pfctl_altq.c revision 1.7 1 /* $NetBSD: pfctl_altq.c,v 1.7 2006/10/12 19:59:08 peter Exp $ */
2 /* $OpenBSD: pfctl_altq.c,v 1.86 2005/02/28 14:04:51 henning Exp $ */
3
4 /*
5 * Copyright (c) 2002
6 * Sony Computer Science Laboratories Inc.
7 * Copyright (c) 2002, 2003 Henning Brauer <henning (at) openbsd.org>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 */
21
22 #include <sys/types.h>
23 #include <sys/ioctl.h>
24 #include <sys/socket.h>
25 #ifdef __NetBSD__
26 #include <sys/param.h>
27 #include <sys/mbuf.h>
28 #endif
29
30 #include <net/if.h>
31 #include <netinet/in.h>
32 #include <net/pfvar.h>
33
34 #include <err.h>
35 #include <errno.h>
36 #include <limits.h>
37 #include <math.h>
38 #include <stdio.h>
39 #include <stdlib.h>
40 #include <string.h>
41 #include <unistd.h>
42
43 #include <altq/altq.h>
44 #include <altq/altq_cbq.h>
45 #include <altq/altq_priq.h>
46 #include <altq/altq_hfsc.h>
47
48 #include "pfctl_parser.h"
49 #include "pfctl.h"
50
51 #define is_sc_null(sc) (((sc) == NULL) || ((sc)->m1 == 0 && (sc)->m2 == 0))
52
53 TAILQ_HEAD(altqs, pf_altq) altqs = TAILQ_HEAD_INITIALIZER(altqs);
54 LIST_HEAD(gen_sc, segment) rtsc, lssc;
55
56 struct pf_altq *qname_to_pfaltq(const char *, const char *);
57 u_int32_t qname_to_qid(const char *);
58
59 static int eval_pfqueue_cbq(struct pfctl *, struct pf_altq *);
60 static int cbq_compute_idletime(struct pfctl *, struct pf_altq *);
61 static int check_commit_cbq(int, int, struct pf_altq *);
62 static int print_cbq_opts(const struct pf_altq *);
63
64 static int eval_pfqueue_priq(struct pfctl *, struct pf_altq *);
65 static int check_commit_priq(int, int, struct pf_altq *);
66 static int print_priq_opts(const struct pf_altq *);
67
68 static int eval_pfqueue_hfsc(struct pfctl *, struct pf_altq *);
69 static int check_commit_hfsc(int, int, struct pf_altq *);
70 static int print_hfsc_opts(const struct pf_altq *,
71 const struct node_queue_opt *);
72
73 static void gsc_add_sc(struct gen_sc *, struct service_curve *);
74 static int is_gsc_under_sc(struct gen_sc *,
75 struct service_curve *);
76 static void gsc_destroy(struct gen_sc *);
77 static struct segment *gsc_getentry(struct gen_sc *, double);
78 static int gsc_add_seg(struct gen_sc *, double, double, double,
79 double);
80 static double sc_x2y(struct service_curve *, double);
81
82 u_int32_t getifspeed(char *);
83 u_long getifmtu(char *);
84 int eval_queue_opts(struct pf_altq *, struct node_queue_opt *,
85 u_int32_t);
86 u_int32_t eval_bwspec(struct node_queue_bw *, u_int32_t);
87 void print_hfsc_sc(const char *, u_int, u_int, u_int,
88 const struct node_hfsc_sc *);
89
90 void
91 pfaltq_store(struct pf_altq *a)
92 {
93 struct pf_altq *altq;
94
95 if ((altq = malloc(sizeof(*altq))) == NULL)
96 err(1, "malloc");
97 memcpy(altq, a, sizeof(struct pf_altq));
98 TAILQ_INSERT_TAIL(&altqs, altq, entries);
99 }
100
101 void
102 pfaltq_free(struct pf_altq *a)
103 {
104 struct pf_altq *altq;
105
106 TAILQ_FOREACH(altq, &altqs, entries) {
107 if (strncmp(a->ifname, altq->ifname, IFNAMSIZ) == 0 &&
108 strncmp(a->qname, altq->qname, PF_QNAME_SIZE) == 0) {
109 TAILQ_REMOVE(&altqs, altq, entries);
110 free(altq);
111 return;
112 }
113 }
114 }
115
116 struct pf_altq *
117 pfaltq_lookup(const char *ifname)
118 {
119 struct pf_altq *altq;
120
121 TAILQ_FOREACH(altq, &altqs, entries) {
122 if (strncmp(ifname, altq->ifname, IFNAMSIZ) == 0 &&
123 altq->qname[0] == 0)
124 return (altq);
125 }
126 return (NULL);
127 }
128
129 struct pf_altq *
130 qname_to_pfaltq(const char *qname, const char *ifname)
131 {
132 struct pf_altq *altq;
133
134 TAILQ_FOREACH(altq, &altqs, entries) {
135 if (strncmp(ifname, altq->ifname, IFNAMSIZ) == 0 &&
136 strncmp(qname, altq->qname, PF_QNAME_SIZE) == 0)
137 return (altq);
138 }
139 return (NULL);
140 }
141
142 u_int32_t
143 qname_to_qid(const char *qname)
144 {
145 struct pf_altq *altq;
146
147 /*
148 * We guarantee that same named queues on different interfaces
149 * have the same qid, so we do NOT need to limit matching on
150 * one interface!
