binop)(emu, destval, srcval);
1125 1.1 joerg }
1126 1.1 joerg
1127 1.1 joerg static void
1128 1.1 joerg common_binop_word_rm_r(struct X86EMU *emu, uint16_t (*binop)(struct X86EMU *, uint16_t, uint16_t))
1129 1.1 joerg {
1130 1.1 joerg uint32_t destoffset;
1131 1.1 joerg uint16_t destval, *destreg, srcval;
1132 1.1 joerg
1133 1.1 joerg fetch_decode_modrm(emu);
1134 1.1 joerg srcval = *decode_rh_word_register(emu);
1135 1.1 joerg if (emu->cur_mod != 3) {
1136 1.1 joerg destoffset = decode_rl_address(emu);
1137 1.1 joerg destval = fetch_data_word(emu, destoffset);
1138 1.1 joerg destval = (*binop)(emu, destval, srcval);
1139 1.1 joerg store_data_word(emu, destoffset, destval);
1140 1.1 joerg } else {
1141 1.1 joerg destreg = decode_rl_word_register(emu);
1142 1.1 joerg *destreg = (*binop)(emu, *destreg, srcval);
1143 1.1 joerg }
1144 1.1 joerg }
1145 1.1 joerg
1146 1.1 joerg static void
1147 1.1 joerg common_binop_byte_r_rm(struct X86EMU *emu, uint8_t (*binop)(struct X86EMU *, uint8_t, uint8_t))
1148 1.1 joerg {
1149 1.1 joerg uint8_t *destreg, srcval;
1150 1.1 joerg uint32_t srcoffset;
1151 1.1 joerg
1152 1.1 joerg fetch_decode_modrm(emu);
1153 1.1 joerg destreg = decode_rh_byte_register(emu);
1154 1.1 joerg if (emu->cur_mod != 3) {
1155 1.1 joerg srcoffset = decode_rl_address(emu);
1156 1.1 joerg srcval = fetch_data_byte(emu, srcoffset);
1157 1.1 joerg } else {
1158 1.1 joerg srcval = *decode_rl_byte_register(emu);
1159 1.1 joerg }
1160 1.1 joerg *destreg = (*binop)(emu, *destreg, srcval);
1161 1.1 joerg }
1162 1.1 joerg
1163 1.1 joerg static void
1164 1.1 joerg common_binop_long_rm_r(struct X86EMU *emu, uint32_t (*binop)(struct X86EMU *, uint32_t, uint32_t))
1165 1.1 joerg {
1166 1.1 joerg uint32_t destoffset;
1167 1.1 joerg uint32_t destval, *destreg, srcval;
1168 1.1 joerg
1169 1.1 joerg fetch_decode_modrm(emu);
1170 1.1 joerg srcval = *decode_rh_long_register(emu);
1171 1.1 joerg if (emu->cur_mod != 3) {
1172 1.1 joerg destoffset = decode_rl_address(emu);
1173 1.1 joerg destval = fetch_data_long(emu, destoffset);
1174 1.1 joerg destval = (*binop)(emu, destval, srcval);
1175 1.1 joerg store_data_long(emu, destoffset, destval);
1176 1.1 joerg } else {
1177 1.1 joerg destreg = decode_rl_long_register(emu);
1178 1.1 joerg *destreg = (*binop)(emu, *destreg, srcval);
1179 1.1 joerg }
1180 1.1 joerg }
1181 1.1 joerg
1182 1.1 joerg static void
1183 1.1 joerg common_binop_word_long_rm_r(struct X86EMU *emu,
1184 1.1 joerg uint16_t (*binop16)(struct X86EMU *, uint16_t, uint16_t), uint32_t (*binop32)(struct X86EMU *, uint32_t, uint32_t))
1185 1.1 joerg {
1186 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1187 1.1 joerg common_binop_long_rm_r(emu, binop32);
1188 1.1 joerg else
1189 1.1 joerg common_binop_word_rm_r(emu, binop16);
1190 1.1 joerg }
1191 1.1 joerg
1192 1.1 joerg static void
1193 1.1 joerg common_binop_ns_word_rm_r(struct X86EMU *emu, void (*binop)(struct X86EMU *, uint16_t, uint16_t))
1194 1.1 joerg {
1195 1.1 joerg uint32_t destoffset;
1196 1.1 joerg uint16_t destval, srcval;
1197 1.1 joerg
1198 1.1 joerg fetch_decode_modrm(emu);
1199 1.1 joerg srcval = *decode_rh_word_register(emu);
1200 1.1 joerg if (emu->cur_mod != 3) {
1201 1.1 joerg destoffset = decode_rl_address(emu);
1202 1.1 joerg destval = fetch_data_word(emu, destoffset);
1203 1.1 joerg } else {
1204 1.1 joerg destval = *decode_rl_word_register(emu);
1205 1.1 joerg }
1206 1.1 joerg (*binop)(emu, destval, srcval);
1207 1.1 joerg }
1208 1.1 joerg
1209 1.1 joerg
1210 1.1 joerg static void
1211 1.1 joerg common_binop_ns_long_rm_r(struct X86EMU *emu, void (*binop)(struct X86EMU *, uint32_t, uint32_t))
1212 1.1 joerg {
1213 1.1 joerg uint32_t destoffset;
1214 1.1 joerg uint32_t destval, srcval;
1215 1.1 joerg
1216 1.1 joerg fetch_decode_modrm(emu);
1217 1.1 joerg srcval = *decode_rh_long_register(emu);
1218 1.1 joerg if (emu->cur_mod != 3) {
1219 1.1 joerg destoffset = decode_rl_address(emu);
1220 1.1 joerg destval = fetch_data_long(emu, destoffset);
1221 1.1 joerg } else {
1222 1.1 joerg destval = *decode_rl_long_register(emu);
1223 1.1 joerg }
1224 1.1 joerg (*binop)(emu, destval, srcval);
1225 1.1 joerg }
1226 1.1 joerg
1227 1.1 joerg static void
1228 1.1 joerg common_binop_ns_word_long_rm_r(struct X86EMU *emu,
1229 1.1 joerg void (*binop16)(struct X86EMU *, uint16_t, uint16_t), void (*binop32)(struct X86EMU *, uint32_t, uint32_t))
1230 1.1 joerg {
1231 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1232 1.1 joerg common_binop_ns_long_rm_r(emu, binop32);
1233 1.1 joerg else
1234 1.1 joerg common_binop_ns_word_rm_r(emu, binop16);
1235 1.1 joerg }
1236 1.1 joerg
1237 1.1 joerg static void
1238 1.1 joerg common_binop_long_r_rm(struct X86EMU *emu, uint32_t (*binop)(struct X86EMU *, uint32_t, uint32_t))
1239 1.1 joerg {
1240 1.1 joerg uint32_t srcoffset;
1241 1.1 joerg uint32_t *destreg, srcval;
1242 1.1 joerg
1243 1.1 joerg fetch_decode_modrm(emu);
1244 1.1 joerg destreg = decode_rh_long_register(emu);
1245 1.1 joerg if (emu->cur_mod != 3) {
1246 1.1 joerg srcoffset = decode_rl_address(emu);
1247 1.1 joerg srcval = fetch_data_long(emu, srcoffset);
1248 1.1 joerg } else {
1249 1.1 joerg srcval = *decode_rl_long_register(emu);
1250 1.1 joerg }
1251 1.1 joerg *destreg = (*binop)(emu, *destreg, srcval);
1252 1.1 joerg }
1253 1.1 joerg
1254 1.1 joerg static void
1255 1.1 joerg common_binop_word_r_rm(struct X86EMU *emu, uint16_t (*binop)(struct X86EMU *, uint16_t, uint16_t))
1256 1.1 joerg {
1257 1.1 joerg uint32_t srcoffset;
1258 1.1 joerg uint16_t *destreg, srcval;
1259 1.1 joerg
1260 1.1 joerg fetch_decode_modrm(emu);
1261 1.1 joerg destreg = decode_rh_word_register(emu);
1262 1.1 joerg if (emu->cur_mod != 3) {
1263 1.1 joerg srcoffset = decode_rl_address(emu);
1264 1.1 joerg srcval = fetch_data_word(emu, srcoffset);
1265 1.1 joerg } else {
1266 1.1 joerg srcval = *decode_rl_word_register(emu);
1267 1.1 joerg }
1268 1.1 joerg *destreg = (*binop)(emu, *destreg, srcval);
1269 1.1 joerg }
1270 1.1 joerg
1271 1.1 joerg static void
1272 1.1 joerg common_binop_word_long_r_rm(struct X86EMU *emu,
1273 1.1 joerg uint16_t (*binop16)(struct X86EMU *, uint16_t, uint16_t), uint32_t (*binop32)(struct X86EMU *, uint32_t, uint32_t))
1274 1.1 joerg {
1275 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1276 1.1 joerg common_binop_long_r_rm(emu, binop32);
1277 1.1 joerg else
1278 1.1 joerg common_binop_word_r_rm(emu, binop16);
1279 1.1 joerg }
1280 1.1 joerg
1281 1.1 joerg static void
1282 1.1 joerg common_binop_byte_imm(struct X86EMU *emu, uint8_t (*binop)(struct X86EMU *, uint8_t, uint8_t))
1283 1.1 joerg {
1284 1.1 joerg uint8_t srcval;
1285 1.1 joerg
1286 1.1 joerg srcval = fetch_byte_imm(emu);
1287 1.1 joerg emu->x86.R_AL = (*binop)(emu, emu->x86.R_AL, srcval);
1288 1.1 joerg }
1289 1.1 joerg
1290 1.1 joerg static void
1291 1.1 joerg common_binop_word_long_imm(struct X86EMU *emu,
1292 1.1 joerg uint16_t (*binop16)(struct X86EMU *, uint16_t, uint16_t), uint32_t (*binop32)(struct X86EMU *, uint32_t, uint32_t))
1293 1.1 joerg {
1294 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
1295 1.1 joerg uint32_t srcval;
1296 1.1 joerg
1297 1.1 joerg srcval = fetch_long_imm(emu);
1298 1.1 joerg emu->x86.R_EAX = (*binop32)(emu, emu->x86.R_EAX, srcval);
1299 1.1 joerg } else {
1300 1.1 joerg uint16_t srcval;
1301 1.1 joerg
1302 1.1 joerg srcval = fetch_word_imm(emu);
1303 1.1 joerg emu->x86.R_AX = (*binop16)(emu, emu->x86.R_AX, srcval);
1304 1.1 joerg }
1305 1.1 joerg }
1306 1.1 joerg
1307 1.1 joerg static void
1308 1.1 joerg common_push_word_long(struct X86EMU *emu, union X86EMU_register *reg)
1309 1.1 joerg {
1310 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1311 1.1 joerg push_long(emu, reg->I32_reg.e_reg);
1312 1.1 joerg else
1313 1.1 joerg push_word(emu, reg->I16_reg.x_reg);
1314 1.1 joerg }
1315 1.1 joerg
1316 1.1 joerg static void
1317 1.1 joerg common_pop_word_long(struct X86EMU *emu, union X86EMU_register *reg)
1318 1.1 joerg {
1319 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1320 1.1 joerg reg->I32_reg.e_reg = pop_long(emu);
1321 1.1 joerg else
1322 1.1 joerg reg->I16_reg.x_reg = pop_word(emu);
1323 1.1 joerg }
1324 1.1 joerg
1325 1.1 joerg static void
1326 1.1 joerg common_imul_long_IMM(struct X86EMU *emu, bool byte_imm)
1327 1.1 joerg {
1328 1.1 joerg uint32_t srcoffset;
1329 1.1 joerg uint32_t *destreg, srcval;
1330 1.1 joerg int32_t imm;
1331 1.1 joerg uint64_t res;
1332 1.1 joerg
1333 1.1 joerg fetch_decode_modrm(emu);
1334 1.1 joerg destreg = decode_rh_long_register(emu);
1335 1.1 joerg if (emu->cur_mod != 3) {
1336 1.1 joerg srcoffset = decode_rl_address(emu);
1337 1.1 joerg srcval = fetch_data_long(emu, srcoffset);
1338 1.1 joerg } else {
1339 1.1 joerg srcval = *decode_rl_long_register(emu);
1340 1.1 joerg }
1341 1.1 joerg
1342 1.1 joerg if (byte_imm)
1343 1.1 joerg imm = (int8_t)fetch_byte_imm(emu);
1344 1.1 joerg else
1345 1.1 joerg imm = fetch_long_imm(emu);
1346 1.1 joerg res = (int32_t)srcval * imm;
1347 1.1 joerg
1348 1.1 joerg if (res > 0xffffffff) {
1349 1.1 joerg SET_FLAG(F_CF);
1350 1.1 joerg SET_FLAG(F_OF);
1351 1.1 joerg } else {
1352 1.1 joerg CLEAR_FLAG(F_CF);
1353 1.1 joerg CLEAR_FLAG(F_OF);
1354 1.1 joerg }
1355 1.1 joerg *destreg = (uint32_t)res;
1356 1.1 joerg }
1357 1.1 joerg
1358 1.1 joerg static void
1359 1.1 joerg common_imul_word_IMM(struct X86EMU *emu, bool byte_imm)
1360 1.1 joerg {
1361 1.1 joerg uint32_t srcoffset;
1362 1.1 joerg uint16_t *destreg, srcval;
1363 1.1 joerg int16_t imm;
1364 1.1 joerg uint32_t res;
1365 1.1 joerg
1366 1.1 joerg fetch_decode_modrm(emu);
1367 1.1 joerg destreg = decode_rh_word_register(emu);
1368 1.1 joerg if (emu->cur_mod != 3) {
1369 1.1 joerg srcoffset = decode_rl_address(emu);
1370 1.1 joerg srcval = fetch_data_word(emu, srcoffset);
1371 1.1 joerg } else {
1372 1.1 joerg srcval = *decode_rl_word_register(emu);
1373 1.1 joerg }
1374 1.1 joerg
1375 1.1 joerg if (byte_imm)
1376 1.1 joerg imm = (int8_t)fetch_byte_imm(emu);
1377 1.1 joerg else
1378 1.1 joerg imm = fetch_word_imm(emu);
1379 1.1 joerg res = (int16_t)srcval * imm;
1380 1.1 joerg
1381 1.1 joerg if (res > 0xffff) {
1382 1.1 joerg SET_FLAG(F_CF);
1383 1.1 joerg SET_FLAG(F_OF);
1384 1.1 joerg } else {
1385 1.1 joerg CLEAR_FLAG(F_CF);
1386 1.1 joerg CLEAR_FLAG(F_OF);
1387 1.1 joerg }
1388 1.1 joerg *destreg = (uint16_t) res;
1389 1.1 joerg }
1390 1.1 joerg
1391 1.1 joerg static void
1392 1.1 joerg common_imul_imm(struct X86EMU *emu, bool byte_imm)
1393 1.1 joerg {
1394 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1395 1.1 joerg common_imul_long_IMM(emu, byte_imm);
1396 1.1 joerg else
1397 1.1 joerg common_imul_word_IMM(emu, byte_imm);
1398 1.1 joerg }
1399 1.1 joerg
1400 1.1 joerg static void
1401 1.1 joerg common_jmp_near(struct X86EMU *emu, bool cond)
1402 1.1 joerg {
1403 1.1 joerg int8_t offset;
1404 1.1 joerg uint16_t target;
1405 1.1 joerg
1406 1.1 joerg offset = (int8_t) fetch_byte_imm(emu);
1407 1.1 joerg target = (uint16_t) (emu->x86.R_IP + (int16_t) offset);
1408 1.1 joerg if (cond)
1409 1.1 joerg emu->x86.R_IP = target;
1410 1.1 joerg }
1411 1.1 joerg
1412 1.1 joerg static void
1413 1.1 joerg common_load_far_pointer(struct X86EMU *emu, uint16_t *seg)
1414 1.1 joerg {
1415 1.1 joerg uint16_t *dstreg;
1416 1.1 joerg uint32_t srcoffset;
1417 1.1 joerg
1418 1.1 joerg fetch_decode_modrm(emu);
1419 1.1 joerg if (emu->cur_mod == 3)
1420 1.1 joerg X86EMU_halt_sys(emu);
1421 1.1 joerg
1422 1.1 joerg dstreg = decode_rh_word_register(emu);
1423 1.1 joerg srcoffset = decode_rl_address(emu);
1424 1.1 joerg *dstreg = fetch_data_word(emu, srcoffset);
1425 1.1 joerg *seg = fetch_data_word(emu, srcoffset + 2);
1426 1.1 joerg }
1427 1.1 joerg
1428 1.1 joerg /*----------------------------- Implementation ----------------------------*/
1429 1.1 joerg /****************************************************************************
1430 1.1 joerg REMARKS:
1431 1.1 joerg Handles opcode 0x3a
1432 1.1 joerg ****************************************************************************/
1433 1.1 joerg static void
1434 1.1 joerg x86emuOp_cmp_byte_R_RM(struct X86EMU *emu)
1435 1.1 joerg {
1436 1.1 joerg uint8_t *destreg, srcval;
1437 1.1 joerg
1438 1.1 joerg fetch_decode_modrm(emu);
1439 1.1 joerg destreg = decode_rh_byte_register(emu);
1440 1.1 joerg srcval = decode_and_fetch_byte(emu);
1441 1.1 joerg cmp_byte(emu, *destreg, srcval);
1442 1.1 joerg }
1443 1.1 joerg /****************************************************************************
1444 1.1 joerg REMARKS:
1445 1.1 joerg Handles opcode 0x3b
1446 1.1 joerg ****************************************************************************/
1447 1.1 joerg static void
1448 1.1 joerg x86emuOp32_cmp_word_R_RM(struct X86EMU *emu)
1449 1.1 joerg {
1450 1.1 joerg uint32_t srcval, *destreg;
1451 1.1 joerg
1452 1.1 joerg fetch_decode_modrm(emu);
1453 1.1 joerg destreg = decode_rh_long_register(emu);
1454 1.1 joerg srcval = decode_and_fetch_long(emu);
1455 1.1 joerg cmp_long(emu, *destreg, srcval);
1456 1.1 joerg }
1457 1.1 joerg
1458 1.1 joerg static void
1459 1.1 joerg x86emuOp16_cmp_word_R_RM(struct X86EMU *emu)
1460 1.1 joerg {
1461 1.1 joerg uint16_t srcval, *destreg;
1462 1.1 joerg
1463 1.1 joerg fetch_decode_modrm(emu);
1464 1.1 joerg destreg = decode_rh_word_register(emu);
1465 1.1 joerg srcval = decode_and_fetch_word(emu);
1466 1.1 joerg cmp_word(emu, *destreg, srcval);
1467 1.1 joerg }
1468 1.1 joerg
1469 1.1 joerg static void
1470 1.1 joerg x86emuOp_cmp_word_R_RM(struct X86EMU *emu)
1471 1.1 joerg {
1472 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1473 1.1 joerg x86emuOp32_cmp_word_R_RM(emu);
1474 1.1 joerg else
1475 1.1 joerg x86emuOp16_cmp_word_R_RM(emu);
1476 1.1 joerg }
1477 1.1 joerg /****************************************************************************
1478 1.1 joerg REMARKS:
1479 1.1 joerg Handles opcode 0x3c
1480 1.1 joerg ****************************************************************************/
1481 1.1 joerg static void
1482 1.1 joerg x86emuOp_cmp_byte_AL_IMM(struct X86EMU *emu)
1483 1.1 joerg {
1484 1.1 joerg uint8_t srcval;
1485 1.1 joerg
1486 1.1 joerg srcval = fetch_byte_imm(emu);
1487 1.1 joerg cmp_byte(emu, emu->x86.R_AL, srcval);
1488 1.1 joerg }
1489 1.1 joerg /****************************************************************************
1490 1.1 joerg REMARKS:
1491 1.1 joerg Handles opcode 0x3d
1492 1.1 joerg ****************************************************************************/
1493 1.1 joerg static void
1494 1.1 joerg x86emuOp32_cmp_word_AX_IMM(struct X86EMU *emu)
1495 1.1 joerg {
1496 1.1 joerg uint32_t srcval;
1497 1.1 joerg
1498 1.1 joerg srcval = fetch_long_imm(emu);
1499 1.1 joerg cmp_long(emu, emu->x86.R_EAX, srcval);
1500 1.1 joerg }
1501 1.1 joerg
1502 1.1 joerg static void
1503 1.1 joerg x86emuOp16_cmp_word_AX_IMM(struct X86EMU *emu)
1504 1.1 joerg {
1505 1.1 joerg uint16_t srcval;
1506 1.1 joerg
1507 1.1 joerg srcval = fetch_word_imm(emu);
1508 1.1 joerg cmp_word(emu, emu->x86.R_AX, srcval);
1509 1.1 joerg }
1510 1.1 joerg
1511 1.1 joerg static void
1512 1.1 joerg x86emuOp_cmp_word_AX_IMM(struct X86EMU *emu)
1513 1.1 joerg {
1514 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1515 1.1 joerg x86emuOp32_cmp_word_AX_IMM(emu);
1516 1.1 joerg else
1517 1.1 joerg x86emuOp16_cmp_word_AX_IMM(emu);
1518 1.1 joerg }
1519 1.1 joerg /****************************************************************************
1520 1.1 joerg REMARKS:
1521 1.1 joerg Handles opcode 0x60
1522 1.1 joerg ****************************************************************************/
1523 1.1 joerg static void
1524 1.1 joerg x86emuOp_push_all(struct X86EMU *emu)
1525 1.1 joerg {
1526 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
1527 1.1 joerg uint32_t old_sp = emu->x86.R_ESP;
1528 1.1 joerg
1529 1.1 joerg push_long(emu, emu->x86.R_EAX);
1530 1.1 joerg push_long(emu, emu->x86.R_ECX);
1531 1.1 joerg push_long(emu, emu->x86.R_EDX);
1532 1.1 joerg push_long(emu, emu->x86.R_EBX);
1533 1.1 joerg push_long(emu, old_sp);
1534 1.1 joerg push_long(emu, emu->x86.R_EBP);
1535 1.1 joerg push_long(emu, emu->x86.R_ESI);
1536 1.1 joerg push_long(emu, emu->x86.R_EDI);
1537 1.1 joerg } else {
1538 1.1 joerg uint16_t old_sp = emu->x86.R_SP;
1539 1.1 joerg
1540 1.1 joerg push_word(emu, emu->x86.R_AX);
1541 1.1 joerg push_word(emu, emu->x86.R_CX);
1542 1.1 joerg push_word(emu, emu->x86.R_DX);
1543 1.1 joerg push_word(emu, emu->x86.R_BX);
1544 1.1 joerg push_word(emu, old_sp);
1545 1.1 joerg push_word(emu, emu->x86.R_BP);
1546 1.1 joerg push_word(emu, emu->x86.R_SI);
1547 1.1 joerg push_word(emu, emu->x86.R_DI);
1548 1.1 joerg }
1549 1.1 joerg }
1550 1.1 joerg /****************************************************************************
1551 1.1 joerg REMARKS:
1552 1.1 joerg Handles opcode 0x61
1553 1.1 joerg ****************************************************************************/
1554 1.1 joerg static void
1555 1.1 joerg x86emuOp_pop_all(struct X86EMU *emu)
1556 1.1 joerg {
1557 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
1558 1.1 joerg emu->x86.R_EDI = pop_long(emu);
1559 1.1 joerg emu->x86.R_ESI = pop_long(emu);
1560 1.1 joerg emu->x86.R_EBP = pop_long(emu);
1561 1.1 joerg emu->x86.R_ESP += 4; /* skip ESP */
1562 1.1 joerg emu->x86.R_EBX = pop_long(emu);
1563 1.1 joerg emu->x86.R_EDX = pop_long(emu);
1564 1.1 joerg emu->x86.R_ECX = pop_long(emu);
1565 1.1 joerg emu->x86.R_EAX = pop_long(emu);
1566 1.1 joerg } else {
1567 1.1 joerg emu->x86.R_DI = pop_word(emu);
1568 1.1 joerg emu->x86.R_SI = pop_word(emu);
1569 1.1 joerg emu->x86.R_BP = pop_word(emu);
1570 1.1 joerg emu->x86.R_SP += 2;/* skip SP */
1571 1.1 joerg emu->x86.R_BX = pop_word(emu);
1572 1.1 joerg emu->x86.R_DX = pop_word(emu);
1573 1.1 joerg emu->x86.R_CX = pop_word(emu);
1574 1.1 joerg emu->x86.R_AX = pop_word(emu);
1575 1.1 joerg }
1576 1.1 joerg }
1577 1.1 joerg /*opcode 0x62 ILLEGAL OP, calls x86emuOp_illegal_op() */
1578 1.1 joerg /*opcode 0x63 ILLEGAL OP, calls x86emuOp_illegal_op() */
1579 1.1 joerg
1580 1.1 joerg /****************************************************************************
1581 1.1 joerg REMARKS:
1582 1.1 joerg Handles opcode 0x68
1583 1.1 joerg ****************************************************************************/
1584 1.1 joerg static void
1585 1.1 joerg x86emuOp_push_word_IMM(struct X86EMU *emu)
1586 1.1 joerg {
1587 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
1588 1.1 joerg uint32_t imm;
1589 1.1 joerg
1590 1.1 joerg imm = fetch_long_imm(emu);
1591 1.1 joerg push_long(emu, imm);
1592 1.1 joerg } else {
1593 1.1 joerg uint16_t imm;
1594 1.1 joerg
1595 1.1 joerg imm = fetch_word_imm(emu);
1596 1.1 joerg push_word(emu, imm);
1597 1.1 joerg }
1598 1.1 joerg }
1599 1.1 joerg /****************************************************************************
1600 1.1 joerg REMARKS:
1601 1.1 joerg Handles opcode 0x6a
1602 1.1 joerg ****************************************************************************/
1603 1.1 joerg static void
1604 1.1 joerg x86emuOp_push_byte_IMM(struct X86EMU *emu)
1605 1.1 joerg {
1606 1.1 joerg int16_t imm;
1607 1.1 joerg
1608 1.1 joerg imm = (int8_t) fetch_byte_imm(emu);
1609 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
1610 1.1 joerg push_long(emu, (int32_t) imm);
1611 1.1 joerg } else {
1612 1.1 joerg push_word(emu, imm);
1613 1.1 joerg }
1614 1.1 joerg }
1615 1.1 joerg /****************************************************************************
1616 1.1 joerg REMARKS:
1617 1.1 joerg Handles opcode 0x6c
1618 1.1 joerg ****************************************************************************/
1619 1.1 joerg /****************************************************************************
1620 1.1 joerg REMARKS:
1621 1.1 joerg Handles opcode 0x6d
1622 1.1 joerg ****************************************************************************/
1623 1.1 joerg static void
1624 1.1 joerg x86emuOp_ins_word(struct X86EMU *emu)
1625 1.1 joerg {
1626 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
1627 1.1 joerg ins(emu, 4);
1628 1.1 joerg } else {
1629 1.1 joerg ins(emu, 2);
1630 1.1 joerg }
1631 1.1 joerg }
1632 1.1 joerg /****************************************************************************
1633 1.1 joerg REMARKS:
1634 1.1 joerg Handles opcode 0x6f
1635 1.1 joerg ****************************************************************************/
1636 1.1 joerg static void
1637 1.1 joerg x86emuOp_outs_word(struct X86EMU *emu)
1638 1.1 joerg {
1639 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
1640 1.1 joerg outs(emu, 4);
1641 1.1 joerg } else {
1642 1.1 joerg outs(emu, 2);
1643 1.1 joerg }
1644 1.1 joerg }
1645 1.1 joerg /****************************************************************************
1646 1.1 joerg REMARKS:
1647 1.1 joerg Handles opcode 0x7c
1648 1.1 joerg ****************************************************************************/
1649 1.1 joerg static void
1650 1.1 joerg x86emuOp_jump_near_L(struct X86EMU *emu)
1651 1.1 joerg {
1652 1.1 joerg bool sf, of;
1653 1.1 joerg
1654 1.1 joerg sf = ACCESS_FLAG(F_SF) != 0;
1655 1.1 joerg of = ACCESS_FLAG(F_OF) != 0;
1656 1.1 joerg
1657 1.1 joerg common_jmp_near(emu, sf != of);
1658 1.1 joerg }
1659 1.1 joerg /****************************************************************************
1660 1.1 joerg REMARKS:
1661 1.1 joerg Handles opcode 0x7d
1662 1.1 joerg ****************************************************************************/
1663 1.1 joerg static void
1664 1.1 joerg x86emuOp_jump_near_NL(struct X86EMU *emu)
1665 1.1 joerg {
1666 1.1 joerg bool sf, of;
1667 1.1 joerg
1668 1.1 joerg sf = ACCESS_FLAG(F_SF) != 0;
1669 1.1 joerg of = ACCESS_FLAG(F_OF) != 0;
1670 1.1 joerg
1671 1.1 joerg common_jmp_near(emu, sf == of);
1672 1.1 joerg }
1673 1.1 joerg /****************************************************************************
1674 1.1 joerg REMARKS:
1675 1.1 joerg Handles opcode 0x7e
1676 1.1 joerg ****************************************************************************/
1677 1.1 joerg static void
1678 1.1 joerg x86emuOp_jump_near_LE(struct X86EMU *emu)
1679 1.1 joerg {
1680 1.1 joerg bool sf, of;
1681 1.1 joerg
1682 1.1 joerg sf = ACCESS_FLAG(F_SF) != 0;
1683 1.1 joerg of = ACCESS_FLAG(F_OF) != 0;
1684 1.1 joerg
1685 1.1 joerg common_jmp_near(emu, sf != of || ACCESS_FLAG(F_ZF));
1686 1.1 joerg }
1687 1.1 joerg /****************************************************************************
1688 1.1 joerg REMARKS:
1689 1.1 joerg Handles opcode 0x7f
1690 1.1 joerg ****************************************************************************/
1691 1.1 joerg static void
1692 1.1 joerg x86emuOp_jump_near_NLE(struct X86EMU *emu)
1693 1.1 joerg {
1694 1.1 joerg bool sf, of;
1695 1.1 joerg
1696 1.1 joerg sf = ACCESS_FLAG(F_SF) != 0;
1697 1.1 joerg of = ACCESS_FLAG(F_OF) != 0;
1698 1.1 joerg
1699 1.1 joerg common_jmp_near(emu, sf == of && !ACCESS_FLAG(F_ZF));
1700 1.1 joerg }
1701 1.1 joerg
1702 1.1 joerg static
1703 1.1 joerg uint8_t(*const opc80_byte_operation[]) (struct X86EMU *, uint8_t d, uint8_t s) =
1704 1.1 joerg {
1705 1.1 joerg add_byte, /* 00 */
1706 1.1 joerg or_byte, /* 01 */
1707 1.1 joerg adc_byte, /* 02 */
1708 1.1 joerg sbb_byte, /* 03 */
1709 1.1 joerg and_byte, /* 04 */
1710 1.1 joerg sub_byte, /* 05 */
1711 1.1 joerg xor_byte, /* 06 */
1712 1.1 joerg cmp_byte, /* 07 */
1713 1.1 joerg };
1714 1.1 joerg /****************************************************************************
1715 1.1 joerg REMARKS:
1716 1.1 joerg Handles opcode 0x80
1717 1.1 joerg ****************************************************************************/
1718 1.1 joerg static void
1719 1.1 joerg x86emuOp_opc80_byte_RM_IMM(struct X86EMU *emu)
1720 1.1 joerg {
1721 1.1 joerg uint8_t imm, destval;
1722 1.1 joerg
1723 1.1 joerg /*
1724 1.1 joerg * Weirdo special case instruction format. Part of the opcode
1725 1.1 joerg * held below in "RH". Doubly nested case would result, except
1726 1.1 joerg * that the decoded instruction
1727 1.1 joerg */
1728 1.1 joerg fetch_decode_modrm(emu);
1729 1.1 joerg destval = decode_and_fetch_byte(emu);
1730 1.1 joerg imm = fetch_byte_imm(emu);
1731 1.1 joerg destval = (*opc80_byte_operation[emu->cur_rh]) (emu, destval, imm);
1732 1.1 joerg if (emu->cur_rh != 7)
1733 1.1 joerg write_back_byte(emu, destval);
1734 1.1 joerg }
1735 1.1 joerg
1736 1.1 joerg static
1737 1.1 joerg uint16_t(* const opc81_word_operation[]) (struct X86EMU *, uint16_t d, uint16_t s) =
1738 1.1 joerg {
1739 1.1 joerg add_word, /* 00 */
1740 1.1 joerg or_word, /* 01 */
1741 1.1 joerg adc_word, /* 02 */
1742 1.1 joerg sbb_word, /* 03 */
1743 1.1 joerg and_word, /* 04 */
1744 1.1 joerg sub_word, /* 05 */
1745 1.1 joerg xor_word, /* 06 */
1746 1.1 joerg cmp_word, /* 07 */
1747 1.1 joerg };
1748 1.1 joerg
1749 1.1 joerg static
1750 1.1 joerg uint32_t(* const opc81_long_operation[]) (struct X86EMU *, uint32_t d, uint32_t s) =
1751 1.1 joerg {
1752 1.1 joerg add_long, /* 00 */
1753 1.1 joerg or_long, /* 01 */
1754 1.1 joerg adc_long, /* 02 */
1755 1.1 joerg sbb_long, /* 03 */
1756 1.1 joerg and_long, /* 04 */
1757 1.1 joerg sub_long, /* 05 */
1758 1.1 joerg xor_long, /* 06 */
1759 1.1 joerg cmp_long, /* 07 */
1760 1.1 joerg };
1761 1.1 joerg /****************************************************************************
1762 1.1 joerg REMARKS:
1763 1.1 joerg Handles opcode 0x81
1764 1.1 joerg ****************************************************************************/
1765 1.1 joerg static void
1766 1.1 joerg x86emuOp32_opc81_word_RM_IMM(struct X86EMU *emu)
1767 1.1 joerg {
1768 1.1 joerg uint32_t destval, imm;
1769 1.1 joerg
1770 1.1 joerg /*
1771 1.1 joerg * Weirdo special case instruction format. Part of the opcode
1772 1.1 joerg * held below in "RH". Doubly nested case would result, except
1773 1.1 joerg * that the decoded instruction
1774 1.1 joerg */
1775 1.1 joerg fetch_decode_modrm(emu);
1776 1.1 joerg destval = decode_and_fetch_long(emu);
1777 1.1 joerg imm = fetch_long_imm(emu);
1778 1.1 joerg destval = (*opc81_long_operation[emu->cur_rh]) (emu, destval, imm);
1779 1.1 joerg if (emu->cur_rh != 7)
1780 1.1 joerg write_back_long(emu, destval);
1781 1.1 joerg }
1782 1.1 joerg
1783 1.1 joerg static void
1784 1.1 joerg x86emuOp16_opc81_word_RM_IMM(struct X86EMU *emu)
1785 1.1 joerg {
1786 1.1 joerg uint16_t destval, imm;
1787 1.1 joerg
1788 1.1 joerg /*
1789 1.1 joerg * Weirdo special case instruction format. Part of the opcode
1790 1.1 joerg * held below in "RH". Doubly nested case would result, except
1791 1.1 joerg * that the decoded instruction
1792 1.1 joerg */
1793 1.1 joerg fetch_decode_modrm(emu);
1794 1.1 joerg destval = decode_and_fetch_word(emu);
1795 1.1 joerg imm = fetch_word_imm(emu);
1796 1.1 joerg destval = (*opc81_word_operation[emu->cur_rh]) (emu, destval, imm);
1797 1.1 joerg if (emu->cur_rh != 7)
1798 1.1 joerg write_back_word(emu, destval);
1799 1.1 joerg }
1800 1.1 joerg
1801 1.1 joerg static void
1802 1.1 joerg x86emuOp_opc81_word_RM_IMM(struct X86EMU *emu)
1803 1.1 joerg {
1804 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1805 1.1 joerg x86emuOp32_opc81_word_RM_IMM(emu);
1806 1.1 joerg else
1807 1.1 joerg x86emuOp16_opc81_word_RM_IMM(emu);
1808 1.1 joerg }
1809 1.1 joerg
1810 1.1 joerg static
1811 1.1 joerg uint8_t(* const opc82_byte_operation[]) (struct X86EMU *, uint8_t s, uint8_t d) =
1812 1.1 joerg {
1813 1.1 joerg add_byte, /* 00 */
1814 1.1 joerg or_byte, /* 01 *//* YYY UNUSED ???? */
1815 1.1 joerg adc_byte, /* 02 */
1816 1.1 joerg sbb_byte, /* 03 */
1817 1.1 joerg and_byte, /* 04 *//* YYY UNUSED ???? */
1818 1.1 joerg sub_byte, /* 05 */
1819 1.1 joerg xor_byte, /* 06 *//* YYY UNUSED ???? */
1820 1.1 joerg cmp_byte, /* 07 */
1821 1.1 joerg };
1822 1.1 joerg /****************************************************************************
1823 1.1 joerg REMARKS:
1824 1.1 joerg Handles opcode 0x82
1825 1.1 joerg ****************************************************************************/
1826 1.1 joerg static void
1827 1.1 joerg x86emuOp_opc82_byte_RM_IMM(struct X86EMU *emu)
1828 1.1 joerg {
1829 1.1 joerg uint8_t imm, destval;
1830 1.1 joerg
1831 1.1 joerg /*
1832 1.1 joerg * Weirdo special case instruction format. Part of the opcode
1833 1.1 joerg * held below in "RH". Doubly nested case would result, except
1834 1.1 joerg * that the decoded instruction Similar to opcode 81, except that
1835 1.1 joerg * the immediate byte is sign extended to a word length.
