Home | History | Annotate | Line # | Download | only in pfctl
pfctl_altq.c revision 1.4
      1 /*	$NetBSD: pfctl_altq.c,v 1.4 2004/11/14 11:26:48 yamt Exp $	*/
      2 /*	$OpenBSD: pfctl_altq.c,v 1.85 2004/05/20 12:18:52 henning Exp $	*/
      3 
      4 /*
      5  * Copyright (c) 2002
      6  *	Sony Computer Science Laboratories Inc.
      7  * Copyright (c) 2002, 2003 Henning Brauer <henning (at) openbsd.org>
      8  *
      9  * Permission to use, copy, modify, and distribute this software for any
     10  * purpose with or without fee is hereby granted, provided that the above
     11  * copyright notice and this permission notice appear in all copies.
     12  *
     13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     20  */
     21 
     22 #include <sys/types.h>
     23 #include <sys/ioctl.h>
     24 #include <sys/socket.h>
     25 #ifdef __NetBSD__
     26 #include <sys/param.h>
     27 #include <sys/mbuf.h>
     28 #endif
     29 
     30 #include <net/if.h>
     31 #include <netinet/in.h>
     32 #include <net/pfvar.h>
     33 
     34 #include <err.h>
     35 #include <errno.h>
     36 #include <limits.h>
     37 #include <math.h>
     38 #include <stdio.h>
     39 #include <stdlib.h>
     40 #include <string.h>
     41 #include <unistd.h>
     42 
     43 #include <altq/altq.h>
     44 #include <altq/altq_cbq.h>
     45 #include <altq/altq_priq.h>
     46 #include <altq/altq_hfsc.h>
     47 
     48 #include "pfctl_parser.h"
     49 #include "pfctl.h"
     50 
     51 #define is_sc_null(sc)	(((sc) == NULL) || ((sc)->m1 == 0 && (sc)->m2 == 0))
     52 
     53 TAILQ_HEAD(altqs, pf_altq) altqs = TAILQ_HEAD_INITIALIZER(altqs);
     54 LIST_HEAD(gen_sc, segment) rtsc, lssc;
     55 
     56 struct pf_altq	*qname_to_pfaltq(const char *, const char *);
     57 u_int32_t	 qname_to_qid(const char *);
     58 
     59 static int	eval_pfqueue_cbq(struct pfctl *, struct pf_altq *);
     60 static int	cbq_compute_idletime(struct pfctl *, struct pf_altq *);
     61 static int	check_commit_cbq(int, int, struct pf_altq *);
     62 static int	print_cbq_opts(const struct pf_altq *);
     63 
     64 static int	eval_pfqueue_priq(struct pfctl *, struct pf_altq *);
     65 static int	check_commit_priq(int, int, struct pf_altq *);
     66 static int	print_priq_opts(const struct pf_altq *);
     67 
     68 static int	eval_pfqueue_hfsc(struct pfctl *, struct pf_altq *);
     69 static int	check_commit_hfsc(int, int, struct pf_altq *);
     70 static int	print_hfsc_opts(const struct pf_altq *,
     71 		    const struct node_queue_opt *);
     72 
     73 static void		 gsc_add_sc(struct gen_sc *, struct service_curve *);
     74 static int		 is_gsc_under_sc(struct gen_sc *,
     75 			     struct service_curve *);
     76 static void		 gsc_destroy(struct gen_sc *);
     77 static struct segment	*gsc_getentry(struct gen_sc *, double);
     78 static int		 gsc_add_seg(struct gen_sc *, double, double, double,
     79 			     double);
     80 static double		 sc_x2y(struct service_curve *, double);
     81 
     82 u_int32_t	 getifspeed(char *);
     83 u_long		 getifmtu(char *);
     84 int		 eval_queue_opts(struct pf_altq *, struct node_queue_opt *,
     85 		     u_int32_t);
     86 u_int32_t	 eval_bwspec(struct node_queue_bw *, u_int32_t);
     87 void		 print_hfsc_sc(const char *, u_int, u_int, u_int,
     88 		     const struct node_hfsc_sc *);
     89 
     90 void
     91 pfaltq_store(struct pf_altq *a)
     92 {
     93 	struct pf_altq	*altq;
     94 
     95 	if ((altq = malloc(sizeof(*altq))) == NULL)
     96 		err(1, "malloc");
     97 	memcpy(altq, a, sizeof(struct pf_altq));
     98 	TAILQ_INSERT_TAIL(&altqs, altq, entries);
     99 }
    100 
    101 void
    102 pfaltq_free(struct pf_altq *a)
    103 {
    104 	struct pf_altq	*altq;
    105 
    106 	TAILQ_FOREACH(altq, &altqs, entries) {
    107 		if (strncmp(a->ifname, altq->ifname, IFNAMSIZ) == 0 &&
    108 		    strncmp(a->qname, altq->qname, PF_QNAME_SIZE) == 0) {
    109 			TAILQ_REMOVE(&altqs, altq, entries);
    110 			free(altq);
    111 			return;
    112 		}
    113 	}
    114 }
    115 
    116 struct pf_altq *
    117 pfaltq_lookup(const char *ifname)
    118 {
    119 	struct pf_altq	*altq;
    120 
    121 	TAILQ_FOREACH(altq, &altqs, entries) {
    122 		if (strncmp(ifname, altq->ifname, IFNAMSIZ) == 0 &&
    123 		    altq->qname[0] == 0)
    124 			return (altq);
    125 	}
    126 	return (NULL);
    127 }
    128 
    129 struct pf_altq *
    130 qname_to_pfaltq(const char *qname, const char *ifname)
    131 {
    132 	struct pf_altq	*altq;
    133 
    134 	TAILQ_FOREACH(altq, &altqs, entries) {
    135 		if (strncmp(ifname, altq->ifname, IFNAMSIZ) == 0 &&
    136 		    strncmp(qname, altq->qname, PF_QNAME_SIZE) == 0)
    137 			return (altq);
    138 	}
    139 	return (NULL);
    140 }
    141 
    142 u_int32_t
    143 qname_to_qid(const char *qname)
    144 {
    145 	struct pf_altq	*altq;
    146 
    147 	/*
    148 	 * We guarantee that same named queues on different interfaces
    149 	 * have the same qid, so we do NOT need to limit matching on
    150 	 * one interface!