151 */
152
153 TAILQ_FOREACH(altq, &altqs, entries) {
154 if (strncmp(qname, altq->qname, PF_QNAME_SIZE) == 0)
155 return (altq->qid);
156 }
157 return (0);
158 }
159
160 void
161 print_altq(const struct pf_altq *a, unsigned level, struct node_queue_bw *bw,
162 struct node_queue_opt *qopts)
163 {
164 if (a->qname[0] != 0) {
165 print_queue(a, level, bw, 0, qopts);
166 return;
167 }
168
169 printf("altq on %s ", a->ifname);
170
171 switch (a->scheduler) {
172 case ALTQT_CBQ:
173 if (!print_cbq_opts(a))
174 printf("cbq ");
175 break;
176 case ALTQT_PRIQ:
177 if (!print_priq_opts(a))
178 printf("priq ");
179 break;
180 case ALTQT_HFSC:
181 if (!print_hfsc_opts(a, qopts))
182 printf("hfsc ");
183 break;
184 }
185
186 if (bw != NULL && bw->bw_percent > 0) {
187 if (bw->bw_percent < 100)
188 printf("bandwidth %u%% ", bw->bw_percent);
189 } else
190 printf("bandwidth %s ", rate2str((double)a->ifbandwidth));
191
192 if (a->qlimit != DEFAULT_QLIMIT)
193 printf("qlimit %u ", a->qlimit);
194 printf("tbrsize %u ", a->tbrsize);
195 }
196
197 void
198 print_queue(const struct pf_altq *a, unsigned level, struct node_queue_bw *bw,
199 int print_interface, struct node_queue_opt *qopts)
200 {
201 unsigned i;
202
203 printf("queue ");
204 for (i = 0; i < level; ++i)
205 printf(" ");
206 printf("%s ", a->qname);
207 if (print_interface)
208 printf("on %s ", a->ifname);
209 if (a->scheduler == ALTQT_CBQ || a->scheduler == ALTQT_HFSC) {
210 if (bw != NULL && bw->bw_percent > 0) {
211 if (bw->bw_percent < 100)
212 printf("bandwidth %u%% ", bw->bw_percent);
213 } else
214 printf("bandwidth %s ", rate2str((double)a->bandwidth));
215 }
216 if (a->priority != DEFAULT_PRIORITY)
217 printf("priority %u ", a->priority);
218 if (a->qlimit != DEFAULT_QLIMIT)
219 printf("qlimit %u ", a->qlimit);
220 switch (a->scheduler) {
221 case ALTQT_CBQ:
222 print_cbq_opts(a);
223 break;
224 case ALTQT_PRIQ:
225 print_priq_opts(a);
226 break;
227 case ALTQT_HFSC:
228 print_hfsc_opts(a, qopts);
229 break;
230 }
231 }
232
233 /*
234 * eval_pfaltq computes the discipline parameters.
235 */
236 int
237 eval_pfaltq(struct pfctl *pf, struct pf_altq *pa, struct node_queue_bw *bw,
238 struct node_queue_opt *opts)
239 {
240 u_int rate, size, errors = 0;
241
242 if (bw->bw_absolute > 0)
243 pa->ifbandwidth = bw->bw_absolute;
244 else
245 if ((rate = getifspeed(pa->ifname)) == 0) {
246 fprintf(stderr, "cannot determine interface bandwidth "
247 "for %s, specify an absolute bandwidth\n",
248 pa->ifname);
249 errors++;
250 } else if ((pa->ifbandwidth = eval_bwspec(bw, rate)) == 0)
251 pa->ifbandwidth = rate;
252
253 errors += eval_queue_opts(pa, opts, pa->ifbandwidth);
254
255 /* if tbrsize is not specified, use heuristics */
256 if (pa->tbrsize == 0) {
257 rate = pa->ifbandwidth;
258 if (rate <= 1 * 1000 * 1000)
259 size = 1;
260 else if (rate <= 10 * 1000 * 1000)
261 size = 4;
262 else if (rate <= 200 * 1000 * 1000)
263 size = 8;
264 else
265 size = 24;
266 size = size * getifmtu(pa->ifname);
267 if (size > 0xffff)
268 size = 0xffff;
269 pa->tbrsize = size;
270 }
271 return (errors);
272 }
273
274 /*
275 * check_commit_altq does consistency check for each interface
276 */
277 int
278 check_commit_altq(int dev, int opts)
279 {
280 struct pf_altq *altq;
281 int error = 0;
282
283 /* call the discipline check for each interface. */
284 TAILQ_FOREACH(altq, &altqs, entries) {
285 if (altq->qname[0] == 0) {
286 switch (altq->scheduler) {
287 case ALTQT_CBQ:
288 error = check_commit_cbq(dev, opts, altq);
289 break;
290 case ALTQT_PRIQ:
291 error = check_commit_priq(dev, opts, altq);
292 break;
293 case ALTQT_HFSC:
294 error = check_commit_hfsc(dev, opts, altq);
295 break;
296 default:
297 break;
298 }
299 }
300 }
301 return (error);
302 }
303
304 /*
305 * eval_pfqueue computes the queue parameters.