1836 1.1 joerg */
1837 1.1 joerg fetch_decode_modrm(emu);
1838 1.1 joerg destval = decode_and_fetch_byte(emu);
1839 1.1 joerg imm = fetch_byte_imm(emu);
1840 1.1 joerg destval = (*opc82_byte_operation[emu->cur_rh]) (emu, destval, imm);
1841 1.1 joerg if (emu->cur_rh != 7)
1842 1.1 joerg write_back_byte(emu, destval);
1843 1.1 joerg }
1844 1.1 joerg
1845 1.1 joerg static
1846 1.1 joerg uint16_t(* const opc83_word_operation[]) (struct X86EMU *, uint16_t s, uint16_t d) =
1847 1.1 joerg {
1848 1.1 joerg add_word, /* 00 */
1849 1.1 joerg or_word, /* 01 *//* YYY UNUSED ???? */
1850 1.1 joerg adc_word, /* 02 */
1851 1.1 joerg sbb_word, /* 03 */
1852 1.1 joerg and_word, /* 04 *//* YYY UNUSED ???? */
1853 1.1 joerg sub_word, /* 05 */
1854 1.1 joerg xor_word, /* 06 *//* YYY UNUSED ???? */
1855 1.1 joerg cmp_word, /* 07 */
1856 1.1 joerg };
1857 1.1 joerg
1858 1.1 joerg static
1859 1.1 joerg uint32_t(* const opc83_long_operation[]) (struct X86EMU *, uint32_t s, uint32_t d) =
1860 1.1 joerg {
1861 1.1 joerg add_long, /* 00 */
1862 1.1 joerg or_long, /* 01 *//* YYY UNUSED ???? */
1863 1.1 joerg adc_long, /* 02 */
1864 1.1 joerg sbb_long, /* 03 */
1865 1.1 joerg and_long, /* 04 *//* YYY UNUSED ???? */
1866 1.1 joerg sub_long, /* 05 */
1867 1.1 joerg xor_long, /* 06 *//* YYY UNUSED ???? */
1868 1.1 joerg cmp_long, /* 07 */
1869 1.1 joerg };
1870 1.1 joerg /****************************************************************************
1871 1.1 joerg REMARKS:
1872 1.1 joerg Handles opcode 0x83
1873 1.1 joerg ****************************************************************************/
1874 1.1 joerg static void
1875 1.1 joerg x86emuOp32_opc83_word_RM_IMM(struct X86EMU *emu)
1876 1.1 joerg {
1877 1.1 joerg uint32_t destval, imm;
1878 1.1 joerg
1879 1.1 joerg fetch_decode_modrm(emu);
1880 1.1 joerg destval = decode_and_fetch_long(emu);
1881 1.1 joerg imm = (int8_t) fetch_byte_imm(emu);
1882 1.1 joerg destval = (*opc83_long_operation[emu->cur_rh]) (emu, destval, imm);
1883 1.1 joerg if (emu->cur_rh != 7)
1884 1.1 joerg write_back_long(emu, destval);
1885 1.1 joerg }
1886 1.1 joerg
1887 1.1 joerg static void
1888 1.1 joerg x86emuOp16_opc83_word_RM_IMM(struct X86EMU *emu)
1889 1.1 joerg {
1890 1.1 joerg uint16_t destval, imm;
1891 1.1 joerg
1892 1.1 joerg fetch_decode_modrm(emu);
1893 1.1 joerg destval = decode_and_fetch_word(emu);
1894 1.1 joerg imm = (int8_t) fetch_byte_imm(emu);
1895 1.1 joerg destval = (*opc83_word_operation[emu->cur_rh]) (emu, destval, imm);
1896 1.1 joerg if (emu->cur_rh != 7)
1897 1.1 joerg write_back_word(emu, destval);
1898 1.1 joerg }
1899 1.1 joerg
1900 1.1 joerg static void
1901 1.1 joerg x86emuOp_opc83_word_RM_IMM(struct X86EMU *emu)
1902 1.1 joerg {
1903 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1904 1.1 joerg x86emuOp32_opc83_word_RM_IMM(emu);
1905 1.1 joerg else
1906 1.1 joerg x86emuOp16_opc83_word_RM_IMM(emu);
1907 1.1 joerg }
1908 1.1 joerg /****************************************************************************
1909 1.1 joerg REMARKS:
1910 1.1 joerg Handles opcode 0x86
1911 1.1 joerg ****************************************************************************/
1912 1.1 joerg static void
1913 1.1 joerg x86emuOp_xchg_byte_RM_R(struct X86EMU *emu)
1914 1.1 joerg {
1915 1.1 joerg uint8_t *srcreg, destval, tmp;
1916 1.1 joerg
1917 1.1 joerg fetch_decode_modrm(emu);
1918 1.1 joerg destval = decode_and_fetch_byte(emu);
1919 1.1 joerg srcreg = decode_rh_byte_register(emu);
1920 1.1 joerg tmp = destval;
1921 1.1 joerg destval = *srcreg;
1922 1.1 joerg *srcreg = tmp;
1923 1.1 joerg write_back_byte(emu, destval);
1924 1.1 joerg }
1925 1.1 joerg /****************************************************************************
1926 1.1 joerg REMARKS:
1927 1.1 joerg Handles opcode 0x87
1928 1.1 joerg ****************************************************************************/
1929 1.1 joerg static void
1930 1.1 joerg x86emuOp32_xchg_word_RM_R(struct X86EMU *emu)
1931 1.1 joerg {
1932 1.1 joerg uint32_t *srcreg, destval, tmp;
1933 1.1 joerg
1934 1.1 joerg fetch_decode_modrm(emu);
1935 1.1 joerg destval = decode_and_fetch_long(emu);
1936 1.1 joerg srcreg = decode_rh_long_register(emu);
1937 1.1 joerg tmp = destval;
1938 1.1 joerg destval = *srcreg;
1939 1.1 joerg *srcreg = tmp;
1940 1.1 joerg write_back_long(emu, destval);
1941 1.1 joerg }
1942 1.1 joerg
1943 1.1 joerg static void
1944 1.1 joerg x86emuOp16_xchg_word_RM_R(struct X86EMU *emu)
1945 1.1 joerg {
1946 1.1 joerg uint16_t *srcreg, destval, tmp;
1947 1.1 joerg
1948 1.1 joerg fetch_decode_modrm(emu);
1949 1.1 joerg destval = decode_and_fetch_word(emu);
1950 1.1 joerg srcreg = decode_rh_word_register(emu);
1951 1.1 joerg tmp = destval;
1952 1.1 joerg destval = *srcreg;
1953 1.1 joerg *srcreg = tmp;
1954 1.1 joerg write_back_word(emu, destval);
1955 1.1 joerg }
1956 1.1 joerg
1957 1.1 joerg static void
1958 1.1 joerg x86emuOp_xchg_word_RM_R(struct X86EMU *emu)
1959 1.1 joerg {
1960 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
1961 1.1 joerg x86emuOp32_xchg_word_RM_R(emu);
1962 1.1 joerg else
1963 1.1 joerg x86emuOp16_xchg_word_RM_R(emu);
1964 1.1 joerg }
1965 1.1 joerg /****************************************************************************
1966 1.1 joerg REMARKS:
1967 1.1 joerg Handles opcode 0x88
1968 1.1 joerg ****************************************************************************/
1969 1.1 joerg static void
1970 1.1 joerg x86emuOp_mov_byte_RM_R(struct X86EMU *emu)
1971 1.1 joerg {
1972 1.1 joerg uint8_t *destreg, *srcreg;
1973 1.1 joerg uint32_t destoffset;
1974 1.1 joerg
1975 1.1 joerg fetch_decode_modrm(emu);
1976 1.1 joerg srcreg = decode_rh_byte_register(emu);
1977 1.1 joerg if (emu->cur_mod != 3) {
1978 1.1 joerg destoffset = decode_rl_address(emu);
1979 1.1 joerg store_data_byte(emu, destoffset, *srcreg);
1980 1.1 joerg } else {
1981 1.1 joerg destreg = decode_rl_byte_register(emu);
1982 1.1 joerg *destreg = *srcreg;
1983 1.1 joerg }
1984 1.1 joerg }
1985 1.1 joerg /****************************************************************************
1986 1.1 joerg REMARKS:
1987 1.1 joerg Handles opcode 0x89
1988 1.1 joerg ****************************************************************************/
1989 1.1 joerg static void
1990 1.1 joerg x86emuOp32_mov_word_RM_R(struct X86EMU *emu)
1991 1.1 joerg {
1992 1.1 joerg uint32_t destoffset;
1993 1.1 joerg uint32_t *destreg, srcval;
1994 1.1 joerg
1995 1.1 joerg fetch_decode_modrm(emu);
1996 1.1 joerg srcval = *decode_rh_long_register(emu);
1997 1.1 joerg if (emu->cur_mod != 3) {
1998 1.1 joerg destoffset = decode_rl_address(emu);
1999 1.1 joerg store_data_long(emu, destoffset, srcval);
2000 1.1 joerg } else {
2001 1.1 joerg destreg = decode_rl_long_register(emu);
2002 1.1 joerg *destreg = srcval;
2003 1.1 joerg }
2004 1.1 joerg }
2005 1.1 joerg
2006 1.1 joerg static void
2007 1.1 joerg x86emuOp16_mov_word_RM_R(struct X86EMU *emu)
2008 1.1 joerg {
2009 1.1 joerg uint32_t destoffset;
2010 1.1 joerg uint16_t *destreg, srcval;
2011 1.1 joerg
2012 1.1 joerg fetch_decode_modrm(emu);
2013 1.1 joerg srcval = *decode_rh_word_register(emu);
2014 1.1 joerg if (emu->cur_mod != 3) {
2015 1.1 joerg destoffset = decode_rl_address(emu);
2016 1.1 joerg store_data_word(emu, destoffset, srcval);
2017 1.1 joerg } else {
2018 1.1 joerg destreg = decode_rl_word_register(emu);
2019 1.1 joerg *destreg = srcval;
2020 1.1 joerg }
2021 1.1 joerg }
2022 1.1 joerg
2023 1.1 joerg static void
2024 1.1 joerg x86emuOp_mov_word_RM_R(struct X86EMU *emu)
2025 1.1 joerg {
2026 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2027 1.1 joerg x86emuOp32_mov_word_RM_R(emu);
2028 1.1 joerg else
2029 1.1 joerg x86emuOp16_mov_word_RM_R(emu);
2030 1.1 joerg }
2031 1.1 joerg /****************************************************************************
2032 1.1 joerg REMARKS:
2033 1.1 joerg Handles opcode 0x8a
2034 1.1 joerg ****************************************************************************/
2035 1.1 joerg static void
2036 1.1 joerg x86emuOp_mov_byte_R_RM(struct X86EMU *emu)
2037 1.1 joerg {
2038 1.1 joerg uint8_t *destreg;
2039 1.1 joerg
2040 1.1 joerg fetch_decode_modrm(emu);
2041 1.1 joerg destreg = decode_rh_byte_register(emu);
2042 1.1 joerg *destreg = decode_and_fetch_byte(emu);
2043 1.1 joerg }
2044 1.1 joerg /****************************************************************************
2045 1.1 joerg REMARKS:
2046 1.1 joerg Handles opcode 0x8b
2047 1.1 joerg ****************************************************************************/
2048 1.1 joerg static void
2049 1.1 joerg x86emuOp_mov_word_R_RM(struct X86EMU *emu)
2050 1.1 joerg {
2051 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2052 1.1 joerg uint32_t *destreg;
2053 1.1 joerg
2054 1.1 joerg fetch_decode_modrm(emu);
2055 1.1 joerg destreg = decode_rh_long_register(emu);
2056 1.1 joerg *destreg = decode_and_fetch_long(emu);
2057 1.1 joerg } else {
2058 1.1 joerg uint16_t *destreg;
2059 1.1 joerg
2060 1.1 joerg fetch_decode_modrm(emu);
2061 1.1 joerg destreg = decode_rh_word_register(emu);
2062 1.1 joerg *destreg = decode_and_fetch_word(emu);
2063 1.1 joerg }
2064 1.1 joerg }
2065 1.1 joerg /****************************************************************************
2066 1.1 joerg REMARKS:
2067 1.1 joerg Handles opcode 0x8c
2068 1.1 joerg ****************************************************************************/
2069 1.1 joerg static void
2070 1.1 joerg x86emuOp_mov_word_RM_SR(struct X86EMU *emu)
2071 1.1 joerg {
2072 1.1 joerg uint16_t *destreg, srcval;
2073 1.1 joerg uint32_t destoffset;
2074 1.1 joerg
2075 1.1 joerg fetch_decode_modrm(emu);
2076 1.1 joerg srcval = *decode_rh_seg_register(emu);
2077 1.1 joerg if (emu->cur_mod != 3) {
2078 1.1 joerg destoffset = decode_rl_address(emu);
2079 1.1 joerg store_data_word(emu, destoffset, srcval);
2080 1.1 joerg } else {
2081 1.1 joerg destreg = decode_rl_word_register(emu);
2082 1.1 joerg *destreg = srcval;
2083 1.1 joerg }
2084 1.1 joerg }
2085 1.1 joerg /****************************************************************************
2086 1.1 joerg REMARKS:
2087 1.1 joerg Handles opcode 0x8d
2088 1.1 joerg ****************************************************************************/
2089 1.1 joerg static void
2090 1.1 joerg x86emuOp_lea_word_R_M(struct X86EMU *emu)
2091 1.1 joerg {
2092 1.1 joerg uint16_t *srcreg;
2093 1.1 joerg uint32_t destoffset;
2094 1.1 joerg
2095 1.1 joerg /*
2096 1.1 joerg * TODO: Need to handle address size prefix!
2097 1.1 joerg *
2098 1.1 joerg * lea eax,[eax+ebx*2] ??
2099 1.1 joerg */
2100 1.1 joerg fetch_decode_modrm(emu);
2101 1.1 joerg if (emu->cur_mod == 3)
2102 1.1 joerg X86EMU_halt_sys(emu);
2103 1.1 joerg
2104 1.1 joerg srcreg = decode_rh_word_register(emu);
2105 1.1 joerg destoffset = decode_rl_address(emu);
2106 1.1 joerg *srcreg = (uint16_t) destoffset;
2107 1.1 joerg }
2108 1.1 joerg /****************************************************************************
2109 1.1 joerg REMARKS:
2110 1.1 joerg Handles opcode 0x8e
2111 1.1 joerg ****************************************************************************/
2112 1.1 joerg static void
2113 1.1 joerg x86emuOp_mov_word_SR_RM(struct X86EMU *emu)
2114 1.1 joerg {
2115 1.1 joerg uint16_t *destreg;
2116 1.1 joerg
2117 1.1 joerg fetch_decode_modrm(emu);
2118 1.1 joerg destreg = decode_rh_seg_register(emu);
2119 1.1 joerg *destreg = decode_and_fetch_word(emu);
2120 1.1 joerg /*
2121 1.1 joerg * Clean up, and reset all the R_xSP pointers to the correct
2122 1.1 joerg * locations. This is about 3x too much overhead (doing all the
2123 1.1 joerg * segreg ptrs when only one is needed, but this instruction
2124 1.1 joerg * *cannot* be that common, and this isn't too much work anyway.
2125 1.1 joerg */
2126 1.1 joerg }
2127 1.1 joerg /****************************************************************************
2128 1.1 joerg REMARKS:
2129 1.1 joerg Handles opcode 0x8f
2130 1.1 joerg ****************************************************************************/
2131 1.1 joerg static void
2132 1.1 joerg x86emuOp32_pop_RM(struct X86EMU *emu)
2133 1.1 joerg {
2134 1.1 joerg uint32_t destoffset;
2135 1.1 joerg uint32_t destval, *destreg;
2136 1.1 joerg
2137 1.1 joerg fetch_decode_modrm(emu);
2138 1.1 joerg if (emu->cur_mod != 3) {
2139 1.1 joerg destoffset = decode_rl_address(emu);
2140 1.1 joerg destval = pop_long(emu);
2141 1.1 joerg store_data_long(emu, destoffset, destval);
2142 1.1 joerg } else {
2143 1.1 joerg destreg = decode_rl_long_register(emu);
2144 1.1 joerg *destreg = pop_long(emu);
2145 1.1 joerg }
2146 1.1 joerg }
2147 1.1 joerg
2148 1.1 joerg static void
2149 1.1 joerg x86emuOp16_pop_RM(struct X86EMU *emu)
2150 1.1 joerg {
2151 1.1 joerg uint32_t destoffset;
2152 1.1 joerg uint16_t destval, *destreg;
2153 1.1 joerg
2154 1.1 joerg fetch_decode_modrm(emu);
2155 1.1 joerg if (emu->cur_mod != 3) {
2156 1.1 joerg destoffset = decode_rl_address(emu);
2157 1.1 joerg destval = pop_word(emu);
2158 1.1 joerg store_data_word(emu, destoffset, destval);
2159 1.1 joerg } else {
2160 1.1 joerg destreg = decode_rl_word_register(emu);
2161 1.1 joerg *destreg = pop_word(emu);
2162 1.1 joerg }
2163 1.1 joerg }
2164 1.1 joerg
2165 1.1 joerg static void
2166 1.1 joerg x86emuOp_pop_RM(struct X86EMU *emu)
2167 1.1 joerg {
2168 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2169 1.1 joerg x86emuOp32_pop_RM(emu);
2170 1.1 joerg else
2171 1.1 joerg x86emuOp16_pop_RM(emu);
2172 1.1 joerg }
2173 1.1 joerg /****************************************************************************
2174 1.1 joerg REMARKS:
2175 1.1 joerg Handles opcode 0x91
2176 1.1 joerg ****************************************************************************/
2177 1.1 joerg static void
2178 1.1 joerg x86emuOp_xchg_word_AX_CX(struct X86EMU *emu)
2179 1.1 joerg {
2180 1.1 joerg uint32_t tmp;
2181 1.1 joerg
2182 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2183 1.1 joerg tmp = emu->x86.R_EAX;
2184 1.1 joerg emu->x86.R_EAX = emu->x86.R_ECX;
2185 1.1 joerg emu->x86.R_ECX = tmp;
2186 1.1 joerg } else {
2187 1.1 joerg tmp = emu->x86.R_AX;
2188 1.1 joerg emu->x86.R_AX = emu->x86.R_CX;
2189 1.1 joerg emu->x86.R_CX = (uint16_t) tmp;
2190 1.1 joerg }
2191 1.1 joerg }
2192 1.1 joerg /****************************************************************************
2193 1.1 joerg REMARKS:
2194 1.1 joerg Handles opcode 0x92
2195 1.1 joerg ****************************************************************************/
2196 1.1 joerg static void
2197 1.1 joerg x86emuOp_xchg_word_AX_DX(struct X86EMU *emu)
2198 1.1 joerg {
2199 1.1 joerg uint32_t tmp;
2200 1.1 joerg
2201 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2202 1.1 joerg tmp = emu->x86.R_EAX;
2203 1.1 joerg emu->x86.R_EAX = emu->x86.R_EDX;
2204 1.1 joerg emu->x86.R_EDX = tmp;
2205 1.1 joerg } else {
2206 1.1 joerg tmp = emu->x86.R_AX;
2207 1.1 joerg emu->x86.R_AX = emu->x86.R_DX;
2208 1.1 joerg emu->x86.R_DX = (uint16_t) tmp;
2209 1.1 joerg }
2210 1.1 joerg }
2211 1.1 joerg /****************************************************************************
2212 1.1 joerg REMARKS:
2213 1.1 joerg Handles opcode 0x93
2214 1.1 joerg ****************************************************************************/
2215 1.1 joerg static void
2216 1.1 joerg x86emuOp_xchg_word_AX_BX(struct X86EMU *emu)
2217 1.1 joerg {
2218 1.1 joerg uint32_t tmp;
2219 1.1 joerg
2220 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2221 1.1 joerg tmp = emu->x86.R_EAX;
2222 1.1 joerg emu->x86.R_EAX = emu->x86.R_EBX;
2223 1.1 joerg emu->x86.R_EBX = tmp;
2224 1.1 joerg } else {
2225 1.1 joerg tmp = emu->x86.R_AX;
2226 1.1 joerg emu->x86.R_AX = emu->x86.R_BX;
2227 1.1 joerg emu->x86.R_BX = (uint16_t) tmp;
2228 1.1 joerg }
2229 1.1 joerg }
2230 1.1 joerg /****************************************************************************
2231 1.1 joerg REMARKS:
2232 1.1 joerg Handles opcode 0x94
2233 1.1 joerg ****************************************************************************/
2234 1.1 joerg static void
2235 1.1 joerg x86emuOp_xchg_word_AX_SP(struct X86EMU *emu)
2236 1.1 joerg {
2237 1.1 joerg uint32_t tmp;
2238 1.1 joerg
2239 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2240 1.1 joerg tmp = emu->x86.R_EAX;
2241 1.1 joerg emu->x86.R_EAX = emu->x86.R_ESP;
2242 1.1 joerg emu->x86.R_ESP = tmp;
2243 1.1 joerg } else {
2244 1.1 joerg tmp = emu->x86.R_AX;
2245 1.1 joerg emu->x86.R_AX = emu->x86.R_SP;
2246 1.1 joerg emu->x86.R_SP = (uint16_t) tmp;
2247 1.1 joerg }
2248 1.1 joerg }
2249 1.1 joerg /****************************************************************************
2250 1.1 joerg REMARKS:
2251 1.1 joerg Handles opcode 0x95
2252 1.1 joerg ****************************************************************************/
2253 1.1 joerg static void
2254 1.1 joerg x86emuOp_xchg_word_AX_BP(struct X86EMU *emu)
2255 1.1 joerg {
2256 1.1 joerg uint32_t tmp;
2257 1.1 joerg
2258 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2259 1.1 joerg tmp = emu->x86.R_EAX;
2260 1.1 joerg emu->x86.R_EAX = emu->x86.R_EBP;
2261 1.1 joerg emu->x86.R_EBP = tmp;
2262 1.1 joerg } else {
2263 1.1 joerg tmp = emu->x86.R_AX;
2264 1.1 joerg emu->x86.R_AX = emu->x86.R_BP;
2265 1.1 joerg emu->x86.R_BP = (uint16_t) tmp;
2266 1.1 joerg }
2267 1.1 joerg }
2268 1.1 joerg /****************************************************************************
2269 1.1 joerg REMARKS:
2270 1.1 joerg Handles opcode 0x96
2271 1.1 joerg ****************************************************************************/
2272 1.1 joerg static void
2273 1.1 joerg x86emuOp_xchg_word_AX_SI(struct X86EMU *emu)
2274 1.1 joerg {
2275 1.1 joerg uint32_t tmp;
2276 1.1 joerg
2277 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2278 1.1 joerg tmp = emu->x86.R_EAX;
2279 1.1 joerg emu->x86.R_EAX = emu->x86.R_ESI;
2280 1.1 joerg emu->x86.R_ESI = tmp;
2281 1.1 joerg } else {
2282 1.1 joerg tmp = emu->x86.R_AX;
2283 1.1 joerg emu->x86.R_AX = emu->x86.R_SI;
2284 1.1 joerg emu->x86.R_SI = (uint16_t) tmp;
2285 1.1 joerg }
2286 1.1 joerg }
2287 1.1 joerg /****************************************************************************
2288 1.1 joerg REMARKS:
2289 1.1 joerg Handles opcode 0x97
2290 1.1 joerg ****************************************************************************/
2291 1.1 joerg static void
2292 1.1 joerg x86emuOp_xchg_word_AX_DI(struct X86EMU *emu)
2293 1.1 joerg {
2294 1.1 joerg uint32_t tmp;
2295 1.1 joerg
2296 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2297 1.1 joerg tmp = emu->x86.R_EAX;
2298 1.1 joerg emu->x86.R_EAX = emu->x86.R_EDI;
2299 1.1 joerg emu->x86.R_EDI = tmp;
2300 1.1 joerg } else {
2301 1.1 joerg tmp = emu->x86.R_AX;
2302 1.1 joerg emu->x86.R_AX = emu->x86.R_DI;
2303 1.1 joerg emu->x86.R_DI = (uint16_t) tmp;
2304 1.1 joerg }
2305 1.1 joerg }
2306 1.1 joerg /****************************************************************************
2307 1.1 joerg REMARKS:
2308 1.1 joerg Handles opcode 0x98
2309 1.1 joerg ****************************************************************************/
2310 1.1 joerg static void
2311 1.1 joerg x86emuOp_cbw(struct X86EMU *emu)
2312 1.1 joerg {
2313 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2314 1.1 joerg if (emu->x86.R_AX & 0x8000) {
2315 1.1 joerg emu->x86.R_EAX |= 0xffff0000;
2316 1.1 joerg } else {
2317 1.1 joerg emu->x86.R_EAX &= 0x0000ffff;
2318 1.1 joerg }
2319 1.1 joerg } else {
2320 1.1 joerg if (emu->x86.R_AL & 0x80) {
2321 1.1 joerg emu->x86.R_AH = 0xff;
2322 1.1 joerg } else {
2323 1.1 joerg emu->x86.R_AH = 0x0;
2324 1.1 joerg }
2325 1.1 joerg }
2326 1.1 joerg }
2327 1.1 joerg /****************************************************************************
2328 1.1 joerg REMARKS:
2329 1.1 joerg Handles opcode 0x99
2330 1.1 joerg ****************************************************************************/
2331 1.1 joerg static void
2332 1.1 joerg x86emuOp_cwd(struct X86EMU *emu)
2333 1.1 joerg {
2334 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2335 1.1 joerg if (emu->x86.R_EAX & 0x80000000) {
2336 1.1 joerg emu->x86.R_EDX = 0xffffffff;
2337 1.1 joerg } else {
2338 1.1 joerg emu->x86.R_EDX = 0x0;
2339 1.1 joerg }
2340 1.1 joerg } else {
2341 1.1 joerg if (emu->x86.R_AX & 0x8000) {
2342 1.1 joerg emu->x86.R_DX = 0xffff;
2343 1.1 joerg } else {
2344 1.1 joerg emu->x86.R_DX = 0x0;
2345 1.1 joerg }
2346 1.1 joerg }
2347 1.1 joerg }
2348 1.1 joerg /****************************************************************************
2349 1.1 joerg REMARKS:
2350 1.1 joerg Handles opcode 0x9a
2351 1.1 joerg ****************************************************************************/
2352 1.1 joerg static void
2353 1.1 joerg x86emuOp_call_far_IMM(struct X86EMU *emu)
2354 1.1 joerg {
2355 1.1 joerg uint16_t farseg, faroff;
2356 1.1 joerg
2357 1.1 joerg faroff = fetch_word_imm(emu);
2358 1.1 joerg farseg = fetch_word_imm(emu);
2359 1.1 joerg /* XXX
2360 1.1 joerg *
2361 1.1 joerg * Hooked interrupt vectors calling into our "BIOS" will cause problems
2362 1.1 joerg * unless all intersegment stuff is checked for BIOS access. Check
2363 1.1 joerg * needed here. For moment, let it alone. */
2364 1.1 joerg push_word(emu, emu->x86.R_CS);
2365 1.1 joerg emu->x86.R_CS = farseg;
2366 1.1 joerg push_word(emu, emu->x86.R_IP);
2367 1.1 joerg emu->x86.R_IP = faroff;
2368 1.1 joerg }
2369 1.1 joerg /****************************************************************************
2370 1.1 joerg REMARKS:
2371 1.1 joerg Handles opcode 0x9c
2372 1.1 joerg ****************************************************************************/
2373 1.1 joerg static void
2374 1.1 joerg x86emuOp_pushf_word(struct X86EMU *emu)
2375 1.1 joerg {
2376 1.1 joerg uint32_t flags;
2377 1.1 joerg
2378 1.1 joerg /* clear out *all* bits not representing flags, and turn on real bits */
2379 1.1 joerg flags = (emu->x86.R_EFLG & F_MSK) | F_ALWAYS_ON;
2380 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2381 1.1 joerg push_long(emu, flags);
2382 1.1 joerg } else {
2383 1.1 joerg push_word(emu, (uint16_t) flags);
2384 1.1 joerg }
2385 1.1 joerg }
2386 1.1 joerg /****************************************************************************
2387 1.1 joerg REMARKS:
2388 1.1 joerg Handles opcode 0x9d
2389 1.1 joerg ****************************************************************************/
2390 1.1 joerg static void
2391 1.1 joerg x86emuOp_popf_word(struct X86EMU *emu)
2392 1.1 joerg {
2393 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2394 1.1 joerg emu->x86.R_EFLG = pop_long(emu);
2395 1.1 joerg } else {
2396 1.1 joerg emu->x86.R_FLG = pop_word(emu);
2397 1.1 joerg }
2398 1.1 joerg }
2399 1.1 joerg /****************************************************************************
2400 1.1 joerg REMARKS:
2401 1.1 joerg Handles opcode 0x9e
2402 1.1 joerg ****************************************************************************/
2403 1.1 joerg static void
2404 1.1 joerg x86emuOp_sahf(struct X86EMU *emu)
2405 1.1 joerg {
2406 1.1 joerg /* clear the lower bits of the flag register */
2407 1.1 joerg emu->x86.R_FLG &= 0xffffff00;
2408 1.1 joerg /* or in the AH register into the flags register */
2409 1.1 joerg emu->x86.R_FLG |= emu->x86.R_AH;
2410 1.1 joerg }
2411 1.1 joerg /****************************************************************************
2412 1.1 joerg REMARKS:
2413 1.1 joerg Handles opcode 0x9f
2414 1.1 joerg ****************************************************************************/
2415 1.1 joerg static void
2416 1.1 joerg x86emuOp_lahf(struct X86EMU *emu)
2417 1.1 joerg {
2418 1.1 joerg emu->x86.R_AH = (uint8_t) (emu->x86.R_FLG & 0xff);
2419 1.1 joerg /* undocumented TC++ behavior??? Nope. It's documented, but you have
2420 1.1 joerg * too look real hard to notice it. */
2421 1.1 joerg emu->x86.R_AH |= 0x2;
2422 1.1 joerg }
2423 1.1 joerg /****************************************************************************
2424 1.1 joerg REMARKS:
2425 1.1 joerg Handles opcode 0xa0
2426 1.1 joerg ****************************************************************************/
2427 1.1 joerg static void
2428 1.1 joerg x86emuOp_mov_AL_M_IMM(struct X86EMU *emu)
2429 1.1 joerg {
2430 1.1 joerg uint16_t offset;
2431 1.1 joerg
2432 1.1 joerg offset = fetch_word_imm(emu);
2433 1.1 joerg emu->x86.R_AL = fetch_data_byte(emu, offset);
2434 1.1 joerg }
2435 1.1 joerg /****************************************************************************
2436 1.1 joerg REMARKS:
2437 1.1 joerg Handles opcode 0xa1
2438 1.1 joerg ****************************************************************************/
2439 1.1 joerg static void
2440 1.1 joerg x86emuOp_mov_AX_M_IMM(struct X86EMU *emu)
2441 1.1 joerg {
2442 1.1 joerg uint16_t offset;
2443 1.1 joerg
2444 1.1 joerg offset = fetch_word_imm(emu);
2445 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2446 1.1 joerg emu->x86.R_EAX = fetch_data_long(emu, offset);
2447 1.1 joerg } else {
2448 1.1 joerg emu->x86.R_AX = fetch_data_word(emu, offset);
2449 1.1 joerg }
2450 1.1 joerg }
2451 1.1 joerg /****************************************************************************
2452 1.1 joerg REMARKS:
2453 1.1 joerg Handles opcode 0xa2
2454 1.1 joerg ****************************************************************************/
2455 1.1 joerg static void
2456 1.1 joerg x86emuOp_mov_M_AL_IMM(struct X86EMU *emu)
2457 1.1 joerg {
2458 1.1 joerg uint16_t offset;
2459 1.1 joerg
2460 1.1 joerg offset = fetch_word_imm(emu);
2461 1.1 joerg store_data_byte(emu, offset, emu->x86.R_AL);
2462 1.1 joerg }
2463 1.1 joerg /****************************************************************************
2464 1.1 joerg REMARKS:
2465 1.1 joerg Handles opcode 0xa3
2466 1.1 joerg ****************************************************************************/
2467 1.1 joerg static void
2468 1.1 joerg x86emuOp_mov_M_AX_IMM(struct X86EMU *emu)
2469 1.1 joerg {
2470 1.1 joerg uint16_t offset;
2471 1.1 joerg
2472 1.1 joerg offset = fetch_word_imm(emu);
2473 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2474 1.1 joerg store_data_long(emu, offset, emu->x86.R_EAX);
2475 1.1 joerg } else {
2476 1.1 joerg store_data_word(emu, offset, emu->x86.R_AX);
2477 1.1 joerg }
2478 1.1 joerg }
2479 1.1 joerg /****************************************************************************
2480 1.1 joerg REMARKS:
2481 1.1 joerg Handles opcode 0xa4
2482 1.1 joerg ****************************************************************************/
2483 1.1 joerg static void
2484 1.1 joerg x86emuOp_movs_byte(struct X86EMU *emu)
2485 1.1 joerg {
2486 1.1 joerg uint8_t val;
2487 1.1 joerg uint32_t count;
2488 1.1 joerg int inc;
2489 1.1 joerg
2490 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2491 1.1 joerg inc = -1;
2492 1.1 joerg else
2493 1.1 joerg inc = 1;
2494 1.1 joerg count = 1;
2495 1.1 joerg if (emu->x86.mode & (SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE)) {
2496 1.1 joerg /* dont care whether REPE or REPNE */
2497 1.1 joerg /* move them until CX is ZERO. */
2498 1.1 joerg count = emu->x86.R_CX;
2499 1.1 joerg emu->x86.R_CX = 0;
2500 1.1 joerg emu->x86.mode &= ~(SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE);
2501 1.1 joerg }
2502 1.1 joerg while (count--) {
2503 1.1 joerg val = fetch_data_byte(emu, emu->x86.R_SI);
2504 1.1 joerg store_byte(emu, emu->x86.R_ES, emu->x86.R_DI, val);
2505 1.1 joerg emu->x86.R_SI += inc;
2506 1.1 joerg emu->x86.R_DI += inc;
2507 1.1 joerg }
2508 1.1 joerg }
2509 1.1 joerg /****************************************************************************
2510 1.1 joerg REMARKS:
2511 1.1 joerg Handles opcode 0xa5
2512 1.1 joerg ****************************************************************************/
2513 1.1 joerg static void
2514 1.1 joerg x86emuOp_movs_word(struct X86EMU *emu)
2515 1.1 joerg {
2516 1.1 joerg uint32_t val;
2517 1.1 joerg int inc;
2518 1.1 joerg uint32_t count;
2519 1.1 joerg
2520 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2521 1.1 joerg inc = 4;
2522 1.1 joerg else
2523 1.1 joerg inc = 2;
2524 1.1 joerg
2525 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2526 1.1 joerg inc = -inc;
2527 1.1 joerg
2528 1.1 joerg count = 1;
2529 1.1 joerg if (emu->x86.mode & (SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE)) {
2530 1.1 joerg /* dont care whether REPE or REPNE */
2531 1.1 joerg /* move them until CX is ZERO. */
2532 1.1 joerg count = emu->x86.R_CX;
2533 1.1 joerg emu->x86.R_CX = 0;
2534 1.1 joerg emu->x86.mode &= ~(SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE);
2535 1.1 joerg }
2536 1.1 joerg while (count--) {
2537 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2538 1.1 joerg val = fetch_data_long(emu, emu->x86.R_SI);
2539 1.1 joerg store_long(emu, emu->x86.R_ES, emu->x86.R_DI, val);
2540 1.1 joerg } else {
2541 1.1 joerg val = fetch_data_word(emu, emu->x86.R_SI);
2542 1.1 joerg store_word(emu, emu->x86.R_ES, emu->x86.R_DI, (uint16_t) val);
2543 1.1 joerg }
2544 1.1 joerg emu->x86.R_SI += inc;
2545 1.1 joerg emu->x86.R_DI += inc;
2546 1.1 joerg }
2547 1.1 joerg }
2548 1.1 joerg /****************************************************************************
2549 1.1 joerg REMARKS:
2550 1.1 joerg Handles opcode 0xa6
2551 1.1 joerg ****************************************************************************/
2552 1.1 joerg static void
2553 1.1 joerg x86emuOp_cmps_byte(struct X86EMU *emu)
2554 1.1 joerg {
2555 1.1 joerg int8_t val1, val2;
2556 1.1 joerg int inc;
2557 1.1 joerg
2558 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2559 1.1 joerg inc = -1;
2560 1.1 joerg else
2561 1.1 joerg inc = 1;
2562 1.1 joerg
2563 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_REPE) {
2564 1.1 joerg /* REPE */
2565 1.1 joerg /* move them until CX is ZERO. */
2566 1.1 joerg while (emu->x86.R_CX != 0) {
2567 1.1 joerg val1 = fetch_data_byte(emu, emu->x86.R_SI);
2568 1.1 joerg val2 = fetch_byte(emu, emu->x86.R_ES, emu->x86.R_DI);
2569 1.1 joerg cmp_byte(emu, val1, val2);
2570 1.1 joerg emu->x86.R_CX -= 1;
2571 1.1 joerg emu->x86.R_SI += inc;
2572 1.1 joerg emu->x86.R_DI += inc;
2573 1.1 joerg if (ACCESS_FLAG(F_ZF) == 0)
2574 1.1 joerg break;
2575 1.1 joerg }
2576 1.1 joerg emu->x86.mode &= ~SYSMODE_PREFIX_REPE;
2577 1.1 joerg } else if (emu->x86.mode & SYSMODE_PREFIX_REPNE) {
2578 1.1 joerg /* REPNE */
2579 1.1 joerg /* move them until CX is ZERO. */
2580 1.1 joerg while (emu->x86.R_CX != 0) {
2581 1.1 joerg val1 = fetch_data_byte(emu, emu->x86.R_SI);
2582 1.1 joerg val2 = fetch_byte(emu, emu->x86.R_ES, emu->x86.R_DI);
2583 1.1 joerg cmp_byte(emu, val1, val2);
2584 1.1 joerg emu->x86.R_CX -= 1;
2585 1.1 joerg emu->x86.R_SI += inc;
2586 1.1 joerg emu->x86.R_DI += inc;
2587 1.1 joerg if (ACCESS_FLAG(F_ZF))
2588 1.1 joerg break; /* zero flag set means equal */
2589 1.1 joerg }
2590 1.1 joerg emu->x86.mode &= ~SYSMODE_PREFIX_REPNE;
2591 1.1 joerg } else {
2592 1.1 joerg val1 = fetch_data_byte(emu, emu->x86.R_SI);
2593 1.1 joerg val2 = fetch_byte(emu, emu->x86.R_ES, emu->x86.R_DI);
2594 1.1 joerg cmp_byte(emu, val1, val2);
2595 1.1 joerg emu->x86.R_SI += inc;
2596 1.1 joerg emu->x86.R_DI += inc;
2597 1.1 joerg }
2598 1.1 joerg }
2599 1.1 joerg /****************************************************************************
2600 1.1 joerg REMARKS:
2601 1.1 joerg Handles opcode 0xa7
2602 1.1 joerg ****************************************************************************/
2603 1.1 joerg static void
2604 1.1 joerg x86emuOp_cmps_word(struct X86EMU *emu)
2605 1.1 joerg {
2606 1.1 joerg uint32_t val1, val2;
2607 1.1 joerg int inc;
2608 1.1 joerg
2609 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2610 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2611 1.1 joerg inc = -4;
2612 1.1 joerg else
2613 1.1 joerg inc = 4;
2614 1.1 joerg } else {
2615 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2616 1.1 joerg inc = -2;
2617 1.1 joerg else
2618 1.1 joerg inc = 2;
2619 1.1 joerg }
2620 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_REPE) {
2621 1.1 joerg /* REPE */
2622 1.1 joerg /* move them until CX is ZERO. */
2623 1.1 joerg while (emu->x86.R_CX != 0) {
2624 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2625 1.1 joerg val1 = fetch_data_long(emu, emu->x86.R_SI);
2626 1.1 joerg val2 = fetch_long(emu, emu->x86.R_ES, emu->x86.R_DI);
2627 1.1 joerg cmp_long(emu, val1, val2);
2628 1.1 joerg } else {
2629 1.1 joerg val1 = fetch_data_word(emu, emu->x86.R_SI);
2630 1.1 joerg val2 = fetch_word(emu, emu->x86.R_ES, emu->x86.R_DI);
2631 1.1 joerg cmp_word(emu, (uint16_t) val1, (uint16_t) val2);
2632 1.1 joerg }
2633 1.1 joerg emu->x86.R_CX -= 1;
2634 1.1 joerg emu->x86.R_SI += inc;
2635 1.1 joerg emu->x86.R_DI += inc;
2636 1.1 joerg if (ACCESS_FLAG(F_ZF) == 0)
2637 1.1 joerg break;
2638 1.1 joerg }
2639 1.1 joerg emu->x86.mode &= ~SYSMODE_PREFIX_REPE;
2640 1.1 joerg } else if (emu->x86.mode & SYSMODE_PREFIX_REPNE) {
2641 1.1 joerg /* REPNE */
2642 1.1 joerg /* move them until CX is ZERO. */
2643 1.1 joerg while (emu->x86.R_CX != 0) {
2644 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2645 1.1 joerg val1 = fetch_data_long(emu, emu->x86.R_SI);
2646 1.1 joerg val2 = fetch_long(emu, emu->x86.R_ES, emu->x86.R_DI);
2647 1.1 joerg cmp_long(emu, val1, val2);
2648 1.1 joerg } else {
2649 1.1 joerg val1 = fetch_data_word(emu, emu->x86.R_SI);
2650 1.1 joerg val2 = fetch_word(emu, emu->x86.R_ES, emu->x86.R_DI);
2651 1.1 joerg cmp_word(emu, (uint16_t) val1, (uint16_t) val2);
2652 1.1 joerg }
2653 1.1 joerg emu->x86.R_CX -= 1;
2654 1.1 joerg emu->x86.R_SI += inc;
2655 1.1 joerg emu->x86.R_DI += inc;
2656 1.1 joerg if (ACCESS_FLAG(F_ZF))
2657 1.1 joerg break; /* zero flag set means equal */
2658 1.1 joerg }
2659 1.1 joerg emu->x86.mode &= ~SYSMODE_PREFIX_REPNE;
2660 1.1 joerg } else {
2661 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2662 1.1 joerg val1 = fetch_data_long(emu, emu->x86.R_SI);
2663 1.1 joerg val2 = fetch_long(emu, emu->x86.R_ES, emu->x86.R_DI);
2664 1.1 joerg cmp_long(emu, val1, val2);
2665 1.1 joerg } else {
2666 1.1 joerg val1 = fetch_data_word(emu, emu->x86.R_SI);
2667 1.1 joerg val2 = fetch_word(emu, emu->x86.R_ES, emu->x86.R_DI);
2668 1.1 joerg cmp_word(emu, (uint16_t) val1, (uint16_t) val2);
2669 1.1 joerg }
2670 1.1 joerg emu->x86.R_SI += inc;
2671 1.1 joerg emu->x86.R_DI += inc;
2672 1.1 joerg }
2673 1.1 joerg }
2674 1.1 joerg /****************************************************************************
2675 1.1 joerg REMARKS:
2676 1.1 joerg Handles opcode 0xa9
2677 1.1 joerg ****************************************************************************/
2678 1.1 joerg static void
2679 1.1 joerg x86emuOp_test_AX_IMM(struct X86EMU *emu)
2680 1.1 joerg {
2681 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2682 1.1 joerg test_long(emu, emu->x86.R_EAX, fetch_long_imm(emu));
2683 1.1 joerg } else {
2684 1.1 joerg test_word(emu, emu->x86.R_AX, fetch_word_imm(emu));
2685 1.1 joerg }
2686 1.1 joerg }
2687 1.1 joerg /****************************************************************************
2688 1.1 joerg REMARKS:
2689 1.1 joerg Handles opcode 0xaa
2690 1.1 joerg ****************************************************************************/
2691 1.1 joerg static void
2692 1.1 joerg x86emuOp_stos_byte(struct X86EMU *emu)
2693 1.1 joerg {
2694 1.1 joerg int inc;
2695 1.1 joerg
2696 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2697 1.1 joerg inc = -1;
2698 1.1 joerg else
2699 1.1 joerg inc = 1;
2700 1.1 joerg if (emu->x86.mode & (SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE)) {
2701 1.1 joerg /* dont care whether REPE or REPNE */
2702 1.1 joerg /* move them until CX is ZERO. */
2703 1.1 joerg while (emu->x86.R_CX != 0) {
2704 1.1 joerg store_byte(emu, emu->x86.R_ES, emu->x86.R_DI, emu->x86.R_AL);
2705 1.1 joerg emu->x86.R_CX -= 1;
2706 1.1 joerg emu->x86.R_DI += inc;
2707 1.1 joerg }
2708 1.1 joerg emu->x86.mode &= ~(SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE);
2709 1.1 joerg } else {
2710 1.1 joerg store_byte(emu, emu->x86.R_ES, emu->x86.R_DI, emu->x86.R_AL);
2711 1.1 joerg emu->x86.R_DI += inc;
2712 1.1 joerg }
2713 1.1 joerg }
2714 1.1 joerg /****************************************************************************
2715 1.1 joerg REMARKS:
2716 1.1 joerg Handles opcode 0xab
2717 1.1 joerg ****************************************************************************/
2718 1.1 joerg static void
2719 1.1 joerg x86emuOp_stos_word(struct X86EMU *emu)
2720 1.1 joerg {
2721 1.1 joerg int inc;
2722 1.1 joerg uint32_t count;
2723 1.1 joerg
2724 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2725 1.1 joerg inc = 4;
2726 1.1 joerg else
2727 1.1 joerg inc = 2;
2728 1.1 joerg
2729 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2730 1.1 joerg inc = -inc;
2731 1.1 joerg
2732 1.1 joerg count = 1;
2733 1.1 joerg if (emu->x86.mode & (SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE)) {
2734 1.1 joerg /* dont care whether REPE or REPNE */
2735 1.1 joerg /* move them until CX is ZERO. */
2736 1.1 joerg count = emu->x86.R_CX;
2737 1.1 joerg emu->x86.R_CX = 0;
