pfctl_altq.c revision 1.8 1 /* $NetBSD: pfctl_altq.c,v 1.8 2008/06/18 09:06:26 yamt Exp $ */
2 /* $OpenBSD: pfctl_altq.c,v 1.92 2007/05/27 05:15:17 claudio Exp $ */
3
4 /*
5 * Copyright (c) 2002
6 * Sony Computer Science Laboratories Inc.
7 * Copyright (c) 2002, 2003 Henning Brauer <henning (at) openbsd.org>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 */
21
22 #include <sys/types.h>
23 #include <sys/ioctl.h>
24 #include <sys/socket.h>
25 #ifdef __NetBSD__
26 #include <sys/param.h>
27 #include <sys/mbuf.h>
28 #endif
29
30 #include <net/if.h>
31 #include <netinet/in.h>
32 #include <net/pfvar.h>
33
34 #include <err.h>
35 #include <errno.h>
36 #include <limits.h>
37 #include <math.h>
38 #include <stdio.h>
39 #include <stdlib.h>
40 #include <string.h>
41 #include <unistd.h>
42
43 #include <altq/altq.h>
44 #include <altq/altq_cbq.h>
45 #include <altq/altq_priq.h>
46 #include <altq/altq_hfsc.h>
47
48 #include "pfctl_parser.h"
49 #include "pfctl.h"
50
51 #define is_sc_null(sc) (((sc) == NULL) || ((sc)->m1 == 0 && (sc)->m2 == 0))
52
53 TAILQ_HEAD(altqs, pf_altq) altqs = TAILQ_HEAD_INITIALIZER(altqs);
54 LIST_HEAD(gen_sc, segment) rtsc, lssc;
55
56 struct pf_altq *qname_to_pfaltq(const char *, const char *);
57 u_int32_t qname_to_qid(const char *);
58
59 static int eval_pfqueue_cbq(struct pfctl *, struct pf_altq *);
60 static int cbq_compute_idletime(struct pfctl *, struct pf_altq *);
61 static int check_commit_cbq(int, int, struct pf_altq *);
62 static int print_cbq_opts(const struct pf_altq *);
63
64 static int eval_pfqueue_priq(struct pfctl *, struct pf_altq *);
65 static int check_commit_priq(int, int, struct pf_altq *);
66 static int print_priq_opts(const struct pf_altq *);
67
68 static int eval_pfqueue_hfsc(struct pfctl *, struct pf_altq *);
69 static int check_commit_hfsc(int, int, struct pf_altq *);
70 static int print_hfsc_opts(const struct pf_altq *,
71 const struct node_queue_opt *);
72
73 static void gsc_add_sc(struct gen_sc *, struct service_curve *);
74 static int is_gsc_under_sc(struct gen_sc *,
75 struct service_curve *);
76 static void gsc_destroy(struct gen_sc *);
77 static struct segment *gsc_getentry(struct gen_sc *, double);
78 static int gsc_add_seg(struct gen_sc *, double, double, double,
79 double);
80 static double sc_x2y(struct service_curve *, double);
81
82 u_int32_t getifspeed(char *);
83 u_long getifmtu(char *);
84 int eval_queue_opts(struct pf_altq *, struct node_queue_opt *,
85 u_int32_t);
86 u_int32_t eval_bwspec(struct node_queue_bw *, u_int32_t);
87 void print_hfsc_sc(const char *, u_int, u_int, u_int,
88 const struct node_hfsc_sc *);
89
90 void
91 pfaltq_store(struct pf_altq *a)
92 {
93 struct pf_altq *altq;
94
95 if ((altq = malloc(sizeof(*altq))) == NULL)
96 err(1, "malloc");
97 memcpy(altq, a, sizeof(struct pf_altq));
98 TAILQ_INSERT_TAIL(&altqs, altq, entries);
99 }
100
101 struct pf_altq *
102 pfaltq_lookup(const char *ifname)
103 {
104 struct pf_altq *altq;
105
106 TAILQ_FOREACH(altq, &altqs, entries) {
107 if (strncmp(ifname, altq->ifname, IFNAMSIZ) == 0 &&
108 altq->qname[0] == 0)
109 return (altq);
110 }
111 return (NULL);
112 }
113
114 struct pf_altq *
115 qname_to_pfaltq(const char *qname, const char *ifname)
116 {
117 struct pf_altq *altq;
118
119 TAILQ_FOREACH(altq, &altqs, entries) {
120 if (strncmp(ifname, altq->ifname, IFNAMSIZ) == 0 &&
121 strncmp(qname, altq->qname, PF_QNAME_SIZE) == 0)
122 return (altq);
123 }
124 return (NULL);
125 }
126
127 u_int32_t
128 qname_to_qid(const char *qname)
129 {
130 struct pf_altq *altq;
131
132 /*
133 * We guarantee that same named queues on different interfaces
134 * have the same qid, so we do NOT need to limit matching on
135 * one interface!