    151 	 */
    152 
    153 	TAILQ_FOREACH(altq, &altqs, entries) {
    154 		if (strncmp(qname, altq->qname, PF_QNAME_SIZE) == 0)
    155 			return (altq->qid);
    156 	}
    157 	return (0);
    158 }
    159 
    160 void
    161 print_altq(const struct pf_altq *a, unsigned level, struct node_queue_bw *bw,
    162 	struct node_queue_opt *qopts)
    163 {
    164 	if (a->qname[0] != 0) {
    165 		print_queue(a, level, bw, 0, qopts);
    166 		return;
    167 	}
    168 
    169 	printf("altq on %s ", a->ifname);
    170 
    171 	switch (a->scheduler) {
    172 	case ALTQT_CBQ:
    173 		if (!print_cbq_opts(a))
    174 			printf("cbq ");
    175 		break;
    176 	case ALTQT_PRIQ:
    177 		if (!print_priq_opts(a))
    178 			printf("priq ");
    179 		break;
    180 	case ALTQT_HFSC:
    181 		if (!print_hfsc_opts(a, qopts))
    182 			printf("hfsc ");
    183 		break;
    184 	}
    185 
    186 	if (bw != NULL && bw->bw_percent > 0) {
    187 		if (bw->bw_percent < 100)
    188 			printf("bandwidth %u%% ", bw->bw_percent);
    189 	} else
    190 		printf("bandwidth %s ", rate2str((double)a->ifbandwidth));
    191 
    192 	if (a->qlimit != DEFAULT_QLIMIT)
    193 		printf("qlimit %u ", a->qlimit);
    194 	printf("tbrsize %u ", a->tbrsize);
    195 }
    196 
    197 void
    198 print_queue(const struct pf_altq *a, unsigned level, struct node_queue_bw *bw,
    199     int print_interface, struct node_queue_opt *qopts)
    200 {
    201 	unsigned	i;
    202 
    203 	printf("queue ");
    204 	for (i = 0; i < level; ++i)
    205 		printf(" ");
    206 	printf("%s ", a->qname);
    207 	if (print_interface)
    208 		printf("on %s ", a->ifname);
    209 	if (a->scheduler == ALTQT_CBQ || a->scheduler == ALTQT_HFSC) {
    210 		if (bw != NULL && bw->bw_percent > 0) {
    211 			if (bw->bw_percent < 100)
    212 				printf("bandwidth %u%% ", bw->bw_percent);
    213 		} else
    214 			printf("bandwidth %s ", rate2str((double)a->bandwidth));
    215 	}
    216 	if (a->priority != DEFAULT_PRIORITY)
    217 		printf("priority %u ", a->priority);
    218 	if (a->qlimit != DEFAULT_QLIMIT)
    219 		printf("qlimit %u ", a->qlimit);
    220 	switch (a->scheduler) {
    221 	case ALTQT_CBQ:
    222 		print_cbq_opts(a);
    223 		break;
    224 	case ALTQT_PRIQ:
    225 		print_priq_opts(a);
    226 		break;
    227 	case ALTQT_HFSC:
    228 		print_hfsc_opts(a, qopts);
    229 		break;
    230 	}
    231 }
    232 
    233 /*
    234  * eval_pfaltq computes the discipline parameters.
    235  */
    236 int
    237 eval_pfaltq(struct pfctl *pf, struct pf_altq *pa, struct node_queue_bw *bw,
    238     struct node_queue_opt *opts)
    239 {
    240 	u_int	rate, size, errors = 0;
    241 
    242 	if (bw->bw_absolute > 0)
    243 		pa->ifbandwidth = bw->bw_absolute;
    244 	else
    245 		if ((rate = getifspeed(pa->ifname)) == 0) {
    246 			fprintf(stderr, "cannot determine interface bandwidth "
    247 			    "for %s, specify an absolute bandwidth\n",
    248 			    pa->ifname);
    249 			errors++;
    250 		} else if ((pa->ifbandwidth = eval_bwspec(bw, rate)) == 0)
    251 			pa->ifbandwidth = rate;
    252 
    253 	errors += eval_queue_opts(pa, opts, pa->ifbandwidth);
    254 
    255 	/* if tbrsize is not specified, use heuristics */
    256 	if (pa->tbrsize == 0) {
    257 		rate = pa->ifbandwidth;
    258 		if (rate <= 1 * 1000 * 1000)
    259 			size = 1;
    260 		else if (rate <= 10 * 1000 * 1000)
    261 			size = 4;
    262 		else if (rate <= 200 * 1000 * 1000)
    263 			size = 8;
    264 		else
    265 			size = 24;
    266 		size = size * getifmtu(pa->ifname);
    267 		if (size > 0xffff)
    268 			size = 0xffff;
    269 		pa->tbrsize = size;
    270 	}
    271 	return (errors);
    272 }
    273 
    274 /*
    275  * check_commit_altq does consistency check for each interface
    276  */
    277 int
    278 check_commit_altq(int dev, int opts)
    279 {
    280 	struct pf_altq	*altq;
    281 	int		 error = 0;
    282 
    283 	/* call the discipline check for each interface. */
    284 	TAILQ_FOREACH(altq, &altqs, entries) {
    285 		if (altq->qname[0] == 0) {
    286 			switch (altq->scheduler) {
    287 			case ALTQT_CBQ:
    288 				error = check_commit_cbq(dev, opts, altq);
    289 				break;
    290 			case ALTQT_PRIQ:
    291 				error = check_commit_priq(dev, opts, altq);
    292 				break;
    293 			case ALTQT_HFSC:
    294 				error = check_commit_hfsc(dev, opts, altq);
    295 				break;
    296 			default:
    297 				break;
    298 			}
    299 		}
    300 	}
    301 	return (error);
    302 }
    303 
    304 /*
    305  * eval_pfqueue computes the queue parameters.