2738 1.1 joerg emu->x86.mode &= ~(SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE);
2739 1.1 joerg }
2740 1.1 joerg while (count--) {
2741 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2742 1.1 joerg store_long(emu, emu->x86.R_ES, emu->x86.R_DI, emu->x86.R_EAX);
2743 1.1 joerg } else {
2744 1.1 joerg store_word(emu, emu->x86.R_ES, emu->x86.R_DI, emu->x86.R_AX);
2745 1.1 joerg }
2746 1.1 joerg emu->x86.R_DI += inc;
2747 1.1 joerg }
2748 1.1 joerg }
2749 1.1 joerg /****************************************************************************
2750 1.1 joerg REMARKS:
2751 1.1 joerg Handles opcode 0xac
2752 1.1 joerg ****************************************************************************/
2753 1.1 joerg static void
2754 1.1 joerg x86emuOp_lods_byte(struct X86EMU *emu)
2755 1.1 joerg {
2756 1.1 joerg int inc;
2757 1.1 joerg
2758 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2759 1.1 joerg inc = -1;
2760 1.1 joerg else
2761 1.1 joerg inc = 1;
2762 1.1 joerg if (emu->x86.mode & (SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE)) {
2763 1.1 joerg /* dont care whether REPE or REPNE */
2764 1.1 joerg /* move them until CX is ZERO. */
2765 1.1 joerg while (emu->x86.R_CX != 0) {
2766 1.1 joerg emu->x86.R_AL = fetch_data_byte(emu, emu->x86.R_SI);
2767 1.1 joerg emu->x86.R_CX -= 1;
2768 1.1 joerg emu->x86.R_SI += inc;
2769 1.1 joerg }
2770 1.1 joerg emu->x86.mode &= ~(SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE);
2771 1.1 joerg } else {
2772 1.1 joerg emu->x86.R_AL = fetch_data_byte(emu, emu->x86.R_SI);
2773 1.1 joerg emu->x86.R_SI += inc;
2774 1.1 joerg }
2775 1.1 joerg }
2776 1.1 joerg /****************************************************************************
2777 1.1 joerg REMARKS:
2778 1.1 joerg Handles opcode 0xad
2779 1.1 joerg ****************************************************************************/
2780 1.1 joerg static void
2781 1.1 joerg x86emuOp_lods_word(struct X86EMU *emu)
2782 1.1 joerg {
2783 1.1 joerg int inc;
2784 1.1 joerg uint32_t count;
2785 1.1 joerg
2786 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2787 1.1 joerg inc = 4;
2788 1.1 joerg else
2789 1.1 joerg inc = 2;
2790 1.1 joerg
2791 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2792 1.1 joerg inc = -inc;
2793 1.1 joerg
2794 1.1 joerg count = 1;
2795 1.1 joerg if (emu->x86.mode & (SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE)) {
2796 1.1 joerg /* dont care whether REPE or REPNE */
2797 1.1 joerg /* move them until CX is ZERO. */
2798 1.1 joerg count = emu->x86.R_CX;
2799 1.1 joerg emu->x86.R_CX = 0;
2800 1.1 joerg emu->x86.mode &= ~(SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE);
2801 1.1 joerg }
2802 1.1 joerg while (count--) {
2803 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2804 1.1 joerg emu->x86.R_EAX = fetch_data_long(emu, emu->x86.R_SI);
2805 1.1 joerg } else {
2806 1.1 joerg emu->x86.R_AX = fetch_data_word(emu, emu->x86.R_SI);
2807 1.1 joerg }
2808 1.1 joerg emu->x86.R_SI += inc;
2809 1.1 joerg }
2810 1.1 joerg }
2811 1.1 joerg /****************************************************************************
2812 1.1 joerg REMARKS:
2813 1.1 joerg Handles opcode 0xae
2814 1.1 joerg ****************************************************************************/
2815 1.1 joerg static void
2816 1.1 joerg x86emuOp_scas_byte(struct X86EMU *emu)
2817 1.1 joerg {
2818 1.1 joerg int8_t val2;
2819 1.1 joerg int inc;
2820 1.1 joerg
2821 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2822 1.1 joerg inc = -1;
2823 1.1 joerg else
2824 1.1 joerg inc = 1;
2825 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_REPE) {
2826 1.1 joerg /* REPE */
2827 1.1 joerg /* move them until CX is ZERO. */
2828 1.1 joerg while (emu->x86.R_CX != 0) {
2829 1.1 joerg val2 = fetch_byte(emu, emu->x86.R_ES, emu->x86.R_DI);
2830 1.1 joerg cmp_byte(emu, emu->x86.R_AL, val2);
2831 1.1 joerg emu->x86.R_CX -= 1;
2832 1.1 joerg emu->x86.R_DI += inc;
2833 1.1 joerg if (ACCESS_FLAG(F_ZF) == 0)
2834 1.1 joerg break;
2835 1.1 joerg }
2836 1.1 joerg emu->x86.mode &= ~SYSMODE_PREFIX_REPE;
2837 1.1 joerg } else if (emu->x86.mode & SYSMODE_PREFIX_REPNE) {
2838 1.1 joerg /* REPNE */
2839 1.1 joerg /* move them until CX is ZERO. */
2840 1.1 joerg while (emu->x86.R_CX != 0) {
2841 1.1 joerg val2 = fetch_byte(emu, emu->x86.R_ES, emu->x86.R_DI);
2842 1.1 joerg cmp_byte(emu, emu->x86.R_AL, val2);
2843 1.1 joerg emu->x86.R_CX -= 1;
2844 1.1 joerg emu->x86.R_DI += inc;
2845 1.1 joerg if (ACCESS_FLAG(F_ZF))
2846 1.1 joerg break; /* zero flag set means equal */
2847 1.1 joerg }
2848 1.1 joerg emu->x86.mode &= ~SYSMODE_PREFIX_REPNE;
2849 1.1 joerg } else {
2850 1.1 joerg val2 = fetch_byte(emu, emu->x86.R_ES, emu->x86.R_DI);
2851 1.1 joerg cmp_byte(emu, emu->x86.R_AL, val2);
2852 1.1 joerg emu->x86.R_DI += inc;
2853 1.1 joerg }
2854 1.1 joerg }
2855 1.1 joerg /****************************************************************************
2856 1.1 joerg REMARKS:
2857 1.1 joerg Handles opcode 0xaf
2858 1.1 joerg ****************************************************************************/
2859 1.1 joerg static void
2860 1.1 joerg x86emuOp_scas_word(struct X86EMU *emu)
2861 1.1 joerg {
2862 1.1 joerg int inc;
2863 1.1 joerg uint32_t val;
2864 1.1 joerg
2865 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2866 1.1 joerg inc = 4;
2867 1.1 joerg else
2868 1.1 joerg inc = 2;
2869 1.1 joerg
2870 1.1 joerg if (ACCESS_FLAG(F_DF)) /* down */
2871 1.1 joerg inc = -inc;
2872 1.1 joerg
2873 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_REPE) {
2874 1.1 joerg /* REPE */
2875 1.1 joerg /* move them until CX is ZERO. */
2876 1.1 joerg while (emu->x86.R_CX != 0) {
2877 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2878 1.1 joerg val = fetch_long(emu, emu->x86.R_ES, emu->x86.R_DI);
2879 1.1 joerg cmp_long(emu, emu->x86.R_EAX, val);
2880 1.1 joerg } else {
2881 1.1 joerg val = fetch_word(emu, emu->x86.R_ES, emu->x86.R_DI);
2882 1.1 joerg cmp_word(emu, emu->x86.R_AX, (uint16_t) val);
2883 1.1 joerg }
2884 1.1 joerg emu->x86.R_CX -= 1;
2885 1.1 joerg emu->x86.R_DI += inc;
2886 1.1 joerg if (ACCESS_FLAG(F_ZF) == 0)
2887 1.1 joerg break;
2888 1.1 joerg }
2889 1.1 joerg emu->x86.mode &= ~SYSMODE_PREFIX_REPE;
2890 1.1 joerg } else if (emu->x86.mode & SYSMODE_PREFIX_REPNE) {
2891 1.1 joerg /* REPNE */
2892 1.1 joerg /* move them until CX is ZERO. */
2893 1.1 joerg while (emu->x86.R_CX != 0) {
2894 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2895 1.1 joerg val = fetch_long(emu, emu->x86.R_ES, emu->x86.R_DI);
2896 1.1 joerg cmp_long(emu, emu->x86.R_EAX, val);
2897 1.1 joerg } else {
2898 1.1 joerg val = fetch_word(emu, emu->x86.R_ES, emu->x86.R_DI);
2899 1.1 joerg cmp_word(emu, emu->x86.R_AX, (uint16_t) val);
2900 1.1 joerg }
2901 1.1 joerg emu->x86.R_CX -= 1;
2902 1.1 joerg emu->x86.R_DI += inc;
2903 1.1 joerg if (ACCESS_FLAG(F_ZF))
2904 1.1 joerg break; /* zero flag set means equal */
2905 1.1 joerg }
2906 1.1 joerg emu->x86.mode &= ~SYSMODE_PREFIX_REPNE;
2907 1.1 joerg } else {
2908 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
2909 1.1 joerg val = fetch_long(emu, emu->x86.R_ES, emu->x86.R_DI);
2910 1.1 joerg cmp_long(emu, emu->x86.R_EAX, val);
2911 1.1 joerg } else {
2912 1.1 joerg val = fetch_word(emu, emu->x86.R_ES, emu->x86.R_DI);
2913 1.1 joerg cmp_word(emu, emu->x86.R_AX, (uint16_t) val);
2914 1.1 joerg }
2915 1.1 joerg emu->x86.R_DI += inc;
2916 1.1 joerg }
2917 1.1 joerg }
2918 1.1 joerg /****************************************************************************
2919 1.1 joerg REMARKS:
2920 1.1 joerg Handles opcode 0xb8
2921 1.1 joerg ****************************************************************************/
2922 1.1 joerg static void
2923 1.1 joerg x86emuOp_mov_word_AX_IMM(struct X86EMU *emu)
2924 1.1 joerg {
2925 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2926 1.1 joerg emu->x86.R_EAX = fetch_long_imm(emu);
2927 1.1 joerg else
2928 1.1 joerg emu->x86.R_AX = fetch_word_imm(emu);
2929 1.1 joerg }
2930 1.1 joerg /****************************************************************************
2931 1.1 joerg REMARKS:
2932 1.1 joerg Handles opcode 0xb9
2933 1.1 joerg ****************************************************************************/
2934 1.1 joerg static void
2935 1.1 joerg x86emuOp_mov_word_CX_IMM(struct X86EMU *emu)
2936 1.1 joerg {
2937 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2938 1.1 joerg emu->x86.R_ECX = fetch_long_imm(emu);
2939 1.1 joerg else
2940 1.1 joerg emu->x86.R_CX = fetch_word_imm(emu);
2941 1.1 joerg }
2942 1.1 joerg /****************************************************************************
2943 1.1 joerg REMARKS:
2944 1.1 joerg Handles opcode 0xba
2945 1.1 joerg ****************************************************************************/
2946 1.1 joerg static void
2947 1.1 joerg x86emuOp_mov_word_DX_IMM(struct X86EMU *emu)
2948 1.1 joerg {
2949 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2950 1.1 joerg emu->x86.R_EDX = fetch_long_imm(emu);
2951 1.1 joerg else
2952 1.1 joerg emu->x86.R_DX = fetch_word_imm(emu);
2953 1.1 joerg }
2954 1.1 joerg /****************************************************************************
2955 1.1 joerg REMARKS:
2956 1.1 joerg Handles opcode 0xbb
2957 1.1 joerg ****************************************************************************/
2958 1.1 joerg static void
2959 1.1 joerg x86emuOp_mov_word_BX_IMM(struct X86EMU *emu)
2960 1.1 joerg {
2961 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2962 1.1 joerg emu->x86.R_EBX = fetch_long_imm(emu);
2963 1.1 joerg else
2964 1.1 joerg emu->x86.R_BX = fetch_word_imm(emu);
2965 1.1 joerg }
2966 1.1 joerg /****************************************************************************
2967 1.1 joerg REMARKS:
2968 1.1 joerg Handles opcode 0xbc
2969 1.1 joerg ****************************************************************************/
2970 1.1 joerg static void
2971 1.1 joerg x86emuOp_mov_word_SP_IMM(struct X86EMU *emu)
2972 1.1 joerg {
2973 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2974 1.1 joerg emu->x86.R_ESP = fetch_long_imm(emu);
2975 1.1 joerg else
2976 1.1 joerg emu->x86.R_SP = fetch_word_imm(emu);
2977 1.1 joerg }
2978 1.1 joerg /****************************************************************************
2979 1.1 joerg REMARKS:
2980 1.1 joerg Handles opcode 0xbd
2981 1.1 joerg ****************************************************************************/
2982 1.1 joerg static void
2983 1.1 joerg x86emuOp_mov_word_BP_IMM(struct X86EMU *emu)
2984 1.1 joerg {
2985 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2986 1.1 joerg emu->x86.R_EBP = fetch_long_imm(emu);
2987 1.1 joerg else
2988 1.1 joerg emu->x86.R_BP = fetch_word_imm(emu);
2989 1.1 joerg }
2990 1.1 joerg /****************************************************************************
2991 1.1 joerg REMARKS:
2992 1.1 joerg Handles opcode 0xbe
2993 1.1 joerg ****************************************************************************/
2994 1.1 joerg static void
2995 1.1 joerg x86emuOp_mov_word_SI_IMM(struct X86EMU *emu)
2996 1.1 joerg {
2997 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
2998 1.1 joerg emu->x86.R_ESI = fetch_long_imm(emu);
2999 1.1 joerg else
3000 1.1 joerg emu->x86.R_SI = fetch_word_imm(emu);
3001 1.1 joerg }
3002 1.1 joerg /****************************************************************************
3003 1.1 joerg REMARKS:
3004 1.1 joerg Handles opcode 0xbf
3005 1.1 joerg ****************************************************************************/
3006 1.1 joerg static void
3007 1.1 joerg x86emuOp_mov_word_DI_IMM(struct X86EMU *emu)
3008 1.1 joerg {
3009 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
3010 1.1 joerg emu->x86.R_EDI = fetch_long_imm(emu);
3011 1.1 joerg else
3012 1.1 joerg emu->x86.R_DI = fetch_word_imm(emu);
3013 1.1 joerg }
3014 1.1 joerg /* used by opcodes c0, d0, and d2. */
3015 1.1 joerg static
3016 1.1 joerg uint8_t(* const opcD0_byte_operation[]) (struct X86EMU *, uint8_t d, uint8_t s) =
3017 1.1 joerg {
3018 1.1 joerg rol_byte,
3019 1.1 joerg ror_byte,
3020 1.1 joerg rcl_byte,
3021 1.1 joerg rcr_byte,
3022 1.1 joerg shl_byte,
3023 1.1 joerg shr_byte,
3024 1.1 joerg shl_byte, /* sal_byte === shl_byte by definition */
3025 1.1 joerg sar_byte,
3026 1.1 joerg };
3027 1.1 joerg /****************************************************************************
3028 1.1 joerg REMARKS:
3029 1.1 joerg Handles opcode 0xc0
3030 1.1 joerg ****************************************************************************/
3031 1.1 joerg static void
3032 1.1 joerg x86emuOp_opcC0_byte_RM_MEM(struct X86EMU *emu)
3033 1.1 joerg {
3034 1.1 joerg uint8_t destval, amt;
3035 1.1 joerg
3036 1.1 joerg /*
3037 1.1 joerg * Yet another weirdo special case instruction format. Part of
3038 1.1 joerg * the opcode held below in "RH". Doubly nested case would
3039 1.1 joerg * result, except that the decoded instruction
3040 1.1 joerg */
3041 1.1 joerg fetch_decode_modrm(emu);
3042 1.1 joerg /* know operation, decode the mod byte to find the addressing mode. */
3043 1.1 joerg destval = decode_and_fetch_byte_imm8(emu, &amt);
3044 1.1 joerg destval = (*opcD0_byte_operation[emu->cur_rh]) (emu, destval, amt);
3045 1.1 joerg write_back_byte(emu, destval);
3046 1.1 joerg }
3047 1.1 joerg /* used by opcodes c1, d1, and d3. */
3048 1.1 joerg static
3049 1.1 joerg uint16_t(* const opcD1_word_operation[]) (struct X86EMU *, uint16_t s, uint8_t d) =
3050 1.1 joerg {
3051 1.1 joerg rol_word,
3052 1.1 joerg ror_word,
3053 1.1 joerg rcl_word,
3054 1.1 joerg rcr_word,
3055 1.1 joerg shl_word,
3056 1.1 joerg shr_word,
3057 1.1 joerg shl_word, /* sal_byte === shl_byte by definition */
3058 1.1 joerg sar_word,
3059 1.1 joerg };
3060 1.1 joerg /* used by opcodes c1, d1, and d3. */
3061 1.1 joerg static
3062 1.1 joerg uint32_t(* const opcD1_long_operation[]) (struct X86EMU *, uint32_t s, uint8_t d) =
3063 1.1 joerg {
3064 1.1 joerg rol_long,
3065 1.1 joerg ror_long,
3066 1.1 joerg rcl_long,
3067 1.1 joerg rcr_long,
3068 1.1 joerg shl_long,
3069 1.1 joerg shr_long,
3070 1.1 joerg shl_long, /* sal_byte === shl_byte by definition */
3071 1.1 joerg sar_long,
3072 1.1 joerg };
3073 1.1 joerg /****************************************************************************
3074 1.1 joerg REMARKS:
3075 1.1 joerg Handles opcode 0xc1
3076 1.1 joerg ****************************************************************************/
3077 1.1 joerg static void
3078 1.1 joerg x86emuOp_opcC1_word_RM_MEM(struct X86EMU *emu)
3079 1.1 joerg {
3080 1.1 joerg uint8_t amt;
3081 1.1 joerg
3082 1.1 joerg /*
3083 1.1 joerg * Yet another weirdo special case instruction format. Part of
3084 1.1 joerg * the opcode held below in "RH". Doubly nested case would
3085 1.1 joerg * result, except that the decoded instruction
3086 1.1 joerg */
3087 1.1 joerg fetch_decode_modrm(emu);
3088 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
3089 1.1 joerg uint32_t destval;
3090 1.1 joerg
3091 1.1 joerg destval = decode_and_fetch_long_imm8(emu, &amt);
3092 1.1 joerg destval = (*opcD1_long_operation[emu->cur_rh]) (emu, destval, amt);
3093 1.1 joerg write_back_long(emu, destval);
3094 1.1 joerg } else {
3095 1.1 joerg uint16_t destval;
3096 1.1 joerg
3097 1.1 joerg destval = decode_and_fetch_word_imm8(emu, &amt);
3098 1.1 joerg destval = (*opcD1_word_operation[emu->cur_rh]) (emu, destval, amt);
3099 1.1 joerg write_back_word(emu, destval);
3100 1.1 joerg }
3101 1.1 joerg }
3102 1.1 joerg /****************************************************************************
3103 1.1 joerg REMARKS:
3104 1.1 joerg Handles opcode 0xc2
3105 1.1 joerg ****************************************************************************/
3106 1.1 joerg static void
3107 1.1 joerg x86emuOp_ret_near_IMM(struct X86EMU *emu)
3108 1.1 joerg {
3109 1.1 joerg uint16_t imm;
3110 1.1 joerg
3111 1.1 joerg imm = fetch_word_imm(emu);
3112 1.1 joerg emu->x86.R_IP = pop_word(emu);
3113 1.1 joerg emu->x86.R_SP += imm;
3114 1.1 joerg }
3115 1.1 joerg /****************************************************************************
3116 1.1 joerg REMARKS:
3117 1.1 joerg Handles opcode 0xc6
3118 1.1 joerg ****************************************************************************/
3119 1.1 joerg static void
3120 1.1 joerg x86emuOp_mov_byte_RM_IMM(struct X86EMU *emu)
3121 1.1 joerg {
3122 1.1 joerg uint8_t *destreg;
3123 1.1 joerg uint32_t destoffset;
3124 1.1 joerg uint8_t imm;
3125 1.1 joerg
3126 1.1 joerg fetch_decode_modrm(emu);
3127 1.1 joerg if (emu->cur_rh != 0)
3128 1.1 joerg X86EMU_halt_sys(emu);
3129 1.1 joerg if (emu->cur_mod != 3) {
3130 1.1 joerg destoffset = decode_rl_address(emu);
3131 1.1 joerg imm = fetch_byte_imm(emu);
3132 1.1 joerg store_data_byte(emu, destoffset, imm);
3133 1.1 joerg } else {
3134 1.1 joerg destreg = decode_rl_byte_register(emu);
3135 1.1 joerg imm = fetch_byte_imm(emu);
3136 1.1 joerg *destreg = imm;
3137 1.1 joerg }
3138 1.1 joerg }
3139 1.1 joerg /****************************************************************************
3140 1.1 joerg REMARKS:
3141 1.1 joerg Handles opcode 0xc7
3142 1.1 joerg ****************************************************************************/
3143 1.1 joerg static void
3144 1.1 joerg x86emuOp32_mov_word_RM_IMM(struct X86EMU *emu)
3145 1.1 joerg {
3146 1.1 joerg uint32_t destoffset;
3147 1.1 joerg uint32_t imm, *destreg;
3148 1.1 joerg
3149 1.1 joerg fetch_decode_modrm(emu);
3150 1.1 joerg if (emu->cur_rh != 0)
3151 1.1 joerg X86EMU_halt_sys(emu);
3152 1.1 joerg
3153 1.1 joerg if (emu->cur_mod != 3) {
3154 1.1 joerg destoffset = decode_rl_address(emu);
3155 1.1 joerg imm = fetch_long_imm(emu);
3156 1.1 joerg store_data_long(emu, destoffset, imm);
3157 1.1 joerg } else {
3158 1.1 joerg destreg = decode_rl_long_register(emu);
3159 1.1 joerg imm = fetch_long_imm(emu);
3160 1.1 joerg *destreg = imm;
3161 1.1 joerg }
3162 1.1 joerg }
3163 1.1 joerg
3164 1.1 joerg static void
3165 1.1 joerg x86emuOp16_mov_word_RM_IMM(struct X86EMU *emu)
3166 1.1 joerg {
3167 1.1 joerg uint32_t destoffset;
3168 1.1 joerg uint16_t imm, *destreg;
3169 1.1 joerg
3170 1.1 joerg fetch_decode_modrm(emu);
3171 1.1 joerg if (emu->cur_rh != 0)
3172 1.1 joerg X86EMU_halt_sys(emu);
3173 1.1 joerg
3174 1.1 joerg if (emu->cur_mod != 3) {
3175 1.1 joerg destoffset = decode_rl_address(emu);
3176 1.1 joerg imm = fetch_word_imm(emu);
3177 1.1 joerg store_data_word(emu, destoffset, imm);
3178 1.1 joerg } else {
3179 1.1 joerg destreg = decode_rl_word_register(emu);
3180 1.1 joerg imm = fetch_word_imm(emu);
3181 1.1 joerg *destreg = imm;
3182 1.1 joerg }
3183 1.1 joerg }
3184 1.1 joerg
3185 1.1 joerg static void
3186 1.1 joerg x86emuOp_mov_word_RM_IMM(struct X86EMU *emu)
3187 1.1 joerg {
3188 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
3189 1.1 joerg x86emuOp32_mov_word_RM_IMM(emu);
3190 1.1 joerg else
3191 1.1 joerg x86emuOp16_mov_word_RM_IMM(emu);
3192 1.1 joerg }
3193 1.1 joerg /****************************************************************************
3194 1.1 joerg REMARKS:
3195 1.1 joerg Handles opcode 0xc8
3196 1.1 joerg ****************************************************************************/
3197 1.1 joerg static void
3198 1.1 joerg x86emuOp_enter(struct X86EMU *emu)
3199 1.1 joerg {
3200 1.1 joerg uint16_t local, frame_pointer;
3201 1.1 joerg uint8_t nesting;
3202 1.1 joerg int i;
3203 1.1 joerg
3204 1.1 joerg local = fetch_word_imm(emu);
3205 1.1 joerg nesting = fetch_byte_imm(emu);
3206 1.1 joerg push_word(emu, emu->x86.R_BP);
3207 1.1 joerg frame_pointer = emu->x86.R_SP;
3208 1.1 joerg if (nesting > 0) {
3209 1.1 joerg for (i = 1; i < nesting; i++) {
3210 1.1 joerg emu->x86.R_BP -= 2;
3211 1.1 joerg push_word(emu, fetch_word(emu, emu->x86.R_SS, emu->x86.R_BP));
3212 1.1 joerg }
3213 1.1 joerg push_word(emu, frame_pointer);
3214 1.1 joerg }
3215 1.1 joerg emu->x86.R_BP = frame_pointer;
3216 1.1 joerg emu->x86.R_SP = (uint16_t) (emu->x86.R_SP - local);
3217 1.1 joerg }
3218 1.1 joerg /****************************************************************************
3219 1.1 joerg REMARKS:
3220 1.1 joerg Handles opcode 0xc9
3221 1.1 joerg ****************************************************************************/
3222 1.1 joerg static void
3223 1.1 joerg x86emuOp_leave(struct X86EMU *emu)
3224 1.1 joerg {
3225 1.1 joerg emu->x86.R_SP = emu->x86.R_BP;
3226 1.1 joerg emu->x86.R_BP = pop_word(emu);
3227 1.1 joerg }
3228 1.1 joerg /****************************************************************************
3229 1.1 joerg REMARKS:
3230 1.1 joerg Handles opcode 0xca
3231 1.1 joerg ****************************************************************************/
3232 1.1 joerg static void
3233 1.1 joerg x86emuOp_ret_far_IMM(struct X86EMU *emu)
3234 1.1 joerg {
3235 1.1 joerg uint16_t imm;
3236 1.1 joerg
3237 1.1 joerg imm = fetch_word_imm(emu);
3238 1.1 joerg emu->x86.R_IP = pop_word(emu);
3239 1.1 joerg emu->x86.R_CS = pop_word(emu);
3240 1.1 joerg emu->x86.R_SP += imm;
3241 1.1 joerg }
3242 1.1 joerg /****************************************************************************
3243 1.1 joerg REMARKS:
3244 1.1 joerg Handles opcode 0xcb
3245 1.1 joerg ****************************************************************************/
3246 1.1 joerg static void
3247 1.1 joerg x86emuOp_ret_far(struct X86EMU *emu)
3248 1.1 joerg {
3249 1.1 joerg emu->x86.R_IP = pop_word(emu);
3250 1.1 joerg emu->x86.R_CS = pop_word(emu);
3251 1.1 joerg }
3252 1.1 joerg /****************************************************************************
3253 1.1 joerg REMARKS:
3254 1.1 joerg Handles opcode 0xcc
3255 1.1 joerg ****************************************************************************/
3256 1.1 joerg static void
3257 1.1 joerg x86emuOp_int3(struct X86EMU *emu)
3258 1.1 joerg {
3259 1.3 joerg x86emu_intr_dispatch(emu, 3);
3260 1.1 joerg }
3261 1.1 joerg /****************************************************************************
3262 1.1 joerg REMARKS:
3263 1.1 joerg Handles opcode 0xcd
3264 1.1 joerg ****************************************************************************/
3265 1.1 joerg static void
3266 1.1 joerg x86emuOp_int_IMM(struct X86EMU *emu)
3267 1.1 joerg {
3268 1.1 joerg uint8_t intnum;
3269 1.1 joerg
3270 1.1 joerg intnum = fetch_byte_imm(emu);
3271 1.3 joerg x86emu_intr_dispatch(emu, intnum);
3272 1.1 joerg }
3273 1.1 joerg /****************************************************************************
3274 1.1 joerg REMARKS:
3275 1.1 joerg Handles opcode 0xce
3276 1.1 joerg ****************************************************************************/
3277 1.1 joerg static void
3278 1.1 joerg x86emuOp_into(struct X86EMU *emu)
3279 1.1 joerg {
3280 1.3 joerg if (ACCESS_FLAG(F_OF))
3281 1.3 joerg x86emu_intr_dispatch(emu, 4);
3282 1.1 joerg }
3283 1.1 joerg /****************************************************************************
3284 1.1 joerg REMARKS:
3285 1.1 joerg Handles opcode 0xcf
3286 1.1 joerg ****************************************************************************/
3287 1.1 joerg static void
3288 1.1 joerg x86emuOp_iret(struct X86EMU *emu)
3289 1.1 joerg {
3290 1.1 joerg emu->x86.R_IP = pop_word(emu);
3291 1.1 joerg emu->x86.R_CS = pop_word(emu);
3292 1.1 joerg emu->x86.R_FLG = pop_word(emu);
3293 1.1 joerg }
3294 1.1 joerg /****************************************************************************
3295 1.1 joerg REMARKS:
3296 1.1 joerg Handles opcode 0xd0
3297 1.1 joerg ****************************************************************************/
3298 1.1 joerg static void
3299 1.1 joerg x86emuOp_opcD0_byte_RM_1(struct X86EMU *emu)
3300 1.1 joerg {
3301 1.1 joerg uint8_t destval;
3302 1.1 joerg
3303 1.1 joerg fetch_decode_modrm(emu);
3304 1.1 joerg destval = decode_and_fetch_byte(emu);
3305 1.1 joerg destval = (*opcD0_byte_operation[emu->cur_rh]) (emu, destval, 1);
3306 1.1 joerg write_back_byte(emu, destval);
3307 1.1 joerg }
3308 1.1 joerg /****************************************************************************
3309 1.1 joerg REMARKS:
3310 1.1 joerg Handles opcode 0xd1
3311 1.1 joerg ****************************************************************************/
3312 1.1 joerg static void
3313 1.1 joerg x86emuOp_opcD1_word_RM_1(struct X86EMU *emu)
3314 1.1 joerg {
3315 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
3316 1.1 joerg uint32_t destval;
3317 1.1 joerg
3318 1.1 joerg fetch_decode_modrm(emu);
3319 1.1 joerg destval = decode_and_fetch_long(emu);
3320 1.1 joerg destval = (*opcD1_long_operation[emu->cur_rh]) (emu, destval, 1);
3321 1.1 joerg write_back_long(emu, destval);
3322 1.1 joerg } else {
3323 1.1 joerg uint16_t destval;
3324 1.1 joerg
3325 1.1 joerg fetch_decode_modrm(emu);
3326 1.1 joerg destval = decode_and_fetch_word(emu);
3327 1.1 joerg destval = (*opcD1_word_operation[emu->cur_rh]) (emu, destval, 1);
3328 1.1 joerg write_back_word(emu, destval);
3329 1.1 joerg }
3330 1.1 joerg }
3331 1.1 joerg /****************************************************************************
3332 1.1 joerg REMARKS:
3333 1.1 joerg Handles opcode 0xd2
3334 1.1 joerg ****************************************************************************/
3335 1.1 joerg static void
3336 1.1 joerg x86emuOp_opcD2_byte_RM_CL(struct X86EMU *emu)
3337 1.1 joerg {
3338 1.1 joerg uint8_t destval;
3339 1.1 joerg
3340 1.1 joerg fetch_decode_modrm(emu);
3341 1.1 joerg destval = decode_and_fetch_byte(emu);
3342 1.1 joerg destval = (*opcD0_byte_operation[emu->cur_rh]) (emu, destval, emu->x86.R_CL);
3343 1.1 joerg write_back_byte(emu, destval);
3344 1.1 joerg }
3345 1.1 joerg /****************************************************************************
3346 1.1 joerg REMARKS:
3347 1.1 joerg Handles opcode 0xd3
3348 1.1 joerg ****************************************************************************/
3349 1.1 joerg static void
3350 1.1 joerg x86emuOp_opcD3_word_RM_CL(struct X86EMU *emu)
3351 1.1 joerg {
3352 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
3353 1.1 joerg uint32_t destval;
3354 1.1 joerg
3355 1.1 joerg fetch_decode_modrm(emu);
3356 1.1 joerg destval = decode_and_fetch_long(emu);
3357 1.1 joerg destval = (*opcD1_long_operation[emu->cur_rh]) (emu, destval, emu->x86.R_CL);
3358 1.1 joerg write_back_long(emu, destval);
3359 1.1 joerg } else {
3360 1.1 joerg uint16_t destval;
3361 1.1 joerg
3362 1.1 joerg fetch_decode_modrm(emu);
3363 1.1 joerg destval = decode_and_fetch_word(emu);
3364 1.1 joerg destval = (*opcD1_word_operation[emu->cur_rh]) (emu, destval, emu->x86.R_CL);
3365 1.1 joerg write_back_word(emu, destval);
3366 1.1 joerg }
3367 1.1 joerg }
3368 1.1 joerg /****************************************************************************
3369 1.1 joerg REMARKS:
3370 1.1 joerg Handles opcode 0xd4
3371 1.1 joerg ****************************************************************************/
3372 1.1 joerg static void
3373 1.1 joerg x86emuOp_aam(struct X86EMU *emu)
3374 1.1 joerg {
3375 1.1 joerg uint8_t a;
3376 1.1 joerg
3377 1.1 joerg a = fetch_byte_imm(emu); /* this is a stupid encoding. */
3378 1.1 joerg if (a != 10) {
3379 1.1 joerg /* fix: add base decoding aam_word(uint8_t val, int base a) */
3380 1.1 joerg X86EMU_halt_sys(emu);
3381 1.1 joerg }
3382 1.1 joerg /* note the type change here --- returning AL and AH in AX. */
3383 1.1 joerg emu->x86.R_AX = aam_word(emu, emu->x86.R_AL);
3384 1.1 joerg }
3385 1.1 joerg /****************************************************************************
3386 1.1 joerg REMARKS:
3387 1.1 joerg Handles opcode 0xd5
3388 1.1 joerg ****************************************************************************/
3389 1.1 joerg static void
3390 1.1 joerg x86emuOp_aad(struct X86EMU *emu)
3391 1.1 joerg {
3392 1.1 joerg uint8_t a;
3393 1.1 joerg
3394 1.1 joerg a = fetch_byte_imm(emu);
3395 1.1 joerg if (a != 10) {
3396 1.1 joerg /* fix: add base decoding aad_word(uint16_t val, int base a) */
3397 1.1 joerg X86EMU_halt_sys(emu);
3398 1.1 joerg }
3399 1.1 joerg emu->x86.R_AX = aad_word(emu, emu->x86.R_AX);
3400 1.1 joerg }
3401 1.1 joerg /* opcode 0xd6 ILLEGAL OPCODE */
3402 1.1 joerg
3403 1.1 joerg /****************************************************************************
3404 1.1 joerg REMARKS:
3405 1.1 joerg Handles opcode 0xd7
3406 1.1 joerg ****************************************************************************/
3407 1.1 joerg static void
3408 1.1 joerg x86emuOp_xlat(struct X86EMU *emu)
3409 1.1 joerg {
3410 1.1 joerg uint16_t addr;
3411 1.1 joerg
3412 1.1 joerg addr = (uint16_t) (emu->x86.R_BX + (uint8_t) emu->x86.R_AL);
3413 1.1 joerg emu->x86.R_AL = fetch_data_byte(emu, addr);
3414 1.1 joerg }
3415 1.1 joerg
3416 1.1 joerg /* opcode=0xd8 */
3417 1.1 joerg static void
3418 1.1 joerg x86emuOp_esc_coprocess_d8(struct X86EMU *emu)
3419 1.1 joerg {
3420 1.1 joerg }
3421 1.1 joerg /* opcode=0xd9 */
3422 1.1 joerg static void
3423 1.1 joerg x86emuOp_esc_coprocess_d9(struct X86EMU *emu)
3424 1.1 joerg {
3425 1.1 joerg fetch_decode_modrm(emu);
3426 1.1 joerg if (emu->cur_mod != 3)
3427 1.1 joerg decode_rl_address(emu);
3428 1.1 joerg }
3429 1.1 joerg /* opcode=0xda */
3430 1.1 joerg static void
3431 1.1 joerg x86emuOp_esc_coprocess_da(struct X86EMU *emu)
3432 1.1 joerg {
3433 1.1 joerg fetch_decode_modrm(emu);
3434 1.1 joerg if (emu->cur_mod != 3)
3435 1.1 joerg decode_rl_address(emu);
3436 1.1 joerg }
3437 1.1 joerg /* opcode=0xdb */
3438 1.1 joerg static void
3439 1.1 joerg x86emuOp_esc_coprocess_db(struct X86EMU *emu)
3440 1.1 joerg {
3441 1.1 joerg fetch_decode_modrm(emu);
3442 1.1 joerg if (emu->cur_mod != 3)
3443 1.1 joerg decode_rl_address(emu);
3444 1.1 joerg }
3445 1.1 joerg /* opcode=0xdc */
3446 1.1 joerg static void
3447 1.1 joerg x86emuOp_esc_coprocess_dc(struct X86EMU *emu)
3448 1.1 joerg {
3449 1.1 joerg fetch_decode_modrm(emu);
3450 1.1 joerg if (emu->cur_mod != 3)
3451 1.1 joerg decode_rl_address(emu);
3452 1.1 joerg }
3453 1.1 joerg /* opcode=0xdd */
3454 1.1 joerg static void
3455 1.1 joerg x86emuOp_esc_coprocess_dd(struct X86EMU *emu)
3456 1.1 joerg {
3457 1.1 joerg fetch_decode_modrm(emu);
3458 1.1 joerg if (emu->cur_mod != 3)
3459 1.1 joerg decode_rl_address(emu);
3460 1.1 joerg }
3461 1.1 joerg /* opcode=0xde */
3462 1.1 joerg static void
3463 1.1 joerg x86emuOp_esc_coprocess_de(struct X86EMU *emu)
3464 1.1 joerg {
3465 1.1 joerg fetch_decode_modrm(emu);
3466 1.1 joerg if (emu->cur_mod != 3)
3467 1.1 joerg decode_rl_address(emu);
3468 1.1 joerg }
3469 1.1 joerg /* opcode=0xdf */
3470 1.1 joerg static void
3471 1.1 joerg x86emuOp_esc_coprocess_df(struct X86EMU *emu)
3472 1.1 joerg {
3473 1.1 joerg fetch_decode_modrm(emu);
3474 1.1 joerg if (emu->cur_mod != 3)
3475 1.1 joerg decode_rl_address(emu);
3476 1.1 joerg }
3477 1.1 joerg
3478 1.1 joerg /****************************************************************************
3479 1.1 joerg REMARKS:
3480 1.1 joerg Handles opcode 0xe0
3481 1.1 joerg ****************************************************************************/
3482 1.1 joerg static void
3483 1.1 joerg x86emuOp_loopne(struct X86EMU *emu)
3484 1.1 joerg {
3485 1.1 joerg int16_t ip;
3486 1.1 joerg
3487 1.1 joerg ip = (int8_t) fetch_byte_imm(emu);
3488 1.1 joerg ip += (int16_t) emu->x86.R_IP;
3489 1.1 joerg emu->x86.R_CX -= 1;
3490 1.1 joerg if (emu->x86.R_CX != 0 && !ACCESS_FLAG(F_ZF)) /* CX != 0 and !ZF */
3491 1.1 joerg emu->x86.R_IP = ip;
3492 1.1 joerg }
3493 1.1 joerg /****************************************************************************
3494 1.1 joerg REMARKS:
3495 1.1 joerg Handles opcode 0xe1
3496 1.1 joerg ****************************************************************************/
3497 1.1 joerg static void
3498 1.1 joerg x86emuOp_loope(struct X86EMU *emu)
3499 1.1 joerg {
3500 1.1 joerg int16_t ip;
3501 1.1 joerg
3502 1.1 joerg ip = (int8_t) fetch_byte_imm(emu);
3503 1.1 joerg ip += (int16_t) emu->x86.R_IP;
3504 1.1 joerg emu->x86.R_CX -= 1;
3505 1.1 joerg if (emu->x86.R_CX != 0 && ACCESS_FLAG(F_ZF)) /* CX != 0 and ZF */
3506 1.1 joerg emu->x86.R_IP = ip;
3507 1.1 joerg }
3508 1.1 joerg /****************************************************************************
3509 1.1 joerg REMARKS:
3510 1.1 joerg Handles opcode 0xe2
3511 1.1 joerg ****************************************************************************/
3512 1.1 joerg static void
3513 1.1 joerg x86emuOp_loop(struct X86EMU *emu)
3514 1.1 joerg {
3515 1.1 joerg int16_t ip;
3516 1.1 joerg
3517 1.1 joerg ip = (int8_t) fetch_byte_imm(emu);
3518 1.1 joerg ip += (int16_t) emu->x86.R_IP;
3519 1.1 joerg emu->x86.R_CX -= 1;
3520 1.1 joerg if (emu->x86.R_CX != 0)
3521 1.1 joerg emu->x86.R_IP = ip;
3522 1.1 joerg }
3523 1.1 joerg /****************************************************************************
3524 1.1 joerg REMARKS:
3525 1.1 joerg Handles opcode 0xe3
3526 1.1 joerg ****************************************************************************/
3527 1.1 joerg static void
3528 1.1 joerg x86emuOp_jcxz(struct X86EMU *emu)
3529 1.1 joerg {
3530 1.1 joerg uint16_t target;
3531 1.1 joerg int8_t offset;
3532 1.1 joerg
3533 1.1 joerg /* jump to byte offset if overflow flag is set */
3534 1.1 joerg offset = (int8_t) fetch_byte_imm(emu);
3535 1.1 joerg target = (uint16_t) (emu->x86.R_IP + offset);
3536 1.1 joerg if (emu->x86.R_CX == 0)
3537 1.1 joerg emu->x86.R_IP = target;
3538 1.1 joerg }
3539 1.1 joerg /****************************************************************************
3540 1.1 joerg REMARKS:
3541 1.1 joerg Handles opcode 0xe4
3542 1.1 joerg ****************************************************************************/
3543 1.1 joerg static void
3544 1.1 joerg x86emuOp_in_byte_AL_IMM(struct X86EMU *emu)
3545 1.1 joerg {
3546 1.1 joerg uint8_t port;
3547 1.1 joerg
3548 1.1 joerg port = (uint8_t) fetch_byte_imm(emu);
3549 1.1 joerg emu->x86.R_AL = (*emu->emu_inb) (emu, port);
3550 1.1 joerg }
3551 1.1 joerg /****************************************************************************
3552 1.1 joerg REMARKS:
3553 1.1 joerg Handles opcode 0xe5
3554 1.1 joerg ****************************************************************************/
3555 1.1 joerg static void
3556 1.1 joerg x86emuOp_in_word_AX_IMM(struct X86EMU *emu)
3557 1.1 joerg {
3558 1.1 joerg uint8_t port;
3559 1.1 joerg
3560 1.1 joerg port = (uint8_t) fetch_byte_imm(emu);
3561 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
3562 1.1 joerg emu->x86.R_EAX = (*emu->emu_inl) (emu, port);
3563 1.1 joerg } else {
3564 1.1 joerg emu->x86.R_AX = (*emu->emu_inw) (emu, port);
3565 1.1 joerg }
3566 1.1 joerg }
3567 1.1 joerg /****************************************************************************
3568 1.1 joerg REMARKS:
3569 1.1 joerg Handles opcode 0xe6
3570 1.1 joerg ****************************************************************************/
3571 1.1 joerg static void
3572 1.1 joerg x86emuOp_out_byte_IMM_AL(struct X86EMU *emu)
3573 1.1 joerg {
3574 1.1 joerg uint8_t port;
3575 1.1 joerg
3576 1.1 joerg port = (uint8_t) fetch_byte_imm(emu);
3577 1.1 joerg (*emu->emu_outb) (emu, port, emu->x86.R_AL);
3578 1.1 joerg }
3579 1.1 joerg /****************************************************************************
3580 1.1 joerg REMARKS:
3581 1.1 joerg Handles opcode 0xe7
3582 1.1 joerg ****************************************************************************/
3583 1.1 joerg static void
3584 1.1 joerg x86emuOp_out_word_IMM_AX(struct X86EMU *emu)
3585 1.1 joerg {
3586 1.1 joerg uint8_t port;
3587 1.1 joerg
3588 1.1 joerg port = (uint8_t) fetch_byte_imm(emu);
3589 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
3590 1.1 joerg (*emu->emu_outl) (emu, port, emu->x86.R_EAX);
3591 1.1 joerg } else {
3592 1.1 joerg (*emu->emu_outw) (emu, port, emu->x86.R_AX);
3593 1.1 joerg }
3594 1.1 joerg }
3595 1.1 joerg /****************************************************************************
3596 1.1 joerg REMARKS:
3597 1.1 joerg Handles opcode 0xe8
3598 1.1 joerg ****************************************************************************/
3599 1.1 joerg static void
3600 1.1 joerg x86emuOp_call_near_IMM(struct X86EMU *emu)
3601 1.1 joerg {
3602 1.1 joerg int16_t ip;
3603 1.1 joerg
3604 1.1 joerg ip = (int16_t) fetch_word_imm(emu);
3605 1.1 joerg ip += (int16_t) emu->x86.R_IP; /* CHECK SIGN */
3606 1.1 joerg push_word(emu, emu->x86.R_IP);
3607 1.1 joerg emu->x86.R_IP = ip;
3608 1.1 joerg }
3609 1.1 joerg /****************************************************************************
3610 1.1 joerg REMARKS:
3611 1.1 joerg Handles opcode 0xe9
3612 1.1 joerg ****************************************************************************/
3613 1.1 joerg static void
3614 1.1 joerg x86emuOp_jump_near_IMM(struct X86EMU *emu)
3615 1.1 joerg {
3616 1.1 joerg int ip;
3617 1.1 joerg
3618 1.1 joerg ip = (int16_t) fetch_word_imm(emu);
3619 1.1 joerg ip += (int16_t) emu->x86.R_IP;
3620 1.1 joerg emu->x86.R_IP = (uint16_t) ip;
3621 1.1 joerg }
3622 1.1 joerg /****************************************************************************