136 */
137
138 TAILQ_FOREACH(altq, &altqs, entries) {
139 if (strncmp(qname, altq->qname, PF_QNAME_SIZE) == 0)
140 return (altq->qid);
141 }
142 return (0);
143 }
144
145 void
146 print_altq(const struct pf_altq *a, unsigned level, struct node_queue_bw *bw,
147 struct node_queue_opt *qopts)
148 {
149 if (a->qname[0] != 0) {
150 print_queue(a, level, bw, 1, qopts);
151 return;
152 }
153
154 printf("altq on %s ", a->ifname);
155
156 switch (a->scheduler) {
157 case ALTQT_CBQ:
158 if (!print_cbq_opts(a))
159 printf("cbq ");
160 break;
161 case ALTQT_PRIQ:
162 if (!print_priq_opts(a))
163 printf("priq ");
164 break;
165 case ALTQT_HFSC:
166 if (!print_hfsc_opts(a, qopts))
167 printf("hfsc ");
168 break;
169 }
170
171 if (bw != NULL && bw->bw_percent > 0) {
172 if (bw->bw_percent < 100)
173 printf("bandwidth %u%% ", bw->bw_percent);
174 } else
175 printf("bandwidth %s ", rate2str((double)a->ifbandwidth));
176
177 if (a->qlimit != DEFAULT_QLIMIT)
178 printf("qlimit %u ", a->qlimit);
179 printf("tbrsize %u ", a->tbrsize);
180 }
181
182 void
183 print_queue(const struct pf_altq *a, unsigned level, struct node_queue_bw *bw,
184 int print_interface, struct node_queue_opt *qopts)
185 {
186 unsigned i;
187
188 printf("queue ");
189 for (i = 0; i < level; ++i)
190 printf(" ");
191 printf("%s ", a->qname);
192 if (print_interface)
193 printf("on %s ", a->ifname);
194 if (a->scheduler == ALTQT_CBQ || a->scheduler == ALTQT_HFSC) {
195 if (bw != NULL && bw->bw_percent > 0) {
196 if (bw->bw_percent < 100)
197 printf("bandwidth %u%% ", bw->bw_percent);
198 } else
199 printf("bandwidth %s ", rate2str((double)a->bandwidth));
200 }
201 if (a->priority != DEFAULT_PRIORITY)
202 printf("priority %u ", a->priority);
203 if (a->qlimit != DEFAULT_QLIMIT)
204 printf("qlimit %u ", a->qlimit);
205 switch (a->scheduler) {
206 case ALTQT_CBQ:
207 print_cbq_opts(a);
208 break;
209 case ALTQT_PRIQ:
210 print_priq_opts(a);
211 break;
212 case ALTQT_HFSC:
213 print_hfsc_opts(a, qopts);
214 break;
215 }
216 }
217
218 /*
219 * eval_pfaltq computes the discipline parameters.
220 */
221 int
222 eval_pfaltq(struct pfctl *pf, struct pf_altq *pa, struct node_queue_bw *bw,
223 struct node_queue_opt *opts)
224 {
225 u_int rate, size, errors = 0;
226
227 if (bw->bw_absolute > 0)
228 pa->ifbandwidth = bw->bw_absolute;
229 else
230 if ((rate = getifspeed(pa->ifname)) == 0) {
231 fprintf(stderr, "interface %s does not know its bandwidth, "
232 "please specify an absolute bandwidth\n",
233 pa->ifname);
234 errors++;
235 } else if ((pa->ifbandwidth = eval_bwspec(bw, rate)) == 0)
236 pa->ifbandwidth = rate;
237
238 errors += eval_queue_opts(pa, opts, pa->ifbandwidth);
239
240 /* if tbrsize is not specified, use heuristics */
241 if (pa->tbrsize == 0) {
242 rate = pa->ifbandwidth;
243 if (rate <= 1 * 1000 * 1000)
244 size = 1;
245 else if (rate <= 10 * 1000 * 1000)
246 size = 4;
247 else if (rate <= 200 * 1000 * 1000)
248 size = 8;
249 else
250 size = 24;
251 size = size * getifmtu(pa->ifname);
252 if (size > 0xffff)
253 size = 0xffff;
254 pa->tbrsize = size;
255 }
256 return (errors);
257 }
258
259 /*
260 * check_commit_altq does consistency check for each interface
261 */
262 int
263 check_commit_altq(int dev, int opts)
264 {
265 struct pf_altq *altq;
266 int error = 0;
267
268 /* call the discipline check for each interface. */
269 TAILQ_FOREACH(altq, &altqs, entries) {
270 if (altq->qname[0] == 0) {
271 switch (altq->scheduler) {
272 case ALTQT_CBQ:
273 error = check_commit_cbq(dev, opts, altq);
274 break;
275 case ALTQT_PRIQ:
276 error = check_commit_priq(dev, opts, altq);
277 break;
278 case ALTQT_HFSC:
279 error = check_commit_hfsc(dev, opts, altq);
280 break;
281 default:
282 break;
283 }
284 }
285 }
286 return (error);
287 }
288
289 /*
290 * eval_pfqueue computes the queue parameters.