    306  */
    307 int
    308 eval_pfqueue(struct pfctl *pf, struct pf_altq *pa, struct node_queue_bw *bw,
    309     struct node_queue_opt *opts)
    310 {
    311 	/* should be merged with expand_queue */
    312 	struct pf_altq	*if_pa, *parent, *altq;
    313 	u_int32_t	 bwsum;
    314 	int		 error = 0;
    315 
    316 	/* find the corresponding interface and copy fields used by queues */
    317 	if ((if_pa = pfaltq_lookup(pa->ifname)) == NULL) {
    318 		fprintf(stderr, "altq not defined on %s\n", pa->ifname);
    319 		return (1);
    320 	}
    321 	pa->scheduler = if_pa->scheduler;
    322 	pa->ifbandwidth = if_pa->ifbandwidth;
    323 
    324 	if (qname_to_pfaltq(pa->qname, pa->ifname) != NULL) {
    325 		fprintf(stderr, "queue %s already exists on interface %s\n",
    326 		    pa->qname, pa->ifname);
    327 		return (1);
    328 	}
    329 	pa->qid = qname_to_qid(pa->qname);
    330 
    331 	parent = NULL;
    332 	if (pa->parent[0] != 0) {
    333 		parent = qname_to_pfaltq(pa->parent, pa->ifname);
    334 		if (parent == NULL) {
    335 			fprintf(stderr, "parent %s not found for %s\n",
    336 			    pa->parent, pa->qname);
    337 			return (1);
    338 		}
    339 		pa->parent_qid = parent->qid;
    340 	}
    341 	if (pa->qlimit == 0)
    342 		pa->qlimit = DEFAULT_QLIMIT;
    343 
    344 	if (pa->scheduler == ALTQT_CBQ || pa->scheduler == ALTQT_HFSC) {
    345 		pa->bandwidth = eval_bwspec(bw,
    346 		    parent == NULL ? 0 : parent->bandwidth);
    347 
    348 		if (pa->bandwidth > pa->ifbandwidth) {
    349 			fprintf(stderr, "bandwidth for %s higher than "
    350 			    "interface\n", pa->qname);
    351 			return (1);
    352 		}
    353 		/* check the sum of the child bandwidth is under parent's */
    354 		if (parent != NULL) {
    355 			if (pa->bandwidth > parent->bandwidth) {
    356 				warnx("bandwidth for %s higher than parent",
    357 				    pa->qname);
    358 				return (1);
    359 			}
    360 			bwsum = 0;
    361 			TAILQ_FOREACH(altq, &altqs, entries) {
    362 				if (strncmp(altq->ifname, pa->ifname,
    363 				    IFNAMSIZ) == 0 &&
    364 				    altq->qname[0] != 0 &&
    365 				    strncmp(altq->parent, pa->parent,
    366 				    PF_QNAME_SIZE) == 0)
    367 					bwsum += altq->bandwidth;
    368 			}
    369 			bwsum += pa->bandwidth;
    370 			if (bwsum > parent->bandwidth) {
    371 				warnx("the sum of the child bandwidth higher"
    372 				    " than parent \"%s\"", parent->qname);
    373 			}
    374 		}
    375 	}
    376 
    377 	if (eval_queue_opts(pa, opts, parent == NULL? 0 : parent->bandwidth))
    378 		return (1);
    379 
    380 	switch (pa->scheduler) {
    381 	case ALTQT_CBQ:
    382 		error = eval_pfqueue_cbq(pf, pa);
    383 		break;
    384 	case ALTQT_PRIQ:
    385 		error = eval_pfqueue_priq(pf, pa);
    386 		break;
    387 	case ALTQT_HFSC:
    388 		error = eval_pfqueue_hfsc(pf, pa);
    389 		break;
    390 	default:
    391 		break;
    392 	}
    393 	return (error);
    394 }
    395 
    396 /*
    397  * CBQ support functions
    398  */
    399 #define	RM_FILTER_GAIN	5	/* log2 of gain, e.g., 5 => 31/32 */
    400 #define	RM_NS_PER_SEC	(1000000000)
    401 
    402 static int
    403 eval_pfqueue_cbq(struct pfctl *pf, struct pf_altq *pa)
    404 {
    405 	struct cbq_opts	*opts;
    406 	u_int		 ifmtu;
    407 
    408 	if (pa->priority >= CBQ_MAXPRI) {
    409 		warnx("priority out of range: max %d", CBQ_MAXPRI - 1);
    410 		return (-1);
    411 	}
    412 
    413 	ifmtu = getifmtu(pa->ifname);
    414 	opts = &pa->pq_u.cbq_opts;
    415 
    416 	if (opts->pktsize == 0) {	/* use default */
    417 		opts->pktsize = ifmtu;
    418 		if (opts->pktsize > MCLBYTES)	/* do what TCP does */
    419 			opts->pktsize &= ~MCLBYTES;
    420 	} else if (opts->pktsize > ifmtu)
    421 		opts->pktsize = ifmtu;
    422 	if (opts->maxpktsize == 0)	/* use default */
    423 		opts->maxpktsize = ifmtu;
    424 	else if (opts->maxpktsize > ifmtu)
    425 		opts->pktsize = ifmtu;
    426 
    427 	if (opts->pktsize > opts->maxpktsize)
    428 		opts->pktsize = opts->maxpktsize;
    429 
    430 	if (pa->parent[0] == 0)
    431 		opts->flags |= (CBQCLF_ROOTCLASS | CBQCLF_WRR);
    432 
    433 	cbq_compute_idletime(pf, pa);
    434 	return (0);
    435 }
    436 
    437 /*
    438  * compute ns_per_byte, maxidle, minidle, and offtime
    439  */
    440 static int
    441 cbq_compute_idletime(struct pfctl *pf, struct pf_altq *pa)
    442 {
    443 	struct cbq_opts	*opts;
    444 	double		 maxidle_s, maxidle, minidle;
    445 	double		 offtime, nsPerByte, ifnsPerByte, ptime, cptime;
    446 	double		 z, g, f, gton, gtom;
    447 	u_int		 minburst, maxburst;
    448 
    449 	opts = &pa->pq_u.cbq_opts;
    450 	ifnsPerByte = (1.0 / (double)pa->ifbandwidth) * RM_NS_PER_SEC * 8;
    451 	minburst = opts->minburst;
    452 	maxburst = opts->maxburst;
    453 
    454 	if (pa->bandwidth == 0)
    455 		f = 0.0001;	/* small enough? */
    456 	else
    457 		f = ((double) pa->bandwidth / (double) pa->ifbandwidth);
    458 
    459 	nsPerByte = ifnsPerByte / f;
    460 	ptime = (double)opts->pktsize * ifnsPerByte;
    461 	cptime = ptime * (1.0 - f) / f;
    462 
    463 	if (nsPerByte * (double)opts->maxpktsize > (double)INT_MAX) {
    464 		/*
    465 		 * this causes integer overflow in kernel!