306 */
307 int
308 eval_pfqueue(struct pfctl *pf, struct pf_altq *pa, struct node_queue_bw *bw,
309 struct node_queue_opt *opts)
310 {
311 /* should be merged with expand_queue */
312 struct pf_altq *if_pa, *parent, *altq;
313 u_int32_t bwsum;
314 int error = 0;
315
316 /* find the corresponding interface and copy fields used by queues */
317 if ((if_pa = pfaltq_lookup(pa->ifname)) == NULL) {
318 fprintf(stderr, "altq not defined on %s\n", pa->ifname);
319 return (1);
320 }
321 pa->scheduler = if_pa->scheduler;
322 pa->ifbandwidth = if_pa->ifbandwidth;
323
324 if (qname_to_pfaltq(pa->qname, pa->ifname) != NULL) {
325 fprintf(stderr, "queue %s already exists on interface %s\n",
326 pa->qname, pa->ifname);
327 return (1);
328 }
329 pa->qid = qname_to_qid(pa->qname);
330
331 parent = NULL;
332 if (pa->parent[0] != 0) {
333 parent = qname_to_pfaltq(pa->parent, pa->ifname);
334 if (parent == NULL) {
335 fprintf(stderr, "parent %s not found for %s\n",
336 pa->parent, pa->qname);
337 return (1);
338 }
339 pa->parent_qid = parent->qid;
340 }
341 if (pa->qlimit == 0)
342 pa->qlimit = DEFAULT_QLIMIT;
343
344 if (pa->scheduler == ALTQT_CBQ || pa->scheduler == ALTQT_HFSC) {
345 pa->bandwidth = eval_bwspec(bw,
346 parent == NULL ? 0 : parent->bandwidth);
347
348 if (pa->bandwidth > pa->ifbandwidth) {
349 fprintf(stderr, "bandwidth for %s higher than "
350 "interface\n", pa->qname);
351 return (1);
352 }
353 /* check the sum of the child bandwidth is under parent's */
354 if (parent != NULL) {
355 if (pa->bandwidth > parent->bandwidth) {
356 warnx("bandwidth for %s higher than parent",
357 pa->qname);
358 return (1);
359 }
360 bwsum = 0;
361 TAILQ_FOREACH(altq, &altqs, entries) {
362 if (strncmp(altq->ifname, pa->ifname,
363 IFNAMSIZ) == 0 &&
364 altq->qname[0] != 0 &&
365 strncmp(altq->parent, pa->parent,
366 PF_QNAME_SIZE) == 0)
367 bwsum += altq->bandwidth;
368 }
369 bwsum += pa->bandwidth;
370 if (bwsum > parent->bandwidth) {
371 warnx("the sum of the child bandwidth higher"
372 " than parent \"%s\"", parent->qname);
373 }
374 }
375 }
376
377 if (eval_queue_opts(pa, opts, parent == NULL? 0 : parent->bandwidth))
378 return (1);
379
380 switch (pa->scheduler) {
381 case ALTQT_CBQ:
382 error = eval_pfqueue_cbq(pf, pa);
383 break;
384 case ALTQT_PRIQ:
385 error = eval_pfqueue_priq(pf, pa);
386 break;
387 case ALTQT_HFSC:
388 error = eval_pfqueue_hfsc(pf, pa);
389 break;
390 default:
391 break;
392 }
393 return (error);
394 }
395
396 /*
397 * CBQ support functions
398 */
399 #define RM_FILTER_GAIN 5 /* log2 of gain, e.g., 5 => 31/32 */
400 #define RM_NS_PER_SEC (1000000000)
401
402 static int
403 eval_pfqueue_cbq(struct pfctl *pf, struct pf_altq *pa)
404 {
405 struct cbq_opts *opts;
406 u_int ifmtu;
407
408 if (pa->priority >= CBQ_MAXPRI) {
409 warnx("priority out of range: max %d", CBQ_MAXPRI - 1);
410 return (-1);
411 }
412
413 ifmtu = getifmtu(pa->ifname);
414 opts = &pa->pq_u.cbq_opts;
415
416 if (opts->pktsize == 0) { /* use default */
417 opts->pktsize = ifmtu;
418 if (opts->pktsize > MCLBYTES) /* do what TCP does */
419 opts->pktsize &= ~MCLBYTES;
420 } else if (opts->pktsize > ifmtu)
421 opts->pktsize = ifmtu;
422 if (opts->maxpktsize == 0) /* use default */
423 opts->maxpktsize = ifmtu;
424 else if (opts->maxpktsize > ifmtu)
425 opts->pktsize = ifmtu;
426
427 if (opts->pktsize > opts->maxpktsize)
428 opts->pktsize = opts->maxpktsize;
429
430 if (pa->parent[0] == 0)
431 opts->flags |= (CBQCLF_ROOTCLASS | CBQCLF_WRR);
432
433 cbq_compute_idletime(pf, pa);
434 return (0);
435 }
436
437 /*
438 * compute ns_per_byte, maxidle, minidle, and offtime
439 */
440 static int
441 cbq_compute_idletime(struct pfctl *pf, struct pf_altq *pa)
442 {
443 struct cbq_opts *opts;
444 double maxidle_s, maxidle, minidle;
445 double offtime, nsPerByte, ifnsPerByte, ptime, cptime;
446 double z, g, f, gton, gtom;
447 u_int minburst, maxburst;
448
449 opts = &pa->pq_u.cbq_opts;
450 ifnsPerByte = (1.0 / (double)pa->ifbandwidth) * RM_NS_PER_SEC * 8;
451 minburst = opts->minburst;
452 maxburst = opts->maxburst;
453
454 if (pa->bandwidth == 0)
455 f = 0.0001; /* small enough? */
456 else
457 f = ((double) pa->bandwidth / (double) pa->ifbandwidth);
458
459 nsPerByte = ifnsPerByte / f;
460 ptime = (double)opts->pktsize * ifnsPerByte;
461 cptime = ptime * (1.0 - f) / f;
462
463 if (nsPerByte * (double)opts->maxpktsize > (double)INT_MAX) {
464 /*
465 * this causes integer overflow in kernel!