3623 1.1 joerg REMARKS:
3624 1.1 joerg Handles opcode 0xea
3625 1.1 joerg ****************************************************************************/
3626 1.1 joerg static void
3627 1.1 joerg x86emuOp_jump_far_IMM(struct X86EMU *emu)
3628 1.1 joerg {
3629 1.1 joerg uint16_t cs, ip;
3630 1.1 joerg
3631 1.1 joerg ip = fetch_word_imm(emu);
3632 1.1 joerg cs = fetch_word_imm(emu);
3633 1.1 joerg emu->x86.R_IP = ip;
3634 1.1 joerg emu->x86.R_CS = cs;
3635 1.1 joerg }
3636 1.1 joerg /****************************************************************************
3637 1.1 joerg REMARKS:
3638 1.1 joerg Handles opcode 0xeb
3639 1.1 joerg ****************************************************************************/
3640 1.1 joerg static void
3641 1.1 joerg x86emuOp_jump_byte_IMM(struct X86EMU *emu)
3642 1.1 joerg {
3643 1.1 joerg uint16_t target;
3644 1.1 joerg int8_t offset;
3645 1.1 joerg
3646 1.1 joerg offset = (int8_t) fetch_byte_imm(emu);
3647 1.1 joerg target = (uint16_t) (emu->x86.R_IP + offset);
3648 1.1 joerg emu->x86.R_IP = target;
3649 1.1 joerg }
3650 1.1 joerg /****************************************************************************
3651 1.1 joerg REMARKS:
3652 1.1 joerg Handles opcode 0xec
3653 1.1 joerg ****************************************************************************/
3654 1.1 joerg static void
3655 1.1 joerg x86emuOp_in_byte_AL_DX(struct X86EMU *emu)
3656 1.1 joerg {
3657 1.1 joerg emu->x86.R_AL = (*emu->emu_inb) (emu, emu->x86.R_DX);
3658 1.1 joerg }
3659 1.1 joerg /****************************************************************************
3660 1.1 joerg REMARKS:
3661 1.1 joerg Handles opcode 0xed
3662 1.1 joerg ****************************************************************************/
3663 1.1 joerg static void
3664 1.1 joerg x86emuOp_in_word_AX_DX(struct X86EMU *emu)
3665 1.1 joerg {
3666 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
3667 1.1 joerg emu->x86.R_EAX = (*emu->emu_inl) (emu, emu->x86.R_DX);
3668 1.1 joerg } else {
3669 1.1 joerg emu->x86.R_AX = (*emu->emu_inw) (emu, emu->x86.R_DX);
3670 1.1 joerg }
3671 1.1 joerg }
3672 1.1 joerg /****************************************************************************
3673 1.1 joerg REMARKS:
3674 1.1 joerg Handles opcode 0xee
3675 1.1 joerg ****************************************************************************/
3676 1.1 joerg static void
3677 1.1 joerg x86emuOp_out_byte_DX_AL(struct X86EMU *emu)
3678 1.1 joerg {
3679 1.1 joerg (*emu->emu_outb) (emu, emu->x86.R_DX, emu->x86.R_AL);
3680 1.1 joerg }
3681 1.1 joerg /****************************************************************************
3682 1.1 joerg REMARKS:
3683 1.1 joerg Handles opcode 0xef
3684 1.1 joerg ****************************************************************************/
3685 1.1 joerg static void
3686 1.1 joerg x86emuOp_out_word_DX_AX(struct X86EMU *emu)
3687 1.1 joerg {
3688 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
3689 1.1 joerg (*emu->emu_outl) (emu, emu->x86.R_DX, emu->x86.R_EAX);
3690 1.1 joerg } else {
3691 1.1 joerg (*emu->emu_outw) (emu, emu->x86.R_DX, emu->x86.R_AX);
3692 1.1 joerg }
3693 1.1 joerg }
3694 1.1 joerg /****************************************************************************
3695 1.1 joerg REMARKS:
3696 1.1 joerg Handles opcode 0xf0
3697 1.1 joerg ****************************************************************************/
3698 1.1 joerg static void
3699 1.1 joerg x86emuOp_lock(struct X86EMU *emu)
3700 1.1 joerg {
3701 1.1 joerg }
3702 1.1 joerg /*opcode 0xf1 ILLEGAL OPERATION */
3703 1.1 joerg
3704 1.1 joerg /****************************************************************************
3705 1.1 joerg REMARKS:
3706 1.1 joerg Handles opcode 0xf5
3707 1.1 joerg ****************************************************************************/
3708 1.1 joerg static void
3709 1.1 joerg x86emuOp_cmc(struct X86EMU *emu)
3710 1.1 joerg {
3711 1.1 joerg if (ACCESS_FLAG(F_CF))
3712 1.1 joerg CLEAR_FLAG(F_CF);
3713 1.1 joerg else
3714 1.1 joerg SET_FLAG(F_CF);
3715 1.1 joerg }
3716 1.1 joerg /****************************************************************************
3717 1.1 joerg REMARKS:
3718 1.1 joerg Handles opcode 0xf6
3719 1.1 joerg ****************************************************************************/
3720 1.1 joerg static void
3721 1.1 joerg x86emuOp_opcF6_byte_RM(struct X86EMU *emu)
3722 1.1 joerg {
3723 1.1 joerg uint8_t destval, srcval;
3724 1.1 joerg
3725 1.1 joerg /* long, drawn out code follows. Double switch for a total of 32
3726 1.1 joerg * cases. */
3727 1.1 joerg fetch_decode_modrm(emu);
3728 1.1 joerg if (emu->cur_rh == 1)
3729 1.1 joerg X86EMU_halt_sys(emu);
3730 1.1 joerg
3731 1.1 joerg if (emu->cur_rh == 0) {
3732 1.1 joerg destval = decode_and_fetch_byte_imm8(emu, &srcval);
3733 1.1 joerg test_byte(emu, destval, srcval);
3734 1.1 joerg return;
3735 1.1 joerg }
3736 1.1 joerg destval = decode_and_fetch_byte(emu);
3737 1.1 joerg switch (emu->cur_rh) {
3738 1.1 joerg case 2:
3739 1.1 joerg destval = ~destval;
3740 1.1 joerg write_back_byte(emu, destval);
3741 1.1 joerg break;
3742 1.1 joerg case 3:
3743 1.1 joerg destval = neg_byte(emu, destval);
3744 1.1 joerg write_back_byte(emu, destval);
3745 1.1 joerg break;
3746 1.1 joerg case 4:
3747 1.1 joerg mul_byte(emu, destval);
3748 1.1 joerg break;
3749 1.1 joerg case 5:
3750 1.1 joerg imul_byte(emu, destval);
3751 1.1 joerg break;
3752 1.1 joerg case 6:
3753 1.1 joerg div_byte(emu, destval);
3754 1.1 joerg break;
3755 1.1 joerg case 7:
3756 1.1 joerg idiv_byte(emu, destval);
3757 1.1 joerg break;
3758 1.1 joerg }
3759 1.1 joerg }
3760 1.1 joerg /****************************************************************************
3761 1.1 joerg REMARKS:
3762 1.1 joerg Handles opcode 0xf7
3763 1.1 joerg ****************************************************************************/
3764 1.1 joerg static void
3765 1.1 joerg x86emuOp32_opcF7_word_RM(struct X86EMU *emu)
3766 1.1 joerg {
3767 1.1 joerg uint32_t destval, srcval;
3768 1.1 joerg
3769 1.1 joerg /* long, drawn out code follows. Double switch for a total of 32
3770 1.1 joerg * cases. */
3771 1.1 joerg fetch_decode_modrm(emu);
3772 1.1 joerg if (emu->cur_rh == 1)
3773 1.1 joerg X86EMU_halt_sys(emu);
3774 1.1 joerg
3775 1.1 joerg if (emu->cur_rh == 0) {
3776 1.1 joerg if (emu->cur_mod != 3) {
3777 1.1 joerg uint32_t destoffset;
3778 1.1 joerg
3779 1.1 joerg destoffset = decode_rl_address(emu);
3780 1.1 joerg srcval = fetch_long_imm(emu);
3781 1.1 joerg destval = fetch_data_long(emu, destoffset);
3782 1.1 joerg } else {
3783 1.1 joerg srcval = fetch_long_imm(emu);
3784 1.1 joerg destval = *decode_rl_long_register(emu);
3785 1.1 joerg }
3786 1.1 joerg test_long(emu, destval, srcval);
3787 1.1 joerg return;
3788 1.1 joerg }
3789 1.1 joerg destval = decode_and_fetch_long(emu);
3790 1.1 joerg switch (emu->cur_rh) {
3791 1.1 joerg case 2:
3792 1.1 joerg destval = ~destval;
3793 1.1 joerg write_back_long(emu, destval);
3794 1.1 joerg break;
3795 1.1 joerg case 3:
3796 1.1 joerg destval = neg_long(emu, destval);
3797 1.1 joerg write_back_long(emu, destval);
3798 1.1 joerg break;
3799 1.1 joerg case 4:
3800 1.1 joerg mul_long(emu, destval);
3801 1.1 joerg break;
3802 1.1 joerg case 5:
3803 1.1 joerg imul_long(emu, destval);
3804 1.1 joerg break;
3805 1.1 joerg case 6:
3806 1.1 joerg div_long(emu, destval);
3807 1.1 joerg break;
3808 1.1 joerg case 7:
3809 1.1 joerg idiv_long(emu, destval);
3810 1.1 joerg break;
3811 1.1 joerg }
3812 1.1 joerg }
3813 1.1 joerg static void
3814 1.1 joerg x86emuOp16_opcF7_word_RM(struct X86EMU *emu)
3815 1.1 joerg {
3816 1.1 joerg uint16_t destval, srcval;
3817 1.1 joerg
3818 1.1 joerg /* long, drawn out code follows. Double switch for a total of 32
3819 1.1 joerg * cases. */
3820 1.1 joerg fetch_decode_modrm(emu);
3821 1.1 joerg if (emu->cur_rh == 1)
3822 1.1 joerg X86EMU_halt_sys(emu);
3823 1.1 joerg
3824 1.1 joerg if (emu->cur_rh == 0) {
3825 1.1 joerg if (emu->cur_mod != 3) {
3826 1.1 joerg uint32_t destoffset;
3827 1.1 joerg
3828 1.1 joerg destoffset = decode_rl_address(emu);
3829 1.1 joerg srcval = fetch_word_imm(emu);
3830 1.1 joerg destval = fetch_data_word(emu, destoffset);
3831 1.1 joerg } else {
3832 1.1 joerg srcval = fetch_word_imm(emu);
3833 1.1 joerg destval = *decode_rl_word_register(emu);
3834 1.1 joerg }
3835 1.1 joerg test_word(emu, destval, srcval);
3836 1.1 joerg return;
3837 1.1 joerg }
3838 1.1 joerg destval = decode_and_fetch_word(emu);
3839 1.1 joerg switch (emu->cur_rh) {
3840 1.1 joerg case 2:
3841 1.1 joerg destval = ~destval;
3842 1.1 joerg write_back_word(emu, destval);
3843 1.1 joerg break;
3844 1.1 joerg case 3:
3845 1.1 joerg destval = neg_word(emu, destval);
3846 1.1 joerg write_back_word(emu, destval);
3847 1.1 joerg break;
3848 1.1 joerg case 4:
3849 1.1 joerg mul_word(emu, destval);
3850 1.1 joerg break;
3851 1.1 joerg case 5:
3852 1.1 joerg imul_word(emu, destval);
3853 1.1 joerg break;
3854 1.1 joerg case 6:
3855 1.1 joerg div_word(emu, destval);
3856 1.1 joerg break;
3857 1.1 joerg case 7:
3858 1.1 joerg idiv_word(emu, destval);
3859 1.1 joerg break;
3860 1.1 joerg }
3861 1.1 joerg }
3862 1.1 joerg static void
3863 1.1 joerg x86emuOp_opcF7_word_RM(struct X86EMU *emu)
3864 1.1 joerg {
3865 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
3866 1.1 joerg x86emuOp32_opcF7_word_RM(emu);
3867 1.1 joerg else
3868 1.1 joerg x86emuOp16_opcF7_word_RM(emu);
3869 1.1 joerg }
3870 1.1 joerg /****************************************************************************
3871 1.1 joerg REMARKS:
3872 1.1 joerg Handles opcode 0xfe
3873 1.1 joerg ****************************************************************************/
3874 1.1 joerg static void
3875 1.1 joerg x86emuOp_opcFE_byte_RM(struct X86EMU *emu)
3876 1.1 joerg {
3877 1.1 joerg uint8_t destval;
3878 1.1 joerg uint32_t destoffset;
3879 1.1 joerg uint8_t *destreg;
3880 1.1 joerg
3881 1.1 joerg /* Yet another special case instruction. */
3882 1.1 joerg fetch_decode_modrm(emu);
3883 1.1 joerg if (emu->cur_mod != 3) {
3884 1.1 joerg destoffset = decode_rl_address(emu);
3885 1.1 joerg switch (emu->cur_rh) {
3886 1.1 joerg case 0: /* inc word ptr ... */
3887 1.1 joerg destval = fetch_data_byte(emu, destoffset);
3888 1.1 joerg destval = inc_byte(emu, destval);
3889 1.1 joerg store_data_byte(emu, destoffset, destval);
3890 1.1 joerg break;
3891 1.1 joerg case 1: /* dec word ptr ... */
3892 1.1 joerg destval = fetch_data_byte(emu, destoffset);
3893 1.1 joerg destval = dec_byte(emu, destval);
3894 1.1 joerg store_data_byte(emu, destoffset, destval);
3895 1.1 joerg break;
3896 1.1 joerg }
3897 1.1 joerg } else {
3898 1.1 joerg destreg = decode_rl_byte_register(emu);
3899 1.1 joerg switch (emu->cur_rh) {
3900 1.1 joerg case 0:
3901 1.1 joerg *destreg = inc_byte(emu, *destreg);
3902 1.1 joerg break;
3903 1.1 joerg case 1:
3904 1.1 joerg *destreg = dec_byte(emu, *destreg);
3905 1.1 joerg break;
3906 1.1 joerg }
3907 1.1 joerg }
3908 1.1 joerg }
3909 1.1 joerg /****************************************************************************
3910 1.1 joerg REMARKS:
3911 1.1 joerg Handles opcode 0xff
3912 1.1 joerg ****************************************************************************/
3913 1.1 joerg static void
3914 1.1 joerg x86emuOp32_opcFF_word_RM(struct X86EMU *emu)
3915 1.1 joerg {
3916 1.1 joerg uint32_t destoffset = 0;
3917 1.1 joerg uint32_t destval, *destreg;
3918 1.1 joerg
3919 1.1 joerg if (emu->cur_mod != 3) {
3920 1.1 joerg destoffset = decode_rl_address(emu);
3921 1.1 joerg destval = fetch_data_long(emu, destoffset);
3922 1.1 joerg switch (emu->cur_rh) {
3923 1.1 joerg case 0: /* inc word ptr ... */
3924 1.1 joerg destval = inc_long(emu, destval);
3925 1.1 joerg store_data_long(emu, destoffset, destval);
3926 1.1 joerg break;
3927 1.1 joerg case 1: /* dec word ptr ... */
3928 1.1 joerg destval = dec_long(emu, destval);
3929 1.1 joerg store_data_long(emu, destoffset, destval);
3930 1.1 joerg break;
3931 1.1 joerg case 6: /* push word ptr ... */
3932 1.1 joerg push_long(emu, destval);
3933 1.1 joerg break;
3934 1.1 joerg }
3935 1.1 joerg } else {
3936 1.1 joerg destreg = decode_rl_long_register(emu);
3937 1.1 joerg switch (emu->cur_rh) {
3938 1.1 joerg case 0:
3939 1.1 joerg *destreg = inc_long(emu, *destreg);
3940 1.1 joerg break;
3941 1.1 joerg case 1:
3942 1.1 joerg *destreg = dec_long(emu, *destreg);
3943 1.1 joerg break;
3944 1.1 joerg case 6:
3945 1.1 joerg push_long(emu, *destreg);
3946 1.1 joerg break;
3947 1.1 joerg }
3948 1.1 joerg }
3949 1.1 joerg }
3950 1.1 joerg
3951 1.1 joerg static void
3952 1.1 joerg x86emuOp16_opcFF_word_RM(struct X86EMU *emu)
3953 1.1 joerg {
3954 1.1 joerg uint32_t destoffset = 0;
3955 1.1 joerg uint16_t *destreg;
3956 1.1 joerg uint16_t destval;
3957 1.1 joerg
3958 1.1 joerg if (emu->cur_mod != 3) {
3959 1.1 joerg destoffset = decode_rl_address(emu);
3960 1.1 joerg destval = fetch_data_word(emu, destoffset);
3961 1.1 joerg switch (emu->cur_rh) {
3962 1.1 joerg case 0:
3963 1.1 joerg destval = inc_word(emu, destval);
3964 1.1 joerg store_data_word(emu, destoffset, destval);
3965 1.1 joerg break;
3966 1.1 joerg case 1: /* dec word ptr ... */
3967 1.1 joerg destval = dec_word(emu, destval);
3968 1.1 joerg store_data_word(emu, destoffset, destval);
3969 1.1 joerg break;
3970 1.1 joerg case 6: /* push word ptr ... */
3971 1.1 joerg push_word(emu, destval);
3972 1.1 joerg break;
3973 1.1 joerg }
3974 1.1 joerg } else {
3975 1.1 joerg destreg = decode_rl_word_register(emu);
3976 1.1 joerg switch (emu->cur_rh) {
3977 1.1 joerg case 0:
3978 1.1 joerg *destreg = inc_word(emu, *destreg);
3979 1.1 joerg break;
3980 1.1 joerg case 1:
3981 1.1 joerg *destreg = dec_word(emu, *destreg);
3982 1.1 joerg break;
3983 1.1 joerg case 6:
3984 1.1 joerg push_word(emu, *destreg);
3985 1.1 joerg break;
3986 1.1 joerg }
3987 1.1 joerg }
3988 1.1 joerg }
3989 1.1 joerg
3990 1.1 joerg static void
3991 1.1 joerg x86emuOp_opcFF_word_RM(struct X86EMU *emu)
3992 1.1 joerg {
3993 1.1 joerg uint32_t destoffset = 0;
3994 1.1 joerg uint16_t destval, destval2;
3995 1.1 joerg
3996 1.1 joerg /* Yet another special case instruction. */
3997 1.1 joerg fetch_decode_modrm(emu);
3998 1.1 joerg if ((emu->cur_mod == 3 && (emu->cur_rh == 3 || emu->cur_rh == 5)) || emu->cur_rh == 7)
3999 1.1 joerg X86EMU_halt_sys(emu);
4000 1.1 joerg if (emu->cur_rh == 0 || emu->cur_rh == 1 || emu->cur_rh == 6) {
4001 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
4002 1.1 joerg x86emuOp32_opcFF_word_RM(emu);
4003 1.1 joerg else
4004 1.1 joerg x86emuOp16_opcFF_word_RM(emu);
4005 1.1 joerg return;
4006 1.1 joerg }
4007 1.1 joerg
4008 1.1 joerg if (emu->cur_mod != 3) {
4009 1.1 joerg destoffset = decode_rl_address(emu);
4010 1.1 joerg destval = fetch_data_word(emu, destoffset);
4011 1.1 joerg switch (emu->cur_rh) {
4012 1.1 joerg case 3: /* call far ptr ... */
4013 1.1 joerg destval2 = fetch_data_word(emu, destoffset + 2);
4014 1.1 joerg push_word(emu, emu->x86.R_CS);
4015 1.1 joerg emu->x86.R_CS = destval2;
4016 1.1 joerg push_word(emu, emu->x86.R_IP);
4017 1.1 joerg emu->x86.R_IP = destval;
4018 1.1 joerg break;
4019 1.1 joerg case 5: /* jmp far ptr ... */
4020 1.1 joerg destval2 = fetch_data_word(emu, destoffset + 2);
4021 1.1 joerg emu->x86.R_IP = destval;
4022 1.1 joerg emu->x86.R_CS = destval2;
4023 1.1 joerg break;
4024 1.1 joerg }
4025 1.1 joerg } else {
4026 1.1 joerg destval = *decode_rl_word_register(emu);
4027 1.1 joerg }
4028 1.1 joerg
4029 1.1 joerg switch (emu->cur_rh) {
4030 1.1 joerg case 2: /* call word ptr */
4031 1.1 joerg push_word(emu, emu->x86.R_IP);
4032 1.1 joerg emu->x86.R_IP = destval;
4033 1.1 joerg break;
4034 1.1 joerg case 4: /* jmp */
4035 1.1 joerg emu->x86.R_IP = destval;
4036 1.1 joerg break;
4037 1.1 joerg }
4038 1.1 joerg }
4039 1.1 joerg /***************************************************************************
4040 1.1 joerg * Single byte operation code table:
4041 1.1 joerg **************************************************************************/
4042 1.1 joerg static void
4043 1.1 joerg X86EMU_exec_one_byte(struct X86EMU * emu)
4044 1.1 joerg {
4045 1.1 joerg uint8_t op1;
4046 1.1 joerg
4047 1.1 joerg op1 = fetch_byte_imm(emu);
4048 1.1 joerg
4049 1.1 joerg switch (op1) {
4050 1.1 joerg case 0x00:
4051 1.1 joerg common_binop_byte_rm_r(emu, add_byte);
4052 1.1 joerg break;
4053 1.1 joerg case 0x01:
4054 1.1 joerg common_binop_word_long_rm_r(emu, add_word, add_long);
4055 1.1 joerg break;
4056 1.1 joerg case 0x02:
4057 1.1 joerg common_binop_byte_r_rm(emu, add_byte);
4058 1.1 joerg break;
4059 1.1 joerg case 0x03:
4060 1.1 joerg common_binop_word_long_r_rm(emu, add_word, add_long);
4061 1.1 joerg break;
4062 1.1 joerg case 0x04:
4063 1.1 joerg common_binop_byte_imm(emu, add_byte);
4064 1.1 joerg break;
4065 1.1 joerg case 0x05:
4066 1.1 joerg common_binop_word_long_imm(emu, add_word, add_long);
4067 1.1 joerg break;
4068 1.1 joerg case 0x06:
4069 1.1 joerg push_word(emu, emu->x86.R_ES);
4070 1.1 joerg break;
4071 1.1 joerg case 0x07:
4072 1.1 joerg emu->x86.R_ES = pop_word(emu);
4073 1.1 joerg break;
4074 1.1 joerg
4075 1.1 joerg case 0x08:
4076 1.1 joerg common_binop_byte_rm_r(emu, or_byte);
4077 1.1 joerg break;
4078 1.1 joerg case 0x09:
4079 1.1 joerg common_binop_word_long_rm_r(emu, or_word, or_long);
4080 1.1 joerg break;
4081 1.1 joerg case 0x0a:
4082 1.1 joerg common_binop_byte_r_rm(emu, or_byte);
4083 1.1 joerg break;
4084 1.1 joerg case 0x0b:
4085 1.1 joerg common_binop_word_long_r_rm(emu, or_word, or_long);
4086 1.1 joerg break;
4087 1.1 joerg case 0x0c:
4088 1.1 joerg common_binop_byte_imm(emu, or_byte);
4089 1.1 joerg break;
4090 1.1 joerg case 0x0d:
4091 1.1 joerg common_binop_word_long_imm(emu, or_word, or_long);
4092 1.1 joerg break;
4093 1.1 joerg case 0x0e:
4094 1.1 joerg push_word(emu, emu->x86.R_CS);
4095 1.1 joerg break;
4096 1.1 joerg case 0x0f:
4097 1.1 joerg X86EMU_exec_two_byte(emu);
4098 1.1 joerg break;
4099 1.1 joerg
4100 1.1 joerg case 0x10:
4101 1.1 joerg common_binop_byte_rm_r(emu, adc_byte);
4102 1.1 joerg break;
4103 1.1 joerg case 0x11:
4104 1.1 joerg common_binop_word_long_rm_r(emu, adc_word, adc_long);
4105 1.1 joerg break;
4106 1.1 joerg case 0x12:
4107 1.1 joerg common_binop_byte_r_rm(emu, adc_byte);
4108 1.1 joerg break;
4109 1.1 joerg case 0x13:
4110 1.1 joerg common_binop_word_long_r_rm(emu, adc_word, adc_long);
4111 1.1 joerg break;
4112 1.1 joerg case 0x14:
4113 1.1 joerg common_binop_byte_imm(emu, adc_byte);
4114 1.1 joerg break;
4115 1.1 joerg case 0x15:
4116 1.1 joerg common_binop_word_long_imm(emu, adc_word, adc_long);
4117 1.1 joerg break;
4118 1.1 joerg case 0x16:
4119 1.1 joerg push_word(emu, emu->x86.R_SS);
4120 1.1 joerg break;
4121 1.1 joerg case 0x17:
4122 1.1 joerg emu->x86.R_SS = pop_word(emu);
4123 1.1 joerg break;
4124 1.1 joerg
4125 1.1 joerg case 0x18:
4126 1.1 joerg common_binop_byte_rm_r(emu, sbb_byte);
4127 1.1 joerg break;
4128 1.1 joerg case 0x19:
4129 1.1 joerg common_binop_word_long_rm_r(emu, sbb_word, sbb_long);
4130 1.1 joerg break;
4131 1.1 joerg case 0x1a:
4132 1.1 joerg common_binop_byte_r_rm(emu, sbb_byte);
4133 1.1 joerg break;
4134 1.1 joerg case 0x1b:
4135 1.1 joerg common_binop_word_long_r_rm(emu, sbb_word, sbb_long);
4136 1.1 joerg break;
4137 1.1 joerg case 0x1c:
4138 1.1 joerg common_binop_byte_imm(emu, sbb_byte);
4139 1.1 joerg break;
4140 1.1 joerg case 0x1d:
4141 1.1 joerg common_binop_word_long_imm(emu, sbb_word, sbb_long);
4142 1.1 joerg break;
4143 1.1 joerg case 0x1e:
4144 1.1 joerg push_word(emu, emu->x86.R_DS);
4145 1.1 joerg break;
4146 1.1 joerg case 0x1f:
4147 1.1 joerg emu->x86.R_DS = pop_word(emu);
4148 1.1 joerg break;
4149 1.1 joerg
4150 1.1 joerg case 0x20:
4151 1.1 joerg common_binop_byte_rm_r(emu, and_byte);
4152 1.1 joerg break;
4153 1.1 joerg case 0x21:
4154 1.1 joerg common_binop_word_long_rm_r(emu, and_word, and_long);
4155 1.1 joerg break;
4156 1.1 joerg case 0x22:
4157 1.1 joerg common_binop_byte_r_rm(emu, and_byte);
4158 1.1 joerg break;
4159 1.1 joerg case 0x23:
4160 1.1 joerg common_binop_word_long_r_rm(emu, and_word, and_long);
4161 1.1 joerg break;
4162 1.1 joerg case 0x24:
4163 1.1 joerg common_binop_byte_imm(emu, and_byte);
4164 1.1 joerg break;
4165 1.1 joerg case 0x25:
4166 1.1 joerg common_binop_word_long_imm(emu, and_word, and_long);
4167 1.1 joerg break;
4168 1.1 joerg case 0x26:
4169 1.1 joerg emu->x86.mode |= SYSMODE_SEGOVR_ES;
4170 1.1 joerg break;
4171 1.1 joerg case 0x27:
4172 1.1 joerg emu->x86.R_AL = daa_byte(emu, emu->x86.R_AL);
4173 1.1 joerg break;
4174 1.1 joerg
4175 1.1 joerg case 0x28:
4176 1.1 joerg common_binop_byte_rm_r(emu, sub_byte);
4177 1.1 joerg break;
4178 1.1 joerg case 0x29:
4179 1.1 joerg common_binop_word_long_rm_r(emu, sub_word, sub_long);
4180 1.1 joerg break;
4181 1.1 joerg case 0x2a:
4182 1.1 joerg common_binop_byte_r_rm(emu, sub_byte);
4183 1.1 joerg break;
4184 1.1 joerg case 0x2b:
4185 1.1 joerg common_binop_word_long_r_rm(emu, sub_word, sub_long);
4186 1.1 joerg break;
4187 1.1 joerg case 0x2c:
4188 1.1 joerg common_binop_byte_imm(emu, sub_byte);
4189 1.1 joerg break;
4190 1.1 joerg case 0x2d:
4191 1.1 joerg common_binop_word_long_imm(emu, sub_word, sub_long);
4192 1.1 joerg break;
4193 1.1 joerg case 0x2e:
4194 1.1 joerg emu->x86.mode |= SYSMODE_SEGOVR_CS;
4195 1.1 joerg break;
4196 1.1 joerg case 0x2f:
4197 1.1 joerg emu->x86.R_AL = das_byte(emu, emu->x86.R_AL);
4198 1.1 joerg break;
4199 1.1 joerg
4200 1.1 joerg case 0x30:
4201 1.1 joerg common_binop_byte_rm_r(emu, xor_byte);
4202 1.1 joerg break;
4203 1.1 joerg case 0x31:
4204 1.1 joerg common_binop_word_long_rm_r(emu, xor_word, xor_long);
4205 1.1 joerg break;
4206 1.1 joerg case 0x32:
4207 1.1 joerg common_binop_byte_r_rm(emu, xor_byte);
4208 1.1 joerg break;
4209 1.1 joerg case 0x33:
4210 1.1 joerg common_binop_word_long_r_rm(emu, xor_word, xor_long);
4211 1.1 joerg break;
4212 1.1 joerg case 0x34:
4213 1.1 joerg common_binop_byte_imm(emu, xor_byte);
4214 1.1 joerg break;
4215 1.1 joerg case 0x35:
4216 1.1 joerg common_binop_word_long_imm(emu, xor_word, xor_long);
4217 1.1 joerg break;
4218 1.1 joerg case 0x36:
4219 1.1 joerg emu->x86.mode |= SYSMODE_SEGOVR_SS;
4220 1.1 joerg break;
4221 1.1 joerg case 0x37:
4222 1.1 joerg emu->x86.R_AX = aaa_word(emu, emu->x86.R_AX);
4223 1.1 joerg break;
4224 1.1 joerg
4225 1.1 joerg case 0x38:
4226 1.1 joerg common_binop_ns_byte_rm_r(emu, cmp_byte_no_return);
4227 1.1 joerg break;
4228 1.1 joerg case 0x39:
4229 1.1 joerg common_binop_ns_word_long_rm_r(emu, cmp_word_no_return,
4230 1.1 joerg cmp_long_no_return);
4231 1.1 joerg break;
4232 1.1 joerg case 0x3a:
4233 1.1 joerg x86emuOp_cmp_byte_R_RM(emu);
4234 1.1 joerg break;
4235 1.1 joerg case 0x3b:
4236 1.1 joerg x86emuOp_cmp_word_R_RM(emu);
4237 1.1 joerg break;
4238 1.1 joerg case 0x3c:
4239 1.1 joerg x86emuOp_cmp_byte_AL_IMM(emu);
4240 1.1 joerg break;
4241 1.1 joerg case 0x3d:
4242 1.1 joerg x86emuOp_cmp_word_AX_IMM(emu);
4243 1.1 joerg break;
4244 1.1 joerg case 0x3e:
4245 1.1 joerg emu->x86.mode |= SYSMODE_SEGOVR_DS;
4246 1.1 joerg break;
4247 1.1 joerg case 0x3f:
4248 1.1 joerg emu->x86.R_AX = aas_word(emu, emu->x86.R_AX);
4249 1.1 joerg break;
4250 1.1 joerg
4251 1.1 joerg case 0x40:
4252 1.1 joerg common_inc_word_long(emu, &emu->x86.register_a);
4253 1.1 joerg break;
4254 1.1 joerg case 0x41:
4255 1.1 joerg common_inc_word_long(emu, &emu->x86.register_c);
4256 1.1 joerg break;
4257 1.1 joerg case 0x42:
4258 1.1 joerg common_inc_word_long(emu, &emu->x86.register_d);
4259 1.1 joerg break;
4260 1.1 joerg case 0x43:
4261 1.1 joerg common_inc_word_long(emu, &emu->x86.register_b);
4262 1.1 joerg break;
4263 1.1 joerg case 0x44:
4264 1.1 joerg common_inc_word_long(emu, &emu->x86.register_sp);
4265 1.1 joerg break;
4266 1.1 joerg case 0x45:
4267 1.1 joerg common_inc_word_long(emu, &emu->x86.register_bp);
4268 1.1 joerg break;
4269 1.1 joerg case 0x46:
4270 1.1 joerg common_inc_word_long(emu, &emu->x86.register_si);
4271 1.1 joerg break;
4272 1.1 joerg case 0x47:
4273 1.1 joerg common_inc_word_long(emu, &emu->x86.register_di);
4274 1.1 joerg break;
4275 1.1 joerg
4276 1.1 joerg case 0x48:
4277 1.1 joerg common_dec_word_long(emu, &emu->x86.register_a);
4278 1.1 joerg break;
4279 1.1 joerg case 0x49:
4280 1.1 joerg common_dec_word_long(emu, &emu->x86.register_c);
4281 1.1 joerg break;
4282 1.1 joerg case 0x4a:
4283 1.1 joerg common_dec_word_long(emu, &emu->x86.register_d);
4284 1.1 joerg break;
4285 1.1 joerg case 0x4b:
4286 1.1 joerg common_dec_word_long(emu, &emu->x86.register_b);
4287 1.1 joerg break;
4288 1.1 joerg case 0x4c:
4289 1.1 joerg common_dec_word_long(emu, &emu->x86.register_sp);
4290 1.1 joerg break;
4291 1.1 joerg case 0x4d:
4292 1.1 joerg common_dec_word_long(emu, &emu->x86.register_bp);
4293 1.1 joerg break;
4294 1.1 joerg case 0x4e:
4295 1.1 joerg common_dec_word_long(emu, &emu->x86.register_si);
4296 1.1 joerg break;
4297 1.1 joerg case 0x4f:
4298 1.1 joerg common_dec_word_long(emu, &emu->x86.register_di);
4299 1.1 joerg break;
4300 1.1 joerg
4301 1.1 joerg case 0x50:
4302 1.1 joerg common_push_word_long(emu, &emu->x86.register_a);
4303 1.1 joerg break;
4304 1.1 joerg case 0x51:
4305 1.1 joerg common_push_word_long(emu, &emu->x86.register_c);
4306 1.1 joerg break;
4307 1.1 joerg case 0x52:
4308 1.1 joerg common_push_word_long(emu, &emu->x86.register_d);
4309 1.1 joerg break;
4310 1.1 joerg case 0x53:
4311 1.1 joerg common_push_word_long(emu, &emu->x86.register_b);
4312 1.1 joerg break;
4313 1.1 joerg case 0x54:
4314 1.1 joerg common_push_word_long(emu, &emu->x86.register_sp);
4315 1.1 joerg break;
4316 1.1 joerg case 0x55:
4317 1.1 joerg common_push_word_long(emu, &emu->x86.register_bp);
4318 1.1 joerg break;
4319 1.1 joerg case 0x56:
4320 1.1 joerg common_push_word_long(emu, &emu->x86.register_si);
4321 1.1 joerg break;
4322 1.1 joerg case 0x57:
4323 1.1 joerg common_push_word_long(emu, &emu->x86.register_di);
4324 1.1 joerg break;
4325 1.1 joerg
4326 1.1 joerg case 0x58:
4327 1.1 joerg common_pop_word_long(emu, &emu->x86.register_a);
4328 1.1 joerg break;
4329 1.1 joerg case 0x59:
4330 1.1 joerg common_pop_word_long(emu, &emu->x86.register_c);
4331 1.1 joerg break;
4332 1.1 joerg case 0x5a:
4333 1.1 joerg common_pop_word_long(emu, &emu->x86.register_d);
4334 1.1 joerg break;
4335 1.1 joerg case 0x5b:
4336 1.1 joerg common_pop_word_long(emu, &emu->x86.register_b);
4337 1.1 joerg break;
4338 1.1 joerg case 0x5c:
4339 1.1 joerg common_pop_word_long(emu, &emu->x86.register_sp);
4340 1.1 joerg break;
4341 1.1 joerg case 0x5d:
4342 1.1 joerg common_pop_word_long(emu, &emu->x86.register_bp);
4343 1.1 joerg break;
4344 1.1 joerg case 0x5e:
4345 1.1 joerg common_pop_word_long(emu, &emu->x86.register_si);
4346 1.1 joerg break;
4347 1.1 joerg case 0x5f:
4348 1.1 joerg common_pop_word_long(emu, &emu->x86.register_di);
4349 1.1 joerg break;
4350 1.1 joerg
4351 1.1 joerg case 0x60:
4352 1.1 joerg x86emuOp_push_all(emu);
4353 1.1 joerg break;
4354 1.1 joerg case 0x61:
4355 1.1 joerg x86emuOp_pop_all(emu);
4356 1.1 joerg break;
4357 1.1 joerg /* 0x62 bound */
4358 1.1 joerg /* 0x63 arpl */
4359 1.1 joerg case 0x64:
4360 1.1 joerg emu->x86.mode |= SYSMODE_SEGOVR_FS;
4361 1.1 joerg break;
4362 1.1 joerg case 0x65:
4363 1.1 joerg emu->x86.mode |= SYSMODE_SEGOVR_GS;
4364 1.1 joerg break;
4365 1.1 joerg case 0x66:
4366 1.1 joerg emu->x86.mode |= SYSMODE_PREFIX_DATA;
4367 1.1 joerg break;
4368 1.1 joerg case 0x67:
4369 1.1 joerg emu->x86.mode |= SYSMODE_PREFIX_ADDR;
4370 1.1 joerg break;
4371 1.1 joerg
4372 1.1 joerg case 0x68:
4373 1.1 joerg x86emuOp_push_word_IMM(emu);
4374 1.1 joerg break;
4375 1.1 joerg case 0x69:
4376 1.1 joerg common_imul_imm(emu, false);
4377 1.1 joerg break;
4378 1.1 joerg case 0x6a:
4379 1.1 joerg x86emuOp_push_byte_IMM(emu);
4380 1.1 joerg break;
4381 1.1 joerg case 0x6b:
4382 1.1 joerg common_imul_imm(emu, true);
4383 1.1 joerg break;
4384 1.1 joerg case 0x6c:
4385 1.1 joerg ins(emu, 1);
4386 1.1 joerg break;
4387 1.1 joerg case 0x6d:
4388 1.1 joerg x86emuOp_ins_word(emu);
4389 1.1 joerg break;
4390 1.1 joerg case 0x6e:
4391 1.1 joerg outs(emu, 1);
4392 1.1 joerg break;
4393 1.1 joerg case 0x6f:
4394 1.1 joerg x86emuOp_outs_word(emu);
4395 1.1 joerg break;
4396 1.1 joerg
4397 1.1 joerg case 0x70:
4398 1.1 joerg common_jmp_near(emu, ACCESS_FLAG(F_OF));
4399 1.1 joerg break;
4400 1.1 joerg case 0x71:
4401 1.1 joerg common_jmp_near(emu, !ACCESS_FLAG(F_OF));
4402 1.1 joerg break;
4403 1.1 joerg case 0x72:
4404 1.1 joerg common_jmp_near(emu, ACCESS_FLAG(F_CF));
4405 1.1 joerg break;
4406 1.1 joerg case 0x73:
4407 1.1 joerg common_jmp_near(emu, !ACCESS_FLAG(F_CF));
4408 1.1 joerg break;
4409 1.1 joerg case 0x74:
4410 1.1 joerg common_jmp_near(emu, ACCESS_FLAG(F_ZF));
4411 1.1 joerg break;
4412 1.1 joerg case 0x75:
4413 1.1 joerg common_jmp_near(emu, !ACCESS_FLAG(F_ZF));
4414 1.1 joerg break;
4415 1.1 joerg case 0x76:
4416 1.1 joerg common_jmp_near(emu, ACCESS_FLAG(F_CF) || ACCESS_FLAG(F_ZF));
4417 1.1 joerg break;
4418 1.1 joerg case 0x77:
4419 1.1 joerg common_jmp_near(emu, !ACCESS_FLAG(F_CF) && !ACCESS_FLAG(F_ZF));
4420 1.1 joerg break;
4421 1.1 joerg
4422 1.1 joerg case 0x78:
4423 1.1 joerg common_jmp_near(emu, ACCESS_FLAG(F_SF));
4424 1.1 joerg break;
4425 1.1 joerg case 0x79:
4426 1.1 joerg common_jmp_near(emu, !ACCESS_FLAG(F_SF));
4427 1.1 joerg break;
4428 1.1 joerg case 0x7a:
4429 1.1 joerg common_jmp_near(emu, ACCESS_FLAG(F_PF));
4430 1.1 joerg break;
4431 1.1 joerg case 0x7b:
4432 1.1 joerg common_jmp_near(emu, !ACCESS_FLAG(F_PF));
4433 1.1 joerg break;
4434 1.1 joerg case 0x7c:
4435 1.1 joerg x86emuOp_jump_near_L(emu);
4436 1.1 joerg break;
4437 1.1 joerg case 0x7d:
4438 1.1 joerg x86emuOp_jump_near_NL(emu);
4439 1.1 joerg break;
4440 1.1 joerg case 0x7e:
4441 1.1 joerg x86emuOp_jump_near_LE(emu);
4442 1.1 joerg break;
4443 1.1 joerg case 0x7f:
4444 1.1 joerg x86emuOp_jump_near_NLE(emu);
4445 1.1 joerg break;
4446 1.1 joerg
4447 1.1 joerg case 0x80:
4448 1.1 joerg x86emuOp_opc80_byte_RM_IMM(emu);
4449 1.1 joerg break;
4450 1.1 joerg case 0x81:
4451 1.1 joerg x86emuOp_opc81_word_RM_IMM(emu);
4452 1.1 joerg break;
4453 1.1 joerg case 0x82:
4454 1.1 joerg x86emuOp_opc82_byte_RM_IMM(emu);
4455 1.1 joerg break;
4456 1.1 joerg case 0x83:
4457 1.1 joerg x86emuOp_opc83_word_RM_IMM(emu);
4458 1.1 joerg break;
4459 1.1 joerg case 0x84:
4460 1.1 joerg common_binop_ns_byte_rm_r(emu, test_byte);
4461 1.1 joerg break;
4462 1.1 joerg case 0x85:
4463 1.1 joerg common_binop_ns_word_long_rm_r(emu, test_word, test_long);
4464 1.1 joerg break;
4465 1.1 joerg case 0x86:
4466 1.1 joerg x86emuOp_xchg_byte_RM_R(emu);
4467 1.1 joerg break;
4468 1.1 joerg case 0x87:
4469 1.1 joerg x86emuOp_xchg_word_RM_R(emu);
4470 1.1 joerg break;
4471 1.1 joerg
4472 1.1 joerg case 0x88:
4473 1.1 joerg x86emuOp_mov_byte_RM_R(emu);
4474 1.1 joerg break;
4475 1.1 joerg case 0x89:
4476 1.1 joerg x86emuOp_mov_word_RM_R(emu);
4477 1.1 joerg break;
4478 1.1 joerg case 0x8a:
4479 1.1 joerg x86emuOp_mov_byte_R_RM(emu);
4480 1.1 joerg break;
4481 1.1 joerg case 0x8b:
4482 1.1 joerg x86emuOp_mov_word_R_RM(emu);
4483 1.1 joerg break;
4484 1.1 joerg case 0x8c:
4485 1.1 joerg x86emuOp_mov_word_RM_SR(emu);
4486 1.1 joerg break;
4487 1.1 joerg case 0x8d:
4488 1.1 joerg x86emuOp_lea_word_R_M(emu);
4489 1.1 joerg break;
4490 1.1 joerg case 0x8e:
4491 1.1 joerg x86emuOp_mov_word_SR_RM(emu);
4492 1.1 joerg break;
4493 1.1 joerg case 0x8f:
4494 1.1 joerg x86emuOp_pop_RM(emu);
4495 1.1 joerg break;
4496 1.1 joerg
4497 1.1 joerg case 0x90:
4498 1.1 joerg /* nop */
4499 1.1 joerg break;
4500 1.1 joerg case 0x91:
4501 1.1 joerg x86emuOp_xchg_word_AX_CX(emu);
4502 1.1 joerg break;
4503 1.1 joerg case 0x92:
4504 1.1 joerg x86emuOp_xchg_word_AX_DX(emu);
4505 1.1 joerg break;
4506 1.1 joerg case 0x93:
4507 1.1 joerg x86emuOp_xchg_word_AX_BX(emu);
4508 1.1 joerg break;
4509 1.1 joerg case 0x94:
4510 1.1 joerg x86emuOp_xchg_word_AX_SP(emu);
4511 1.1 joerg break;
4512 1.1 joerg case 0x95:
4513 1.1 joerg x86emuOp_xchg_word_AX_BP(emu);
4514 1.1 joerg break;
4515 1.1 joerg case 0x96:
4516 1.1 joerg x86emuOp_xchg_word_AX_SI(emu);
4517 1.1 joerg break;
4518 1.1 joerg case 0x97:
4519 1.1 joerg x86emuOp_xchg_word_AX_DI(emu);
4520 1.1 joerg break;
4521 1.1 joerg
4522 1.1 joerg case 0x98:
4523 1.1 joerg x86emuOp_cbw(emu);
4524 1.1 joerg break;
4525 1.1 joerg case 0x99:
4526 1.1 joerg x86emuOp_cwd(emu);
4527 1.1 joerg break;
4528 1.1 joerg case 0x9a:
4529 1.1 joerg x86emuOp_call_far_IMM(emu);
4530 1.1 joerg break;
4531 1.1 joerg case 0x9b:
4532 1.1 joerg /* wait */
4533 1.1 joerg break;
4534 1.1 joerg case 0x9c:
4535 1.1 joerg x86emuOp_pushf_word(emu);
4536 1.1 joerg break;
4537 1.1 joerg case 0x9d:
4538 1.1 joerg x86emuOp_popf_word(emu);
4539 1.1 joerg break;
4540 1.1 joerg case 0x9e:
4541 1.1 joerg x86emuOp_sahf(emu);
4542 1.1 joerg break;
4543 1.1 joerg case 0x9f:
4544 1.1 joerg x86emuOp_lahf(emu);
4545 1.1 joerg break;
4546 1.1 joerg
4547 1.1 joerg case 0xa0:
4548 1.1 joerg x86emuOp_mov_AL_M_IMM(emu);
4549 1.1 joerg break;
4550 1.1 joerg case 0xa1:
4551 1.1 joerg x86emuOp_mov_AX_M_IMM(emu);
4552 1.1 joerg break;
4553 1.1 joerg case 0xa2:
4554 1.1 joerg x86emuOp_mov_M_AL_IMM(emu);
4555 1.1 joerg break;
4556 1.1 joerg case 0xa3:
4557 1.1 joerg x86emuOp_mov_M_AX_IMM(emu);
4558 1.1 joerg break;
4559 1.1 joerg case 0xa4:
4560 1.1 joerg x86emuOp_movs_byte(emu);
4561 1.1 joerg break;
4562 1.1 joerg case 0xa5:
4563 1.1 joerg x86emuOp_movs_word(emu);
4564 1.1 joerg break;
4565 1.1 joerg case 0xa6:
4566 1.1 joerg x86emuOp_cmps_byte(emu);
4567 1.1 joerg break;
4568 1.1 joerg case 0xa7:
4569 1.1 joerg x86emuOp_cmps_word(emu);
4570 1.1 joerg break;
4571 1.1 joerg
4572 1.1 joerg case 0xa8:
4573 1.1 joerg test_byte(emu, emu->x86.R_AL, fetch_byte_imm(emu));
4574 1.1 joerg break;
4575 1.1 joerg case 0xa9:
4576 1.1 joerg x86emuOp_test_AX_IMM(emu);
4577 1.1 joerg break;
4578 1.1 joerg case 0xaa:
4579 1.1 joerg x86emuOp_stos_byte(emu);
4580 1.1 joerg break;
4581 1.1 joerg case 0xab:
4582 1.1 joerg x86emuOp_stos_word(emu);
4583 1.1 joerg break;
4584 1.1 joerg case 0xac:
4585 1.1 joerg x86emuOp_lods_byte(emu);
4586 1.1 joerg break;
4587 1.1 joerg case 0xad:
4588 1.1 joerg x86emuOp_lods_word(emu);
4589 1.1 joerg break;
4590 1.1 joerg case 0xae:
4591 1.1 joerg x86emuOp_scas_byte(emu);
4592 1.1 joerg break;
4593 1.1 joerg case 0xaf:
4594 1.1 joerg x86emuOp_scas_word(emu);
4595 1.1 joerg break;
4596 1.1 joerg
4597 1.1 joerg case 0xb0:
4598 1.1 joerg emu->x86.R_AL = fetch_byte_imm(emu);
4599 1.1 joerg break;
4600 1.1 joerg case 0xb1:
4601 1.1 joerg emu->x86.R_CL = fetch_byte_imm(emu);
4602 1.1 joerg break;
4603 1.1 joerg case 0xb2:
4604 1.1 joerg emu->x86.R_DL = fetch_byte_imm(emu);
4605 1.1 joerg break;
4606 1.1 joerg case 0xb3:
4607 1.1 joerg emu->x86.R_BL = fetch_byte_imm(emu);
4608 1.1 joerg break;
4609 1.1 joerg case 0xb4:
4610 1.1 joerg emu->x86.R_AH = fetch_byte_imm(emu);
4611 1.1 joerg break;
4612 1.1 joerg case 0xb5:
4613 1.1 joerg emu->x86.R_CH = fetch_byte_imm(emu);
4614 1.1 joerg break;
4615 1.1 joerg case 0xb6:
4616 1.1 joerg emu->x86.R_DH = fetch_byte_imm(emu);
4617 1.1 joerg break;
4618 1.1 joerg case 0xb7:
4619 1.1 joerg emu->x86.R_BH = fetch_byte_imm(emu);
4620 1.1 joerg break;
4621 1.1 joerg
4622 1.1 joerg case 0xb8:
4623 1.1 joerg x86emuOp_mov_word_AX_IMM(emu);
4624 1.1 joerg break;
4625 1.1 joerg case 0xb9:
4626 1.1 joerg x86emuOp_mov_word_CX_IMM(emu);
4627 1.1 joerg break;
4628 1.1 joerg case 0xba:
4629 1.1 joerg x86emuOp_mov_word_DX_IMM(emu);
4630 1.1 joerg break;
4631 1.1 joerg case 0xbb:
4632 1.1 joerg x86emuOp_mov_word_BX_IMM(emu);
4633 1.1 joerg break;
4634 1.1 joerg case 0xbc:
4635 1.1 joerg x86emuOp_mov_word_SP_IMM(emu);
4636 1.1 joerg break;
4637 1.1 joerg case 0xbd:
4638 1.1 joerg x86emuOp_mov_word_BP_IMM(emu);
4639 1.1 joerg break;
4640 1.1 joerg case 0xbe:
4641 1.1 joerg x86emuOp_mov_word_SI_IMM(emu);
4642 1.1 joerg break;
4643 1.1 joerg case 0xbf:
4644 1.1 joerg x86emuOp_mov_word_DI_IMM(emu);
4645 1.1 joerg break;
4646 1.1 joerg
4647 1.1 joerg case 0xc0:
4648 1.1 joerg x86emuOp_opcC0_byte_RM_MEM(emu);
4649 1.1 joerg break;
4650 1.1 joerg case 0xc1:
4651 1.1 joerg x86emuOp_opcC1_word_RM_MEM(emu);
4652 1.1 joerg break;
4653 1.1 joerg case 0xc2:
4654 1.1 joerg x86emuOp_ret_near_IMM(emu);
4655 1.1 joerg break;
4656 1.1 joerg case 0xc3:
4657 1.1 joerg emu->x86.R_IP = pop_word(emu);
4658 1.1 joerg break;
4659 1.1 joerg case 0xc4:
4660 1.1 joerg common_load_far_pointer(emu, &emu->x86.R_ES);
4661 1.1 joerg break;
4662 1.1 joerg case 0xc5:
4663 1.1 joerg common_load_far_pointer(emu, &emu->x86.R_DS);
4664 1.1 joerg break;
4665 1.1 joerg case 0xc6:
4666 1.1 joerg x86emuOp_mov_byte_RM_IMM(emu);
4667 1.1 joerg break;
4668 1.1 joerg case 0xc7:
4669 1.1 joerg x86emuOp_mov_word_RM_IMM(emu);
4670 1.1 joerg break;
4671 1.1 joerg case 0xc8:
4672 1.1 joerg x86emuOp_enter(emu);
4673 1.1 joerg break;
4674 1.1 joerg case 0xc9:
4675 1.1 joerg x86emuOp_leave(emu);
4676 1.1 joerg break;
4677 1.1 joerg case 0xca:
4678 1.1 joerg x86emuOp_ret_far_IMM(emu);