    466 		 * (bandwidth < 6Kbps when max_pkt_size=1500)
    467 		 */
    468 		if (pa->bandwidth != 0 && (pf->opts & PF_OPT_QUIET) == 0)
    469 			warnx("queue bandwidth must be larger than %s",
    470 			    rate2str(ifnsPerByte * (double)opts->maxpktsize /
    471 			    (double)INT_MAX * (double)pa->ifbandwidth));
    472 			fprintf(stderr, "cbq: queue %s is too slow!\n",
    473 			    pa->qname);
    474 		nsPerByte = (double)(INT_MAX / opts->maxpktsize);
    475 	}
    476 
    477 	if (maxburst == 0) {  /* use default */
    478 		if (cptime > 10.0 * 1000000)
    479 			maxburst = 4;
    480 		else
    481 			maxburst = 16;
    482 	}
    483 	if (minburst == 0)  /* use default */
    484 		minburst = 2;
    485 	if (minburst > maxburst)
    486 		minburst = maxburst;
    487 
    488 	z = (double)(1 << RM_FILTER_GAIN);
    489 	g = (1.0 - 1.0 / z);
    490 	gton = pow(g, (double)maxburst);
    491 	gtom = pow(g, (double)(minburst-1));
    492 	maxidle = ((1.0 / f - 1.0) * ((1.0 - gton) / gton));
    493 	maxidle_s = (1.0 - g);
    494 	if (maxidle > maxidle_s)
    495 		maxidle = ptime * maxidle;
    496 	else
    497 		maxidle = ptime * maxidle_s;
    498 	if (minburst)
    499 		offtime = cptime * (1.0 + 1.0/(1.0 - g) * (1.0 - gtom) / gtom);
    500 	else
    501 		offtime = cptime;
    502 	minidle = -((double)opts->maxpktsize * (double)nsPerByte);
    503 
    504 	/* scale parameters */
    505 	maxidle = ((maxidle * 8.0) / nsPerByte) *
    506 	    pow(2.0, (double)RM_FILTER_GAIN);
    507 	offtime = (offtime * 8.0) / nsPerByte *
    508 	    pow(2.0, (double)RM_FILTER_GAIN);
    509 	minidle = ((minidle * 8.0) / nsPerByte) *
    510 	    pow(2.0, (double)RM_FILTER_GAIN);
    511 
    512 	maxidle = maxidle / 1000.0;
    513 	offtime = offtime / 1000.0;
    514 	minidle = minidle / 1000.0;
    515 
    516 	opts->minburst = minburst;
    517 	opts->maxburst = maxburst;
    518 	opts->ns_per_byte = (u_int)nsPerByte;
    519 	opts->maxidle = (u_int)fabs(maxidle);
    520 	opts->minidle = (int)minidle;
    521 	opts->offtime = (u_int)fabs(offtime);
    522 
    523 	return (0);
    524 }
    525 
    526 static int
    527 check_commit_cbq(int dev, int opts, struct pf_altq *pa)
    528 {
    529 	struct pf_altq	*altq;
    530 	int		 root_class, default_class;
    531 	int		 error = 0;
    532 
    533 	/*
    534 	 * check if cbq has one root queue and one default queue
    535 	 * for this interface
    536 	 */
    537 	root_class = default_class = 0;
    538 	TAILQ_FOREACH(altq, &altqs, entries) {
    539 		if (strncmp(altq->ifname, pa->ifname, IFNAMSIZ) != 0)
    540 			continue;
    541 		if (altq->qname[0] == 0)  /* this is for interface */
    542 			continue;
    543 		if (altq->pq_u.cbq_opts.flags & CBQCLF_ROOTCLASS)
    544 			root_class++;
    545 		if (altq->pq_u.cbq_opts.flags & CBQCLF_DEFCLASS)
    546 			default_class++;
    547 	}
    548 	if (root_class != 1) {
    549 		warnx("should have one root queue on %s", pa->ifname);
    550 		error++;
    551 	}
    552 	if (default_class != 1) {
    553 		warnx("should have one default queue on %s", pa->ifname);
    554 		error++;
    555 	}
    556 	return (error);
    557 }
    558 
    559 static int
    560 print_cbq_opts(const struct pf_altq *a)
    561 {
    562 	const struct cbq_opts	*opts;
    563 
    564 	opts = &a->pq_u.cbq_opts;
    565 	if (opts->flags) {
    566 		printf("cbq(");
    567 		if (opts->flags & CBQCLF_RED)
    568 			printf(" red");
    569 		if (opts->flags & CBQCLF_ECN)
    570 			printf(" ecn");
    571 		if (opts->flags & CBQCLF_RIO)
    572 			printf(" rio");
    573 		if (opts->flags & CBQCLF_CLEARDSCP)
    574 			printf(" cleardscp");
    575 		if (opts->flags & CBQCLF_FLOWVALVE)
    576 			printf(" flowvalve");
    577 #ifdef CBQCLF_BORROW
    578 		if (opts->flags & CBQCLF_BORROW)
    579 			printf(" borrow");
    580 #endif
    581 		if (opts->flags & CBQCLF_WRR)
    582 			printf(" wrr");
    583 		if (opts->flags & CBQCLF_EFFICIENT)
    584 			printf(" efficient");
    585 		if (opts->flags & CBQCLF_ROOTCLASS)
    586 			printf(" root");
    587 		if (opts->flags & CBQCLF_DEFCLASS)
    588 			printf(" default");
    589 		printf(" ) ");
    590 
    591 		return (1);
    592 	} else
    593 		return (0);
    594 }
    595 
    596 /*
    597  * PRIQ support functions
    598  */
    599 static int
    600 eval_pfqueue_priq(struct pfctl *pf, struct pf_altq *pa)
    601 {
    602 	struct pf_altq	*altq;
    603 
    604 	if (pa->priority >= PRIQ_MAXPRI) {
    605 		warnx("priority out of range: max %d", PRIQ_MAXPRI - 1);
    606 		return (-1);
    607 	}
    608 	/* the priority should be unique for the interface */
    609 	TAILQ_FOREACH(altq, &altqs, entries) {
    610 		if (strncmp(altq->ifname, pa->ifname, IFNAMSIZ) == 0 &&
    611 		    altq->qname[0] != 0 && altq->priority == pa->priority) {
    612 			warnx("%s and %s have the same priority",
    613 			    altq->qname, pa->qname);
    614 			return (-1);
    615 		}
    616 	}
    617 
    618 	return (0);
    619 }
    620 
    621 static int
    622 check_commit_priq(int dev, int opts, struct pf_altq *pa)
    623 {