466 * (bandwidth < 6Kbps when max_pkt_size=1500)
467 */
468 if (pa->bandwidth != 0 && (pf->opts & PF_OPT_QUIET) == 0)
469 warnx("queue bandwidth must be larger than %s",
470 rate2str(ifnsPerByte * (double)opts->maxpktsize /
471 (double)INT_MAX * (double)pa->ifbandwidth));
472 fprintf(stderr, "cbq: queue %s is too slow!\n",
473 pa->qname);
474 nsPerByte = (double)(INT_MAX / opts->maxpktsize);
475 }
476
477 if (maxburst == 0) { /* use default */
478 if (cptime > 10.0 * 1000000)
479 maxburst = 4;
480 else
481 maxburst = 16;
482 }
483 if (minburst == 0) /* use default */
484 minburst = 2;
485 if (minburst > maxburst)
486 minburst = maxburst;
487
488 z = (double)(1 << RM_FILTER_GAIN);
489 g = (1.0 - 1.0 / z);
490 gton = pow(g, (double)maxburst);
491 gtom = pow(g, (double)(minburst-1));
492 maxidle = ((1.0 / f - 1.0) * ((1.0 - gton) / gton));
493 maxidle_s = (1.0 - g);
494 if (maxidle > maxidle_s)
495 maxidle = ptime * maxidle;
496 else
497 maxidle = ptime * maxidle_s;
498 offtime = cptime * (1.0 + 1.0/(1.0 - g) * (1.0 - gtom) / gtom);
499 minidle = -((double)opts->maxpktsize * (double)nsPerByte);
500
501 /* scale parameters */
502 maxidle = ((maxidle * 8.0) / nsPerByte) *
503 pow(2.0, (double)RM_FILTER_GAIN);
504 offtime = (offtime * 8.0) / nsPerByte *
505 pow(2.0, (double)RM_FILTER_GAIN);
506 minidle = ((minidle * 8.0) / nsPerByte) *
507 pow(2.0, (double)RM_FILTER_GAIN);
508
509 maxidle = maxidle / 1000.0;
510 offtime = offtime / 1000.0;
511 minidle = minidle / 1000.0;
512
513 opts->minburst = minburst;
514 opts->maxburst = maxburst;
515 opts->ns_per_byte = (u_int)nsPerByte;
516 opts->maxidle = (u_int)fabs(maxidle);
517 opts->minidle = (int)minidle;
518 opts->offtime = (u_int)fabs(offtime);
519
520 return (0);
521 }
522
523 static int
524 check_commit_cbq(int dev, int opts, struct pf_altq *pa)
525 {
526 struct pf_altq *altq;
527 int root_class, default_class;
528 int error = 0;
529
530 /*
531 * check if cbq has one root queue and one default queue
532 * for this interface
533 */
534 root_class = default_class = 0;
535 TAILQ_FOREACH(altq, &altqs, entries) {
536 if (strncmp(altq->ifname, pa->ifname, IFNAMSIZ) != 0)
537 continue;
538 if (altq->qname[0] == 0) /* this is for interface */
539 continue;
540 if (altq->pq_u.cbq_opts.flags & CBQCLF_ROOTCLASS)
541 root_class++;
542 if (altq->pq_u.cbq_opts.flags & CBQCLF_DEFCLASS)
543 default_class++;
544 }
545 if (root_class != 1) {
546 warnx("should have one root queue on %s", pa->ifname);
547 error++;
548 }
549 if (default_class != 1) {
550 warnx("should have one default queue on %s", pa->ifname);
551 error++;
552 }
553 return (error);
554 }
555
556 static int
557 print_cbq_opts(const struct pf_altq *a)
558 {
559 const struct cbq_opts *opts;
560
561 opts = &a->pq_u.cbq_opts;
562 if (opts->flags) {
563 printf("cbq(");
564 if (opts->flags & CBQCLF_RED)
565 printf(" red");
566 if (opts->flags & CBQCLF_ECN)
567 printf(" ecn");
568 if (opts->flags & CBQCLF_RIO)
569 printf(" rio");
570 if (opts->flags & CBQCLF_CLEARDSCP)
571 printf(" cleardscp");
572 if (opts->flags & CBQCLF_FLOWVALVE)
573 printf(" flowvalve");
574 #ifdef CBQCLF_BORROW
575 if (opts->flags & CBQCLF_BORROW)
576 printf(" borrow");
577 #endif
578 if (opts->flags & CBQCLF_WRR)
579 printf(" wrr");
580 if (opts->flags & CBQCLF_EFFICIENT)
581 printf(" efficient");
582 if (opts->flags & CBQCLF_ROOTCLASS)
583 printf(" root");
584 if (opts->flags & CBQCLF_DEFCLASS)
585 printf(" default");
586 printf(" ) ");
587
588 return (1);
589 } else
590 return (0);
591 }
592
593 /*
594 * PRIQ support functions
595 */
596 static int
597 eval_pfqueue_priq(struct pfctl *pf, struct pf_altq *pa)
598 {
599 struct pf_altq *altq;
600
601 if (pa->priority >= PRIQ_MAXPRI) {
602 warnx("priority out of range: max %d", PRIQ_MAXPRI - 1);
603 return (-1);
604 }
605 /* the priority should be unique for the interface */
606 TAILQ_FOREACH(altq, &altqs, entries) {
607 if (strncmp(altq->ifname, pa->ifname, IFNAMSIZ) == 0 &&
608 altq->qname[0] != 0 && altq->priority == pa->priority) {
609 warnx("%s and %s have the same priority",
610 altq->qname, pa->qname);
611 return (-1);
612 }
613 }
614
615 return (0);
616 }
617
618 static int
619 check_commit_priq(int dev, int opts, struct pf_altq *pa)
620 {
621 struct pf_altq *altq;
622 int default_class;
623 int error = 0;
624
625 /*
626 * check if priq has one default class for this interface
627 */
628 default_class = 0;
629 TAILQ_FOREACH(altq, &altqs, entries) {