4679 1.1 joerg break;
4680 1.1 joerg case 0xcb:
4681 1.1 joerg x86emuOp_ret_far(emu);
4682 1.1 joerg break;
4683 1.1 joerg case 0xcc:
4684 1.1 joerg x86emuOp_int3(emu);
4685 1.1 joerg break;
4686 1.1 joerg case 0xcd:
4687 1.1 joerg x86emuOp_int_IMM(emu);
4688 1.1 joerg break;
4689 1.1 joerg case 0xce:
4690 1.1 joerg x86emuOp_into(emu);
4691 1.1 joerg break;
4692 1.1 joerg case 0xcf:
4693 1.1 joerg x86emuOp_iret(emu);
4694 1.1 joerg break;
4695 1.1 joerg
4696 1.1 joerg case 0xd0:
4697 1.1 joerg x86emuOp_opcD0_byte_RM_1(emu);
4698 1.1 joerg break;
4699 1.1 joerg case 0xd1:
4700 1.1 joerg x86emuOp_opcD1_word_RM_1(emu);
4701 1.1 joerg break;
4702 1.1 joerg case 0xd2:
4703 1.1 joerg x86emuOp_opcD2_byte_RM_CL(emu);
4704 1.1 joerg break;
4705 1.1 joerg case 0xd3:
4706 1.1 joerg x86emuOp_opcD3_word_RM_CL(emu);
4707 1.1 joerg break;
4708 1.1 joerg case 0xd4:
4709 1.1 joerg x86emuOp_aam(emu);
4710 1.1 joerg break;
4711 1.1 joerg case 0xd5:
4712 1.1 joerg x86emuOp_aad(emu);
4713 1.1 joerg break;
4714 1.1 joerg /* 0xd6 Undocumented SETALC instruction */
4715 1.1 joerg case 0xd7:
4716 1.1 joerg x86emuOp_xlat(emu);
4717 1.1 joerg break;
4718 1.1 joerg case 0xd8:
4719 1.1 joerg x86emuOp_esc_coprocess_d8(emu);
4720 1.1 joerg break;
4721 1.1 joerg case 0xd9:
4722 1.1 joerg x86emuOp_esc_coprocess_d9(emu);
4723 1.1 joerg break;
4724 1.1 joerg case 0xda:
4725 1.1 joerg x86emuOp_esc_coprocess_da(emu);
4726 1.1 joerg break;
4727 1.1 joerg case 0xdb:
4728 1.1 joerg x86emuOp_esc_coprocess_db(emu);
4729 1.1 joerg break;
4730 1.1 joerg case 0xdc:
4731 1.1 joerg x86emuOp_esc_coprocess_dc(emu);
4732 1.1 joerg break;
4733 1.1 joerg case 0xdd:
4734 1.1 joerg x86emuOp_esc_coprocess_dd(emu);
4735 1.1 joerg break;
4736 1.1 joerg case 0xde:
4737 1.1 joerg x86emuOp_esc_coprocess_de(emu);
4738 1.1 joerg break;
4739 1.1 joerg case 0xdf:
4740 1.1 joerg x86emuOp_esc_coprocess_df(emu);
4741 1.1 joerg break;
4742 1.1 joerg
4743 1.1 joerg case 0xe0:
4744 1.1 joerg x86emuOp_loopne(emu);
4745 1.1 joerg break;
4746 1.1 joerg case 0xe1:
4747 1.1 joerg x86emuOp_loope(emu);
4748 1.1 joerg break;
4749 1.1 joerg case 0xe2:
4750 1.1 joerg x86emuOp_loop(emu);
4751 1.1 joerg break;
4752 1.1 joerg case 0xe3:
4753 1.1 joerg x86emuOp_jcxz(emu);
4754 1.1 joerg break;
4755 1.1 joerg case 0xe4:
4756 1.1 joerg x86emuOp_in_byte_AL_IMM(emu);
4757 1.1 joerg break;
4758 1.1 joerg case 0xe5:
4759 1.1 joerg x86emuOp_in_word_AX_IMM(emu);
4760 1.1 joerg break;
4761 1.1 joerg case 0xe6:
4762 1.1 joerg x86emuOp_out_byte_IMM_AL(emu);
4763 1.1 joerg break;
4764 1.1 joerg case 0xe7:
4765 1.1 joerg x86emuOp_out_word_IMM_AX(emu);
4766 1.1 joerg break;
4767 1.1 joerg
4768 1.1 joerg case 0xe8:
4769 1.1 joerg x86emuOp_call_near_IMM(emu);
4770 1.1 joerg break;
4771 1.1 joerg case 0xe9:
4772 1.1 joerg x86emuOp_jump_near_IMM(emu);
4773 1.1 joerg break;
4774 1.1 joerg case 0xea:
4775 1.1 joerg x86emuOp_jump_far_IMM(emu);
4776 1.1 joerg break;
4777 1.1 joerg case 0xeb:
4778 1.1 joerg x86emuOp_jump_byte_IMM(emu);
4779 1.1 joerg break;
4780 1.1 joerg case 0xec:
4781 1.1 joerg x86emuOp_in_byte_AL_DX(emu);
4782 1.1 joerg break;
4783 1.1 joerg case 0xed:
4784 1.1 joerg x86emuOp_in_word_AX_DX(emu);
4785 1.1 joerg break;
4786 1.1 joerg case 0xee:
4787 1.1 joerg x86emuOp_out_byte_DX_AL(emu);
4788 1.1 joerg break;
4789 1.1 joerg case 0xef:
4790 1.1 joerg x86emuOp_out_word_DX_AX(emu);
4791 1.1 joerg break;
4792 1.1 joerg
4793 1.1 joerg case 0xf0:
4794 1.1 joerg x86emuOp_lock(emu);
4795 1.1 joerg break;
4796 1.1 joerg case 0xf2:
4797 1.1 joerg emu->x86.mode |= SYSMODE_PREFIX_REPNE;
4798 1.1 joerg break;
4799 1.1 joerg case 0xf3:
4800 1.1 joerg emu->x86.mode |= SYSMODE_PREFIX_REPE;
4801 1.1 joerg break;
4802 1.1 joerg case 0xf4:
4803 1.1 joerg X86EMU_halt_sys(emu);
4804 1.1 joerg break;
4805 1.1 joerg case 0xf5:
4806 1.1 joerg x86emuOp_cmc(emu);
4807 1.1 joerg break;
4808 1.1 joerg case 0xf6:
4809 1.1 joerg x86emuOp_opcF6_byte_RM(emu);
4810 1.1 joerg break;
4811 1.1 joerg case 0xf7:
4812 1.1 joerg x86emuOp_opcF7_word_RM(emu);
4813 1.1 joerg break;
4814 1.1 joerg
4815 1.1 joerg case 0xf8:
4816 1.1 joerg CLEAR_FLAG(F_CF);
4817 1.1 joerg break;
4818 1.1 joerg case 0xf9:
4819 1.1 joerg SET_FLAG(F_CF);
4820 1.1 joerg break;
4821 1.1 joerg case 0xfa:
4822 1.1 joerg CLEAR_FLAG(F_IF);
4823 1.1 joerg break;
4824 1.1 joerg case 0xfb:
4825 1.1 joerg SET_FLAG(F_IF);
4826 1.1 joerg break;
4827 1.1 joerg case 0xfc:
4828 1.1 joerg CLEAR_FLAG(F_DF);
4829 1.1 joerg break;
4830 1.1 joerg case 0xfd:
4831 1.1 joerg SET_FLAG(F_DF);
4832 1.1 joerg break;
4833 1.1 joerg case 0xfe:
4834 1.1 joerg x86emuOp_opcFE_byte_RM(emu);
4835 1.1 joerg break;
4836 1.1 joerg case 0xff:
4837 1.1 joerg x86emuOp_opcFF_word_RM(emu);
4838 1.1 joerg break;
4839 1.1 joerg default:
4840 1.1 joerg X86EMU_halt_sys(emu);
4841 1.1 joerg break;
4842 1.1 joerg }
4843 1.1 joerg if (op1 != 0x26 && op1 != 0x2e && op1 != 0x36 && op1 != 0x3e &&
4844 1.1 joerg (op1 | 3) != 0x67)
4845 1.1 joerg emu->x86.mode &= ~SYSMODE_CLRMASK;
4846 1.1 joerg }
4847 1.1 joerg
4848 1.1 joerg static void
4849 1.1 joerg common_jmp_long(struct X86EMU *emu, bool cond)
4850 1.1 joerg {
4851 1.1 joerg int16_t target;
4852 1.1 joerg
4853 1.1 joerg target = (int16_t) fetch_word_imm(emu);
4854 1.1 joerg target += (int16_t) emu->x86.R_IP;
4855 1.1 joerg if (cond)
4856 1.1 joerg emu->x86.R_IP = (uint16_t) target;
4857 1.1 joerg }
4858 1.1 joerg
4859 1.1 joerg static void
4860 1.1 joerg common_set_byte(struct X86EMU *emu, bool cond)
4861 1.1 joerg {
4862 1.1 joerg uint32_t destoffset;
4863 1.1 joerg uint8_t *destreg, destval;
4864 1.1 joerg
4865 1.1 joerg fetch_decode_modrm(emu);
4866 1.1 joerg destval = cond ? 0x01 : 0x00;
4867 1.1 joerg if (emu->cur_mod != 3) {
4868 1.1 joerg destoffset = decode_rl_address(emu);
4869 1.1 joerg store_data_byte(emu, destoffset, destval);
4870 1.1 joerg } else {
4871 1.1 joerg destreg = decode_rl_byte_register(emu);
4872 1.1 joerg *destreg = destval;
4873 1.1 joerg }
4874 1.1 joerg }
4875 1.1 joerg
4876 1.1 joerg static void
4877 1.1 joerg common_bitstring32(struct X86EMU *emu, int op)
4878 1.1 joerg {
4879 1.1 joerg int bit;
4880 1.1 joerg uint32_t srcval, *shiftreg, mask;
4881 1.1 joerg
4882 1.1 joerg fetch_decode_modrm(emu);
4883 1.1 joerg shiftreg = decode_rh_long_register(emu);
4884 1.1 joerg srcval = decode_and_fetch_long_disp(emu, (int16_t) *shiftreg >> 5);
4885 1.1 joerg bit = *shiftreg & 0x1F;
4886 1.1 joerg mask = 0x1 << bit;
4887 1.1 joerg CONDITIONAL_SET_FLAG(srcval & mask, F_CF);
4888 1.1 joerg
4889 1.1 joerg switch (op) {
4890 1.1 joerg case 0:
4891 1.1 joerg break;
4892 1.1 joerg case 1:
4893 1.1 joerg write_back_long(emu, srcval | mask);
4894 1.1 joerg break;
4895 1.1 joerg case 2:
4896 1.1 joerg write_back_long(emu, srcval & ~mask);
4897 1.1 joerg break;
4898 1.1 joerg case 3:
4899 1.1 joerg write_back_long(emu, srcval ^ mask);
4900 1.1 joerg break;
4901 1.1 joerg }
4902 1.1 joerg }
4903 1.1 joerg
4904 1.1 joerg static void
4905 1.1 joerg common_bitstring16(struct X86EMU *emu, int op)
4906 1.1 joerg {
4907 1.1 joerg int bit;
4908 1.1 joerg uint16_t srcval, *shiftreg, mask;
4909 1.1 joerg
4910 1.1 joerg fetch_decode_modrm(emu);
4911 1.1 joerg shiftreg = decode_rh_word_register(emu);
4912 1.1 joerg srcval = decode_and_fetch_word_disp(emu, (int16_t) *shiftreg >> 4);
4913 1.1 joerg bit = *shiftreg & 0xF;
4914 1.1 joerg mask = 0x1 << bit;
4915 1.1 joerg CONDITIONAL_SET_FLAG(srcval & mask, F_CF);
4916 1.1 joerg
4917 1.1 joerg switch (op) {
4918 1.1 joerg case 0:
4919 1.1 joerg break;
4920 1.1 joerg case 1:
4921 1.1 joerg write_back_word(emu, srcval | mask);
4922 1.1 joerg break;
4923 1.1 joerg case 2:
4924 1.1 joerg write_back_word(emu, srcval & ~mask);
4925 1.1 joerg break;
4926 1.1 joerg case 3:
4927 1.1 joerg write_back_word(emu, srcval ^ mask);
4928 1.1 joerg break;
4929 1.1 joerg }
4930 1.1 joerg }
4931 1.1 joerg
4932 1.1 joerg static void
4933 1.1 joerg common_bitstring(struct X86EMU *emu, int op)
4934 1.1 joerg {
4935 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
4936 1.1 joerg common_bitstring32(emu, op);
4937 1.1 joerg else
4938 1.1 joerg common_bitstring16(emu, op);
4939 1.1 joerg }
4940 1.1 joerg
4941 1.1 joerg static void
4942 1.1 joerg common_bitsearch32(struct X86EMU *emu, int diff)
4943 1.1 joerg {
4944 1.1 joerg uint32_t srcval, *dstreg;
4945 1.1 joerg
4946 1.1 joerg fetch_decode_modrm(emu);
4947 1.1 joerg dstreg = decode_rh_long_register(emu);
4948 1.1 joerg srcval = decode_and_fetch_long(emu);
4949 1.1 joerg CONDITIONAL_SET_FLAG(srcval == 0, F_ZF);
4950 1.1 joerg for (*dstreg = 0; *dstreg < 32; *dstreg += diff) {
4951 1.1 joerg if ((srcval >> *dstreg) & 1)
4952 1.1 joerg break;
4953 1.1 joerg }
4954 1.1 joerg }
4955 1.1 joerg
4956 1.1 joerg static void
4957 1.1 joerg common_bitsearch16(struct X86EMU *emu, int diff)
4958 1.1 joerg {
4959 1.1 joerg uint16_t srcval, *dstreg;
4960 1.1 joerg
4961 1.1 joerg fetch_decode_modrm(emu);
4962 1.1 joerg dstreg = decode_rh_word_register(emu);
4963 1.1 joerg srcval = decode_and_fetch_word(emu);
4964 1.1 joerg CONDITIONAL_SET_FLAG(srcval == 0, F_ZF);
4965 1.1 joerg for (*dstreg = 0; *dstreg < 16; *dstreg += diff) {
4966 1.1 joerg if ((srcval >> *dstreg) & 1)
4967 1.1 joerg break;
4968 1.1 joerg }
4969 1.1 joerg }
4970 1.1 joerg
4971 1.1 joerg static void
4972 1.1 joerg common_bitsearch(struct X86EMU *emu, int diff)
4973 1.1 joerg {
4974 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
4975 1.1 joerg common_bitsearch32(emu, diff);
4976 1.1 joerg else
4977 1.1 joerg common_bitsearch16(emu, diff);
4978 1.1 joerg }
4979 1.1 joerg
4980 1.1 joerg static void
4981 1.1 joerg common_shift32(struct X86EMU *emu, bool shift_left, bool use_cl)
4982 1.1 joerg {
4983 1.1 joerg uint8_t shift;
4984 1.1 joerg uint32_t destval, *shiftreg;
4985 1.1 joerg
4986 1.1 joerg fetch_decode_modrm(emu);
4987 1.1 joerg shiftreg = decode_rh_long_register(emu);
4988 1.1 joerg if (use_cl) {
4989 1.1 joerg destval = decode_and_fetch_long(emu);
4990 1.1 joerg shift = emu->x86.R_CL;
4991 1.1 joerg } else {
4992 1.1 joerg destval = decode_and_fetch_long_imm8(emu, &shift);
4993 1.1 joerg }
4994 1.1 joerg if (shift_left)
4995 1.1 joerg destval = shld_long(emu, destval, *shiftreg, shift);
4996 1.1 joerg else
4997 1.1 joerg destval = shrd_long(emu, destval, *shiftreg, shift);
4998 1.1 joerg write_back_long(emu, destval);
4999 1.1 joerg }
5000 1.1 joerg
5001 1.1 joerg static void
5002 1.1 joerg common_shift16(struct X86EMU *emu, bool shift_left, bool use_cl)
5003 1.1 joerg {
5004 1.1 joerg uint8_t shift;
5005 1.1 joerg uint16_t destval, *shiftreg;
5006 1.1 joerg
5007 1.1 joerg fetch_decode_modrm(emu);
5008 1.1 joerg shiftreg = decode_rh_word_register(emu);
5009 1.1 joerg if (use_cl) {
5010 1.1 joerg destval = decode_and_fetch_word(emu);
5011 1.1 joerg shift = emu->x86.R_CL;
5012 1.1 joerg } else {
5013 1.1 joerg destval = decode_and_fetch_word_imm8(emu, &shift);
5014 1.1 joerg }
5015 1.1 joerg if (shift_left)
5016 1.1 joerg destval = shld_word(emu, destval, *shiftreg, shift);
5017 1.1 joerg else
5018 1.1 joerg destval = shrd_word(emu, destval, *shiftreg, shift);
5019 1.1 joerg write_back_word(emu, destval);
5020 1.1 joerg }
5021 1.1 joerg
5022 1.1 joerg static void
5023 1.1 joerg common_shift(struct X86EMU *emu, bool shift_left, bool use_cl)
5024 1.1 joerg {
5025 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
5026 1.1 joerg common_shift32(emu, shift_left, use_cl);
5027 1.1 joerg else
5028 1.1 joerg common_shift16(emu, shift_left, use_cl);
5029 1.1 joerg }
5030 1.1 joerg
5031 1.1 joerg /*----------------------------- Implementation ----------------------------*/
5032 1.1 joerg #define xorl(a,b) ((a) && !(b)) || (!(a) && (b))
5033 1.1 joerg
5034 1.1 joerg /****************************************************************************
5035 1.1 joerg REMARKS:
5036 1.1 joerg Handles opcode 0x0f,0x31
5037 1.1 joerg ****************************************************************************/
5038 1.1 joerg static void
5039 1.1 joerg x86emuOp2_rdtsc(struct X86EMU *emu)
5040 1.1 joerg {
5041 1.1 joerg emu->x86.R_EAX = emu->cur_cycles & 0xffffffff;
5042 1.1 joerg emu->x86.R_EDX = emu->cur_cycles >> 32;
5043 1.1 joerg }
5044 1.1 joerg /****************************************************************************
5045 1.1 joerg REMARKS:
5046 1.1 joerg Handles opcode 0x0f,0xa0
5047 1.1 joerg ****************************************************************************/
5048 1.1 joerg static void
5049 1.1 joerg x86emuOp2_push_FS(struct X86EMU *emu)
5050 1.1 joerg {
5051 1.1 joerg push_word(emu, emu->x86.R_FS);
5052 1.1 joerg }
5053 1.1 joerg /****************************************************************************
5054 1.1 joerg REMARKS:
5055 1.1 joerg Handles opcode 0x0f,0xa1
5056 1.1 joerg ****************************************************************************/
5057 1.1 joerg static void
5058 1.1 joerg x86emuOp2_pop_FS(struct X86EMU *emu)
5059 1.1 joerg {
5060 1.1 joerg emu->x86.R_FS = pop_word(emu);
5061 1.1 joerg }
5062 1.1 joerg /****************************************************************************
5063 1.1 joerg REMARKS:
5064 1.4 jmcneill Handles opcode 0x0f,0xa1
5065 1.4 jmcneill ****************************************************************************/
5066 1.4 jmcneill #if defined(__i386__) || defined(__amd64__)
5067 1.4 jmcneill static void
5068 1.4 jmcneill hw_cpuid(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d)
5069 1.4 jmcneill {
5070 1.4 jmcneill __asm__ __volatile__("cpuid"
5071 1.4 jmcneill : "=a" (*a), "=b" (*b),
5072 1.4 jmcneill "=c" (*c), "=d" (*d)
5073 1.4 jmcneill : "a" (*a), "c" (*c)
5074 1.4 jmcneill : "cc");
5075 1.4 jmcneill }
5076 1.4 jmcneill #endif
5077 1.4 jmcneill static void
5078 1.4 jmcneill x86emuOp2_cpuid(struct X86EMU *emu)
5079 1.4 jmcneill {
5080 1.4 jmcneill #if defined(__i386__) || defined(__amd64__)
5081 1.4 jmcneill hw_cpuid(&emu->x86.R_EAX, &emu->x86.R_EBX, &emu->x86.R_ECX,
5082 1.4 jmcneill &emu->x86.R_EDX);
5083 1.4 jmcneill #endif
5084 1.4 jmcneill switch (emu->x86.R_EAX) {
5085 1.4 jmcneill case 0:
5086 1.4 jmcneill emu->x86.R_EAX = 1;
5087 1.4 jmcneill #if !defined(__i386__) && !defined(__amd64__)
5088 1.4 jmcneill /* "GenuineIntel" */
5089 1.4 jmcneill emu->x86.R_EBX = 0x756e6547;
5090 1.4 jmcneill emu->x86.R_EDX = 0x49656e69;
5091 1.4 jmcneill emu->x86.R_ECX = 0x6c65746e;
5092 1.4 jmcneill #endif
5093 1.4 jmcneill break;
5094 1.4 jmcneill case 1:
5095 1.4 jmcneill #if !defined(__i386__) && !defined(__amd64__)
5096 1.4 jmcneill emu->x86.R_EAX = 0x00000480;
5097 1.4 jmcneill emu->x86.R_EBX = emu->x86.R_ECX = 0;
5098 1.4 jmcneill emu->x86.R_EDX = 0x00000002;
5099 1.4 jmcneill #else
5100 1.4 jmcneill emu->x86.R_EDX &= 0x00000012;
5101 1.4 jmcneill #endif
5102 1.4 jmcneill break;
5103 1.4 jmcneill default:
5104 1.4 jmcneill emu->x86.R_EAX = emu->x86.R_EBX = emu->x86.R_ECX =
5105 1.4 jmcneill emu->x86.R_EDX = 0;
5106 1.4 jmcneill break;
5107 1.4 jmcneill }
5108 1.4 jmcneill }
5109 1.4 jmcneill /****************************************************************************
5110 1.4 jmcneill REMARKS:
5111 1.1 joerg Handles opcode 0x0f,0xa3
5112 1.1 joerg ****************************************************************************/
5113 1.1 joerg static void
5114 1.1 joerg x86emuOp2_bt_R(struct X86EMU *emu)
5115 1.1 joerg {
5116 1.1 joerg common_bitstring(emu, 0);
5117 1.1 joerg }
5118 1.1 joerg /****************************************************************************
5119 1.1 joerg REMARKS:
5120 1.1 joerg Handles opcode 0x0f,0xa4
5121 1.1 joerg ****************************************************************************/
5122 1.1 joerg static void
5123 1.1 joerg x86emuOp2_shld_IMM(struct X86EMU *emu)
5124 1.1 joerg {
5125 1.1 joerg common_shift(emu, true, false);
5126 1.1 joerg }
5127 1.1 joerg /****************************************************************************
5128 1.1 joerg REMARKS:
5129 1.1 joerg Handles opcode 0x0f,0xa5
5130 1.1 joerg ****************************************************************************/
5131 1.1 joerg static void
5132 1.1 joerg x86emuOp2_shld_CL(struct X86EMU *emu)
5133 1.1 joerg {
5134 1.1 joerg common_shift(emu, true, true);
5135 1.1 joerg }
5136 1.1 joerg /****************************************************************************
5137 1.1 joerg REMARKS:
5138 1.1 joerg Handles opcode 0x0f,0xa8
5139 1.1 joerg ****************************************************************************/
5140 1.1 joerg static void
5141 1.1 joerg x86emuOp2_push_GS(struct X86EMU *emu)
5142 1.1 joerg {
5143 1.1 joerg push_word(emu, emu->x86.R_GS);
5144 1.1 joerg }
5145 1.1 joerg /****************************************************************************
5146 1.1 joerg REMARKS:
5147 1.1 joerg Handles opcode 0x0f,0xa9
5148 1.1 joerg ****************************************************************************/
5149 1.1 joerg static void
5150 1.1 joerg x86emuOp2_pop_GS(struct X86EMU *emu)
5151 1.1 joerg {
5152 1.1 joerg emu->x86.R_GS = pop_word(emu);
5153 1.1 joerg }
5154 1.1 joerg /****************************************************************************
5155 1.1 joerg REMARKS:
5156 1.1 joerg Handles opcode 0x0f,0xab
5157 1.1 joerg ****************************************************************************/
5158 1.1 joerg static void
5159 1.1 joerg x86emuOp2_bts_R(struct X86EMU *emu)
5160 1.1 joerg {
5161 1.1 joerg common_bitstring(emu, 1);
5162 1.1 joerg }
5163 1.1 joerg /****************************************************************************
5164 1.1 joerg REMARKS:
5165 1.1 joerg Handles opcode 0x0f,0xac
5166 1.1 joerg ****************************************************************************/
5167 1.1 joerg static void
5168 1.1 joerg x86emuOp2_shrd_IMM(struct X86EMU *emu)
5169 1.1 joerg {
5170 1.1 joerg common_shift(emu, false, false);
5171 1.1 joerg }
5172 1.1 joerg /****************************************************************************
5173 1.1 joerg REMARKS:
5174 1.1 joerg Handles opcode 0x0f,0xad
5175 1.1 joerg ****************************************************************************/
5176 1.1 joerg static void
5177 1.1 joerg x86emuOp2_shrd_CL(struct X86EMU *emu)
5178 1.1 joerg {
5179 1.1 joerg common_shift(emu, false, true);
5180 1.1 joerg }
5181 1.1 joerg /****************************************************************************
5182 1.1 joerg REMARKS:
5183 1.1 joerg Handles opcode 0x0f,0xaf
5184 1.1 joerg ****************************************************************************/
5185 1.1 joerg static void
5186 1.1 joerg x86emuOp2_32_imul_R_RM(struct X86EMU *emu)
5187 1.1 joerg {
5188 1.1 joerg uint32_t *destreg, srcval;
5189 1.1 joerg uint64_t res;
5190 1.1 joerg
5191 1.1 joerg fetch_decode_modrm(emu);
5192 1.1 joerg destreg = decode_rh_long_register(emu);
5193 1.1 joerg srcval = decode_and_fetch_long(emu);
5194 1.1 joerg res = (int32_t) *destreg * (int32_t)srcval;
5195 1.1 joerg if (res > 0xffffffff) {
5196 1.1 joerg SET_FLAG(F_CF);
5197 1.1 joerg SET_FLAG(F_OF);
5198 1.1 joerg } else {
5199 1.1 joerg CLEAR_FLAG(F_CF);
5200 1.1 joerg CLEAR_FLAG(F_OF);
5201 1.1 joerg }
5202 1.1 joerg *destreg = (uint32_t) res;
5203 1.1 joerg }
5204 1.1 joerg
5205 1.1 joerg static void
5206 1.1 joerg x86emuOp2_16_imul_R_RM(struct X86EMU *emu)
5207 1.1 joerg {
5208 1.1 joerg uint16_t *destreg, srcval;
5209 1.1 joerg uint32_t res;
5210 1.1 joerg
5211 1.1 joerg fetch_decode_modrm(emu);
5212 1.1 joerg destreg = decode_rh_word_register(emu);
5213 1.1 joerg srcval = decode_and_fetch_word(emu);
5214 1.1 joerg res = (int16_t) * destreg * (int16_t)srcval;
5215 1.1 joerg if (res > 0xFFFF) {
5216 1.1 joerg SET_FLAG(F_CF);
5217 1.1 joerg SET_FLAG(F_OF);
5218 1.1 joerg } else {
5219 1.1 joerg CLEAR_FLAG(F_CF);
5220 1.1 joerg CLEAR_FLAG(F_OF);
5221 1.1 joerg }
5222 1.1 joerg *destreg = (uint16_t) res;
5223 1.1 joerg }
5224 1.1 joerg
5225 1.1 joerg static void
5226 1.1 joerg x86emuOp2_imul_R_RM(struct X86EMU *emu)
5227 1.1 joerg {
5228 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
5229 1.1 joerg x86emuOp2_32_imul_R_RM(emu);
5230 1.1 joerg else
5231 1.1 joerg x86emuOp2_16_imul_R_RM(emu);
5232 1.1 joerg }
5233 1.1 joerg /****************************************************************************
5234 1.1 joerg REMARKS:
5235 1.1 joerg Handles opcode 0x0f,0xb2
5236 1.1 joerg ****************************************************************************/
5237 1.1 joerg static void
5238 1.1 joerg x86emuOp2_lss_R_IMM(struct X86EMU *emu)
5239 1.1 joerg {
5240 1.1 joerg common_load_far_pointer(emu, &emu->x86.R_SS);
5241 1.1 joerg }
5242 1.1 joerg /****************************************************************************
5243 1.1 joerg REMARKS:
5244 1.1 joerg Handles opcode 0x0f,0xb3
5245 1.1 joerg ****************************************************************************/
5246 1.1 joerg static void
5247 1.1 joerg x86emuOp2_btr_R(struct X86EMU *emu)
5248 1.1 joerg {
5249 1.1 joerg common_bitstring(emu, 2);
5250 1.1 joerg }
5251 1.1 joerg /****************************************************************************
5252 1.1 joerg REMARKS:
5253 1.1 joerg Handles opcode 0x0f,0xb4
5254 1.1 joerg ****************************************************************************/
5255 1.1 joerg static void
5256 1.1 joerg x86emuOp2_lfs_R_IMM(struct X86EMU *emu)
5257 1.1 joerg {
5258 1.1 joerg common_load_far_pointer(emu, &emu->x86.R_FS);
5259 1.1 joerg }
5260 1.1 joerg /****************************************************************************
5261 1.1 joerg REMARKS:
5262 1.1 joerg Handles opcode 0x0f,0xb5
5263 1.1 joerg ****************************************************************************/
5264 1.1 joerg static void
5265 1.1 joerg x86emuOp2_lgs_R_IMM(struct X86EMU *emu)
5266 1.1 joerg {
5267 1.1 joerg common_load_far_pointer(emu, &emu->x86.R_GS);
5268 1.1 joerg }
5269 1.1 joerg /****************************************************************************
5270 1.1 joerg REMARKS:
5271 1.1 joerg Handles opcode 0x0f,0xb6
5272 1.1 joerg ****************************************************************************/
5273 1.1 joerg static void
5274 1.1 joerg x86emuOp2_32_movzx_byte_R_RM(struct X86EMU *emu)
5275 1.1 joerg {
5276 1.1 joerg uint32_t *destreg;
5277 1.1 joerg
5278 1.1 joerg fetch_decode_modrm(emu);
5279 1.1 joerg destreg = decode_rh_long_register(emu);
5280 1.1 joerg *destreg = decode_and_fetch_byte(emu);
5281 1.1 joerg }
5282 1.1 joerg
5283 1.1 joerg static void
5284 1.1 joerg x86emuOp2_16_movzx_byte_R_RM(struct X86EMU *emu)
5285 1.1 joerg {
5286 1.1 joerg uint16_t *destreg;
5287 1.1 joerg
5288 1.1 joerg fetch_decode_modrm(emu);
5289 1.1 joerg destreg = decode_rh_word_register(emu);
5290 1.1 joerg *destreg = decode_and_fetch_byte(emu);
5291 1.1 joerg }
5292 1.1 joerg
5293 1.1 joerg static void
5294 1.1 joerg x86emuOp2_movzx_byte_R_RM(struct X86EMU *emu)
5295 1.1 joerg {
5296 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
5297 1.1 joerg x86emuOp2_32_movzx_byte_R_RM(emu);
5298 1.1 joerg else
5299 1.1 joerg x86emuOp2_16_movzx_byte_R_RM(emu);
5300 1.1 joerg }
5301 1.1 joerg /****************************************************************************
5302 1.1 joerg REMARKS:
5303 1.1 joerg Handles opcode 0x0f,0xb7
5304 1.1 joerg ****************************************************************************/
5305 1.1 joerg static void
5306 1.1 joerg x86emuOp2_movzx_word_R_RM(struct X86EMU *emu)
5307 1.1 joerg {
5308 1.1 joerg uint32_t *destreg;
5309 1.1 joerg
5310 1.1 joerg fetch_decode_modrm(emu);
5311 1.1 joerg destreg = decode_rh_long_register(emu);
5312 1.1 joerg *destreg = decode_and_fetch_word(emu);
5313 1.1 joerg }
5314 1.1 joerg /****************************************************************************
5315 1.1 joerg REMARKS:
5316 1.1 joerg Handles opcode 0x0f,0xba
5317 1.1 joerg ****************************************************************************/
5318 1.1 joerg static void
5319 1.1 joerg x86emuOp2_32_btX_I(struct X86EMU *emu)
5320 1.1 joerg {
5321 1.1 joerg int bit;
5322 1.1 joerg uint32_t srcval, mask;
5323 1.1 joerg uint8_t shift;
5324 1.1 joerg
5325 1.1 joerg fetch_decode_modrm(emu);
5326 1.1 joerg if (emu->cur_rh < 4)
5327 1.1 joerg X86EMU_halt_sys(emu);
5328 1.1 joerg
5329 1.1 joerg srcval = decode_and_fetch_long_imm8(emu, &shift);
5330 1.1 joerg bit = shift & 0x1F;
5331 1.1 joerg mask = (0x1 << bit);
5332 1.1 joerg
5333 1.1 joerg switch (emu->cur_rh) {
5334 1.1 joerg case 5:
5335 1.1 joerg write_back_long(emu, srcval | mask);
5336 1.1 joerg break;
5337 1.1 joerg case 6:
5338 1.1 joerg write_back_long(emu, srcval & ~mask);
5339 1.1 joerg break;
5340 1.1 joerg case 7:
5341 1.1 joerg write_back_long(emu, srcval ^ mask);
5342 1.1 joerg break;
5343 1.1 joerg }
5344 1.1 joerg CONDITIONAL_SET_FLAG(srcval & mask, F_CF);
5345 1.1 joerg }
5346 1.1 joerg
5347 1.1 joerg static void
5348 1.1 joerg x86emuOp2_16_btX_I(struct X86EMU *emu)
5349 1.1 joerg {
5350 1.1 joerg int bit;
5351 1.1 joerg
5352 1.1 joerg uint16_t srcval, mask;
5353 1.1 joerg uint8_t shift;
5354 1.1 joerg
5355 1.1 joerg fetch_decode_modrm(emu);
5356 1.1 joerg if (emu->cur_rh < 4)
5357 1.1 joerg X86EMU_halt_sys(emu);
5358 1.1 joerg
5359 1.1 joerg srcval = decode_and_fetch_word_imm8(emu, &shift);
5360 1.1 joerg bit = shift & 0xF;
5361 1.1 joerg mask = (0x1 << bit);
5362 1.1 joerg switch (emu->cur_rh) {
5363 1.1 joerg case 5:
5364 1.1 joerg write_back_word(emu, srcval | mask);
5365 1.1 joerg break;
5366 1.1 joerg case 6:
5367 1.1 joerg write_back_word(emu, srcval & ~mask);
5368 1.1 joerg break;
5369 1.1 joerg case 7:
5370 1.1 joerg write_back_word(emu, srcval ^ mask);
5371 1.1 joerg break;
5372 1.1 joerg }
5373 1.1 joerg CONDITIONAL_SET_FLAG(srcval & mask, F_CF);
5374 1.1 joerg }
5375 1.1 joerg
5376 1.1 joerg static void
5377 1.1 joerg x86emuOp2_btX_I(struct X86EMU *emu)
5378 1.1 joerg {
5379 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
5380 1.1 joerg x86emuOp2_32_btX_I(emu);
5381 1.1 joerg else
5382 1.1 joerg x86emuOp2_16_btX_I(emu);
5383 1.1 joerg }
5384 1.1 joerg /****************************************************************************
5385 1.1 joerg REMARKS:
5386 1.1 joerg Handles opcode 0x0f,0xbb
5387 1.1 joerg ****************************************************************************/
5388 1.1 joerg static void
5389 1.1 joerg x86emuOp2_btc_R(struct X86EMU *emu)
5390 1.1 joerg {
5391 1.1 joerg common_bitstring(emu, 3);
5392 1.1 joerg }
5393 1.1 joerg /****************************************************************************
5394 1.1 joerg REMARKS:
5395 1.1 joerg Handles opcode 0x0f,0xbc
5396 1.1 joerg ****************************************************************************/
5397 1.1 joerg static void
5398 1.1 joerg x86emuOp2_bsf(struct X86EMU *emu)
5399 1.1 joerg {
5400 1.1 joerg common_bitsearch(emu, +1);
5401 1.1 joerg }
5402 1.1 joerg /****************************************************************************
5403 1.1 joerg REMARKS:
5404 1.1 joerg Handles opcode 0x0f,0xbd
5405 1.1 joerg ****************************************************************************/
5406 1.1 joerg static void
5407 1.1 joerg x86emuOp2_bsr(struct X86EMU *emu)
5408 1.1 joerg {
5409 1.1 joerg common_bitsearch(emu, -1);
5410 1.1 joerg }
5411 1.1 joerg /****************************************************************************
5412 1.1 joerg REMARKS:
5413 1.1 joerg Handles opcode 0x0f,0xbe
5414 1.1 joerg ****************************************************************************/
5415 1.1 joerg static void
5416 1.1 joerg x86emuOp2_32_movsx_byte_R_RM(struct X86EMU *emu)
5417 1.1 joerg {
5418 1.1 joerg uint32_t *destreg;
5419 1.1 joerg
5420 1.1 joerg destreg = decode_rh_long_register(emu);
5421 1.1 joerg *destreg = (int32_t)(int8_t)decode_and_fetch_byte(emu);
5422 1.1 joerg }
5423 1.1 joerg
5424 1.1 joerg static void
5425 1.1 joerg x86emuOp2_16_movsx_byte_R_RM(struct X86EMU *emu)
5426 1.1 joerg {
5427 1.1 joerg uint16_t *destreg;
5428 1.1 joerg
5429 1.1 joerg fetch_decode_modrm(emu);
5430 1.1 joerg destreg = decode_rh_word_register(emu);
5431 1.1 joerg *destreg = (int16_t)(int8_t)decode_and_fetch_byte(emu);
5432 1.1 joerg }
5433 1.1 joerg
5434 1.1 joerg static void
5435 1.1 joerg x86emuOp2_movsx_byte_R_RM(struct X86EMU *emu)
5436 1.1 joerg {
5437 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA)
5438 1.1 joerg x86emuOp2_32_movsx_byte_R_RM(emu);
5439 1.1 joerg else
5440 1.1 joerg x86emuOp2_16_movsx_byte_R_RM(emu);
5441 1.1 joerg }
5442 1.1 joerg /****************************************************************************
5443 1.1 joerg REMARKS:
5444 1.1 joerg Handles opcode 0x0f,0xbf
5445 1.1 joerg ****************************************************************************/
5446 1.1 joerg static void
5447 1.1 joerg x86emuOp2_movsx_word_R_RM(struct X86EMU *emu)
5448 1.1 joerg {
5449 1.1 joerg uint32_t *destreg;
5450 1.1 joerg
5451 1.1 joerg fetch_decode_modrm(emu);
5452 1.1 joerg destreg = decode_rh_long_register(emu);
5453 1.1 joerg *destreg = (int32_t)(int16_t)decode_and_fetch_word(emu);
5454 1.1 joerg }
5455 1.1 joerg
5456 1.1 joerg static void
5457 1.1 joerg X86EMU_exec_two_byte(struct X86EMU * emu)
5458 1.1 joerg {
5459 1.1 joerg uint8_t op2;
5460 1.1 joerg
5461 1.1 joerg op2 = fetch_byte_imm(emu);
5462 1.1 joerg
5463 1.1 joerg switch (op2) {
5464 1.1 joerg /* 0x00 Group F (ring 0 PM) */
5465 1.1 joerg /* 0x01 Group G (ring 0 PM) */
5466 1.1 joerg /* 0x02 lar (ring 0 PM) */
5467 1.1 joerg /* 0x03 lsl (ring 0 PM) */
5468 1.1 joerg /* 0x05 loadall (undocumented) */
5469 1.1 joerg /* 0x06 clts (ring 0 PM) */
5470 1.1 joerg /* 0x07 loadall (undocumented) */
5471 1.1 joerg /* 0x08 invd (ring 0 PM) */
5472 1.1 joerg /* 0x09 wbinvd (ring 0 PM) */
5473 1.1 joerg
5474 1.1 joerg /* 0x20 mov reg32(op2); break;creg (ring 0 PM) */
5475 1.1 joerg /* 0x21 mov reg32(op2); break;dreg (ring 0 PM) */
5476 1.1 joerg /* 0x22 mov creg(op2); break;reg32 (ring 0 PM) */
5477 1.1 joerg /* 0x23 mov dreg(op2); break;reg32 (ring 0 PM) */
5478 1.1 joerg /* 0x24 mov reg32(op2); break;treg (ring 0 PM) */
5479 1.1 joerg /* 0x26 mov treg(op2); break;reg32 (ring 0 PM) */
5480 1.1 joerg
5481 1.1 joerg case 0x31:
5482 1.1 joerg x86emuOp2_rdtsc(emu);
5483 1.1 joerg break;
5484 1.1 joerg
5485 1.1 joerg case 0x80:
5486 1.1 joerg common_jmp_long(emu, ACCESS_FLAG(F_OF));
5487 1.1 joerg break;
5488 1.1 joerg case 0x81:
5489 1.1 joerg common_jmp_long(emu, !ACCESS_FLAG(F_OF));
5490 1.1 joerg break;
5491 1.1 joerg case 0x82:
5492 1.1 joerg common_jmp_long(emu, ACCESS_FLAG(F_CF));
5493 1.1 joerg break;
5494 1.1 joerg case 0x83:
5495 1.1 joerg common_jmp_long(emu, !ACCESS_FLAG(F_CF));
5496 1.1 joerg break;
5497 1.1 joerg case 0x84:
5498 1.1 joerg common_jmp_long(emu, ACCESS_FLAG(F_ZF));
5499 1.1 joerg break;
5500 1.1 joerg case 0x85:
5501 1.1 joerg common_jmp_long(emu, !ACCESS_FLAG(F_ZF));
5502 1.1 joerg break;
5503 1.1 joerg case 0x86:
5504 1.1 joerg common_jmp_long(emu, ACCESS_FLAG(F_CF) || ACCESS_FLAG(F_ZF));
5505 1.1 joerg break;
5506 1.1 joerg case 0x87:
5507 1.1 joerg common_jmp_long(emu, !(ACCESS_FLAG(F_CF) || ACCESS_FLAG(F_ZF)));
5508 1.1 joerg break;
5509 1.1 joerg case 0x88:
5510 1.1 joerg common_jmp_long(emu, ACCESS_FLAG(F_SF));
5511 1.1 joerg break;
5512 1.1 joerg case 0x89:
5513 1.1 joerg common_jmp_long(emu, !ACCESS_FLAG(F_SF));
5514 1.1 joerg break;
5515 1.1 joerg case 0x8a:
5516 1.1 joerg common_jmp_long(emu, ACCESS_FLAG(F_PF));
5517 1.1 joerg break;
5518 1.1 joerg case 0x8b:
5519 1.1 joerg common_jmp_long(emu, !ACCESS_FLAG(F_PF));
5520 1.1 joerg break;
5521 1.1 joerg case 0x8c:
5522 1.1 joerg common_jmp_long(emu, xorl(ACCESS_FLAG(F_SF), ACCESS_FLAG(F_OF)));
5523 1.1 joerg break;
5524 1.1 joerg case 0x8d:
5525 1.1 joerg common_jmp_long(emu, !(xorl(ACCESS_FLAG(F_SF), ACCESS_FLAG(F_OF))));
5526 1.1 joerg break;
5527 1.1 joerg case 0x8e:
5528 1.1 joerg common_jmp_long(emu,
5529 1.1 joerg (xorl(ACCESS_FLAG(F_SF), ACCESS_FLAG(F_OF)) || ACCESS_FLAG(F_ZF)));
5530 1.1 joerg break;
5531 1.1 joerg case 0x8f:
5532 1.1 joerg common_jmp_long(emu,
5533 1.1 joerg !(xorl(ACCESS_FLAG(F_SF), ACCESS_FLAG(F_OF)) || ACCESS_FLAG(F_ZF)));
5534 1.1 joerg break;
5535 1.1 joerg
5536 1.1 joerg case 0x90:
5537 1.1 joerg common_set_byte(emu, ACCESS_FLAG(F_OF));
5538 1.1 joerg break;
5539 1.1 joerg case 0x91:
5540 1.1 joerg common_set_byte(emu, !ACCESS_FLAG(F_OF));
5541 1.1 joerg break;
5542 1.1 joerg case 0x92:
5543 1.1 joerg common_set_byte(emu, ACCESS_FLAG(F_CF));
5544 1.1 joerg break;
5545 1.1 joerg case 0x93:
5546 1.1 joerg common_set_byte(emu, !ACCESS_FLAG(F_CF));
5547 1.1 joerg break;
5548 1.1 joerg case 0x94:
5549 1.1 joerg common_set_byte(emu, ACCESS_FLAG(F_ZF));
5550 1.1 joerg break;
5551 1.1 joerg case 0x95:
5552 1.1 joerg common_set_byte(emu, !ACCESS_FLAG(F_ZF));
5553 1.1 joerg break;
5554 1.1 joerg case 0x96:
5555 1.1 joerg common_set_byte(emu, ACCESS_FLAG(F_CF) || ACCESS_FLAG(F_ZF));
5556 1.1 joerg break;
5557 1.1 joerg case 0x97:
5558 1.1 joerg common_set_byte(emu, !(ACCESS_FLAG(F_CF) || ACCESS_FLAG(F_ZF)));
5559 1.1 joerg break;
5560 1.1 joerg case 0x98:
5561 1.1 joerg common_set_byte(emu, ACCESS_FLAG(F_SF));
5562 1.1 joerg break;
5563 1.1 joerg case 0x99:
5564 1.1 joerg common_set_byte(emu, !ACCESS_FLAG(F_SF));
5565 1.1 joerg break;
5566 1.1 joerg case 0x9a:
5567 1.1 joerg common_set_byte(emu, ACCESS_FLAG(F_PF));
5568 1.1 joerg break;
5569 1.1 joerg case 0x9b:
5570 1.1 joerg common_set_byte(emu, !ACCESS_FLAG(F_PF));
5571 1.1 joerg break;
5572 1.1 joerg case 0x9c:
5573 1.1 joerg common_set_byte(emu, xorl(ACCESS_FLAG(F_SF), ACCESS_FLAG(F_OF)));
5574 1.1 joerg break;
5575 1.1 joerg case 0x9d:
5576 1.1 joerg common_set_byte(emu, xorl(ACCESS_FLAG(F_SF), ACCESS_FLAG(F_OF)));
5577 1.1 joerg break;
5578 1.1 joerg case 0x9e:
5579 1.1 joerg common_set_byte(emu,
5580 1.1 joerg (xorl(ACCESS_FLAG(F_SF), ACCESS_FLAG(F_OF)) ||
5581 1.1 joerg ACCESS_FLAG(F_ZF)));
5582 1.1 joerg break;
5583 1.1 joerg case 0x9f:
5584 1.1 joerg common_set_byte(emu,
5585 1.1 joerg !(xorl(ACCESS_FLAG(F_SF), ACCESS_FLAG(F_OF)) ||
5586 1.1 joerg ACCESS_FLAG(F_ZF)));
5587 1.1 joerg break;
5588 1.1 joerg
5589 1.1 joerg case 0xa0:
5590 1.1 joerg x86emuOp2_push_FS(emu);
5591 1.1 joerg break;
5592 1.1 joerg case 0xa1:
5593 1.1 joerg x86emuOp2_pop_FS(emu);
5594 1.1 joerg break;
5595 1.4 jmcneill case 0xa2:
5596 1.4 jmcneill x86emuOp2_cpuid(emu);
5597 1.4 jmcneill break;
5598 1.1 joerg case 0xa3:
5599 1.1 joerg x86emuOp2_bt_R(emu);
5600 1.1 joerg break;
5601 1.1 joerg case 0xa4:
5602 1.1 joerg x86emuOp2_shld_IMM(emu);
5603 1.1 joerg break;
5604 1.1 joerg case 0xa5:
5605 1.1 joerg x86emuOp2_shld_CL(emu);
5606 1.1 joerg break;
5607 1.1 joerg case 0xa8:
5608 1.1 joerg x86emuOp2_push_GS(emu);
5609 1.1 joerg break;
5610 1.1 joerg case 0xa9:
5611 1.1 joerg x86emuOp2_pop_GS(emu);
5612 1.1 joerg break;
5613 1.1 joerg case 0xab:
5614 1.1 joerg x86emuOp2_bts_R(emu);
5615 1.1 joerg break;
5616 1.1 joerg case 0xac:
5617 1.1 joerg x86emuOp2_shrd_IMM(emu);
5618 1.1 joerg break;
5619 1.1 joerg case 0xad:
5620 1.1 joerg x86emuOp2_shrd_CL(emu);
5621 1.1 joerg break;
5622 1.1 joerg case 0xaf:
5623 1.1 joerg x86emuOp2_imul_R_RM(emu);
5624 1.1 joerg break;
5625 1.1 joerg
5626 1.1 joerg /* 0xb0 TODO: cmpxchg */
5627 1.1 joerg /* 0xb1 TODO: cmpxchg */
5628 1.1 joerg case 0xb2:
5629 1.1 joerg x86emuOp2_lss_R_IMM(emu);
5630 1.1 joerg break;
5631 1.1 joerg case 0xb3:
5632 1.1 joerg x86emuOp2_btr_R(emu);
5633 1.1 joerg break;
5634 1.1 joerg case 0xb4:
5635 1.1 joerg x86emuOp2_lfs_R_IMM(emu);
5636 1.1 joerg break;
5637 1.1 joerg case 0xb5:
5638 1.1 joerg x86emuOp2_lgs_R_IMM(emu);
5639 1.1 joerg break;
5640 1.1 joerg case 0xb6:
5641 1.1 joerg x86emuOp2_movzx_byte_R_RM(emu);
5642 1.1 joerg break;
5643 1.1 joerg case 0xb7:
5644 1.1 joerg x86emuOp2_movzx_word_R_RM(emu);
5645 1.1 joerg break;
5646 1.1 joerg case 0xba:
5647 1.1 joerg x86emuOp2_btX_I(emu);
5648 1.1 joerg break;
5649 1.1 joerg case 0xbb:
5650 1.1 joerg x86emuOp2_btc_R(emu);
5651 1.1 joerg break;
5652 1.1 joerg case 0xbc:
5653 1.1 joerg x86emuOp2_bsf(emu);
5654 1.1 joerg break;
5655 1.1 joerg case 0xbd:
5656 1.1 joerg x86emuOp2_bsr(emu);
5657 1.1 joerg break;
5658 1.1 joerg case 0xbe:
5659 1.1 joerg x86emuOp2_movsx_byte_R_RM(emu);
5660 1.1 joerg break;
5661 1.1 joerg case 0xbf:
5662 1.1 joerg x86emuOp2_movsx_word_R_RM(emu);
5663 1.1 joerg break;
5664 1.1 joerg
5665 1.1 joerg /* 0xc0 TODO: xadd */
5666 1.1 joerg /* 0xc1 TODO: xadd */
5667 1.1 joerg /* 0xc8 TODO: bswap */
5668 1.1 joerg /* 0xc9 TODO: bswap */
5669 1.1 joerg /* 0xca TODO: bswap */
5670 1.1 joerg /* 0xcb TODO: bswap */
5671 1.1 joerg /* 0xcc TODO: bswap */
5672 1.1 joerg /* 0xcd TODO: bswap */
5673 1.1 joerg /* 0xce TODO: bswap */
5674 1.1 joerg /* 0xcf TODO: bswap */
5675 1.1 joerg
5676 1.1 joerg default:
5677 1.1 joerg X86EMU_halt_sys(emu);
5678 1.1 joerg break;
5679 1.1 joerg }
5680 1.1 joerg }
5681 1.1 joerg
5682 1.1 joerg /*
5683 1.1 joerg * Carry Chain Calculation
5684 1.1 joerg *
5685 1.1 joerg * This represents a somewhat expensive calculation which is
5686 1.1 joerg * apparently required to emulate the setting of the OF and AF flag.