    624 	struct pf_altq	*altq;
    625 	int		 default_class;
    626 	int		 error = 0;
    627 
    628 	/*
    629 	 * check if priq has one default class for this interface
    630 	 */
    631 	default_class = 0;
    632 	TAILQ_FOREACH(altq, &altqs, entries) {
    633 		if (strncmp(altq->ifname, pa->ifname, IFNAMSIZ) != 0)
    634 			continue;
    635 		if (altq->qname[0] == 0)  /* this is for interface */
    636 			continue;
    637 		if (altq->pq_u.priq_opts.flags & PRCF_DEFAULTCLASS)
    638 			default_class++;
    639 	}
    640 	if (default_class != 1) {
    641 		warnx("should have one default queue on %s", pa->ifname);
    642 		error++;
    643 	}
    644 	return (error);
    645 }
    646 
    647 static int
    648 print_priq_opts(const struct pf_altq *a)
    649 {
    650 	const struct priq_opts	*opts;
    651 
    652 	opts = &a->pq_u.priq_opts;
    653 
    654 	if (opts->flags) {
    655 		printf("priq(");
    656 		if (opts->flags & PRCF_RED)
    657 			printf(" red");
    658 		if (opts->flags & PRCF_ECN)
    659 			printf(" ecn");
    660 		if (opts->flags & PRCF_RIO)
    661 			printf(" rio");
    662 		if (opts->flags & PRCF_CLEARDSCP)
    663 			printf(" cleardscp");
    664 		if (opts->flags & PRCF_DEFAULTCLASS)
    665 			printf(" default");
    666 		printf(" ) ");
    667 
    668 		return (1);
    669 	} else
    670 		return (0);
    671 }
    672 
    673 /*
    674  * HFSC support functions
    675  */
    676 static int
    677 eval_pfqueue_hfsc(struct pfctl *pf, struct pf_altq *pa)
    678 {
    679 	struct pf_altq		*altq, *parent;
    680 	struct hfsc_opts	*opts;
    681 	struct service_curve	 sc;
    682 
    683 	opts = &pa->pq_u.hfsc_opts;
    684 
    685 	if (pa->parent[0] == 0) {
    686 		/* root queue */
    687 		opts->lssc_m1 = pa->ifbandwidth;
    688 		opts->lssc_m2 = pa->ifbandwidth;
    689 		opts->lssc_d = 0;
    690 		return (0);
    691 	}
    692 
    693 	LIST_INIT(&rtsc);
    694 	LIST_INIT(&lssc);
    695 
    696 	/* if link_share is not specified, use bandwidth */
    697 	if (opts->lssc_m2 == 0)
    698 		opts->lssc_m2 = pa->bandwidth;
    699 
    700 	if ((opts->rtsc_m1 > 0 && opts->rtsc_m2 == 0) ||
    701 	    (opts->lssc_m1 > 0 && opts->lssc_m2 == 0) ||
    702 	    (opts->ulsc_m1 > 0 && opts->ulsc_m2 == 0)) {
    703 		warnx("m2 is zero for %s", pa->qname);
    704 		return (-1);
    705 	}
    706 
    707 	if ((opts->rtsc_m1 < opts->rtsc_m2 && opts->rtsc_m1 != 0) ||
    708 	    (opts->rtsc_m1 < opts->rtsc_m2 && opts->rtsc_m1 != 0) ||
    709 	    (opts->rtsc_m1 < opts->rtsc_m2 && opts->rtsc_m1 != 0)) {
    710 		warnx("m1 must be zero for convex curve: %s", pa->qname);
    711 		return (-1);
    712 	}
    713 
    714 	/*
    715 	 * admission control:
    716 	 * for the real-time service curve, the sum of the service curves
    717 	 * should not exceed 80% of the interface bandwidth.  20% is reserved
    718 	 * not to over-commit the actual interface bandwidth.
    719 	 * for the link-sharing service curve, the sum of the child service
    720 	 * curve should not exceed the parent service curve.
    721 	 * for the upper-limit service curve, the assigned bandwidth should
    722 	 * be smaller than the interface bandwidth, and the upper-limit should
    723 	 * be larger than the real-time service curve when both are defined.
    724 	 */
    725 	parent = qname_to_pfaltq(pa->parent, pa->ifname);
    726 	if (parent == NULL)
    727 		errx(1, "parent %s not found for %s", pa->parent, pa->qname);
    728 
    729 	TAILQ_FOREACH(altq, &altqs, entries) {
    730 		if (strncmp(altq->ifname, pa->ifname, IFNAMSIZ) != 0)
    731 			continue;
    732 		if (altq->qname[0] == 0)  /* this is for interface */
    733 			continue;
    734 
    735 		/* if the class has a real-time service curve, add it. */
    736 		if (opts->rtsc_m2 != 0 && altq->pq_u.hfsc_opts.rtsc_m2 != 0) {
    737 			sc.m1 = altq->pq_u.hfsc_opts.rtsc_m1;
    738 			sc.d = altq->pq_u.hfsc_opts.rtsc_d;
    739 			sc.m2 = altq->pq_u.hfsc_opts.rtsc_m2;
    740 			gsc_add_sc(&rtsc, &sc);
    741 		}
    742 
    743 		if (strncmp(altq->parent, pa->parent, PF_QNAME_SIZE) != 0)
    744 			continue;
    745 
    746 		/* if the class has a link-sharing service curve, add it. */
    747 		if (opts->lssc_m2 != 0 && altq->pq_u.hfsc_opts.lssc_m2 != 0) {
    748 			sc.m1 = altq->pq_u.hfsc_opts.lssc_m1;
    749 			sc.d = altq->pq_u.hfsc_opts.lssc_d;
    750 			sc.m2 = altq->pq_u.hfsc_opts.lssc_m2;
    751 			gsc_add_sc(&lssc, &sc);
    752 		}
    753 	}
    754 
    755 	/* check the real-time service curve.  reserve 20% of interface bw */
    756 	if (opts->rtsc_m2 != 0) {
    757 		/* add this queue to the sum */
    758 		sc.m1 = opts->rtsc_m1;
    759 		sc.d = opts->rtsc_d;
    760 		sc.m2 = opts->rtsc_m2;
    761 		gsc_add_sc(&rtsc, &sc);
    762 		/* compare the sum with 80% of the interface */
    763 		sc.m1 = 0;
    764 		sc.d = 0;
    765 		sc.m2 = pa->ifbandwidth / 100 * 80;
    766 		if (!is_gsc_under_sc(&rtsc, &sc)) {
    767 			warnx("real-time sc exceeds 80%% of the interface "
    768 			    "bandwidth (%s)", rate2str((double)sc.m2));