630 if (strncmp(altq->ifname, pa->ifname, IFNAMSIZ) != 0)
631 continue;
632 if (altq->qname[0] == 0) /* this is for interface */
633 continue;
634 if (altq->pq_u.priq_opts.flags & PRCF_DEFAULTCLASS)
635 default_class++;
636 }
637 if (default_class != 1) {
638 warnx("should have one default queue on %s", pa->ifname);
639 error++;
640 }
641 return (error);
642 }
643
644 static int
645 print_priq_opts(const struct pf_altq *a)
646 {
647 const struct priq_opts *opts;
648
649 opts = &a->pq_u.priq_opts;
650
651 if (opts->flags) {
652 printf("priq(");
653 if (opts->flags & PRCF_RED)
654 printf(" red");
655 if (opts->flags & PRCF_ECN)
656 printf(" ecn");
657 if (opts->flags & PRCF_RIO)
658 printf(" rio");
659 if (opts->flags & PRCF_CLEARDSCP)
660 printf(" cleardscp");
661 if (opts->flags & PRCF_DEFAULTCLASS)
662 printf(" default");
663 printf(" ) ");
664
665 return (1);
666 } else
667 return (0);
668 }
669
670 /*
671 * HFSC support functions
672 */
673 static int
674 eval_pfqueue_hfsc(struct pfctl *pf, struct pf_altq *pa)
675 {
676 struct pf_altq *altq, *parent;
677 struct hfsc_opts *opts;
678 struct service_curve sc;
679
680 opts = &pa->pq_u.hfsc_opts;
681
682 if (pa->parent[0] == 0) {
683 /* root queue */
684 opts->lssc_m1 = pa->ifbandwidth;
685 opts->lssc_m2 = pa->ifbandwidth;
686 opts->lssc_d = 0;
687 return (0);
688 }
689
690 LIST_INIT(&rtsc);
691 LIST_INIT(&lssc);
692
693 /* if link_share is not specified, use bandwidth */
694 if (opts->lssc_m2 == 0)
695 opts->lssc_m2 = pa->bandwidth;
696
697 if ((opts->rtsc_m1 > 0 && opts->rtsc_m2 == 0) ||
698 (opts->lssc_m1 > 0 && opts->lssc_m2 == 0) ||
699 (opts->ulsc_m1 > 0 && opts->ulsc_m2 == 0)) {
700 warnx("m2 is zero for %s", pa->qname);
701 return (-1);
702 }
703
704 if ((opts->rtsc_m1 < opts->rtsc_m2 && opts->rtsc_m1 != 0) ||
705 (opts->rtsc_m1 < opts->rtsc_m2 && opts->rtsc_m1 != 0) ||
706 (opts->rtsc_m1 < opts->rtsc_m2 && opts->rtsc_m1 != 0)) {
707 warnx("m1 must be zero for convex curve: %s", pa->qname);
708 return (-1);
709 }
710
711 /*
712 * admission control:
713 * for the real-time service curve, the sum of the service curves
714 * should not exceed 80% of the interface bandwidth. 20% is reserved
715 * not to over-commit the actual interface bandwidth.
716 * for the linkshare service curve, the sum of the child service
717 * curve should not exceed the parent service curve.
718 * for the upper-limit service curve, the assigned bandwidth should
719 * be smaller than the interface bandwidth, and the upper-limit should
720 * be larger than the real-time service curve when both are defined.
721 */
722 parent = qname_to_pfaltq(pa->parent, pa->ifname);
723 if (parent == NULL)
724 errx(1, "parent %s not found for %s", pa->parent, pa->qname);
725
726 TAILQ_FOREACH(altq, &altqs, entries) {
727 if (strncmp(altq->ifname, pa->ifname, IFNAMSIZ) != 0)
728 continue;
729 if (altq->qname[0] == 0) /* this is for interface */
730 continue;
731
732 /* if the class has a real-time service curve, add it. */
733 if (opts->rtsc_m2 != 0 && altq->pq_u.hfsc_opts.rtsc_m2 != 0) {
734 sc.m1 = altq->pq_u.hfsc_opts.rtsc_m1;
735 sc.d = altq->pq_u.hfsc_opts.rtsc_d;
736 sc.m2 = altq->pq_u.hfsc_opts.rtsc_m2;
737 gsc_add_sc(&rtsc, &sc);
738 }
739
740 if (strncmp(altq->parent, pa->parent, PF_QNAME_SIZE) != 0)
741 continue;
742
743 /* if the class has a linkshare service curve, add it. */
744 if (opts->lssc_m2 != 0 && altq->pq_u.hfsc_opts.lssc_m2 != 0) {
745 sc.m1 = altq->pq_u.hfsc_opts.lssc_m1;
746 sc.d = altq->pq_u.hfsc_opts.lssc_d;
747 sc.m2 = altq->pq_u.hfsc_opts.lssc_m2;
748 gsc_add_sc(&lssc, &sc);
749 }
750 }
751
752 /* check the real-time service curve. reserve 20% of interface bw */
753 if (opts->rtsc_m2 != 0) {
754 /* add this queue to the sum */
755 sc.m1 = opts->rtsc_m1;
756 sc.d = opts->rtsc_d;
757 sc.m2 = opts->rtsc_m2;
758 gsc_add_sc(&rtsc, &sc);
759 /* compare the sum with 80% of the interface */
760 sc.m1 = 0;
761 sc.d = 0;
762 sc.m2 = pa->ifbandwidth / 100 * 80;
763 if (!is_gsc_under_sc(&rtsc, &sc)) {
764 warnx("real-time sc exceeds 80%% of the interface "
765 "bandwidth (%s)", rate2str((double)sc.m2));
766 goto err_ret;
767 }
768 }
769
770 /* check the linkshare service curve. */
771 if (opts->lssc_m2 != 0) {
772 /* add this queue to the child sum */
773 sc.m1 = opts->lssc_m1;
774 sc.d = opts->lssc_d;
775 sc.m2 = opts->lssc_m2;
776 gsc_add_sc(&lssc, &sc);
777 /* compare the sum of the children with parent's sc */