5687 1.1 joerg * The latter is not so important, but the former is. The overflow
5688 1.1 joerg * flag is the XOR of the top two bits of the carry chain for an
5689 1.1 joerg * addition (similar for subtraction). Since we do not want to
5690 1.1 joerg * simulate the addition in a bitwise manner, we try to calculate the
5691 1.1 joerg * carry chain given the two operands and the result.
5692 1.1 joerg *
5693 1.1 joerg * So, given the following table, which represents the addition of two
5694 1.1 joerg * bits, we can derive a formula for the carry chain.
5695 1.1 joerg *
5696 1.1 joerg * a b cin r cout
5697 1.1 joerg * 0 0 0 0 0
5698 1.1 joerg * 0 0 1 1 0
5699 1.1 joerg * 0 1 0 1 0
5700 1.1 joerg * 0 1 1 0 1
5701 1.1 joerg * 1 0 0 1 0
5702 1.1 joerg * 1 0 1 0 1
5703 1.1 joerg * 1 1 0 0 1
5704 1.1 joerg * 1 1 1 1 1
5705 1.1 joerg *
5706 1.1 joerg * Construction of table for cout:
5707 1.1 joerg *
5708 1.1 joerg * ab
5709 1.1 joerg * r \ 00 01 11 10
5710 1.1 joerg * |------------------
5711 1.1 joerg * 0 | 0 1 1 1
5712 1.1 joerg * 1 | 0 0 1 0
5713 1.1 joerg *
5714 1.1 joerg * By inspection, one gets: cc = ab + r'(a + b)
5715 1.1 joerg *
5716 1.1 joerg * That represents alot of operations, but NO CHOICE....
5717 1.1 joerg *
5718 1.1 joerg * Borrow Chain Calculation.
5719 1.1 joerg *
5720 1.1 joerg * The following table represents the subtraction of two bits, from
5721 1.1 joerg * which we can derive a formula for the borrow chain.
5722 1.1 joerg *
5723 1.1 joerg * a b bin r bout
5724 1.1 joerg * 0 0 0 0 0
5725 1.1 joerg * 0 0 1 1 1
5726 1.1 joerg * 0 1 0 1 1
5727 1.1 joerg * 0 1 1 0 1
5728 1.1 joerg * 1 0 0 1 0
5729 1.1 joerg * 1 0 1 0 0
5730 1.1 joerg * 1 1 0 0 0
5731 1.1 joerg * 1 1 1 1 1
5732 1.1 joerg *
5733 1.1 joerg * Construction of table for cout:
5734 1.1 joerg *
5735 1.1 joerg * ab
5736 1.1 joerg * r \ 00 01 11 10
5737 1.1 joerg * |------------------
5738 1.1 joerg * 0 | 0 1 0 0
5739 1.1 joerg * 1 | 1 1 1 0
5740 1.1 joerg *
5741 1.1 joerg * By inspection, one gets: bc = a'b + r(a' + b)
5742 1.1 joerg *
5743 1.1 joerg ****************************************************************************/
5744 1.1 joerg
5745 1.1 joerg /*------------------------- Global Variables ------------------------------*/
5746 1.1 joerg
5747 1.1 joerg static uint32_t x86emu_parity_tab[8] =
5748 1.1 joerg {
5749 1.1 joerg 0x96696996,
5750 1.1 joerg 0x69969669,
5751 1.1 joerg 0x69969669,
5752 1.1 joerg 0x96696996,
5753 1.1 joerg 0x69969669,
5754 1.1 joerg 0x96696996,
5755 1.1 joerg 0x96696996,
5756 1.1 joerg 0x69969669,
5757 1.1 joerg };
5758 1.1 joerg #define PARITY(x) (((x86emu_parity_tab[(x) / 32] >> ((x) % 32)) & 1) == 0)
5759 1.1 joerg #define XOR2(x) (((x) ^ ((x)>>1)) & 0x1)
5760 1.1 joerg
5761 1.1 joerg /****************************************************************************
5762 1.1 joerg REMARKS:
5763 1.1 joerg Implements the AAA instruction and side effects.
5764 1.1 joerg ****************************************************************************/
5765 1.1 joerg static uint16_t
5766 1.1 joerg aaa_word(struct X86EMU *emu, uint16_t d)
5767 1.1 joerg {
5768 1.1 joerg uint16_t res;
5769 1.1 joerg if ((d & 0xf) > 0x9 || ACCESS_FLAG(F_AF)) {
5770 1.1 joerg d += 0x6;
5771 1.1 joerg d += 0x100;
5772 1.1 joerg SET_FLAG(F_AF);
5773 1.1 joerg SET_FLAG(F_CF);
5774 1.1 joerg } else {
5775 1.1 joerg CLEAR_FLAG(F_CF);
5776 1.1 joerg CLEAR_FLAG(F_AF);
5777 1.1 joerg }
5778 1.1 joerg res = (uint16_t) (d & 0xFF0F);
5779 1.1 joerg CLEAR_FLAG(F_SF);
5780 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
5781 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
5782 1.1 joerg return res;
5783 1.1 joerg }
5784 1.1 joerg /****************************************************************************
5785 1.1 joerg REMARKS:
5786 1.1 joerg Implements the AAA instruction and side effects.
5787 1.1 joerg ****************************************************************************/
5788 1.1 joerg static uint16_t
5789 1.1 joerg aas_word(struct X86EMU *emu, uint16_t d)
5790 1.1 joerg {
5791 1.1 joerg uint16_t res;
5792 1.1 joerg if ((d & 0xf) > 0x9 || ACCESS_FLAG(F_AF)) {
5793 1.1 joerg d -= 0x6;
5794 1.1 joerg d -= 0x100;
5795 1.1 joerg SET_FLAG(F_AF);
5796 1.1 joerg SET_FLAG(F_CF);
5797 1.1 joerg } else {
5798 1.1 joerg CLEAR_FLAG(F_CF);
5799 1.1 joerg CLEAR_FLAG(F_AF);
5800 1.1 joerg }
5801 1.1 joerg res = (uint16_t) (d & 0xFF0F);
5802 1.1 joerg CLEAR_FLAG(F_SF);
5803 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
5804 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
5805 1.1 joerg return res;
5806 1.1 joerg }
5807 1.1 joerg /****************************************************************************
5808 1.1 joerg REMARKS:
5809 1.1 joerg Implements the AAD instruction and side effects.
5810 1.1 joerg ****************************************************************************/
5811 1.1 joerg static uint16_t
5812 1.1 joerg aad_word(struct X86EMU *emu, uint16_t d)
5813 1.1 joerg {
5814 1.1 joerg uint16_t l;
5815 1.1 joerg uint8_t hb, lb;
5816 1.1 joerg
5817 1.1 joerg hb = (uint8_t) ((d >> 8) & 0xff);
5818 1.1 joerg lb = (uint8_t) ((d & 0xff));
5819 1.1 joerg l = (uint16_t) ((lb + 10 * hb) & 0xFF);
5820 1.1 joerg
5821 1.1 joerg CLEAR_FLAG(F_CF);
5822 1.1 joerg CLEAR_FLAG(F_AF);
5823 1.1 joerg CLEAR_FLAG(F_OF);
5824 1.1 joerg CONDITIONAL_SET_FLAG(l & 0x80, F_SF);
5825 1.1 joerg CONDITIONAL_SET_FLAG(l == 0, F_ZF);
5826 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(l & 0xff), F_PF);
5827 1.1 joerg return l;
5828 1.1 joerg }
5829 1.1 joerg /****************************************************************************
5830 1.1 joerg REMARKS:
5831 1.1 joerg Implements the AAM instruction and side effects.
5832 1.1 joerg ****************************************************************************/
5833 1.1 joerg static uint16_t
5834 1.1 joerg aam_word(struct X86EMU *emu, uint8_t d)
5835 1.1 joerg {
5836 1.1 joerg uint16_t h, l;
5837 1.1 joerg
5838 1.1 joerg h = (uint16_t) (d / 10);
5839 1.1 joerg l = (uint16_t) (d % 10);
5840 1.1 joerg l |= (uint16_t) (h << 8);
5841 1.1 joerg
5842 1.1 joerg CLEAR_FLAG(F_CF);
5843 1.1 joerg CLEAR_FLAG(F_AF);
5844 1.1 joerg CLEAR_FLAG(F_OF);
5845 1.1 joerg CONDITIONAL_SET_FLAG(l & 0x80, F_SF);
5846 1.1 joerg CONDITIONAL_SET_FLAG(l == 0, F_ZF);
5847 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(l & 0xff), F_PF);
5848 1.1 joerg return l;
5849 1.1 joerg }
5850 1.1 joerg /****************************************************************************
5851 1.1 joerg REMARKS:
5852 1.1 joerg Implements the ADC instruction and side effects.
5853 1.1 joerg ****************************************************************************/
5854 1.1 joerg static uint8_t
5855 1.1 joerg adc_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
5856 1.1 joerg {
5857 1.1 joerg uint32_t res; /* all operands in native machine order */
5858 1.1 joerg uint32_t cc;
5859 1.1 joerg
5860 1.1 joerg if (ACCESS_FLAG(F_CF))
5861 1.1 joerg res = 1 + d + s;
5862 1.1 joerg else
5863 1.1 joerg res = d + s;
5864 1.1 joerg
5865 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x100, F_CF);
5866 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
5867 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
5868 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
5869 1.1 joerg
5870 1.1 joerg /* calculate the carry chain SEE NOTE AT TOP. */
5871 1.1 joerg cc = (s & d) | ((~res) & (s | d));
5872 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(cc >> 6), F_OF);
5873 1.1 joerg CONDITIONAL_SET_FLAG(cc & 0x8, F_AF);
5874 1.1 joerg return (uint8_t) res;
5875 1.1 joerg }
5876 1.1 joerg /****************************************************************************
5877 1.1 joerg REMARKS:
5878 1.1 joerg Implements the ADC instruction and side effects.
5879 1.1 joerg ****************************************************************************/
5880 1.1 joerg static uint16_t
5881 1.1 joerg adc_word(struct X86EMU *emu, uint16_t d, uint16_t s)
5882 1.1 joerg {
5883 1.1 joerg uint32_t res; /* all operands in native machine order */
5884 1.1 joerg uint32_t cc;
5885 1.1 joerg
5886 1.1 joerg if (ACCESS_FLAG(F_CF))
5887 1.1 joerg res = 1 + d + s;
5888 1.1 joerg else
5889 1.1 joerg res = d + s;
5890 1.1 joerg
5891 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x10000, F_CF);
5892 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
5893 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
5894 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
5895 1.1 joerg
5896 1.1 joerg /* calculate the carry chain SEE NOTE AT TOP. */
5897 1.1 joerg cc = (s & d) | ((~res) & (s | d));
5898 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(cc >> 14), F_OF);
5899 1.1 joerg CONDITIONAL_SET_FLAG(cc & 0x8, F_AF);
5900 1.1 joerg return (uint16_t) res;
5901 1.1 joerg }
5902 1.1 joerg /****************************************************************************
5903 1.1 joerg REMARKS:
5904 1.1 joerg Implements the ADC instruction and side effects.
5905 1.1 joerg ****************************************************************************/
5906 1.1 joerg static uint32_t
5907 1.1 joerg adc_long(struct X86EMU *emu, uint32_t d, uint32_t s)
5908 1.1 joerg {
5909 1.1 joerg uint32_t lo; /* all operands in native machine order */
5910 1.1 joerg uint32_t hi;
5911 1.1 joerg uint32_t res;
5912 1.1 joerg uint32_t cc;
5913 1.1 joerg
5914 1.1 joerg if (ACCESS_FLAG(F_CF)) {
5915 1.1 joerg lo = 1 + (d & 0xFFFF) + (s & 0xFFFF);
5916 1.1 joerg res = 1 + d + s;
5917 1.1 joerg } else {
5918 1.1 joerg lo = (d & 0xFFFF) + (s & 0xFFFF);
5919 1.1 joerg res = d + s;
5920 1.1 joerg }
5921 1.1 joerg hi = (lo >> 16) + (d >> 16) + (s >> 16);
5922 1.1 joerg
5923 1.1 joerg CONDITIONAL_SET_FLAG(hi & 0x10000, F_CF);
5924 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
5925 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
5926 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
5927 1.1 joerg
5928 1.1 joerg /* calculate the carry chain SEE NOTE AT TOP. */
5929 1.1 joerg cc = (s & d) | ((~res) & (s | d));
5930 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(cc >> 30), F_OF);
5931 1.1 joerg CONDITIONAL_SET_FLAG(cc & 0x8, F_AF);
5932 1.1 joerg return res;
5933 1.1 joerg }
5934 1.1 joerg /****************************************************************************
5935 1.1 joerg REMARKS:
5936 1.1 joerg Implements the ADD instruction and side effects.
5937 1.1 joerg ****************************************************************************/
5938 1.1 joerg static uint8_t
5939 1.1 joerg add_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
5940 1.1 joerg {
5941 1.1 joerg uint32_t res; /* all operands in native machine order */
5942 1.1 joerg uint32_t cc;
5943 1.1 joerg
5944 1.1 joerg res = d + s;
5945 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x100, F_CF);
5946 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
5947 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
5948 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
5949 1.1 joerg
5950 1.1 joerg /* calculate the carry chain SEE NOTE AT TOP. */
5951 1.1 joerg cc = (s & d) | ((~res) & (s | d));
5952 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(cc >> 6), F_OF);
5953 1.1 joerg CONDITIONAL_SET_FLAG(cc & 0x8, F_AF);
5954 1.1 joerg return (uint8_t) res;
5955 1.1 joerg }
5956 1.1 joerg /****************************************************************************
5957 1.1 joerg REMARKS:
5958 1.1 joerg Implements the ADD instruction and side effects.
5959 1.1 joerg ****************************************************************************/
5960 1.1 joerg static uint16_t
5961 1.1 joerg add_word(struct X86EMU *emu, uint16_t d, uint16_t s)
5962 1.1 joerg {
5963 1.1 joerg uint32_t res; /* all operands in native machine order */
5964 1.1 joerg uint32_t cc;
5965 1.1 joerg
5966 1.1 joerg res = d + s;
5967 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x10000, F_CF);
5968 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
5969 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
5970 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
5971 1.1 joerg
5972 1.1 joerg /* calculate the carry chain SEE NOTE AT TOP. */
5973 1.1 joerg cc = (s & d) | ((~res) & (s | d));
5974 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(cc >> 14), F_OF);
5975 1.1 joerg CONDITIONAL_SET_FLAG(cc & 0x8, F_AF);
5976 1.1 joerg return (uint16_t) res;
5977 1.1 joerg }
5978 1.1 joerg /****************************************************************************
5979 1.1 joerg REMARKS:
5980 1.1 joerg Implements the ADD instruction and side effects.
5981 1.1 joerg ****************************************************************************/
5982 1.1 joerg static uint32_t
5983 1.1 joerg add_long(struct X86EMU *emu, uint32_t d, uint32_t s)
5984 1.1 joerg {
5985 1.1 joerg uint32_t lo; /* all operands in native machine order */
5986 1.1 joerg uint32_t hi;
5987 1.1 joerg uint32_t res;
5988 1.1 joerg uint32_t cc;
5989 1.1 joerg
5990 1.1 joerg lo = (d & 0xFFFF) + (s & 0xFFFF);
5991 1.1 joerg res = d + s;
5992 1.1 joerg hi = (lo >> 16) + (d >> 16) + (s >> 16);
5993 1.1 joerg
5994 1.1 joerg CONDITIONAL_SET_FLAG(hi & 0x10000, F_CF);
5995 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
5996 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
5997 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
5998 1.1 joerg
5999 1.1 joerg /* calculate the carry chain SEE NOTE AT TOP. */
6000 1.1 joerg cc = (s & d) | ((~res) & (s | d));
6001 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(cc >> 30), F_OF);
6002 1.1 joerg CONDITIONAL_SET_FLAG(cc & 0x8, F_AF);
6003 1.1 joerg
6004 1.1 joerg return res;
6005 1.1 joerg }
6006 1.1 joerg /****************************************************************************
6007 1.1 joerg REMARKS:
6008 1.1 joerg Implements the AND instruction and side effects.
6009 1.1 joerg ****************************************************************************/
6010 1.1 joerg static uint8_t
6011 1.1 joerg and_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
6012 1.1 joerg {
6013 1.1 joerg uint8_t res; /* all operands in native machine order */
6014 1.1 joerg
6015 1.1 joerg res = d & s;
6016 1.1 joerg
6017 1.1 joerg /* set the flags */
6018 1.1 joerg CLEAR_FLAG(F_OF);
6019 1.1 joerg CLEAR_FLAG(F_CF);
6020 1.1 joerg CLEAR_FLAG(F_AF);
6021 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
6022 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
6023 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res), F_PF);
6024 1.1 joerg return res;
6025 1.1 joerg }
6026 1.1 joerg /****************************************************************************
6027 1.1 joerg REMARKS:
6028 1.1 joerg Implements the AND instruction and side effects.
6029 1.1 joerg ****************************************************************************/
6030 1.1 joerg static uint16_t
6031 1.1 joerg and_word(struct X86EMU *emu, uint16_t d, uint16_t s)
6032 1.1 joerg {
6033 1.1 joerg uint16_t res; /* all operands in native machine order */
6034 1.1 joerg
6035 1.1 joerg res = d & s;
6036 1.1 joerg
6037 1.1 joerg /* set the flags */
6038 1.1 joerg CLEAR_FLAG(F_OF);
6039 1.1 joerg CLEAR_FLAG(F_CF);
6040 1.1 joerg CLEAR_FLAG(F_AF);
6041 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
6042 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
6043 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6044 1.1 joerg return res;
6045 1.1 joerg }
6046 1.1 joerg /****************************************************************************
6047 1.1 joerg REMARKS:
6048 1.1 joerg Implements the AND instruction and side effects.
6049 1.1 joerg ****************************************************************************/
6050 1.1 joerg static uint32_t
6051 1.1 joerg and_long(struct X86EMU *emu, uint32_t d, uint32_t s)
6052 1.1 joerg {
6053 1.1 joerg uint32_t res; /* all operands in native machine order */
6054 1.1 joerg
6055 1.1 joerg res = d & s;
6056 1.1 joerg
6057 1.1 joerg /* set the flags */
6058 1.1 joerg CLEAR_FLAG(F_OF);
6059 1.1 joerg CLEAR_FLAG(F_CF);
6060 1.1 joerg CLEAR_FLAG(F_AF);
6061 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
6062 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
6063 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6064 1.1 joerg return res;
6065 1.1 joerg }
6066 1.1 joerg /****************************************************************************
6067 1.1 joerg REMARKS:
6068 1.1 joerg Implements the CMP instruction and side effects.
6069 1.1 joerg ****************************************************************************/
6070 1.1 joerg static uint8_t
6071 1.1 joerg cmp_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
6072 1.1 joerg {
6073 1.1 joerg uint32_t res; /* all operands in native machine order */
6074 1.1 joerg uint32_t bc;
6075 1.1 joerg
6076 1.1 joerg res = d - s;
6077 1.1 joerg CLEAR_FLAG(F_CF);
6078 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
6079 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
6080 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6081 1.1 joerg
6082 1.1 joerg /* calculate the borrow chain. See note at top */
6083 1.1 joerg bc = (res & (~d | s)) | (~d & s);
6084 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x80, F_CF);
6085 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 6), F_OF);
6086 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
6087 1.1 joerg return d;
6088 1.1 joerg }
6089 1.1 joerg
6090 1.1 joerg static void
6091 1.1 joerg cmp_byte_no_return(struct X86EMU *emu, uint8_t d, uint8_t s)
6092 1.1 joerg {
6093 1.1 joerg cmp_byte(emu, d, s);
6094 1.1 joerg }
6095 1.1 joerg /****************************************************************************
6096 1.1 joerg REMARKS:
6097 1.1 joerg Implements the CMP instruction and side effects.
6098 1.1 joerg ****************************************************************************/
6099 1.1 joerg static uint16_t
6100 1.1 joerg cmp_word(struct X86EMU *emu, uint16_t d, uint16_t s)
6101 1.1 joerg {
6102 1.1 joerg uint32_t res; /* all operands in native machine order */
6103 1.1 joerg uint32_t bc;
6104 1.1 joerg
6105 1.1 joerg res = d - s;
6106 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
6107 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
6108 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6109 1.1 joerg
6110 1.1 joerg /* calculate the borrow chain. See note at top */
6111 1.1 joerg bc = (res & (~d | s)) | (~d & s);
6112 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8000, F_CF);
6113 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 14), F_OF);
6114 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
6115 1.1 joerg return d;
6116 1.1 joerg }
6117 1.1 joerg
6118 1.1 joerg static void
6119 1.1 joerg cmp_word_no_return(struct X86EMU *emu, uint16_t d, uint16_t s)
6120 1.1 joerg {
6121 1.1 joerg cmp_word(emu, d, s);
6122 1.1 joerg }
6123 1.1 joerg /****************************************************************************
6124 1.1 joerg REMARKS:
6125 1.1 joerg Implements the CMP instruction and side effects.
6126 1.1 joerg ****************************************************************************/
6127 1.1 joerg static uint32_t
6128 1.1 joerg cmp_long(struct X86EMU *emu, uint32_t d, uint32_t s)
6129 1.1 joerg {
6130 1.1 joerg uint32_t res; /* all operands in native machine order */
6131 1.1 joerg uint32_t bc;
6132 1.1 joerg
6133 1.1 joerg res = d - s;
6134 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
6135 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
6136 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6137 1.1 joerg
6138 1.1 joerg /* calculate the borrow chain. See note at top */
6139 1.1 joerg bc = (res & (~d | s)) | (~d & s);
6140 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x80000000, F_CF);
6141 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 30), F_OF);
6142 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
6143 1.1 joerg return d;
6144 1.1 joerg }
6145 1.1 joerg
6146 1.1 joerg static void
6147 1.1 joerg cmp_long_no_return(struct X86EMU *emu, uint32_t d, uint32_t s)
6148 1.1 joerg {
6149 1.1 joerg cmp_long(emu, d, s);
6150 1.1 joerg }
6151 1.1 joerg /****************************************************************************
6152 1.1 joerg REMARKS:
6153 1.1 joerg Implements the DAA instruction and side effects.
6154 1.1 joerg ****************************************************************************/
6155 1.1 joerg static uint8_t
6156 1.1 joerg daa_byte(struct X86EMU *emu, uint8_t d)
6157 1.1 joerg {
6158 1.1 joerg uint32_t res = d;
6159 1.1 joerg if ((d & 0xf) > 9 || ACCESS_FLAG(F_AF)) {
6160 1.1 joerg res += 6;
6161 1.1 joerg SET_FLAG(F_AF);
6162 1.1 joerg }
6163 1.1 joerg if (res > 0x9F || ACCESS_FLAG(F_CF)) {
6164 1.1 joerg res += 0x60;
6165 1.1 joerg SET_FLAG(F_CF);
6166 1.1 joerg }
6167 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
6168 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xFF) == 0, F_ZF);
6169 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6170 1.1 joerg return (uint8_t) res;
6171 1.1 joerg }
6172 1.1 joerg /****************************************************************************
6173 1.1 joerg REMARKS:
6174 1.1 joerg Implements the DAS instruction and side effects.
6175 1.1 joerg ****************************************************************************/
6176 1.1 joerg static uint8_t
6177 1.1 joerg das_byte(struct X86EMU *emu, uint8_t d)
6178 1.1 joerg {
6179 1.1 joerg if ((d & 0xf) > 9 || ACCESS_FLAG(F_AF)) {
6180 1.1 joerg d -= 6;
6181 1.1 joerg SET_FLAG(F_AF);
6182 1.1 joerg }
6183 1.1 joerg if (d > 0x9F || ACCESS_FLAG(F_CF)) {
6184 1.1 joerg d -= 0x60;
6185 1.1 joerg SET_FLAG(F_CF);
6186 1.1 joerg }
6187 1.1 joerg CONDITIONAL_SET_FLAG(d & 0x80, F_SF);
6188 1.1 joerg CONDITIONAL_SET_FLAG(d == 0, F_ZF);
6189 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(d & 0xff), F_PF);
6190 1.1 joerg return d;
6191 1.1 joerg }
6192 1.1 joerg /****************************************************************************
6193 1.1 joerg REMARKS:
6194 1.1 joerg Implements the DEC instruction and side effects.
6195 1.1 joerg ****************************************************************************/
6196 1.1 joerg static uint8_t
6197 1.1 joerg dec_byte(struct X86EMU *emu, uint8_t d)
6198 1.1 joerg {
6199 1.1 joerg uint32_t res; /* all operands in native machine order */
6200 1.1 joerg uint32_t bc;
6201 1.1 joerg
6202 1.1 joerg res = d - 1;
6203 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
6204 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
6205 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6206 1.1 joerg
6207 1.1 joerg /* calculate the borrow chain. See note at top */
6208 1.1 joerg /* based on sub_byte, uses s==1. */
6209 1.1 joerg bc = (res & (~d | 1)) | (~d & 1);
6210 1.1 joerg /* carry flag unchanged */
6211 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 6), F_OF);
6212 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
6213 1.1 joerg return (uint8_t) res;
6214 1.1 joerg }
6215 1.1 joerg /****************************************************************************
6216 1.1 joerg REMARKS:
6217 1.1 joerg Implements the DEC instruction and side effects.
6218 1.1 joerg ****************************************************************************/
6219 1.1 joerg static uint16_t
6220 1.1 joerg dec_word(struct X86EMU *emu, uint16_t d)
6221 1.1 joerg {
6222 1.1 joerg uint32_t res; /* all operands in native machine order */
6223 1.1 joerg uint32_t bc;
6224 1.1 joerg
6225 1.1 joerg res = d - 1;
6226 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
6227 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
6228 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6229 1.1 joerg
6230 1.1 joerg /* calculate the borrow chain. See note at top */
6231 1.1 joerg /* based on the sub_byte routine, with s==1 */
6232 1.1 joerg bc = (res & (~d | 1)) | (~d & 1);
6233 1.1 joerg /* carry flag unchanged */
6234 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 14), F_OF);
6235 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
6236 1.1 joerg return (uint16_t) res;
6237 1.1 joerg }
6238 1.1 joerg /****************************************************************************
6239 1.1 joerg REMARKS:
6240 1.1 joerg Implements the DEC instruction and side effects.
6241 1.1 joerg ****************************************************************************/
6242 1.1 joerg static uint32_t
6243 1.1 joerg dec_long(struct X86EMU *emu, uint32_t d)
6244 1.1 joerg {
6245 1.1 joerg uint32_t res; /* all operands in native machine order */
6246 1.1 joerg uint32_t bc;
6247 1.1 joerg
6248 1.1 joerg res = d - 1;
6249 1.1 joerg
6250 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
6251 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
6252 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6253 1.1 joerg
6254 1.1 joerg /* calculate the borrow chain. See note at top */
6255 1.1 joerg bc = (res & (~d | 1)) | (~d & 1);
6256 1.1 joerg /* carry flag unchanged */
6257 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 30), F_OF);
6258 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
6259 1.1 joerg return res;
6260 1.1 joerg }
6261 1.1 joerg /****************************************************************************
6262 1.1 joerg REMARKS:
6263 1.1 joerg Implements the INC instruction and side effects.
6264 1.1 joerg ****************************************************************************/
6265 1.1 joerg static uint8_t
6266 1.1 joerg inc_byte(struct X86EMU *emu, uint8_t d)
6267 1.1 joerg {
6268 1.1 joerg uint32_t res; /* all operands in native machine order */
6269 1.1 joerg uint32_t cc;
6270 1.1 joerg
6271 1.1 joerg res = d + 1;
6272 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
6273 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
6274 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6275 1.1 joerg
6276 1.1 joerg /* calculate the carry chain SEE NOTE AT TOP. */
6277 1.1 joerg cc = ((1 & d) | (~res)) & (1 | d);
6278 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(cc >> 6), F_OF);
6279 1.1 joerg CONDITIONAL_SET_FLAG(cc & 0x8, F_AF);
6280 1.1 joerg return (uint8_t) res;
6281 1.1 joerg }
6282 1.1 joerg /****************************************************************************
6283 1.1 joerg REMARKS:
6284 1.1 joerg Implements the INC instruction and side effects.
6285 1.1 joerg ****************************************************************************/
6286 1.1 joerg static uint16_t
6287 1.1 joerg inc_word(struct X86EMU *emu, uint16_t d)
6288 1.1 joerg {
6289 1.1 joerg uint32_t res; /* all operands in native machine order */
6290 1.1 joerg uint32_t cc;
6291 1.1 joerg
6292 1.1 joerg res = d + 1;
6293 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
6294 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
6295 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6296 1.1 joerg
6297 1.1 joerg /* calculate the carry chain SEE NOTE AT TOP. */
6298 1.1 joerg cc = (1 & d) | ((~res) & (1 | d));
6299 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(cc >> 14), F_OF);
6300 1.1 joerg CONDITIONAL_SET_FLAG(cc & 0x8, F_AF);
6301 1.1 joerg return (uint16_t) res;
6302 1.1 joerg }
6303 1.1 joerg /****************************************************************************
6304 1.1 joerg REMARKS:
6305 1.1 joerg Implements the INC instruction and side effects.
6306 1.1 joerg ****************************************************************************/
6307 1.1 joerg static uint32_t
6308 1.1 joerg inc_long(struct X86EMU *emu, uint32_t d)
6309 1.1 joerg {
6310 1.1 joerg uint32_t res; /* all operands in native machine order */
6311 1.1 joerg uint32_t cc;
6312 1.1 joerg
6313 1.1 joerg res = d + 1;
6314 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
6315 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
6316 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6317 1.1 joerg
6318 1.1 joerg /* calculate the carry chain SEE NOTE AT TOP. */
6319 1.1 joerg cc = (1 & d) | ((~res) & (1 | d));
6320 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(cc >> 30), F_OF);
6321 1.1 joerg CONDITIONAL_SET_FLAG(cc & 0x8, F_AF);
6322 1.1 joerg return res;
6323 1.1 joerg }
6324 1.1 joerg /****************************************************************************
6325 1.1 joerg REMARKS:
6326 1.1 joerg Implements the OR instruction and side effects.
6327 1.1 joerg ****************************************************************************/
6328 1.1 joerg static uint8_t
6329 1.1 joerg or_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
6330 1.1 joerg {
6331 1.1 joerg uint8_t res; /* all operands in native machine order */
6332 1.1 joerg
6333 1.1 joerg res = d | s;
6334 1.1 joerg CLEAR_FLAG(F_OF);
6335 1.1 joerg CLEAR_FLAG(F_CF);
6336 1.1 joerg CLEAR_FLAG(F_AF);
6337 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
6338 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
6339 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res), F_PF);
6340 1.1 joerg return res;
6341 1.1 joerg }
6342 1.1 joerg /****************************************************************************
6343 1.1 joerg REMARKS:
6344 1.1 joerg Implements the OR instruction and side effects.