    769 			goto err_ret;
    770 		}
    771 	}
    772 
    773 	/* check the link-sharing service curve. */
    774 	if (opts->lssc_m2 != 0) {
    775 		/* add this queue to the child sum */
    776 		sc.m1 = opts->lssc_m1;
    777 		sc.d = opts->lssc_d;
    778 		sc.m2 = opts->lssc_m2;
    779 		gsc_add_sc(&lssc, &sc);
    780 		/* compare the sum of the children with parent's sc */
    781 		sc.m1 = parent->pq_u.hfsc_opts.lssc_m1;
    782 		sc.d = parent->pq_u.hfsc_opts.lssc_d;
    783 		sc.m2 = parent->pq_u.hfsc_opts.lssc_m2;
    784 		if (!is_gsc_under_sc(&lssc, &sc)) {
    785 			warnx("link-sharing sc exceeds parent's sc");
    786 			goto err_ret;
    787 		}
    788 	}
    789 
    790 	/* check the upper-limit service curve. */
    791 	if (opts->ulsc_m2 != 0) {
    792 		if (opts->ulsc_m1 > pa->ifbandwidth ||
    793 		    opts->ulsc_m2 > pa->ifbandwidth) {
    794 			warnx("upper-limit larger than interface bandwidth");
    795 			goto err_ret;
    796 		}
    797 		if (opts->rtsc_m2 != 0 && opts->rtsc_m2 > opts->ulsc_m2) {
    798 			warnx("upper-limit sc smaller than real-time sc");
    799 			goto err_ret;
    800 		}
    801 	}
    802 
    803 	gsc_destroy(&rtsc);
    804 	gsc_destroy(&lssc);
    805 
    806 	return (0);
    807 
    808 err_ret:
    809 	gsc_destroy(&rtsc);
    810 	gsc_destroy(&lssc);
    811 	return (-1);
    812 }
    813 
    814 static int
    815 check_commit_hfsc(int dev, int opts, struct pf_altq *pa)
    816 {
    817 	struct pf_altq	*altq, *def = NULL;
    818 	int		 default_class;
    819 	int		 error = 0;
    820 
    821 	/* check if hfsc has one default queue for this interface */
    822 	default_class = 0;
    823 	TAILQ_FOREACH(altq, &altqs, entries) {
    824 		if (strncmp(altq->ifname, pa->ifname, IFNAMSIZ) != 0)
    825 			continue;
    826 		if (altq->qname[0] == 0)  /* this is for interface */
    827 			continue;
    828 		if (altq->parent[0] == 0)  /* dummy root */
    829 			continue;
    830 		if (altq->pq_u.hfsc_opts.flags & HFCF_DEFAULTCLASS) {
    831 			default_class++;
    832 			def = altq;
    833 		}
    834 	}
    835 	if (default_class != 1) {
    836 		warnx("should have one default queue on %s", pa->ifname);
    837 		return (1);
    838 	}
    839 	/* make sure the default queue is a leaf */
    840 	TAILQ_FOREACH(altq, &altqs, entries) {
    841 		if (strncmp(altq->ifname, pa->ifname, IFNAMSIZ) != 0)
    842 			continue;
    843 		if (altq->qname[0] == 0)  /* this is for interface */
    844 			continue;
    845 		if (strncmp(altq->parent, def->qname, PF_QNAME_SIZE) == 0) {
    846 			warnx("default queue is not a leaf");
    847 			error++;
    848 		}
    849 	}
    850 	return (error);
    851 }
    852 
    853 static int
    854 print_hfsc_opts(const struct pf_altq *a, const struct node_queue_opt *qopts)
    855 {
    856 	const struct hfsc_opts		*opts;
    857 	const struct node_hfsc_sc	*rtsc, *lssc, *ulsc;
    858 
    859 	opts = &a->pq_u.hfsc_opts;
    860 	if (qopts == NULL)
    861 		rtsc = lssc = ulsc = NULL;
    862 	else {
    863 		rtsc = &qopts->data.hfsc_opts.realtime;
    864 		lssc = &qopts->data.hfsc_opts.linkshare;
    865 		ulsc = &qopts->data.hfsc_opts.upperlimit;
    866 	}
    867 
    868 	if (opts->flags || opts->rtsc_m2 != 0 || opts->ulsc_m2 != 0 ||
    869 	    (opts->lssc_m2 != 0 && (opts->lssc_m2 != a->bandwidth ||
    870 	    opts->lssc_d != 0))) {
    871 		printf("hfsc(");
    872 		if (opts->flags & HFCF_RED)
    873 			printf(" red");
    874 		if (opts->flags & HFCF_ECN)
    875 			printf(" ecn");
    876 		if (opts->flags & HFCF_RIO)
    877 			printf(" rio");
    878 		if (opts->flags & HFCF_CLEARDSCP)
    879 			printf(" cleardscp");
    880 		if (opts->flags & HFCF_DEFAULTCLASS)
    881 			printf(" default");
    882 		if (opts->rtsc_m2 != 0)
    883 			print_hfsc_sc("realtime", opts->rtsc_m1, opts->rtsc_d,
    884 			    opts->rtsc_m2, rtsc);
    885 		if (opts->lssc_m2 != 0 && (opts->lssc_m2 != a->bandwidth ||
    886 		    opts->lssc_d != 0))
    887 			print_hfsc_sc("linkshare", opts->lssc_m1, opts->lssc_d,
    888 			    opts->lssc_m2, lssc);
    889 		if (opts->ulsc_m2 != 0)
    890 			print_hfsc_sc("upperlimit", opts->ulsc_m1, opts->ulsc_d,
    891 			    opts->ulsc_m2, ulsc);
    892 		printf(" ) ");
    893 
    894 		return (1);
    895 	} else
    896 		return (0);
    897 }
    898 
    899 /*
    900  * admission control using generalized service curve
    901  */
    902 #ifdef __OpenBSD__
    903 #define	INFINITY	HUGE_VAL  /* positive infinity defined in <math.h> */
    904 #endif
    905 
    906 /* add a new service curve to a generalized service curve */
    907 static void
    908 gsc_add_sc(struct gen_sc *gsc, struct service_curve *sc)
    909 {
    910 	if (is_sc_null(sc))
    911 		return;
    912 	if (sc->d != 0)
    913 		gsc_add_seg(gsc, 0.0, 0.0, (double)sc->d, (double)sc->m1);
    914 	gsc_add_seg(gsc, (double)sc->d, 0.0, INFINITY, (double)sc->m2);
    915 }
    916 
    917 /*
    918  * check whether all points of a generalized service curve have
    919  * their y-coordinates no larger than a given two-piece linear
    920  * service curve.