778 sc.m1 = parent->pq_u.hfsc_opts.lssc_m1;
779 sc.d = parent->pq_u.hfsc_opts.lssc_d;
780 sc.m2 = parent->pq_u.hfsc_opts.lssc_m2;
781 if (!is_gsc_under_sc(&lssc, &sc)) {
782 warnx("linkshare sc exceeds parent's sc");
783 goto err_ret;
784 }
785 }
786
787 /* check the upper-limit service curve. */
788 if (opts->ulsc_m2 != 0) {
789 if (opts->ulsc_m1 > pa->ifbandwidth ||
790 opts->ulsc_m2 > pa->ifbandwidth) {
791 warnx("upper-limit larger than interface bandwidth");
792 goto err_ret;
793 }
794 if (opts->rtsc_m2 != 0 && opts->rtsc_m2 > opts->ulsc_m2) {
795 warnx("upper-limit sc smaller than real-time sc");
796 goto err_ret;
797 }
798 }
799
800 gsc_destroy(&rtsc);
801 gsc_destroy(&lssc);
802
803 return (0);
804
805 err_ret:
806 gsc_destroy(&rtsc);
807 gsc_destroy(&lssc);
808 return (-1);
809 }
810
811 static int
812 check_commit_hfsc(int dev, int opts, struct pf_altq *pa)
813 {
814 struct pf_altq *altq, *def = NULL;
815 int default_class;
816 int error = 0;
817
818 /* check if hfsc has one default queue for this interface */
819 default_class = 0;
820 TAILQ_FOREACH(altq, &altqs, entries) {
821 if (strncmp(altq->ifname, pa->ifname, IFNAMSIZ) != 0)
822 continue;
823 if (altq->qname[0] == 0) /* this is for interface */
824 continue;
825 if (altq->parent[0] == 0) /* dummy root */
826 continue;
827 if (altq->pq_u.hfsc_opts.flags & HFCF_DEFAULTCLASS) {
828 default_class++;
829 def = altq;
830 }
831 }
832 if (default_class != 1) {
833 warnx("should have one default queue on %s", pa->ifname);
834 return (1);
835 }
836 /* make sure the default queue is a leaf */
837 TAILQ_FOREACH(altq, &altqs, entries) {
838 if (strncmp(altq->ifname, pa->ifname, IFNAMSIZ) != 0)
839 continue;
840 if (altq->qname[0] == 0) /* this is for interface */
841 continue;
842 if (strncmp(altq->parent, def->qname, PF_QNAME_SIZE) == 0) {
843 warnx("default queue is not a leaf");
844 error++;
845 }
846 }
847 return (error);
848 }
849
850 static int
851 print_hfsc_opts(const struct pf_altq *a, const struct node_queue_opt *qopts)
852 {
853 const struct hfsc_opts *opts;
854 const struct node_hfsc_sc *rtsc, *lssc, *ulsc;
855
856 opts = &a->pq_u.hfsc_opts;
857 if (qopts == NULL)
858 rtsc = lssc = ulsc = NULL;
859 else {
860 rtsc = &qopts->data.hfsc_opts.realtime;
861 lssc = &qopts->data.hfsc_opts.linkshare;
862 ulsc = &qopts->data.hfsc_opts.upperlimit;
863 }
864
865 if (opts->flags || opts->rtsc_m2 != 0 || opts->ulsc_m2 != 0 ||
866 (opts->lssc_m2 != 0 && (opts->lssc_m2 != a->bandwidth ||
867 opts->lssc_d != 0))) {
868 printf("hfsc(");
869 if (opts->flags & HFCF_RED)
870 printf(" red");
871 if (opts->flags & HFCF_ECN)
872 printf(" ecn");
873 if (opts->flags & HFCF_RIO)
874 printf(" rio");
875 if (opts->flags & HFCF_CLEARDSCP)
876 printf(" cleardscp");
877 if (opts->flags & HFCF_DEFAULTCLASS)
878 printf(" default");
879 if (opts->rtsc_m2 != 0)
880 print_hfsc_sc("realtime", opts->rtsc_m1, opts->rtsc_d,
881 opts->rtsc_m2, rtsc);
882 if (opts->lssc_m2 != 0 && (opts->lssc_m2 != a->bandwidth ||
883 opts->lssc_d != 0))
884 print_hfsc_sc("linkshare", opts->lssc_m1, opts->lssc_d,
885 opts->lssc_m2, lssc);
886 if (opts->ulsc_m2 != 0)
887 print_hfsc_sc("upperlimit", opts->ulsc_m1, opts->ulsc_d,
888 opts->ulsc_m2, ulsc);
889 printf(" ) ");
890
891 return (1);
892 } else
893 return (0);
894 }
895
896 /*
897 * admission control using generalized service curve
898 */
899 #ifdef __OpenBSD__
900 #define INFINITY HUGE_VAL /* positive infinity defined in <math.h> */
901 #endif
902
903 /* add a new service curve to a generalized service curve */
904 static void
905 gsc_add_sc(struct gen_sc *gsc, struct service_curve *sc)
906 {
907 if (is_sc_null(sc))
908 return;
909 if (sc->d != 0)
910 gsc_add_seg(gsc, 0.0, 0.0, (double)sc->d, (double)sc->m1);
911 gsc_add_seg(gsc, (double)sc->d, 0.0, INFINITY, (double)sc->m2);
912 }
913
914 /*
915 * check whether all points of a generalized service curve have
916 * their y-coordinates no larger than a given two-piece linear
917 * service curve.
918 */
919 static int
920 is_gsc_under_sc(struct gen_sc *gsc, struct service_curve *sc)
921 {
922 struct segment *s, *last, *end;
923 double y;
924
925 if (is_sc_null(sc)) {
926 if (LIST_EMPTY(gsc))
927 return (1);
928 LIST_FOREACH(s, gsc, _next) {
929 if (s->m != 0)
930 return (0);
931 }
932 return (1);
933 }
934 /*
935 * gsc has a dummy entry at the end with x = INFINITY.
936 * loop through up to this dummy entry.