6345 1.1 joerg ****************************************************************************/
6346 1.1 joerg static uint16_t
6347 1.1 joerg or_word(struct X86EMU *emu, uint16_t d, uint16_t s)
6348 1.1 joerg {
6349 1.1 joerg uint16_t res; /* all operands in native machine order */
6350 1.1 joerg
6351 1.1 joerg res = d | s;
6352 1.1 joerg /* set the carry flag to be bit 8 */
6353 1.1 joerg CLEAR_FLAG(F_OF);
6354 1.1 joerg CLEAR_FLAG(F_CF);
6355 1.1 joerg CLEAR_FLAG(F_AF);
6356 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
6357 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
6358 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6359 1.1 joerg return res;
6360 1.1 joerg }
6361 1.1 joerg /****************************************************************************
6362 1.1 joerg REMARKS:
6363 1.1 joerg Implements the OR instruction and side effects.
6364 1.1 joerg ****************************************************************************/
6365 1.1 joerg static uint32_t
6366 1.1 joerg or_long(struct X86EMU *emu, uint32_t d, uint32_t s)
6367 1.1 joerg {
6368 1.1 joerg uint32_t res; /* all operands in native machine order */
6369 1.1 joerg
6370 1.1 joerg res = d | s;
6371 1.1 joerg
6372 1.1 joerg /* set the carry flag to be bit 8 */
6373 1.1 joerg CLEAR_FLAG(F_OF);
6374 1.1 joerg CLEAR_FLAG(F_CF);
6375 1.1 joerg CLEAR_FLAG(F_AF);
6376 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
6377 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
6378 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6379 1.1 joerg return res;
6380 1.1 joerg }
6381 1.1 joerg /****************************************************************************
6382 1.1 joerg REMARKS:
6383 1.1 joerg Implements the OR instruction and side effects.
6384 1.1 joerg ****************************************************************************/
6385 1.1 joerg static uint8_t
6386 1.1 joerg neg_byte(struct X86EMU *emu, uint8_t s)
6387 1.1 joerg {
6388 1.1 joerg uint8_t res;
6389 1.1 joerg uint8_t bc;
6390 1.1 joerg
6391 1.1 joerg CONDITIONAL_SET_FLAG(s != 0, F_CF);
6392 1.1 joerg res = (uint8_t) - s;
6393 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
6394 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
6395 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res), F_PF);
6396 1.1 joerg /* calculate the borrow chain --- modified such that d=0.
6397 1.1 joerg * substitutiing d=0 into bc= res&(~d|s)|(~d&s); (the one used for
6398 1.1 joerg * sub) and simplifying, since ~d=0xff..., ~d|s == 0xffff..., and
6399 1.1 joerg * res&0xfff... == res. Similarly ~d&s == s. So the simplified
6400 1.1 joerg * result is: */
6401 1.1 joerg bc = res | s;
6402 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 6), F_OF);
6403 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
6404 1.1 joerg return res;
6405 1.1 joerg }
6406 1.1 joerg /****************************************************************************
6407 1.1 joerg REMARKS:
6408 1.1 joerg Implements the OR instruction and side effects.
6409 1.1 joerg ****************************************************************************/
6410 1.1 joerg static uint16_t
6411 1.1 joerg neg_word(struct X86EMU *emu, uint16_t s)
6412 1.1 joerg {
6413 1.1 joerg uint16_t res;
6414 1.1 joerg uint16_t bc;
6415 1.1 joerg
6416 1.1 joerg CONDITIONAL_SET_FLAG(s != 0, F_CF);
6417 1.1 joerg res = (uint16_t) - s;
6418 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
6419 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
6420 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6421 1.1 joerg
6422 1.1 joerg /* calculate the borrow chain --- modified such that d=0.
6423 1.1 joerg * substitutiing d=0 into bc= res&(~d|s)|(~d&s); (the one used for
6424 1.1 joerg * sub) and simplifying, since ~d=0xff..., ~d|s == 0xffff..., and
6425 1.1 joerg * res&0xfff... == res. Similarly ~d&s == s. So the simplified
6426 1.1 joerg * result is: */
6427 1.1 joerg bc = res | s;
6428 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 14), F_OF);
6429 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
6430 1.1 joerg return res;
6431 1.1 joerg }
6432 1.1 joerg /****************************************************************************
6433 1.1 joerg REMARKS:
6434 1.1 joerg Implements the OR instruction and side effects.
6435 1.1 joerg ****************************************************************************/
6436 1.1 joerg static uint32_t
6437 1.1 joerg neg_long(struct X86EMU *emu, uint32_t s)
6438 1.1 joerg {
6439 1.1 joerg uint32_t res;
6440 1.1 joerg uint32_t bc;
6441 1.1 joerg
6442 1.1 joerg CONDITIONAL_SET_FLAG(s != 0, F_CF);
6443 1.1 joerg res = (uint32_t) - s;
6444 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
6445 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
6446 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6447 1.1 joerg
6448 1.1 joerg /* calculate the borrow chain --- modified such that d=0.
6449 1.1 joerg * substitutiing d=0 into bc= res&(~d|s)|(~d&s); (the one used for
6450 1.1 joerg * sub) and simplifying, since ~d=0xff..., ~d|s == 0xffff..., and
6451 1.1 joerg * res&0xfff... == res. Similarly ~d&s == s. So the simplified
6452 1.1 joerg * result is: */
6453 1.1 joerg bc = res | s;
6454 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 30), F_OF);
6455 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
6456 1.1 joerg return res;
6457 1.1 joerg }
6458 1.1 joerg /****************************************************************************
6459 1.1 joerg REMARKS:
6460 1.1 joerg Implements the RCL instruction and side effects.
6461 1.1 joerg ****************************************************************************/
6462 1.1 joerg static uint8_t
6463 1.1 joerg rcl_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
6464 1.1 joerg {
6465 1.1 joerg unsigned int res, cnt, mask, cf;
6466 1.1 joerg
6467 1.1 joerg /* s is the rotate distance. It varies from 0 - 8. */
6468 1.1 joerg /* have
6469 1.1 joerg *
6470 1.1 joerg * CF B_7 B_6 B_5 B_4 B_3 B_2 B_1 B_0
6471 1.1 joerg *
6472 1.1 joerg * want to rotate through the carry by "s" bits. We could loop, but
6473 1.1 joerg * that's inefficient. So the width is 9, and we split into three
6474 1.1 joerg * parts:
6475 1.1 joerg *
6476 1.1 joerg * The new carry flag (was B_n) the stuff in B_n-1 .. B_0 the stuff in
6477 1.1 joerg * B_7 .. B_n+1
6478 1.1 joerg *
6479 1.1 joerg * The new rotate is done mod 9, and given this, for a rotation of n bits
6480 1.1 joerg * (mod 9) the new carry flag is then located n bits from the MSB.
6481 1.1 joerg * The low part is then shifted up cnt bits, and the high part is or'd
6482 1.1 joerg * in. Using CAPS for new values, and lowercase for the original
6483 1.1 joerg * values, this can be expressed as:
6484 1.1 joerg *
6485 1.1 joerg * IF n > 0 1) CF <- b_(8-n) 2) B_(7) .. B_(n) <- b_(8-(n+1)) .. b_0
6486 1.1 joerg * 3) B_(n-1) <- cf 4) B_(n-2) .. B_0 <- b_7 .. b_(8-(n-1)) */
6487 1.1 joerg res = d;
6488 1.1 joerg if ((cnt = s % 9) != 0) {
6489 1.1 joerg /* extract the new CARRY FLAG. */
6490 1.1 joerg /* CF <- b_(8-n) */
6491 1.1 joerg cf = (d >> (8 - cnt)) & 0x1;
6492 1.1 joerg
6493 1.1 joerg /* get the low stuff which rotated into the range B_7 .. B_cnt */
6494 1.1 joerg /* B_(7) .. B_(n) <- b_(8-(n+1)) .. b_0 */
6495 1.1 joerg /* note that the right hand side done by the mask */
6496 1.1 joerg res = (d << cnt) & 0xff;
6497 1.1 joerg
6498 1.1 joerg /* now the high stuff which rotated around into the positions
6499 1.1 joerg * B_cnt-2 .. B_0 */
6500 1.1 joerg /* B_(n-2) .. B_0 <- b_7 .. b_(8-(n-1)) */
6501 1.1 joerg /* shift it downward, 7-(n-2) = 9-n positions. and mask off
6502 1.1 joerg * the result before or'ing in. */
6503 1.1 joerg mask = (1 << (cnt - 1)) - 1;
6504 1.1 joerg res |= (d >> (9 - cnt)) & mask;
6505 1.1 joerg
6506 1.1 joerg /* if the carry flag was set, or it in. */
6507 1.1 joerg if (ACCESS_FLAG(F_CF)) { /* carry flag is set */
6508 1.1 joerg /* B_(n-1) <- cf */
6509 1.1 joerg res |= 1 << (cnt - 1);
6510 1.1 joerg }
6511 1.1 joerg /* set the new carry flag, based on the variable "cf" */
6512 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
6513 1.1 joerg /* OVERFLOW is set *IFF* cnt==1, then it is the xor of CF and
6514 1.1 joerg * the most significant bit. Blecck. */
6515 1.1 joerg /* parenthesized this expression since it appears to be
6516 1.1 joerg * causing OF to be misset */
6517 1.1 joerg CONDITIONAL_SET_FLAG(cnt == 1 && XOR2(cf + ((res >> 6) & 0x2)),
6518 1.1 joerg F_OF);
6519 1.1 joerg
6520 1.1 joerg }
6521 1.1 joerg return (uint8_t) res;
6522 1.1 joerg }
6523 1.1 joerg /****************************************************************************
6524 1.1 joerg REMARKS:
6525 1.1 joerg Implements the RCL instruction and side effects.
6526 1.1 joerg ****************************************************************************/
6527 1.1 joerg static uint16_t
6528 1.1 joerg rcl_word(struct X86EMU *emu, uint16_t d, uint8_t s)
6529 1.1 joerg {
6530 1.1 joerg unsigned int res, cnt, mask, cf;
6531 1.1 joerg
6532 1.1 joerg res = d;
6533 1.1 joerg if ((cnt = s % 17) != 0) {
6534 1.1 joerg cf = (d >> (16 - cnt)) & 0x1;
6535 1.1 joerg res = (d << cnt) & 0xffff;
6536 1.1 joerg mask = (1 << (cnt - 1)) - 1;
6537 1.1 joerg res |= (d >> (17 - cnt)) & mask;
6538 1.1 joerg if (ACCESS_FLAG(F_CF)) {
6539 1.1 joerg res |= 1 << (cnt - 1);
6540 1.1 joerg }
6541 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
6542 1.1 joerg CONDITIONAL_SET_FLAG(cnt == 1 && XOR2(cf + ((res >> 14) & 0x2)),
6543 1.1 joerg F_OF);
6544 1.1 joerg }
6545 1.1 joerg return (uint16_t) res;
6546 1.1 joerg }
6547 1.1 joerg /****************************************************************************
6548 1.1 joerg REMARKS:
6549 1.1 joerg Implements the RCL instruction and side effects.
6550 1.1 joerg ****************************************************************************/
6551 1.1 joerg static uint32_t
6552 1.1 joerg rcl_long(struct X86EMU *emu, uint32_t d, uint8_t s)
6553 1.1 joerg {
6554 1.1 joerg uint32_t res, cnt, mask, cf;
6555 1.1 joerg
6556 1.1 joerg res = d;
6557 1.1 joerg if ((cnt = s % 33) != 0) {
6558 1.1 joerg cf = (d >> (32 - cnt)) & 0x1;
6559 1.1 joerg res = (d << cnt) & 0xffffffff;
6560 1.1 joerg mask = (1 << (cnt - 1)) - 1;
6561 1.1 joerg res |= (d >> (33 - cnt)) & mask;
6562 1.1 joerg if (ACCESS_FLAG(F_CF)) { /* carry flag is set */
6563 1.1 joerg res |= 1 << (cnt - 1);
6564 1.1 joerg }
6565 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
6566 1.1 joerg CONDITIONAL_SET_FLAG(cnt == 1 && XOR2(cf + ((res >> 30) & 0x2)),
6567 1.1 joerg F_OF);
6568 1.1 joerg }
6569 1.1 joerg return res;
6570 1.1 joerg }
6571 1.1 joerg /****************************************************************************
6572 1.1 joerg REMARKS:
6573 1.1 joerg Implements the RCR instruction and side effects.
6574 1.1 joerg ****************************************************************************/
6575 1.1 joerg static uint8_t
6576 1.1 joerg rcr_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
6577 1.1 joerg {
6578 1.1 joerg uint32_t res, cnt;
6579 1.1 joerg uint32_t mask, cf, ocf = 0;
6580 1.1 joerg
6581 1.1 joerg /* rotate right through carry */
6582 1.1 joerg /* s is the rotate distance. It varies from 0 - 8. d is the byte
6583 1.1 joerg * object rotated.
6584 1.1 joerg *
6585 1.1 joerg * have
6586 1.1 joerg *
6587 1.1 joerg * CF B_7 B_6 B_5 B_4 B_3 B_2 B_1 B_0
6588 1.1 joerg *
6589 1.1 joerg * The new rotate is done mod 9, and given this, for a rotation of n bits
6590 1.1 joerg * (mod 9) the new carry flag is then located n bits from the LSB.
6591 1.1 joerg * The low part is then shifted up cnt bits, and the high part is or'd
6592 1.1 joerg * in. Using CAPS for new values, and lowercase for the original
6593 1.1 joerg * values, this can be expressed as:
6594 1.1 joerg *
6595 1.1 joerg * IF n > 0 1) CF <- b_(n-1) 2) B_(8-(n+1)) .. B_(0) <- b_(7) .. b_(n)
6596 1.1 joerg * 3) B_(8-n) <- cf 4) B_(7) .. B_(8-(n-1)) <- b_(n-2) .. b_(0) */
6597 1.1 joerg res = d;
6598 1.1 joerg if ((cnt = s % 9) != 0) {
6599 1.1 joerg /* extract the new CARRY FLAG. */
6600 1.1 joerg /* CF <- b_(n-1) */
6601 1.1 joerg if (cnt == 1) {
6602 1.1 joerg cf = d & 0x1;
6603 1.1 joerg /* note hackery here. Access_flag(..) evaluates to
6604 1.1 joerg * either 0 if flag not set non-zero if flag is set.
6605 1.1 joerg * doing access_flag(..) != 0 casts that into either
6606 1.1 joerg * 0..1 in any representation of the flags register
6607 1.1 joerg * (i.e. packed bit array or unpacked.) */
6608 1.1 joerg ocf = ACCESS_FLAG(F_CF) != 0;
6609 1.1 joerg } else
6610 1.1 joerg cf = (d >> (cnt - 1)) & 0x1;
6611 1.1 joerg
6612 1.1 joerg /* B_(8-(n+1)) .. B_(0) <- b_(7) .. b_n */
6613 1.1 joerg /* note that the right hand side done by the mask This is
6614 1.1 joerg * effectively done by shifting the object to the right. The
6615 1.1 joerg * result must be masked, in case the object came in and was
6616 1.1 joerg * treated as a negative number. Needed??? */
6617 1.1 joerg
6618 1.1 joerg mask = (1 << (8 - cnt)) - 1;
6619 1.1 joerg res = (d >> cnt) & mask;
6620 1.1 joerg
6621 1.1 joerg /* now the high stuff which rotated around into the positions
6622 1.1 joerg * B_cnt-2 .. B_0 */
6623 1.1 joerg /* B_(7) .. B_(8-(n-1)) <- b_(n-2) .. b_(0) */
6624 1.1 joerg /* shift it downward, 7-(n-2) = 9-n positions. and mask off
6625 1.1 joerg * the result before or'ing in. */
6626 1.1 joerg res |= (d << (9 - cnt));
6627 1.1 joerg
6628 1.1 joerg /* if the carry flag was set, or it in. */
6629 1.1 joerg if (ACCESS_FLAG(F_CF)) { /* carry flag is set */
6630 1.1 joerg /* B_(8-n) <- cf */
6631 1.1 joerg res |= 1 << (8 - cnt);
6632 1.1 joerg }
6633 1.1 joerg /* set the new carry flag, based on the variable "cf" */
6634 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
6635 1.1 joerg /* OVERFLOW is set *IFF* cnt==1, then it is the xor of CF and
6636 1.1 joerg * the most significant bit. Blecck. */
6637 1.1 joerg /* parenthesized... */
6638 1.1 joerg if (cnt == 1) {
6639 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(ocf + ((d >> 6) & 0x2)),
6640 1.1 joerg F_OF);
6641 1.1 joerg }
6642 1.1 joerg }
6643 1.1 joerg return (uint8_t) res;
6644 1.1 joerg }
6645 1.1 joerg /****************************************************************************
6646 1.1 joerg REMARKS:
6647 1.1 joerg Implements the RCR instruction and side effects.
6648 1.1 joerg ****************************************************************************/
6649 1.1 joerg static uint16_t
6650 1.1 joerg rcr_word(struct X86EMU *emu, uint16_t d, uint8_t s)
6651 1.1 joerg {
6652 1.1 joerg uint32_t res, cnt;
6653 1.1 joerg uint32_t mask, cf, ocf = 0;
6654 1.1 joerg
6655 1.1 joerg /* rotate right through carry */
6656 1.1 joerg res = d;
6657 1.1 joerg if ((cnt = s % 17) != 0) {
6658 1.1 joerg if (cnt == 1) {
6659 1.1 joerg cf = d & 0x1;
6660 1.1 joerg ocf = ACCESS_FLAG(F_CF) != 0;
6661 1.1 joerg } else
6662 1.1 joerg cf = (d >> (cnt - 1)) & 0x1;
6663 1.1 joerg mask = (1 << (16 - cnt)) - 1;
6664 1.1 joerg res = (d >> cnt) & mask;
6665 1.1 joerg res |= (d << (17 - cnt));
6666 1.1 joerg if (ACCESS_FLAG(F_CF)) {
6667 1.1 joerg res |= 1 << (16 - cnt);
6668 1.1 joerg }
6669 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
6670 1.1 joerg if (cnt == 1) {
6671 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(ocf + ((d >> 14) & 0x2)),
6672 1.1 joerg F_OF);
6673 1.1 joerg }
6674 1.1 joerg }
6675 1.1 joerg return (uint16_t) res;
6676 1.1 joerg }
6677 1.1 joerg /****************************************************************************
6678 1.1 joerg REMARKS:
6679 1.1 joerg Implements the RCR instruction and side effects.
6680 1.1 joerg ****************************************************************************/
6681 1.1 joerg static uint32_t
6682 1.1 joerg rcr_long(struct X86EMU *emu, uint32_t d, uint8_t s)
6683 1.1 joerg {
6684 1.1 joerg uint32_t res, cnt;
6685 1.1 joerg uint32_t mask, cf, ocf = 0;
6686 1.1 joerg
6687 1.1 joerg /* rotate right through carry */
6688 1.1 joerg res = d;
6689 1.1 joerg if ((cnt = s % 33) != 0) {
6690 1.1 joerg if (cnt == 1) {
6691 1.1 joerg cf = d & 0x1;
6692 1.1 joerg ocf = ACCESS_FLAG(F_CF) != 0;
6693 1.1 joerg } else
6694 1.1 joerg cf = (d >> (cnt - 1)) & 0x1;
6695 1.1 joerg mask = (1 << (32 - cnt)) - 1;
6696 1.1 joerg res = (d >> cnt) & mask;
6697 1.1 joerg if (cnt != 1)
6698 1.1 joerg res |= (d << (33 - cnt));
6699 1.1 joerg if (ACCESS_FLAG(F_CF)) { /* carry flag is set */
6700 1.1 joerg res |= 1 << (32 - cnt);
6701 1.1 joerg }
6702 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
6703 1.1 joerg if (cnt == 1) {
6704 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(ocf + ((d >> 30) & 0x2)),
6705 1.1 joerg F_OF);
6706 1.1 joerg }
6707 1.1 joerg }
6708 1.1 joerg return res;
6709 1.1 joerg }
6710 1.1 joerg /****************************************************************************
6711 1.1 joerg REMARKS:
6712 1.1 joerg Implements the ROL instruction and side effects.
6713 1.1 joerg ****************************************************************************/
6714 1.1 joerg static uint8_t
6715 1.1 joerg rol_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
6716 1.1 joerg {
6717 1.1 joerg unsigned int res, cnt, mask;
6718 1.1 joerg
6719 1.1 joerg /* rotate left */
6720 1.1 joerg /* s is the rotate distance. It varies from 0 - 8. d is the byte
6721 1.1 joerg * object rotated.
6722 1.1 joerg *
6723 1.1 joerg * have
6724 1.1 joerg *
6725 1.1 joerg * CF B_7 ... B_0
6726 1.1 joerg *
6727 1.1 joerg * The new rotate is done mod 8. Much simpler than the "rcl" or "rcr"
6728 1.1 joerg * operations.
6729 1.1 joerg *
6730 1.1 joerg * IF n > 0 1) B_(7) .. B_(n) <- b_(8-(n+1)) .. b_(0) 2) B_(n-1) ..
6731 1.1 joerg * B_(0) <- b_(7) .. b_(8-n) */
6732 1.1 joerg res = d;
6733 1.1 joerg if ((cnt = s % 8) != 0) {
6734 1.1 joerg /* B_(7) .. B_(n) <- b_(8-(n+1)) .. b_(0) */
6735 1.1 joerg res = (d << cnt);
6736 1.1 joerg
6737 1.1 joerg /* B_(n-1) .. B_(0) <- b_(7) .. b_(8-n) */
6738 1.1 joerg mask = (1 << cnt) - 1;
6739 1.1 joerg res |= (d >> (8 - cnt)) & mask;
6740 1.1 joerg
6741 1.1 joerg /* set the new carry flag, Note that it is the low order bit
6742 1.1 joerg * of the result!!! */
6743 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x1, F_CF);
6744 1.1 joerg /* OVERFLOW is set *IFF* s==1, then it is the xor of CF and
6745 1.1 joerg * the most significant bit. Blecck. */
6746 1.1 joerg CONDITIONAL_SET_FLAG(s == 1 &&
6747 1.1 joerg XOR2((res & 0x1) + ((res >> 6) & 0x2)),
6748 1.1 joerg F_OF);
6749 1.1 joerg } if (s != 0) {
6750 1.1 joerg /* set the new carry flag, Note that it is the low order bit
6751 1.1 joerg * of the result!!! */
6752 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x1, F_CF);
6753 1.1 joerg }
6754 1.1 joerg return (uint8_t) res;
6755 1.1 joerg }
6756 1.1 joerg /****************************************************************************
6757 1.1 joerg REMARKS:
6758 1.1 joerg Implements the ROL instruction and side effects.
6759 1.1 joerg ****************************************************************************/
6760 1.1 joerg static uint16_t
6761 1.1 joerg rol_word(struct X86EMU *emu, uint16_t d, uint8_t s)
6762 1.1 joerg {
6763 1.1 joerg unsigned int res, cnt, mask;
6764 1.1 joerg
6765 1.1 joerg res = d;
6766 1.1 joerg if ((cnt = s % 16) != 0) {
6767 1.1 joerg res = (d << cnt);
6768 1.1 joerg mask = (1 << cnt) - 1;
6769 1.1 joerg res |= (d >> (16 - cnt)) & mask;
6770 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x1, F_CF);
6771 1.1 joerg CONDITIONAL_SET_FLAG(s == 1 &&
6772 1.1 joerg XOR2((res & 0x1) + ((res >> 14) & 0x2)),
6773 1.1 joerg F_OF);
6774 1.1 joerg } if (s != 0) {
6775 1.1 joerg /* set the new carry flag, Note that it is the low order bit
6776 1.1 joerg * of the result!!! */
6777 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x1, F_CF);
6778 1.1 joerg }
6779 1.1 joerg return (uint16_t) res;
6780 1.1 joerg }
6781 1.1 joerg /****************************************************************************
6782 1.1 joerg REMARKS:
6783 1.1 joerg Implements the ROL instruction and side effects.
6784 1.1 joerg ****************************************************************************/
6785 1.1 joerg static uint32_t
6786 1.1 joerg rol_long(struct X86EMU *emu, uint32_t d, uint8_t s)
6787 1.1 joerg {
6788 1.1 joerg uint32_t res, cnt, mask;
6789 1.1 joerg
6790 1.1 joerg res = d;
6791 1.1 joerg if ((cnt = s % 32) != 0) {
6792 1.1 joerg res = (d << cnt);
6793 1.1 joerg mask = (1 << cnt) - 1;
6794 1.1 joerg res |= (d >> (32 - cnt)) & mask;
6795 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x1, F_CF);
6796 1.1 joerg CONDITIONAL_SET_FLAG(s == 1 &&
6797 1.1 joerg XOR2((res & 0x1) + ((res >> 30) & 0x2)),
6798 1.1 joerg F_OF);
6799 1.1 joerg } if (s != 0) {
6800 1.1 joerg /* set the new carry flag, Note that it is the low order bit
6801 1.1 joerg * of the result!!! */
6802 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x1, F_CF);
6803 1.1 joerg }
6804 1.1 joerg return res;
6805 1.1 joerg }
6806 1.1 joerg /****************************************************************************
6807 1.1 joerg REMARKS:
6808 1.1 joerg Implements the ROR instruction and side effects.
6809 1.1 joerg ****************************************************************************/
6810 1.1 joerg static uint8_t
6811 1.1 joerg ror_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
6812 1.1 joerg {
6813 1.1 joerg unsigned int res, cnt, mask;
6814 1.1 joerg
6815 1.1 joerg /* rotate right */
6816 1.1 joerg /* s is the rotate distance. It varies from 0 - 8. d is the byte
6817 1.1 joerg * object rotated.
6818 1.1 joerg *
6819 1.1 joerg * have
6820 1.1 joerg *
6821 1.1 joerg * B_7 ... B_0
6822 1.1 joerg *
6823 1.1 joerg * The rotate is done mod 8.
6824 1.1 joerg *
6825 1.1 joerg * IF n > 0 1) B_(8-(n+1)) .. B_(0) <- b_(7) .. b_(n) 2) B_(7) ..
6826 1.1 joerg * B_(8-n) <- b_(n-1) .. b_(0) */
6827 1.1 joerg res = d;
6828 1.1 joerg if ((cnt = s % 8) != 0) { /* not a typo, do nada if cnt==0 */
6829 1.1 joerg /* B_(7) .. B_(8-n) <- b_(n-1) .. b_(0) */
6830 1.1 joerg res = (d << (8 - cnt));
6831 1.1 joerg
6832 1.1 joerg /* B_(8-(n+1)) .. B_(0) <- b_(7) .. b_(n) */
6833 1.1 joerg mask = (1 << (8 - cnt)) - 1;
6834 1.1 joerg res |= (d >> (cnt)) & mask;
6835 1.1 joerg
6836 1.1 joerg /* set the new carry flag, Note that it is the low order bit
6837 1.1 joerg * of the result!!! */
6838 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_CF);
6839 1.1 joerg /* OVERFLOW is set *IFF* s==1, then it is the xor of the two
6840 1.1 joerg * most significant bits. Blecck. */
6841 1.1 joerg CONDITIONAL_SET_FLAG(s == 1 && XOR2(res >> 6), F_OF);
6842 1.1 joerg } else if (s != 0) {
6843 1.1 joerg /* set the new carry flag, Note that it is the low order bit
6844 1.1 joerg * of the result!!! */
6845 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_CF);
6846 1.1 joerg }
6847 1.1 joerg return (uint8_t) res;
6848 1.1 joerg }
6849 1.1 joerg /****************************************************************************
6850 1.1 joerg REMARKS:
6851 1.1 joerg Implements the ROR instruction and side effects.
6852 1.1 joerg ****************************************************************************/
6853 1.1 joerg static uint16_t
6854 1.1 joerg ror_word(struct X86EMU *emu, uint16_t d, uint8_t s)
6855 1.1 joerg {
6856 1.1 joerg unsigned int res, cnt, mask;
6857 1.1 joerg
6858 1.1 joerg res = d;
6859 1.1 joerg if ((cnt = s % 16) != 0) {
6860 1.1 joerg res = (d << (16 - cnt));
6861 1.1 joerg mask = (1 << (16 - cnt)) - 1;
6862 1.1 joerg res |= (d >> (cnt)) & mask;
6863 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_CF);
6864 1.1 joerg CONDITIONAL_SET_FLAG(s == 1 && XOR2(res >> 14), F_OF);
6865 1.1 joerg } else if (s != 0) {
6866 1.1 joerg /* set the new carry flag, Note that it is the low order bit
6867 1.1 joerg * of the result!!! */
6868 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_CF);
6869 1.1 joerg }
6870 1.1 joerg return (uint16_t) res;
6871 1.1 joerg }
6872 1.1 joerg /****************************************************************************
6873 1.1 joerg REMARKS:
6874 1.1 joerg Implements the ROR instruction and side effects.
6875 1.1 joerg ****************************************************************************/
6876 1.1 joerg static uint32_t
6877 1.1 joerg ror_long(struct X86EMU *emu, uint32_t d, uint8_t s)
6878 1.1 joerg {
6879 1.1 joerg uint32_t res, cnt, mask;
6880 1.1 joerg
6881 1.1 joerg res = d;
6882 1.1 joerg if ((cnt = s % 32) != 0) {
6883 1.1 joerg res = (d << (32 - cnt));
6884 1.1 joerg mask = (1 << (32 - cnt)) - 1;
6885 1.1 joerg res |= (d >> (cnt)) & mask;
6886 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_CF);
6887 1.1 joerg CONDITIONAL_SET_FLAG(s == 1 && XOR2(res >> 30), F_OF);
6888 1.1 joerg } else if (s != 0) {
6889 1.1 joerg /* set the new carry flag, Note that it is the low order bit
6890 1.1 joerg * of the result!!! */
6891 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_CF);
6892 1.1 joerg }
6893 1.1 joerg return res;
6894 1.1 joerg }
6895 1.1 joerg /****************************************************************************
6896 1.1 joerg REMARKS:
6897 1.1 joerg Implements the SHL instruction and side effects.
6898 1.1 joerg ****************************************************************************/
6899 1.1 joerg static uint8_t
6900 1.1 joerg shl_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
6901 1.1 joerg {
6902 1.1 joerg unsigned int cnt, res, cf;
6903 1.1 joerg
6904 1.1 joerg if (s < 8) {
6905 1.1 joerg cnt = s % 8;
6906 1.1 joerg
6907 1.1 joerg /* last bit shifted out goes into carry flag */
6908 1.1 joerg if (cnt > 0) {
6909 1.1 joerg res = d << cnt;
6910 1.1 joerg cf = d & (1 << (8 - cnt));
6911 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
6912 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
6913 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
6914 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6915 1.1 joerg } else {
6916 1.1 joerg res = (uint8_t) d;
6917 1.1 joerg }
6918 1.1 joerg
6919 1.1 joerg if (cnt == 1) {
6920 1.1 joerg /* Needs simplification. */
6921 1.1 joerg CONDITIONAL_SET_FLAG(
6922 1.1 joerg (((res & 0x80) == 0x80) ^
6923 1.1 joerg (ACCESS_FLAG(F_CF) != 0)),
6924 1.1 joerg /* was (emu->x86.R_FLG&F_CF)==F_CF)), */
6925 1.1 joerg F_OF);
6926 1.1 joerg } else {
6927 1.1 joerg CLEAR_FLAG(F_OF);
6928 1.1 joerg }
6929 1.1 joerg } else {
6930 1.1 joerg res = 0;
6931 1.1 joerg CONDITIONAL_SET_FLAG((d << (s - 1)) & 0x80, F_CF);
6932 1.1 joerg CLEAR_FLAG(F_OF);
6933 1.1 joerg CLEAR_FLAG(F_SF);
6934 1.1 joerg SET_FLAG(F_PF);
6935 1.1 joerg SET_FLAG(F_ZF);
6936 1.1 joerg }
6937 1.1 joerg return (uint8_t) res;
6938 1.1 joerg }
6939 1.1 joerg /****************************************************************************
6940 1.1 joerg REMARKS:
6941 1.1 joerg Implements the SHL instruction and side effects.
6942 1.1 joerg ****************************************************************************/
6943 1.1 joerg static uint16_t
6944 1.1 joerg shl_word(struct X86EMU *emu, uint16_t d, uint8_t s)
6945 1.1 joerg {
6946 1.1 joerg unsigned int cnt, res, cf;
6947 1.1 joerg
6948 1.1 joerg if (s < 16) {
6949 1.1 joerg cnt = s % 16;
6950 1.1 joerg if (cnt > 0) {
6951 1.1 joerg res = d << cnt;
6952 1.1 joerg cf = d & (1 << (16 - cnt));
6953 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
6954 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
6955 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
6956 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6957 1.1 joerg } else {
6958 1.1 joerg res = (uint16_t) d;
6959 1.1 joerg }
6960 1.1 joerg
6961 1.1 joerg if (cnt == 1) {
6962 1.1 joerg CONDITIONAL_SET_FLAG(
6963 1.1 joerg (((res & 0x8000) == 0x8000) ^
6964 1.1 joerg (ACCESS_FLAG(F_CF) != 0)),
6965 1.1 joerg F_OF);
6966 1.1 joerg } else {
6967 1.1 joerg CLEAR_FLAG(F_OF);
6968 1.1 joerg }
6969 1.1 joerg } else {
6970 1.1 joerg res = 0;
6971 1.1 joerg CONDITIONAL_SET_FLAG((d << (s - 1)) & 0x8000, F_CF);
6972 1.1 joerg CLEAR_FLAG(F_OF);
6973 1.1 joerg CLEAR_FLAG(F_SF);
6974 1.1 joerg SET_FLAG(F_PF);
6975 1.1 joerg SET_FLAG(F_ZF);
6976 1.1 joerg }
6977 1.1 joerg return (uint16_t) res;
6978 1.1 joerg }
6979 1.1 joerg /****************************************************************************
6980 1.1 joerg REMARKS:
6981 1.1 joerg Implements the SHL instruction and side effects.
6982 1.1 joerg ****************************************************************************/
6983 1.1 joerg static uint32_t
6984 1.1 joerg shl_long(struct X86EMU *emu, uint32_t d, uint8_t s)
6985 1.1 joerg {
6986 1.1 joerg unsigned int cnt, res, cf;
6987 1.1 joerg
6988 1.1 joerg if (s < 32) {
6989 1.1 joerg cnt = s % 32;
6990 1.1 joerg if (cnt > 0) {
6991 1.1 joerg res = d << cnt;
6992 1.1 joerg cf = d & (1 << (32 - cnt));
6993 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
6994 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
6995 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
6996 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
6997 1.1 joerg } else {
6998 1.1 joerg res = d;
6999 1.1 joerg }
7000 1.1 joerg if (cnt == 1) {
7001 1.1 joerg CONDITIONAL_SET_FLAG((((res & 0x80000000) == 0x80000000) ^
7002 1.1 joerg (ACCESS_FLAG(F_CF) != 0)), F_OF);
7003 1.1 joerg } else {
7004 1.1 joerg CLEAR_FLAG(F_OF);
7005 1.1 joerg }
7006 1.1 joerg } else {
7007 1.1 joerg res = 0;
7008 1.1 joerg CONDITIONAL_SET_FLAG((d << (s - 1)) & 0x80000000, F_CF);
7009 1.1 joerg CLEAR_FLAG(F_OF);
7010 1.1 joerg CLEAR_FLAG(F_SF);
7011 1.1 joerg SET_FLAG(F_PF);
7012 1.1 joerg SET_FLAG(F_ZF);
7013 1.1 joerg }
7014 1.1 joerg return res;
7015 1.1 joerg }
7016 1.1 joerg /****************************************************************************
7017 1.1 joerg REMARKS:
7018 1.1 joerg Implements the SHR instruction and side effects.
7019 1.1 joerg ****************************************************************************/
7020 1.1 joerg static uint8_t
7021 1.1 joerg shr_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
7022 1.1 joerg {
7023 1.1 joerg unsigned int cnt, res, cf;
7024 1.1 joerg
7025 1.1 joerg if (s < 8) {
7026 1.1 joerg cnt = s % 8;
7027 1.1 joerg if (cnt > 0) {
7028 1.1 joerg cf = d & (1 << (cnt - 1));
7029 1.1 joerg res = d >> cnt;
7030 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
7031 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
7032 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
7033 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7034 1.1 joerg } else {
7035 1.1 joerg res = (uint8_t) d;
7036 1.1 joerg }
7037 1.1 joerg
7038 1.1 joerg if (cnt == 1) {
7039 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(res >> 6), F_OF);
7040 1.1 joerg } else {
7041 1.1 joerg CLEAR_FLAG(F_OF);
7042 1.1 joerg }
7043 1.1 joerg } else {
7044 1.1 joerg res = 0;
7045 1.1 joerg CONDITIONAL_SET_FLAG((d >> (s - 1)) & 0x1, F_CF);
7046 1.1 joerg CLEAR_FLAG(F_OF);
7047 1.1 joerg CLEAR_FLAG(F_SF);
7048 1.1 joerg SET_FLAG(F_PF);
7049 1.1 joerg SET_FLAG(F_ZF);
7050 1.1 joerg }
7051 1.1 joerg return (uint8_t) res;
7052 1.1 joerg }
7053 1.1 joerg /****************************************************************************
7054 1.1 joerg REMARKS:
7055 1.1 joerg Implements the SHR instruction and side effects.
7056 1.1 joerg ****************************************************************************/
7057 1.1 joerg static uint16_t
7058 1.1 joerg shr_word(struct X86EMU *emu, uint16_t d, uint8_t s)
7059 1.1 joerg {
7060 1.1 joerg unsigned int cnt, res, cf;
7061 1.1 joerg
7062 1.1 joerg if (s < 16) {
7063 1.1 joerg cnt = s % 16;
7064 1.1 joerg if (cnt > 0) {
7065 1.1 joerg cf = d & (1 << (cnt - 1));
7066 1.1 joerg res = d >> cnt;
7067 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
7068 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
7069 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
7070 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7071 1.1 joerg } else {
7072 1.1 joerg res = d;
7073 1.1 joerg }
7074 1.1 joerg
7075 1.1 joerg if (cnt == 1) {
7076 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(res >> 14), F_OF);
7077 1.1 joerg } else {
7078 1.1 joerg CLEAR_FLAG(F_OF);
7079 1.1 joerg }
7080 1.1 joerg } else {
7081 1.1 joerg res = 0;
7082 1.1 joerg CLEAR_FLAG(F_CF);
7083 1.1 joerg CLEAR_FLAG(F_OF);
7084 1.1 joerg SET_FLAG(F_ZF);
7085 1.1 joerg CLEAR_FLAG(F_SF);
7086 1.1 joerg CLEAR_FLAG(F_PF);
7087 1.1 joerg }
7088 1.1 joerg return (uint16_t) res;
7089 1.1 joerg }
7090 1.1 joerg /****************************************************************************
7091 1.1 joerg REMARKS:
7092 1.1 joerg Implements the SHR instruction and side effects.
7093 1.1 joerg ****************************************************************************/
7094 1.1 joerg static uint32_t
7095 1.1 joerg shr_long(struct X86EMU *emu, uint32_t d, uint8_t s)
7096 1.1 joerg {
7097 1.1 joerg unsigned int cnt, res, cf;
7098 1.1 joerg
7099 1.1 joerg if (s < 32) {
7100 1.1 joerg cnt = s % 32;
7101 1.1 joerg if (cnt > 0) {
7102 1.1 joerg cf = d & (1 << (cnt - 1));
7103 1.1 joerg res = d >> cnt;
7104 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
7105 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
7106 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
7107 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7108 1.1 joerg } else {
7109 1.1 joerg res = d;
7110 1.1 joerg }
7111 1.1 joerg if (cnt == 1) {
7112 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(res >> 30), F_OF);
7113 1.1 joerg } else {
7114 1.1 joerg CLEAR_FLAG(F_OF);
7115 1.1 joerg }
7116 1.1 joerg } else {
7117 1.1 joerg res = 0;
7118 1.1 joerg CLEAR_FLAG(F_CF);
7119 1.1 joerg CLEAR_FLAG(F_OF);
7120 1.1 joerg SET_FLAG(F_ZF);
7121 1.1 joerg CLEAR_FLAG(F_SF);
7122 1.1 joerg CLEAR_FLAG(F_PF);
7123 1.1 joerg }
7124 1.1 joerg return res;
7125 1.1 joerg }
7126 1.1 joerg /****************************************************************************
7127 1.1 joerg REMARKS:
7128 1.1 joerg Implements the SAR instruction and side effects.
7129 1.1 joerg ****************************************************************************/
7130 1.1 joerg static uint8_t
7131 1.1 joerg sar_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
7132 1.1 joerg {
7133 1.1 joerg unsigned int cnt, res, cf, mask, sf;
7134 1.1 joerg
7135 1.1 joerg res = d;
7136 1.1 joerg sf = d & 0x80;
7137 1.1 joerg cnt = s % 8;
7138 1.1 joerg if (cnt > 0 && cnt < 8) {
7139 1.1 joerg mask = (1 << (8 - cnt)) - 1;
7140 1.1 joerg cf = d & (1 << (cnt - 1));
7141 1.1 joerg res = (d >> cnt) & mask;
7142 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
7143 1.1 joerg if (sf) {
7144 1.1 joerg res |= ~mask;
7145 1.1 joerg }
7146 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
7147 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7148 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
7149 1.1 joerg } else if (cnt >= 8) {
7150 1.1 joerg if (sf) {
7151 1.1 joerg res = 0xff;
7152 1.1 joerg SET_FLAG(F_CF);
7153 1.1 joerg CLEAR_FLAG(F_ZF);
7154 1.1 joerg SET_FLAG(F_SF);
7155 1.1 joerg SET_FLAG(F_PF);
7156 1.1 joerg } else {
7157 1.1 joerg res = 0;
7158 1.1 joerg CLEAR_FLAG(F_CF);
7159 1.1 joerg SET_FLAG(F_ZF);
7160 1.1 joerg CLEAR_FLAG(F_SF);
7161 1.1 joerg CLEAR_FLAG(F_PF);
7162 1.1 joerg }
7163 1.1 joerg }
7164 1.1 joerg return (uint8_t) res;
7165 1.1 joerg }
7166 1.1 joerg /****************************************************************************
7167 1.1 joerg REMARKS:
7168 1.1 joerg Implements the SAR instruction and side effects.
7169 1.1 joerg ****************************************************************************/
7170 1.1 joerg static uint16_t
7171 1.1 joerg sar_word(struct X86EMU *emu, uint16_t d, uint8_t s)
7172 1.1 joerg {
7173 1.1 joerg unsigned int cnt, res, cf, mask, sf;
7174 1.1 joerg
7175 1.1 joerg sf = d & 0x8000;
7176 1.1 joerg cnt = s % 16;
7177 1.1 joerg res = d;
7178 1.1 joerg if (cnt > 0 && cnt < 16) {
7179 1.1 joerg mask = (1 << (16 - cnt)) - 1;
7180 1.1 joerg cf = d & (1 << (cnt - 1));
7181 1.1 joerg res = (d >> cnt) & mask;
7182 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
7183 1.1 joerg if (sf) {
7184 1.1 joerg res |= ~mask;
7185 1.1 joerg }
7186 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
7187 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
7188 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7189 1.1 joerg } else if (cnt >= 16) {
7190 1.1 joerg if (sf) {
7191 1.1 joerg res = 0xffff;
7192 1.1 joerg SET_FLAG(F_CF);
7193 1.1 joerg CLEAR_FLAG(F_ZF);
7194 1.1 joerg SET_FLAG(F_SF);
7195 1.1 joerg SET_FLAG(F_PF);
7196 1.1 joerg } else {
7197 1.1 joerg res = 0;
7198 1.1 joerg CLEAR_FLAG(F_CF);
7199 1.1 joerg SET_FLAG(F_ZF);
7200 1.1 joerg CLEAR_FLAG(F_SF);
7201 1.1 joerg CLEAR_FLAG(F_PF);
7202 1.1 joerg }
7203 1.1 joerg }
7204 1.1 joerg return (uint16_t) res;
7205 1.1 joerg }
7206 1.1 joerg /****************************************************************************
7207 1.1 joerg REMARKS:
7208 1.1 joerg Implements the SAR instruction and side effects.