    921  */
    922 static int
    923 is_gsc_under_sc(struct gen_sc *gsc, struct service_curve *sc)
    924 {
    925 	struct segment	*s, *last, *end;
    926 	double		 y;
    927 
    928 	if (is_sc_null(sc)) {
    929 		if (LIST_EMPTY(gsc))
    930 			return (1);
    931 		LIST_FOREACH(s, gsc, _next) {
    932 			if (s->m != 0)
    933 				return (0);
    934 		}
    935 		return (1);
    936 	}
    937 	/*
    938 	 * gsc has a dummy entry at the end with x = INFINITY.
    939 	 * loop through up to this dummy entry.
    940 	 */
    941 	end = gsc_getentry(gsc, INFINITY);
    942 	if (end == NULL)
    943 		return (1);
    944 	last = NULL;
    945 	for (s = LIST_FIRST(gsc); s != end; s = LIST_NEXT(s, _next)) {
    946 		if (s->y > sc_x2y(sc, s->x))
    947 			return (0);
    948 		last = s;
    949 	}
    950 	/* last now holds the real last segment */
    951 	if (last == NULL)
    952 		return (1);
    953 	if (last->m > sc->m2)
    954 		return (0);
    955 	if (last->x < sc->d && last->m > sc->m1) {
    956 		y = last->y + (sc->d - last->x) * last->m;
    957 		if (y > sc_x2y(sc, sc->d))
    958 			return (0);
    959 	}
    960 	return (1);
    961 }
    962 
    963 static void
    964 gsc_destroy(struct gen_sc *gsc)
    965 {
    966 	struct segment	*s;
    967 
    968 	while ((s = LIST_FIRST(gsc)) != NULL) {
    969 		LIST_REMOVE(s, _next);
    970 		free(s);
    971 	}
    972 }
    973 
    974 /*
    975  * return a segment entry starting at x.
    976  * if gsc has no entry starting at x, a new entry is created at x.
    977  */
    978 static struct segment *
    979 gsc_getentry(struct gen_sc *gsc, double x)
    980 {
    981 	struct segment	*new, *prev, *s;
    982 
    983 	prev = NULL;
    984 	LIST_FOREACH(s, gsc, _next) {
    985 		if (s->x == x)
    986 			return (s);	/* matching entry found */
    987 		else if (s->x < x)
    988 			prev = s;
    989 		else
    990 			break;
    991 	}
    992 
    993 	/* we have to create a new entry */
    994 	if ((new = calloc(1, sizeof(struct segment))) == NULL)
    995 		return (NULL);
    996 
    997 	new->x = x;
    998 	if (x == INFINITY || s == NULL)
    999 		new->d = 0;
   1000 	else if (s->x == INFINITY)
   1001 		new->d = INFINITY;
   1002 	else
   1003 		new->d = s->x - x;
   1004 	if (prev == NULL) {
   1005 		/* insert the new entry at the head of the list */
   1006 		new->y = 0;
   1007 		new->m = 0;
   1008 		LIST_INSERT_HEAD(gsc, new, _next);
   1009 	} else {
   1010 		/*
   1011 		 * the start point intersects with the segment pointed by
   1012 		 * prev.  divide prev into 2 segments
   1013 		 */
   1014 		if (x == INFINITY) {
   1015 			prev->d = INFINITY;
   1016 			if (prev->m == 0)
   1017 				new->y = prev->y;
   1018 			else
   1019 				new->y = INFINITY;
   1020 		} else {
   1021 			prev->d = x - prev->x;
   1022 			new->y = prev->d * prev->m + prev->y;
   1023 		}
   1024 		new->m = prev->m;
   1025 		LIST_INSERT_AFTER(prev, new, _next);
   1026 	}
   1027 	return (new);
   1028 }
   1029 
   1030 /* add a segment to a generalized service curve */
   1031 static int
   1032 gsc_add_seg(struct gen_sc *gsc, double x, double y, double d, double m)
   1033 {
   1034 	struct segment	*start, *end, *s;
   1035 	double		 x2;
   1036 
   1037 	if (d == INFINITY)
   1038 		x2 = INFINITY;
   1039 	else
   1040 		x2 = x + d;
   1041 	start = gsc_getentry(gsc, x);
   1042 	end = gsc_getentry(gsc, x2);
   1043 	if (start == NULL || end == NULL)
   1044 		return (-1);
   1045 
   1046 	for (s = start; s != end; s = LIST_NEXT(s, _next)) {
   1047 		s->m += m;
   1048 		s->y += y + (s->x - x) * m;
   1049 	}
   1050 
   1051 	end = gsc_getentry(gsc, INFINITY);
   1052 	for (; s != end; s = LIST_NEXT(s, _next)) {
   1053 		s->y += m * d;
   1054 	}
   1055 
   1056 	return (0);
   1057 }
   1058 
   1059 /* get y-projection of a service curve */
   1060 static double
   1061 sc_x2y(struct service_curve *sc, double x)
   1062 {
   1063 	double	y;
   1064 
   1065 	if (x <= (double)sc->d)
   1066 		/* y belongs to the 1st segment */
   1067 		y = x * (double)sc->m1;
   1068 	else
   1069 		/* y belongs to the 2nd segment */
   1070 		y = (double)sc->d * (double)sc->m1
   1071 			+ (x - (double)sc->d) * (double)sc->m2;
   1072 	return (y);
   1073 }
   1074 
   1075 /*
   1076  * misc utilities
   1077  */
   1078 #define	R2S_BUFS	8
   1079 #define	RATESTR_MAX	16
   1080 
   1081 char *
   1082 rate2str(double rate)
   1083 {
   1084 	char		*buf;
   1085 	static char	 r2sbuf[R2S_BUFS][RATESTR_MAX];  /* ring bufer */
   1086 	static int	 idx = 0;
   1087 	int		 i;
   1088 	static const char unit[] = " KMG";
   1089 
   1090 	buf = r2sbuf[idx++];
   1091 	if (idx == R2S_BUFS)