937 */
938 end = gsc_getentry(gsc, INFINITY);
939 if (end == NULL)
940 return (1);
941 last = NULL;
942 for (s = LIST_FIRST(gsc); s != end; s = LIST_NEXT(s, _next)) {
943 if (s->y > sc_x2y(sc, s->x))
944 return (0);
945 last = s;
946 }
947 /* last now holds the real last segment */
948 if (last == NULL)
949 return (1);
950 if (last->m > sc->m2)
951 return (0);
952 if (last->x < sc->d && last->m > sc->m1) {
953 y = last->y + (sc->d - last->x) * last->m;
954 if (y > sc_x2y(sc, sc->d))
955 return (0);
956 }
957 return (1);
958 }
959
960 static void
961 gsc_destroy(struct gen_sc *gsc)
962 {
963 struct segment *s;
964
965 while ((s = LIST_FIRST(gsc)) != NULL) {
966 LIST_REMOVE(s, _next);
967 free(s);
968 }
969 }
970
971 /*
972 * return a segment entry starting at x.
973 * if gsc has no entry starting at x, a new entry is created at x.
974 */
975 static struct segment *
976 gsc_getentry(struct gen_sc *gsc, double x)
977 {
978 struct segment *new, *prev, *s;
979
980 prev = NULL;
981 LIST_FOREACH(s, gsc, _next) {
982 if (s->x == x)
983 return (s); /* matching entry found */
984 else if (s->x < x)
985 prev = s;
986 else
987 break;
988 }
989
990 /* we have to create a new entry */
991 if ((new = calloc(1, sizeof(struct segment))) == NULL)
992 return (NULL);
993
994 new->x = x;
995 if (x == INFINITY || s == NULL)
996 new->d = 0;
997 else if (s->x == INFINITY)
998 new->d = INFINITY;
999 else
1000 new->d = s->x - x;
1001 if (prev == NULL) {
1002 /* insert the new entry at the head of the list */
1003 new->y = 0;
1004 new->m = 0;
1005 LIST_INSERT_HEAD(gsc, new, _next);
1006 } else {
1007 /*
1008 * the start point intersects with the segment pointed by
1009 * prev. divide prev into 2 segments
1010 */
1011 if (x == INFINITY) {
1012 prev->d = INFINITY;
1013 if (prev->m == 0)
1014 new->y = prev->y;
1015 else
1016 new->y = INFINITY;
1017 } else {
1018 prev->d = x - prev->x;
1019 new->y = prev->d * prev->m + prev->y;
1020 }
1021 new->m = prev->m;
1022 LIST_INSERT_AFTER(prev, new, _next);
1023 }
1024 return (new);
1025 }
1026
1027 /* add a segment to a generalized service curve */
1028 static int
1029 gsc_add_seg(struct gen_sc *gsc, double x, double y, double d, double m)
1030 {
1031 struct segment *start, *end, *s;
1032 double x2;
1033
1034 if (d == INFINITY)
1035 x2 = INFINITY;
1036 else
1037 x2 = x + d;
1038 start = gsc_getentry(gsc, x);
1039 end = gsc_getentry(gsc, x2);
1040 if (start == NULL || end == NULL)
1041 return (-1);
1042
1043 for (s = start; s != end; s = LIST_NEXT(s, _next)) {
1044 s->m += m;
1045 s->y += y + (s->x - x) * m;
1046 }
1047
1048 end = gsc_getentry(gsc, INFINITY);
1049 for (; s != end; s = LIST_NEXT(s, _next)) {
1050 s->y += m * d;
1051 }
1052
1053 return (0);
1054 }
1055
1056 /* get y-projection of a service curve */
1057 static double
1058 sc_x2y(struct service_curve *sc, double x)
1059 {
1060 double y;
1061
1062 if (x <= (double)sc->d)
1063 /* y belongs to the 1st segment */
1064 y = x * (double)sc->m1;
1065 else
1066 /* y belongs to the 2nd segment */
1067 y = (double)sc->d * (double)sc->m1
1068 + (x - (double)sc->d) * (double)sc->m2;
1069 return (y);
1070 }
1071
1072 /*
1073 * misc utilities
1074 */
1075 #define R2S_BUFS 8
1076 #define RATESTR_MAX 16
1077
1078 char *
1079 rate2str(double rate)
1080 {
1081 char *buf;
1082 static char r2sbuf[R2S_BUFS][RATESTR_MAX]; /* ring bufer */
1083 static int idx = 0;
1084 int i;
1085 static const char unit[] = " KMG";
1086
1087 buf = r2sbuf[idx++];
1088 if (idx == R2S_BUFS)
1089 idx = 0;
1090
1091 for (i = 0; rate >= 1000 && i <= 3; i++)
1092 rate /= 1000;
1093
1094 if ((int)(rate * 100) % 100)
1095 snprintf(buf, RATESTR_MAX, "%.2f%cb", rate, unit[i]);
1096 else
1097 snprintf(buf, RATESTR_MAX, "%d%cb", (int)rate, unit[i]);
1098
1099 return (buf);
1100 }
1101
1102 u_int32_t
1103 getifspeed(char *ifname)
1104 {
1105 #ifdef __OpenBSD__
1106 int s;
1107 struct ifreq ifr;
1108 struct if_data ifrdat;
1109
1110 if ((s = socket(AF_INET, SOCK_DGRAM, 0)) < 0)
1111 err(1, "socket");
1112 bzero(&ifr, sizeof(ifr));
1113 if (strlcpy(ifr.ifr_name, ifname, sizeof(ifr.ifr_name)) >=