7209 1.1 joerg ****************************************************************************/
7210 1.1 joerg static uint32_t
7211 1.1 joerg sar_long(struct X86EMU *emu, uint32_t d, uint8_t s)
7212 1.1 joerg {
7213 1.1 joerg uint32_t cnt, res, cf, mask, sf;
7214 1.1 joerg
7215 1.1 joerg sf = d & 0x80000000;
7216 1.1 joerg cnt = s % 32;
7217 1.1 joerg res = d;
7218 1.1 joerg if (cnt > 0 && cnt < 32) {
7219 1.1 joerg mask = (1 << (32 - cnt)) - 1;
7220 1.1 joerg cf = d & (1 << (cnt - 1));
7221 1.1 joerg res = (d >> cnt) & mask;
7222 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
7223 1.1 joerg if (sf) {
7224 1.1 joerg res |= ~mask;
7225 1.1 joerg }
7226 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
7227 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
7228 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7229 1.1 joerg } else if (cnt >= 32) {
7230 1.1 joerg if (sf) {
7231 1.1 joerg res = 0xffffffff;
7232 1.1 joerg SET_FLAG(F_CF);
7233 1.1 joerg CLEAR_FLAG(F_ZF);
7234 1.1 joerg SET_FLAG(F_SF);
7235 1.1 joerg SET_FLAG(F_PF);
7236 1.1 joerg } else {
7237 1.1 joerg res = 0;
7238 1.1 joerg CLEAR_FLAG(F_CF);
7239 1.1 joerg SET_FLAG(F_ZF);
7240 1.1 joerg CLEAR_FLAG(F_SF);
7241 1.1 joerg CLEAR_FLAG(F_PF);
7242 1.1 joerg }
7243 1.1 joerg }
7244 1.1 joerg return res;
7245 1.1 joerg }
7246 1.1 joerg /****************************************************************************
7247 1.1 joerg REMARKS:
7248 1.1 joerg Implements the SHLD instruction and side effects.
7249 1.1 joerg ****************************************************************************/
7250 1.1 joerg static uint16_t
7251 1.1 joerg shld_word(struct X86EMU *emu, uint16_t d, uint16_t fill, uint8_t s)
7252 1.1 joerg {
7253 1.1 joerg unsigned int cnt, res, cf;
7254 1.1 joerg
7255 1.1 joerg if (s < 16) {
7256 1.1 joerg cnt = s % 16;
7257 1.1 joerg if (cnt > 0) {
7258 1.1 joerg res = (d << cnt) | (fill >> (16 - cnt));
7259 1.1 joerg cf = d & (1 << (16 - cnt));
7260 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
7261 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
7262 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
7263 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7264 1.1 joerg } else {
7265 1.1 joerg res = d;
7266 1.1 joerg }
7267 1.1 joerg if (cnt == 1) {
7268 1.1 joerg CONDITIONAL_SET_FLAG((((res & 0x8000) == 0x8000) ^
7269 1.1 joerg (ACCESS_FLAG(F_CF) != 0)), F_OF);
7270 1.1 joerg } else {
7271 1.1 joerg CLEAR_FLAG(F_OF);
7272 1.1 joerg }
7273 1.1 joerg } else {
7274 1.1 joerg res = 0;
7275 1.1 joerg CONDITIONAL_SET_FLAG((d << (s - 1)) & 0x8000, F_CF);
7276 1.1 joerg CLEAR_FLAG(F_OF);
7277 1.1 joerg CLEAR_FLAG(F_SF);
7278 1.1 joerg SET_FLAG(F_PF);
7279 1.1 joerg SET_FLAG(F_ZF);
7280 1.1 joerg }
7281 1.1 joerg return (uint16_t) res;
7282 1.1 joerg }
7283 1.1 joerg /****************************************************************************
7284 1.1 joerg REMARKS:
7285 1.1 joerg Implements the SHLD instruction and side effects.
7286 1.1 joerg ****************************************************************************/
7287 1.1 joerg static uint32_t
7288 1.1 joerg shld_long(struct X86EMU *emu, uint32_t d, uint32_t fill, uint8_t s)
7289 1.1 joerg {
7290 1.1 joerg unsigned int cnt, res, cf;
7291 1.1 joerg
7292 1.1 joerg if (s < 32) {
7293 1.1 joerg cnt = s % 32;
7294 1.1 joerg if (cnt > 0) {
7295 1.1 joerg res = (d << cnt) | (fill >> (32 - cnt));
7296 1.1 joerg cf = d & (1 << (32 - cnt));
7297 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
7298 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
7299 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
7300 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7301 1.1 joerg } else {
7302 1.1 joerg res = d;
7303 1.1 joerg }
7304 1.1 joerg if (cnt == 1) {
7305 1.1 joerg CONDITIONAL_SET_FLAG((((res & 0x80000000) == 0x80000000) ^
7306 1.1 joerg (ACCESS_FLAG(F_CF) != 0)), F_OF);
7307 1.1 joerg } else {
7308 1.1 joerg CLEAR_FLAG(F_OF);
7309 1.1 joerg }
7310 1.1 joerg } else {
7311 1.1 joerg res = 0;
7312 1.1 joerg CONDITIONAL_SET_FLAG((d << (s - 1)) & 0x80000000, F_CF);
7313 1.1 joerg CLEAR_FLAG(F_OF);
7314 1.1 joerg CLEAR_FLAG(F_SF);
7315 1.1 joerg SET_FLAG(F_PF);
7316 1.1 joerg SET_FLAG(F_ZF);
7317 1.1 joerg }
7318 1.1 joerg return res;
7319 1.1 joerg }
7320 1.1 joerg /****************************************************************************
7321 1.1 joerg REMARKS:
7322 1.1 joerg Implements the SHRD instruction and side effects.
7323 1.1 joerg ****************************************************************************/
7324 1.1 joerg static uint16_t
7325 1.1 joerg shrd_word(struct X86EMU *emu, uint16_t d, uint16_t fill, uint8_t s)
7326 1.1 joerg {
7327 1.1 joerg unsigned int cnt, res, cf;
7328 1.1 joerg
7329 1.1 joerg if (s < 16) {
7330 1.1 joerg cnt = s % 16;
7331 1.1 joerg if (cnt > 0) {
7332 1.1 joerg cf = d & (1 << (cnt - 1));
7333 1.1 joerg res = (d >> cnt) | (fill << (16 - cnt));
7334 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
7335 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
7336 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
7337 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7338 1.1 joerg } else {
7339 1.1 joerg res = d;
7340 1.1 joerg }
7341 1.1 joerg
7342 1.1 joerg if (cnt == 1) {
7343 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(res >> 14), F_OF);
7344 1.1 joerg } else {
7345 1.1 joerg CLEAR_FLAG(F_OF);
7346 1.1 joerg }
7347 1.1 joerg } else {
7348 1.1 joerg res = 0;
7349 1.1 joerg CLEAR_FLAG(F_CF);
7350 1.1 joerg CLEAR_FLAG(F_OF);
7351 1.1 joerg SET_FLAG(F_ZF);
7352 1.1 joerg CLEAR_FLAG(F_SF);
7353 1.1 joerg CLEAR_FLAG(F_PF);
7354 1.1 joerg }
7355 1.1 joerg return (uint16_t) res;
7356 1.1 joerg }
7357 1.1 joerg /****************************************************************************
7358 1.1 joerg REMARKS:
7359 1.1 joerg Implements the SHRD instruction and side effects.
7360 1.1 joerg ****************************************************************************/
7361 1.1 joerg static uint32_t
7362 1.1 joerg shrd_long(struct X86EMU *emu, uint32_t d, uint32_t fill, uint8_t s)
7363 1.1 joerg {
7364 1.1 joerg unsigned int cnt, res, cf;
7365 1.1 joerg
7366 1.1 joerg if (s < 32) {
7367 1.1 joerg cnt = s % 32;
7368 1.1 joerg if (cnt > 0) {
7369 1.1 joerg cf = d & (1 << (cnt - 1));
7370 1.1 joerg res = (d >> cnt) | (fill << (32 - cnt));
7371 1.1 joerg CONDITIONAL_SET_FLAG(cf, F_CF);
7372 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
7373 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
7374 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7375 1.1 joerg } else {
7376 1.1 joerg res = d;
7377 1.1 joerg }
7378 1.1 joerg if (cnt == 1) {
7379 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(res >> 30), F_OF);
7380 1.1 joerg } else {
7381 1.1 joerg CLEAR_FLAG(F_OF);
7382 1.1 joerg }
7383 1.1 joerg } else {
7384 1.1 joerg res = 0;
7385 1.1 joerg CLEAR_FLAG(F_CF);
7386 1.1 joerg CLEAR_FLAG(F_OF);
7387 1.1 joerg SET_FLAG(F_ZF);
7388 1.1 joerg CLEAR_FLAG(F_SF);
7389 1.1 joerg CLEAR_FLAG(F_PF);
7390 1.1 joerg }
7391 1.1 joerg return res;
7392 1.1 joerg }
7393 1.1 joerg /****************************************************************************
7394 1.1 joerg REMARKS:
7395 1.1 joerg Implements the SBB instruction and side effects.
7396 1.1 joerg ****************************************************************************/
7397 1.1 joerg static uint8_t
7398 1.1 joerg sbb_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
7399 1.1 joerg {
7400 1.1 joerg uint32_t res; /* all operands in native machine order */
7401 1.1 joerg uint32_t bc;
7402 1.1 joerg
7403 1.1 joerg if (ACCESS_FLAG(F_CF))
7404 1.1 joerg res = d - s - 1;
7405 1.1 joerg else
7406 1.1 joerg res = d - s;
7407 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
7408 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
7409 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7410 1.1 joerg
7411 1.1 joerg /* calculate the borrow chain. See note at top */
7412 1.1 joerg bc = (res & (~d | s)) | (~d & s);
7413 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x80, F_CF);
7414 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 6), F_OF);
7415 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
7416 1.1 joerg return (uint8_t) res;
7417 1.1 joerg }
7418 1.1 joerg /****************************************************************************
7419 1.1 joerg REMARKS:
7420 1.1 joerg Implements the SBB instruction and side effects.
7421 1.1 joerg ****************************************************************************/
7422 1.1 joerg static uint16_t
7423 1.1 joerg sbb_word(struct X86EMU *emu, uint16_t d, uint16_t s)
7424 1.1 joerg {
7425 1.1 joerg uint32_t res; /* all operands in native machine order */
7426 1.1 joerg uint32_t bc;
7427 1.1 joerg
7428 1.1 joerg if (ACCESS_FLAG(F_CF))
7429 1.1 joerg res = d - s - 1;
7430 1.1 joerg else
7431 1.1 joerg res = d - s;
7432 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
7433 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
7434 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7435 1.1 joerg
7436 1.1 joerg /* calculate the borrow chain. See note at top */
7437 1.1 joerg bc = (res & (~d | s)) | (~d & s);
7438 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8000, F_CF);
7439 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 14), F_OF);
7440 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
7441 1.1 joerg return (uint16_t) res;
7442 1.1 joerg }
7443 1.1 joerg /****************************************************************************
7444 1.1 joerg REMARKS:
7445 1.1 joerg Implements the SBB instruction and side effects.
7446 1.1 joerg ****************************************************************************/
7447 1.1 joerg static uint32_t
7448 1.1 joerg sbb_long(struct X86EMU *emu, uint32_t d, uint32_t s)
7449 1.1 joerg {
7450 1.1 joerg uint32_t res; /* all operands in native machine order */
7451 1.1 joerg uint32_t bc;
7452 1.1 joerg
7453 1.1 joerg if (ACCESS_FLAG(F_CF))
7454 1.1 joerg res = d - s - 1;
7455 1.1 joerg else
7456 1.1 joerg res = d - s;
7457 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
7458 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
7459 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7460 1.1 joerg
7461 1.1 joerg /* calculate the borrow chain. See note at top */
7462 1.1 joerg bc = (res & (~d | s)) | (~d & s);
7463 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x80000000, F_CF);
7464 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 30), F_OF);
7465 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
7466 1.1 joerg return res;
7467 1.1 joerg }
7468 1.1 joerg /****************************************************************************
7469 1.1 joerg REMARKS:
7470 1.1 joerg Implements the SUB instruction and side effects.
7471 1.1 joerg ****************************************************************************/
7472 1.1 joerg static uint8_t
7473 1.1 joerg sub_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
7474 1.1 joerg {
7475 1.1 joerg uint32_t res; /* all operands in native machine order */
7476 1.1 joerg uint32_t bc;
7477 1.1 joerg
7478 1.1 joerg res = d - s;
7479 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
7480 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
7481 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7482 1.1 joerg
7483 1.1 joerg /* calculate the borrow chain. See note at top */
7484 1.1 joerg bc = (res & (~d | s)) | (~d & s);
7485 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x80, F_CF);
7486 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 6), F_OF);
7487 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
7488 1.1 joerg return (uint8_t) res;
7489 1.1 joerg }
7490 1.1 joerg /****************************************************************************
7491 1.1 joerg REMARKS:
7492 1.1 joerg Implements the SUB instruction and side effects.
7493 1.1 joerg ****************************************************************************/
7494 1.1 joerg static uint16_t
7495 1.1 joerg sub_word(struct X86EMU *emu, uint16_t d, uint16_t s)
7496 1.1 joerg {
7497 1.1 joerg uint32_t res; /* all operands in native machine order */
7498 1.1 joerg uint32_t bc;
7499 1.1 joerg
7500 1.1 joerg res = d - s;
7501 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
7502 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
7503 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7504 1.1 joerg
7505 1.1 joerg /* calculate the borrow chain. See note at top */
7506 1.1 joerg bc = (res & (~d | s)) | (~d & s);
7507 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8000, F_CF);
7508 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 14), F_OF);
7509 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
7510 1.1 joerg return (uint16_t) res;
7511 1.1 joerg }
7512 1.1 joerg /****************************************************************************
7513 1.1 joerg REMARKS:
7514 1.1 joerg Implements the SUB instruction and side effects.
7515 1.1 joerg ****************************************************************************/
7516 1.1 joerg static uint32_t
7517 1.1 joerg sub_long(struct X86EMU *emu, uint32_t d, uint32_t s)
7518 1.1 joerg {
7519 1.1 joerg uint32_t res; /* all operands in native machine order */
7520 1.1 joerg uint32_t bc;
7521 1.1 joerg
7522 1.1 joerg res = d - s;
7523 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
7524 1.1 joerg CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
7525 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7526 1.1 joerg
7527 1.1 joerg /* calculate the borrow chain. See note at top */
7528 1.1 joerg bc = (res & (~d | s)) | (~d & s);
7529 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x80000000, F_CF);
7530 1.1 joerg CONDITIONAL_SET_FLAG(XOR2(bc >> 30), F_OF);
7531 1.1 joerg CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
7532 1.1 joerg return res;
7533 1.1 joerg }
7534 1.1 joerg /****************************************************************************
7535 1.1 joerg REMARKS:
7536 1.1 joerg Implements the TEST instruction and side effects.
7537 1.1 joerg ****************************************************************************/
7538 1.1 joerg static void
7539 1.1 joerg test_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
7540 1.1 joerg {
7541 1.1 joerg uint32_t res; /* all operands in native machine order */
7542 1.1 joerg
7543 1.1 joerg res = d & s;
7544 1.1 joerg
7545 1.1 joerg CLEAR_FLAG(F_OF);
7546 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
7547 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
7548 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7549 1.1 joerg /* AF == dont care */
7550 1.1 joerg CLEAR_FLAG(F_CF);
7551 1.1 joerg }
7552 1.1 joerg /****************************************************************************
7553 1.1 joerg REMARKS:
7554 1.1 joerg Implements the TEST instruction and side effects.
7555 1.1 joerg ****************************************************************************/
7556 1.1 joerg static void
7557 1.1 joerg test_word(struct X86EMU *emu, uint16_t d, uint16_t s)
7558 1.1 joerg {
7559 1.1 joerg uint32_t res; /* all operands in native machine order */
7560 1.1 joerg
7561 1.1 joerg res = d & s;
7562 1.1 joerg
7563 1.1 joerg CLEAR_FLAG(F_OF);
7564 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
7565 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
7566 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7567 1.1 joerg /* AF == dont care */
7568 1.1 joerg CLEAR_FLAG(F_CF);
7569 1.1 joerg }
7570 1.1 joerg /****************************************************************************
7571 1.1 joerg REMARKS:
7572 1.1 joerg Implements the TEST instruction and side effects.
7573 1.1 joerg ****************************************************************************/
7574 1.1 joerg static void
7575 1.1 joerg test_long(struct X86EMU *emu, uint32_t d, uint32_t s)
7576 1.1 joerg {
7577 1.1 joerg uint32_t res; /* all operands in native machine order */
7578 1.1 joerg
7579 1.1 joerg res = d & s;
7580 1.1 joerg
7581 1.1 joerg CLEAR_FLAG(F_OF);
7582 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
7583 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
7584 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7585 1.1 joerg /* AF == dont care */
7586 1.1 joerg CLEAR_FLAG(F_CF);
7587 1.1 joerg }
7588 1.1 joerg /****************************************************************************
7589 1.1 joerg REMARKS:
7590 1.1 joerg Implements the XOR instruction and side effects.
7591 1.1 joerg ****************************************************************************/
7592 1.1 joerg static uint8_t
7593 1.1 joerg xor_byte(struct X86EMU *emu, uint8_t d, uint8_t s)
7594 1.1 joerg {
7595 1.1 joerg uint8_t res; /* all operands in native machine order */
7596 1.1 joerg
7597 1.1 joerg res = d ^ s;
7598 1.1 joerg CLEAR_FLAG(F_OF);
7599 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
7600 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
7601 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res), F_PF);
7602 1.1 joerg CLEAR_FLAG(F_CF);
7603 1.1 joerg CLEAR_FLAG(F_AF);
7604 1.1 joerg return res;
7605 1.1 joerg }
7606 1.1 joerg /****************************************************************************
7607 1.1 joerg REMARKS:
7608 1.1 joerg Implements the XOR instruction and side effects.
7609 1.1 joerg ****************************************************************************/
7610 1.1 joerg static uint16_t
7611 1.1 joerg xor_word(struct X86EMU *emu, uint16_t d, uint16_t s)
7612 1.1 joerg {
7613 1.1 joerg uint16_t res; /* all operands in native machine order */
7614 1.1 joerg
7615 1.1 joerg res = d ^ s;
7616 1.1 joerg CLEAR_FLAG(F_OF);
7617 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
7618 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
7619 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7620 1.1 joerg CLEAR_FLAG(F_CF);
7621 1.1 joerg CLEAR_FLAG(F_AF);
7622 1.1 joerg return res;
7623 1.1 joerg }
7624 1.1 joerg /****************************************************************************
7625 1.1 joerg REMARKS:
7626 1.1 joerg Implements the XOR instruction and side effects.
7627 1.1 joerg ****************************************************************************/
7628 1.1 joerg static uint32_t
7629 1.1 joerg xor_long(struct X86EMU *emu, uint32_t d, uint32_t s)
7630 1.1 joerg {
7631 1.1 joerg uint32_t res; /* all operands in native machine order */
7632 1.1 joerg
7633 1.1 joerg res = d ^ s;
7634 1.1 joerg CLEAR_FLAG(F_OF);
7635 1.1 joerg CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
7636 1.1 joerg CONDITIONAL_SET_FLAG(res == 0, F_ZF);
7637 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
7638 1.1 joerg CLEAR_FLAG(F_CF);
7639 1.1 joerg CLEAR_FLAG(F_AF);
7640 1.1 joerg return res;
7641 1.1 joerg }
7642 1.1 joerg /****************************************************************************
7643 1.1 joerg REMARKS:
7644 1.1 joerg Implements the IMUL instruction and side effects.
7645 1.1 joerg ****************************************************************************/
7646 1.1 joerg static void
7647 1.1 joerg imul_byte(struct X86EMU *emu, uint8_t s)
7648 1.1 joerg {
7649 1.1 joerg int16_t res = (int16_t) ((int8_t) emu->x86.R_AL * (int8_t) s);
7650 1.1 joerg
7651 1.1 joerg emu->x86.R_AX = res;
7652 1.1 joerg if (((emu->x86.R_AL & 0x80) == 0 && emu->x86.R_AH == 0x00) ||
7653 1.1 joerg ((emu->x86.R_AL & 0x80) != 0 && emu->x86.R_AH == 0xFF)) {
7654 1.1 joerg CLEAR_FLAG(F_CF);
7655 1.1 joerg CLEAR_FLAG(F_OF);
7656 1.1 joerg } else {
7657 1.1 joerg SET_FLAG(F_CF);
7658 1.1 joerg SET_FLAG(F_OF);
7659 1.1 joerg }
7660 1.1 joerg }
7661 1.1 joerg /****************************************************************************
7662 1.1 joerg REMARKS:
7663 1.1 joerg Implements the IMUL instruction and side effects.
7664 1.1 joerg ****************************************************************************/
7665 1.1 joerg static void
7666 1.1 joerg imul_word(struct X86EMU *emu, uint16_t s)
7667 1.1 joerg {
7668 1.1 joerg int32_t res = (int16_t) emu->x86.R_AX * (int16_t) s;
7669 1.1 joerg
7670 1.1 joerg emu->x86.R_AX = (uint16_t) res;
7671 1.1 joerg emu->x86.R_DX = (uint16_t) (res >> 16);
7672 1.1 joerg if (((emu->x86.R_AX & 0x8000) == 0 && emu->x86.R_DX == 0x00) ||
7673 1.1 joerg ((emu->x86.R_AX & 0x8000) != 0 && emu->x86.R_DX == 0xFF)) {
7674 1.1 joerg CLEAR_FLAG(F_CF);
7675 1.1 joerg CLEAR_FLAG(F_OF);
7676 1.1 joerg } else {
7677 1.1 joerg SET_FLAG(F_CF);
7678 1.1 joerg SET_FLAG(F_OF);
7679 1.1 joerg }
7680 1.1 joerg }
7681 1.1 joerg /****************************************************************************
7682 1.1 joerg REMARKS:
7683 1.1 joerg Implements the IMUL instruction and side effects.
7684 1.1 joerg ****************************************************************************/
7685 1.1 joerg static void
7686 1.1 joerg imul_long(struct X86EMU *emu, uint32_t s)
7687 1.1 joerg {
7688 1.1 joerg int64_t res;
7689 1.1 joerg
7690 1.1 joerg res = (int64_t)(int32_t)emu->x86.R_EAX * (int32_t)s;
7691 1.1 joerg emu->x86.R_EAX = (uint32_t)res;
7692 1.1 joerg emu->x86.R_EDX = ((uint64_t)res) >> 32;
7693 1.1 joerg if (((emu->x86.R_EAX & 0x80000000) == 0 && emu->x86.R_EDX == 0x00) ||
7694 1.1 joerg ((emu->x86.R_EAX & 0x80000000) != 0 && emu->x86.R_EDX == 0xFF)) {
7695 1.1 joerg CLEAR_FLAG(F_CF);
7696 1.1 joerg CLEAR_FLAG(F_OF);
7697 1.1 joerg } else {
7698 1.1 joerg SET_FLAG(F_CF);
7699 1.1 joerg SET_FLAG(F_OF);
7700 1.1 joerg }
7701 1.1 joerg }
7702 1.1 joerg /****************************************************************************
7703 1.1 joerg REMARKS:
7704 1.1 joerg Implements the MUL instruction and side effects.
7705 1.1 joerg ****************************************************************************/
7706 1.1 joerg static void
7707 1.1 joerg mul_byte(struct X86EMU *emu, uint8_t s)
7708 1.1 joerg {
7709 1.1 joerg uint16_t res = (uint16_t) (emu->x86.R_AL * s);
7710 1.1 joerg
7711 1.1 joerg emu->x86.R_AX = res;
7712 1.1 joerg if (emu->x86.R_AH == 0) {
7713 1.1 joerg CLEAR_FLAG(F_CF);
7714 1.1 joerg CLEAR_FLAG(F_OF);
7715 1.1 joerg } else {
7716 1.1 joerg SET_FLAG(F_CF);
7717 1.1 joerg SET_FLAG(F_OF);
7718 1.1 joerg }
7719 1.1 joerg }
7720 1.1 joerg /****************************************************************************
7721 1.1 joerg REMARKS:
7722 1.1 joerg Implements the MUL instruction and side effects.
7723 1.1 joerg ****************************************************************************/
7724 1.1 joerg static void
7725 1.1 joerg mul_word(struct X86EMU *emu, uint16_t s)
7726 1.1 joerg {
7727 1.1 joerg uint32_t res = emu->x86.R_AX * s;
7728 1.1 joerg
7729 1.1 joerg emu->x86.R_AX = (uint16_t) res;
7730 1.1 joerg emu->x86.R_DX = (uint16_t) (res >> 16);
7731 1.1 joerg if (emu->x86.R_DX == 0) {
7732 1.1 joerg CLEAR_FLAG(F_CF);
7733 1.1 joerg CLEAR_FLAG(F_OF);
7734 1.1 joerg } else {
7735 1.1 joerg SET_FLAG(F_CF);
7736 1.1 joerg SET_FLAG(F_OF);
7737 1.1 joerg }
7738 1.1 joerg }
7739 1.1 joerg /****************************************************************************
7740 1.1 joerg REMARKS:
7741 1.1 joerg Implements the MUL instruction and side effects.
7742 1.1 joerg ****************************************************************************/
7743 1.1 joerg static void
7744 1.1 joerg mul_long(struct X86EMU *emu, uint32_t s)
7745 1.1 joerg {
7746 1.1 joerg uint64_t res = (uint64_t) emu->x86.R_EAX * s;
7747 1.1 joerg
7748 1.1 joerg emu->x86.R_EAX = (uint32_t) res;
7749 1.1 joerg emu->x86.R_EDX = (uint32_t) (res >> 32);
7750 1.1 joerg
7751 1.1 joerg if (emu->x86.R_EDX == 0) {
7752 1.1 joerg CLEAR_FLAG(F_CF);
7753 1.1 joerg CLEAR_FLAG(F_OF);
7754 1.1 joerg } else {
7755 1.1 joerg SET_FLAG(F_CF);
7756 1.1 joerg SET_FLAG(F_OF);
7757 1.1 joerg }
7758 1.1 joerg }
7759 1.1 joerg /****************************************************************************
7760 1.1 joerg REMARKS:
7761 1.1 joerg Implements the IDIV instruction and side effects.
7762 1.1 joerg ****************************************************************************/
7763 1.1 joerg static void
7764 1.1 joerg idiv_byte(struct X86EMU *emu, uint8_t s)
7765 1.1 joerg {
7766 1.1 joerg int32_t dvd, div, mod;
7767 1.1 joerg
7768 1.1 joerg dvd = (int16_t) emu->x86.R_AX;
7769 1.1 joerg if (s == 0) {
7770 1.5 joerg x86emu_intr_raise(emu, 8);
7771 1.1 joerg return;
7772 1.1 joerg }
7773 1.1 joerg div = dvd / (int8_t) s;
7774 1.1 joerg mod = dvd % (int8_t) s;
7775 1.1 joerg if (div > 0x7f || div < -0x7f) {
7776 1.5 joerg x86emu_intr_raise(emu, 8);
7777 1.1 joerg return;
7778 1.1 joerg }
7779 1.1 joerg emu->x86.R_AL = (int8_t) div;
7780 1.1 joerg emu->x86.R_AH = (int8_t) mod;
7781 1.1 joerg }
7782 1.1 joerg /****************************************************************************
7783 1.1 joerg REMARKS:
7784 1.1 joerg Implements the IDIV instruction and side effects.
7785 1.1 joerg ****************************************************************************/
7786 1.1 joerg static void
7787 1.1 joerg idiv_word(struct X86EMU *emu, uint16_t s)
7788 1.1 joerg {
7789 1.1 joerg int32_t dvd, div, mod;
7790 1.1 joerg
7791 1.1 joerg dvd = (((int32_t) emu->x86.R_DX) << 16) | emu->x86.R_AX;
7792 1.1 joerg if (s == 0) {
7793 1.5 joerg x86emu_intr_raise(emu, 8);
7794 1.1 joerg return;
7795 1.1 joerg }
7796 1.1 joerg div = dvd / (int16_t) s;
7797 1.1 joerg mod = dvd % (int16_t) s;
7798 1.1 joerg if (div > 0x7fff || div < -0x7fff) {
7799 1.5 joerg x86emu_intr_raise(emu, 8);
7800 1.1 joerg return;
7801 1.1 joerg }
7802 1.1 joerg CLEAR_FLAG(F_CF);
7803 1.1 joerg CLEAR_FLAG(F_SF);
7804 1.1 joerg CONDITIONAL_SET_FLAG(div == 0, F_ZF);
7805 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(mod & 0xff), F_PF);
7806 1.1 joerg
7807 1.1 joerg emu->x86.R_AX = (uint16_t) div;
7808 1.1 joerg emu->x86.R_DX = (uint16_t) mod;
7809 1.1 joerg }
7810 1.1 joerg /****************************************************************************
7811 1.1 joerg REMARKS:
7812 1.1 joerg Implements the IDIV instruction and side effects.
7813 1.1 joerg ****************************************************************************/
7814 1.1 joerg static void
7815 1.1 joerg idiv_long(struct X86EMU *emu, uint32_t s)
7816 1.1 joerg {
7817 1.1 joerg int64_t dvd, div, mod;
7818 1.1 joerg
7819 1.1 joerg dvd = (((int64_t) emu->x86.R_EDX) << 32) | emu->x86.R_EAX;
7820 1.1 joerg if (s == 0) {
7821 1.5 joerg x86emu_intr_raise(emu, 8);
7822 1.1 joerg return;
7823 1.1 joerg }
7824 1.1 joerg div = dvd / (int32_t) s;
7825 1.1 joerg mod = dvd % (int32_t) s;
7826 1.1 joerg if (div > 0x7fffffff || div < -0x7fffffff) {
7827 1.5 joerg x86emu_intr_raise(emu, 8);
7828 1.1 joerg return;
7829 1.1 joerg }
7830 1.1 joerg CLEAR_FLAG(F_CF);
7831 1.1 joerg CLEAR_FLAG(F_AF);
7832 1.1 joerg CLEAR_FLAG(F_SF);
7833 1.1 joerg SET_FLAG(F_ZF);
7834 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(mod & 0xff), F_PF);
7835 1.1 joerg
7836 1.1 joerg emu->x86.R_EAX = (uint32_t) div;
7837 1.1 joerg emu->x86.R_EDX = (uint32_t) mod;
7838 1.1 joerg }
7839 1.1 joerg /****************************************************************************
7840 1.1 joerg REMARKS:
7841 1.1 joerg Implements the DIV instruction and side effects.
7842 1.1 joerg ****************************************************************************/
7843 1.1 joerg static void
7844 1.1 joerg div_byte(struct X86EMU *emu, uint8_t s)
7845 1.1 joerg {
7846 1.1 joerg uint32_t dvd, div, mod;
7847 1.1 joerg
7848 1.1 joerg dvd = emu->x86.R_AX;
7849 1.1 joerg if (s == 0) {
7850 1.5 joerg x86emu_intr_raise(emu, 8);
7851 1.1 joerg return;
7852 1.1 joerg }
7853 1.1 joerg div = dvd / (uint8_t) s;
7854 1.1 joerg mod = dvd % (uint8_t) s;
7855 1.1 joerg if (div > 0xff) {
7856 1.5 joerg x86emu_intr_raise(emu, 8);
7857 1.1 joerg return;
7858 1.1 joerg }
7859 1.1 joerg emu->x86.R_AL = (uint8_t) div;
7860 1.1 joerg emu->x86.R_AH = (uint8_t) mod;
7861 1.1 joerg }
7862 1.1 joerg /****************************************************************************
7863 1.1 joerg REMARKS:
7864 1.1 joerg Implements the DIV instruction and side effects.
7865 1.1 joerg ****************************************************************************/
7866 1.1 joerg static void
7867 1.1 joerg div_word(struct X86EMU *emu, uint16_t s)
7868 1.1 joerg {
7869 1.1 joerg uint32_t dvd, div, mod;
7870 1.1 joerg
7871 1.1 joerg dvd = (((uint32_t) emu->x86.R_DX) << 16) | emu->x86.R_AX;
7872 1.1 joerg if (s == 0) {
7873 1.5 joerg x86emu_intr_raise(emu, 8);
7874 1.1 joerg return;
7875 1.1 joerg }
7876 1.1 joerg div = dvd / (uint16_t) s;
7877 1.1 joerg mod = dvd % (uint16_t) s;
7878 1.1 joerg if (div > 0xffff) {
7879 1.5 joerg x86emu_intr_raise(emu, 8);
7880 1.1 joerg return;
7881 1.1 joerg }
7882 1.1 joerg CLEAR_FLAG(F_CF);
7883 1.1 joerg CLEAR_FLAG(F_SF);
7884 1.1 joerg CONDITIONAL_SET_FLAG(div == 0, F_ZF);
7885 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(mod & 0xff), F_PF);
7886 1.1 joerg
7887 1.1 joerg emu->x86.R_AX = (uint16_t) div;
7888 1.1 joerg emu->x86.R_DX = (uint16_t) mod;
7889 1.1 joerg }
7890 1.1 joerg /****************************************************************************
7891 1.1 joerg REMARKS:
7892 1.1 joerg Implements the DIV instruction and side effects.
7893 1.1 joerg ****************************************************************************/
7894 1.1 joerg static void
7895 1.1 joerg div_long(struct X86EMU *emu, uint32_t s)
7896 1.1 joerg {
7897 1.1 joerg uint64_t dvd, div, mod;
7898 1.1 joerg
7899 1.1 joerg dvd = (((uint64_t) emu->x86.R_EDX) << 32) | emu->x86.R_EAX;
7900 1.1 joerg if (s == 0) {
7901 1.5 joerg x86emu_intr_raise(emu, 8);
7902 1.1 joerg return;
7903 1.1 joerg }
7904 1.1 joerg div = dvd / (uint32_t) s;
7905 1.1 joerg mod = dvd % (uint32_t) s;
7906 1.1 joerg if (div > 0xffffffff) {
7907 1.5 joerg x86emu_intr_raise(emu, 8);
7908 1.1 joerg return;
7909 1.1 joerg }
7910 1.1 joerg CLEAR_FLAG(F_CF);
7911 1.1 joerg CLEAR_FLAG(F_AF);
7912 1.1 joerg CLEAR_FLAG(F_SF);
7913 1.1 joerg SET_FLAG(F_ZF);
7914 1.1 joerg CONDITIONAL_SET_FLAG(PARITY(mod & 0xff), F_PF);
7915 1.1 joerg
7916 1.1 joerg emu->x86.R_EAX = (uint32_t) div;
7917 1.1 joerg emu->x86.R_EDX = (uint32_t) mod;
7918 1.1 joerg }
7919 1.1 joerg /****************************************************************************
7920 1.1 joerg REMARKS:
7921 1.1 joerg Implements the IN string instruction and side effects.
7922 1.1 joerg ****************************************************************************/
7923 1.1 joerg static void
7924 1.1 joerg ins(struct X86EMU *emu, int size)
7925 1.1 joerg {
7926 1.1 joerg int inc = size;
7927 1.1 joerg
7928 1.1 joerg if (ACCESS_FLAG(F_DF)) {
7929 1.1 joerg inc = -size;
7930 1.1 joerg }
7931 1.1 joerg if (emu->x86.mode & (SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE)) {
7932 1.1 joerg /* dont care whether REPE or REPNE */
7933 1.1 joerg /* in until CX is ZERO. */
7934 1.1 joerg uint32_t count = ((emu->x86.mode & SYSMODE_PREFIX_DATA) ?
7935 1.1 joerg emu->x86.R_ECX : emu->x86.R_CX);
7936 1.1 joerg switch (size) {
7937 1.1 joerg case 1:
7938 1.1 joerg while (count--) {
7939 1.1 joerg store_byte(emu, emu->x86.R_ES, emu->x86.R_DI,
7940 1.1 joerg (*emu->emu_inb) (emu, emu->x86.R_DX));
7941 1.1 joerg emu->x86.R_DI += inc;
7942 1.1 joerg }
7943 1.1 joerg break;
7944 1.1 joerg
7945 1.1 joerg case 2:
7946 1.1 joerg while (count--) {
7947 1.1 joerg store_word(emu, emu->x86.R_ES, emu->x86.R_DI,
7948 1.1 joerg (*emu->emu_inw) (emu, emu->x86.R_DX));
7949 1.1 joerg emu->x86.R_DI += inc;
7950 1.1 joerg }
7951 1.1 joerg break;
7952 1.1 joerg case 4:
7953 1.1 joerg while (count--) {
7954 1.1 joerg store_long(emu, emu->x86.R_ES, emu->x86.R_DI,
7955 1.1 joerg (*emu->emu_inl) (emu, emu->x86.R_DX));
7956 1.1 joerg emu->x86.R_DI += inc;
7957 1.1 joerg break;
7958 1.1 joerg }
7959 1.1 joerg }
7960 1.1 joerg emu->x86.R_CX = 0;
7961 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
7962 1.1 joerg emu->x86.R_ECX = 0;
7963 1.1 joerg }
7964 1.1 joerg emu->x86.mode &= ~(SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE);
7965 1.1 joerg } else {
7966 1.1 joerg switch (size) {
7967 1.1 joerg case 1:
7968 1.1 joerg store_byte(emu, emu->x86.R_ES, emu->x86.R_DI,
7969 1.1 joerg (*emu->emu_inb) (emu, emu->x86.R_DX));
7970 1.1 joerg break;
7971 1.1 joerg case 2:
7972 1.1 joerg store_word(emu, emu->x86.R_ES, emu->x86.R_DI,
7973 1.1 joerg (*emu->emu_inw) (emu, emu->x86.R_DX));
7974 1.1 joerg break;
7975 1.1 joerg case 4:
7976 1.1 joerg store_long(emu, emu->x86.R_ES, emu->x86.R_DI,
7977 1.1 joerg (*emu->emu_inl) (emu, emu->x86.R_DX));
7978 1.1 joerg break;
7979 1.1 joerg }
7980 1.1 joerg emu->x86.R_DI += inc;
7981 1.1 joerg }
7982 1.1 joerg }
7983 1.1 joerg /****************************************************************************
7984 1.1 joerg REMARKS:
7985 1.1 joerg Implements the OUT string instruction and side effects.
7986 1.1 joerg ****************************************************************************/
7987 1.1 joerg static void
7988 1.1 joerg outs(struct X86EMU *emu, int size)
7989 1.1 joerg {
7990 1.1 joerg int inc = size;
7991 1.1 joerg
7992 1.1 joerg if (ACCESS_FLAG(F_DF)) {
7993 1.1 joerg inc = -size;
7994 1.1 joerg }
7995 1.1 joerg if (emu->x86.mode & (SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE)) {
7996 1.1 joerg /* dont care whether REPE or REPNE */
7997 1.1 joerg /* out until CX is ZERO. */
7998 1.1 joerg uint32_t count = ((emu->x86.mode & SYSMODE_PREFIX_DATA) ?
7999 1.1 joerg emu->x86.R_ECX : emu->x86.R_CX);
8000 1.1 joerg switch (size) {
8001 1.1 joerg case 1:
8002 1.1 joerg while (count--) {
8003 1.1 joerg (*emu->emu_outb) (emu, emu->x86.R_DX,
8004 1.1 joerg fetch_byte(emu, emu->x86.R_ES, emu->x86.R_SI));
8005 1.1 joerg emu->x86.R_SI += inc;
8006 1.1 joerg }
8007 1.1 joerg break;
8008 1.1 joerg
8009 1.1 joerg case 2:
8010 1.1 joerg while (count--) {
8011 1.1 joerg (*emu->emu_outw) (emu, emu->x86.R_DX,
8012 1.1 joerg fetch_word(emu, emu->x86.R_ES, emu->x86.R_SI));
8013 1.1 joerg emu->x86.R_SI += inc;
8014 1.1 joerg }
8015 1.1 joerg break;
8016 1.1 joerg case 4:
8017 1.1 joerg while (count--) {
8018 1.1 joerg (*emu->emu_outl) (emu, emu->x86.R_DX,
8019 1.1 joerg fetch_long(emu, emu->x86.R_ES, emu->x86.R_SI));
8020 1.1 joerg emu->x86.R_SI += inc;
8021 1.1 joerg break;
8022 1.1 joerg }
8023 1.1 joerg }
8024 1.1 joerg emu->x86.R_CX = 0;
8025 1.1 joerg if (emu->x86.mode & SYSMODE_PREFIX_DATA) {
8026 1.1 joerg emu->x86.R_ECX = 0;
8027 1.1 joerg }
8028 1.1 joerg emu->x86.mode &= ~(SYSMODE_PREFIX_REPE | SYSMODE_PREFIX_REPNE);
8029 1.1 joerg } else {
8030 1.1 joerg switch (size) {
8031 1.1 joerg case 1:
8032 1.1 joerg (*emu->emu_outb) (emu, emu->x86.R_DX,
8033 1.1 joerg fetch_byte(emu, emu->x86.R_ES, emu->x86.R_SI));
8034 1.1 joerg break;
8035 1.1 joerg case 2:
8036 1.1 joerg (*emu->emu_outw) (emu, emu->x86.R_DX,
8037 1.1 joerg fetch_word(emu, emu->x86.R_ES, emu->x86.R_SI));
8038 1.1 joerg break;
8039 1.1 joerg case 4:
8040 1.1 joerg (*emu->emu_outl) (emu, emu->x86.R_DX,
8041 1.1 joerg fetch_long(emu, emu->x86.R_ES, emu->x86.R_SI));
8042 1.1 joerg break;
8043 1.1 joerg }
8044 1.1 joerg emu->x86.R_SI += inc;
8045 1.1 joerg }
8046 1.1 joerg }
8047 1.1 joerg /****************************************************************************
8048 1.1 joerg REMARKS:
8049 1.1 joerg Pushes a word onto the stack.
8050 1.1 joerg
8051 1.1 joerg NOTE: Do not inline this, as (*emu->emu_wrX) is already inline!
8052 1.1 joerg ****************************************************************************/
8053 1.1 joerg static void
8054 1.1 joerg push_word(struct X86EMU *emu, uint16_t w)
8055 1.1 joerg {
8056 1.1 joerg emu->x86.R_SP -= 2;
8057 1.1 joerg store_word(emu, emu->x86.R_SS, emu->x86.R_SP, w);
8058 1.1 joerg }
8059 1.1 joerg /****************************************************************************
8060 1.1 joerg REMARKS:
8061 1.1 joerg Pushes a long onto the stack.
8062 1.1 joerg
8063 1.1 joerg NOTE: Do not inline this, as (*emu->emu_wrX) is already inline!
8064 1.1 joerg ****************************************************************************/
8065 1.1 joerg static void
8066 1.1 joerg push_long(struct X86EMU *emu, uint32_t w)
8067 1.1 joerg {
8068 1.1 joerg emu->x86.R_SP -= 4;
8069 1.1 joerg store_long(emu, emu->x86.R_SS, emu->x86.R_SP, w);
8070 1.1 joerg }
8071 1.1 joerg /****************************************************************************
8072 1.1 joerg REMARKS:
8073 1.1 joerg Pops a word from the stack.
8074 1.1 joerg
8075 1.1 joerg NOTE: Do not inline this, as (*emu->emu_rdX) is already inline!
8076 1.1 joerg ****************************************************************************/
8077 1.1 joerg static uint16_t
8078 1.1 joerg pop_word(struct X86EMU *emu)
8079 1.1 joerg {
8080 1.1 joerg uint16_t res;
8081 1.1 joerg
8082 1.1 joerg res = fetch_word(emu, emu->x86.R_SS, emu->x86.R_SP);
8083 1.1 joerg emu->x86.R_SP += 2;
8084 1.1 joerg return res;
8085 1.1 joerg }
8086 1.1 joerg /****************************************************************************
8087 1.1 joerg REMARKS:
8088 1.1 joerg Pops a long from the stack.
8089 1.1 joerg
8090 1.1 joerg NOTE: Do not inline this, as (*emu->emu_rdX) is already inline!
8091 1.1 joerg ****************************************************************************/
8092 1.1 joerg static uint32_t
8093 1.1 joerg pop_long(struct X86EMU *emu)
8094 1.1 joerg {
8095 1.1 joerg uint32_t res;
8096 1.1 joerg
8097 1.1 joerg res = fetch_long(emu, emu->x86.R_SS, emu->x86.R_SP);
8098 1.1 joerg emu->x86.R_SP += 4;
8099 1.1 joerg return res;
8100 1.1 joerg }
8101