   1092 		idx = 0;
   1093 
   1094 	for (i = 0; rate >= 1000 && i <= 3; i++)
   1095 		rate /= 1000;
   1096 
   1097 	if ((int)(rate * 100) % 100)
   1098 		snprintf(buf, RATESTR_MAX, "%.2f%cb", rate, unit[i]);
   1099 	else
   1100 		snprintf(buf, RATESTR_MAX, "%d%cb", (int)rate, unit[i]);
   1101 
   1102 	return (buf);
   1103 }
   1104 
   1105 u_int32_t
   1106 getifspeed(char *ifname)
   1107 {
   1108 	int		s;
   1109 	struct ifreq	ifr;
   1110 	struct if_data	ifrdat;
   1111 
   1112 	if ((s = socket(AF_INET, SOCK_DGRAM, 0)) < 0)
   1113 		err(1, "socket");
   1114 	bzero(&ifr, sizeof(ifr));
   1115 	if (strlcpy(ifr.ifr_name, ifname, sizeof(ifr.ifr_name)) >=
   1116 	    sizeof(ifr.ifr_name))
   1117 		errx(1, "getifspeed: strlcpy");
   1118 	ifr.ifr_data = (caddr_t)&ifrdat;
   1119 	if (ioctl(s, SIOCGIFDATA, (caddr_t)&ifr) == -1)
   1120 		err(1, "SIOCGIFDATA");
   1121 	if (shutdown(s, SHUT_RDWR) == -1)
   1122 		err(1, "shutdown");
   1123 	if (close(s))
   1124 		err(1, "close");
   1125 	return ((u_int32_t)ifrdat.ifi_baudrate);
   1126 }
   1127 
   1128 u_long
   1129 getifmtu(char *ifname)
   1130 {
   1131 	int		s;
   1132 	struct ifreq	ifr;
   1133 
   1134 	if ((s = socket(AF_INET, SOCK_DGRAM, 0)) < 0)
   1135 		err(1, "socket");
   1136 	bzero(&ifr, sizeof(ifr));
   1137 	if (strlcpy(ifr.ifr_name, ifname, sizeof(ifr.ifr_name)) >=
   1138 	    sizeof(ifr.ifr_name))
   1139 		errx(1, "getifmtu: strlcpy");
   1140 	if (ioctl(s, SIOCGIFMTU, (caddr_t)&ifr) == -1)
   1141 		err(1, "SIOCGIFMTU");
   1142 	if (shutdown(s, SHUT_RDWR) == -1)
   1143 		err(1, "shutdown");
   1144 	if (close(s))
   1145 		err(1, "close");
   1146 	if (ifr.ifr_mtu > 0)
   1147 		return (ifr.ifr_mtu);
   1148 	else {
   1149 		warnx("could not get mtu for %s, assuming 1500", ifname);
   1150 		return (1500);
   1151 	}
   1152 }
   1153 
   1154 int
   1155 eval_queue_opts(struct pf_altq *pa, struct node_queue_opt *opts,
   1156     u_int32_t ref_bw)
   1157 {
   1158 	int	errors = 0;
   1159 
   1160 	switch (pa->scheduler) {
   1161 	case ALTQT_CBQ:
   1162 		pa->pq_u.cbq_opts = opts->data.cbq_opts;
   1163 		break;
   1164 	case ALTQT_PRIQ:
   1165 		pa->pq_u.priq_opts = opts->data.priq_opts;
   1166 		break;
   1167 	case ALTQT_HFSC:
   1168 		pa->pq_u.hfsc_opts.flags = opts->data.hfsc_opts.flags;
   1169 		if (opts->data.hfsc_opts.linkshare.used) {
   1170 			pa->pq_u.hfsc_opts.lssc_m1 =
   1171 			    eval_bwspec(&opts->data.hfsc_opts.linkshare.m1,
   1172 			    ref_bw);
   1173 			pa->pq_u.hfsc_opts.lssc_m2 =
   1174 			    eval_bwspec(&opts->data.hfsc_opts.linkshare.m2,
   1175 			    ref_bw);
   1176 			pa->pq_u.hfsc_opts.lssc_d =
   1177 			    opts->data.hfsc_opts.linkshare.d;
   1178 		}
   1179 		if (opts->data.hfsc_opts.realtime.used) {
   1180 			pa->pq_u.hfsc_opts.rtsc_m1 =
   1181 			    eval_bwspec(&opts->data.hfsc_opts.realtime.m1,
   1182 			    ref_bw);
   1183 			pa->pq_u.hfsc_opts.rtsc_m2 =
   1184 			    eval_bwspec(&opts->data.hfsc_opts.realtime.m2,
   1185 			    ref_bw);
   1186 			pa->pq_u.hfsc_opts.rtsc_d =
   1187 			    opts->data.hfsc_opts.realtime.d;
   1188 		}
   1189 		if (opts->data.hfsc_opts.upperlimit.used) {
   1190 			pa->pq_u.hfsc_opts.ulsc_m1 =
   1191 			    eval_bwspec(&opts->data.hfsc_opts.upperlimit.m1,
   1192 			    ref_bw);
   1193 			pa->pq_u.hfsc_opts.ulsc_m2 =
   1194 			    eval_bwspec(&opts->data.hfsc_opts.upperlimit.m2,
   1195 			    ref_bw);
   1196 			pa->pq_u.hfsc_opts.ulsc_d =
   1197 			    opts->data.hfsc_opts.upperlimit.d;
   1198 		}
   1199 		break;
   1200 	default:
   1201 		warnx("eval_queue_opts: unknown scheduler type %u",
   1202 		    opts->qtype);
   1203 		errors++;
   1204 		break;
   1205 	}
   1206 
   1207 	return (errors);
   1208 }
   1209 
   1210 u_int32_t
   1211 eval_bwspec(struct node_queue_bw *bw, u_int32_t ref_bw)
   1212 {
   1213 	if (bw->bw_absolute > 0)
   1214 		return (bw->bw_absolute);
   1215 
   1216 	if (bw->bw_percent > 0)
   1217 		return (ref_bw / 100 * bw->bw_percent);
   1218 
   1219 	return (0);
   1220 }
   1221 
   1222 void
   1223 print_hfsc_sc(const char *scname, u_int m1, u_int d, u_int m2,
   1224     const struct node_hfsc_sc *sc)
   1225 {
   1226 	printf(" %s", scname);
   1227 
   1228 	if (d != 0) {
   1229 		printf("(");
   1230 		if (sc != NULL && sc->m1.bw_percent > 0)
   1231 			printf("%u%%", sc->m1.bw_percent);
   1232 		else
   1233 			printf("%s", rate2str((double)m1));
   1234 		printf(" %u", d);
   1235 	}
   1236 
   1237 	if (sc != NULL && sc->m2.bw_percent > 0)
   1238 		printf(" %u%%", sc->m2.bw_percent);
   1239 	else
   1240 		printf(" %s", rate2str((double)m2));
   1241 
   1242 	if (d != 0)
   1243 		printf(")");
   1244 }
   1245