1114 sizeof(ifr.ifr_name))
1115 errx(1, "getifspeed: strlcpy");
1116 ifr.ifr_data = (caddr_t)&ifrdat;
1117 if (ioctl(s, SIOCGIFDATA, (caddr_t)&ifr) == -1)
1118 err(1, "SIOCGIFDATA");
1119 if (shutdown(s, SHUT_RDWR) == -1)
1120 err(1, "shutdown");
1121 if (close(s) == -1)
1122 err(1, "close");
1123 return ((u_int32_t)ifrdat.ifi_baudrate);
1124 #else
1125 int s;
1126 struct ifdatareq ifdr;
1127 struct if_data *ifrdat;
1128
1129 if ((s = socket(AF_INET, SOCK_DGRAM, 0)) < 0)
1130 err(1, "getifspeed: socket");
1131 memset(&ifdr, 0, sizeof(ifdr));
1132 if (strlcpy(ifdr.ifdr_name, ifname, sizeof(ifdr.ifdr_name)) >=
1133 sizeof(ifdr.ifdr_name))
1134 errx(1, "getifspeed: strlcpy");
1135 if (ioctl(s, SIOCGIFDATA, &ifdr) == -1)
1136 err(1, "getifspeed: SIOCGIFDATA");
1137 ifrdat = &ifdr.ifdr_data;
1138 if (shutdown(s, SHUT_RDWR) == -1)
1139 err(1, "getifspeed: shutdown");
1140 if (close(s) == -1)
1141 err(1, "getifspeed: close");
1142 return ((u_int32_t)ifrdat->ifi_baudrate);
1143 #endif
1144 }
1145
1146 u_long
1147 getifmtu(char *ifname)
1148 {
1149 int s;
1150 struct ifreq ifr;
1151
1152 if ((s = socket(AF_INET, SOCK_DGRAM, 0)) < 0)
1153 err(1, "socket");
1154 bzero(&ifr, sizeof(ifr));
1155 if (strlcpy(ifr.ifr_name, ifname, sizeof(ifr.ifr_name)) >=
1156 sizeof(ifr.ifr_name))
1157 errx(1, "getifmtu: strlcpy");
1158 if (ioctl(s, SIOCGIFMTU, (caddr_t)&ifr) == -1)
1159 err(1, "SIOCGIFMTU");
1160 if (shutdown(s, SHUT_RDWR) == -1)
1161 err(1, "shutdown");
1162 if (close(s) == -1)
1163 err(1, "close");
1164 if (ifr.ifr_mtu > 0)
1165 return (ifr.ifr_mtu);
1166 else {
1167 warnx("could not get mtu for %s, assuming 1500", ifname);
1168 return (1500);
1169 }
1170 }
1171
1172 int
1173 eval_queue_opts(struct pf_altq *pa, struct node_queue_opt *opts,
1174 u_int32_t ref_bw)
1175 {
1176 int errors = 0;
1177
1178 switch (pa->scheduler) {
1179 case ALTQT_CBQ:
1180 pa->pq_u.cbq_opts = opts->data.cbq_opts;
1181 break;
1182 case ALTQT_PRIQ:
1183 pa->pq_u.priq_opts = opts->data.priq_opts;
1184 break;
1185 case ALTQT_HFSC:
1186 pa->pq_u.hfsc_opts.flags = opts->data.hfsc_opts.flags;
1187 if (opts->data.hfsc_opts.linkshare.used) {
1188 pa->pq_u.hfsc_opts.lssc_m1 =
1189 eval_bwspec(&opts->data.hfsc_opts.linkshare.m1,
1190 ref_bw);
1191 pa->pq_u.hfsc_opts.lssc_m2 =
1192 eval_bwspec(&opts->data.hfsc_opts.linkshare.m2,
1193 ref_bw);
1194 pa->pq_u.hfsc_opts.lssc_d =
1195 opts->data.hfsc_opts.linkshare.d;
1196 }
1197 if (opts->data.hfsc_opts.realtime.used) {
1198 pa->pq_u.hfsc_opts.rtsc_m1 =
1199 eval_bwspec(&opts->data.hfsc_opts.realtime.m1,
1200 ref_bw);
1201 pa->pq_u.hfsc_opts.rtsc_m2 =
1202 eval_bwspec(&opts->data.hfsc_opts.realtime.m2,
1203 ref_bw);
1204 pa->pq_u.hfsc_opts.rtsc_d =
1205 opts->data.hfsc_opts.realtime.d;
1206 }
1207 if (opts->data.hfsc_opts.upperlimit.used) {
1208 pa->pq_u.hfsc_opts.ulsc_m1 =
1209 eval_bwspec(&opts->data.hfsc_opts.upperlimit.m1,
1210 ref_bw);
1211 pa->pq_u.hfsc_opts.ulsc_m2 =
1212 eval_bwspec(&opts->data.hfsc_opts.upperlimit.m2,
1213 ref_bw);
1214 pa->pq_u.hfsc_opts.ulsc_d =
1215 opts->data.hfsc_opts.upperlimit.d;
1216 }
1217 break;
1218 default:
1219 warnx("eval_queue_opts: unknown scheduler type %u",
1220 opts->qtype);
1221 errors++;
1222 break;
1223 }
1224
1225 return (errors);
1226 }
1227
1228 u_int32_t
1229 eval_bwspec(struct node_queue_bw *bw, u_int32_t ref_bw)
1230 {
1231 if (bw->bw_absolute > 0)
1232 return (bw->bw_absolute);
1233
1234 if (bw->bw_percent > 0)
1235 return (ref_bw / 100 * bw->bw_percent);
1236
1237 return (0);
1238 }
1239
1240 void
1241 print_hfsc_sc(const char *scname, u_int m1, u_int d, u_int m2,
1242 const struct node_hfsc_sc *sc)
1243 {
1244 printf(" %s", scname);
1245
1246 if (d != 0) {
1247 printf("(");
1248 if (sc != NULL && sc->m1.bw_percent > 0)
1249 printf("%u%%", sc->m1.bw_percent);
1250 else
1251 printf("%s", rate2str((double)m1));
1252 printf(" %u", d);
1253 }
1254
1255 if (sc != NULL && sc->m2.bw_percent > 0)
1256 printf(" %u%%", sc->m2.bw_percent);
1257 else
1258 printf(" %s", rate2str((double)m2));
1259
1260 if (d != 0)
1261 printf(")");
1262 }
1263