291 */
292 int
293 eval_pfqueue(struct pfctl *pf, struct pf_altq *pa, struct node_queue_bw *bw,
294 struct node_queue_opt *opts)
295 {
296 /* should be merged with expand_queue */
297 struct pf_altq *if_pa, *parent, *altq;
298 u_int32_t bwsum;
299 int error = 0;
300
301 /* find the corresponding interface and copy fields used by queues */
302 if ((if_pa = pfaltq_lookup(pa->ifname)) == NULL) {
303 fprintf(stderr, "altq not defined on %s\n", pa->ifname);
304 return (1);
305 }
306 pa->scheduler = if_pa->scheduler;
307 pa->ifbandwidth = if_pa->ifbandwidth;
308
309 if (qname_to_pfaltq(pa->qname, pa->ifname) != NULL) {
310 fprintf(stderr, "queue %s already exists on interface %s\n",
311 pa->qname, pa->ifname);
312 return (1);
313 }
314 pa->qid = qname_to_qid(pa->qname);
315
316 parent = NULL;
317 if (pa->parent[0] != 0) {
318 parent = qname_to_pfaltq(pa->parent, pa->ifname);
319 if (parent == NULL) {
320 fprintf(stderr, "parent %s not found for %s\n",
321 pa->parent, pa->qname);
322 return (1);
323 }
324 pa->parent_qid = parent->qid;
325 }
326 if (pa->qlimit == 0)
327 pa->qlimit = DEFAULT_QLIMIT;
328
329 if (pa->scheduler == ALTQT_CBQ || pa->scheduler == ALTQT_HFSC) {
330 pa->bandwidth = eval_bwspec(bw,
331 parent == NULL ? 0 : parent->bandwidth);
332
333 if (pa->bandwidth > pa->ifbandwidth) {
334 fprintf(stderr, "bandwidth for %s higher than "
335 "interface\n", pa->qname);
336 return (1);
337 }
338 /* check the sum of the child bandwidth is under parent's */
339 if (parent != NULL) {
340 if (pa->bandwidth > parent->bandwidth) {
341 warnx("bandwidth for %s higher than parent",
342 pa->qname);
343 return (1);
344 }
345 bwsum = 0;
346 TAILQ_FOREACH(altq, &altqs, entries) {
347 if (strncmp(altq->ifname, pa->ifname,
348 IFNAMSIZ) == 0 &&
349 altq->qname[0] != 0 &&
350 strncmp(altq->parent, pa->parent,
351 PF_QNAME_SIZE) == 0)
352 bwsum += altq->bandwidth;
353 }
354 bwsum += pa->bandwidth;
355 if (bwsum > parent->bandwidth) {
356 warnx("the sum of the child bandwidth higher"
357 " than parent \"%s\"", parent->qname);
358 }
359 }
360 }
361
362 if (eval_queue_opts(pa, opts, parent == NULL? 0 : parent->bandwidth))
363 return (1);
364
365 switch (pa->scheduler) {
366 case ALTQT_CBQ:
367 error = eval_pfqueue_cbq(pf, pa);
368 break;
369 case ALTQT_PRIQ:
370 error = eval_pfqueue_priq(pf, pa);
371 break;
372 case ALTQT_HFSC:
373 error = eval_pfqueue_hfsc(pf, pa);
374 break;
375 default:
376 break;
377 }
378 return (error);
379 }
380
381 /*
382 * CBQ support functions
383 */
384 #define RM_FILTER_GAIN 5 /* log2 of gain, e.g., 5 => 31/32 */
385 #define RM_NS_PER_SEC (1000000000)
386
387 static int
388 eval_pfqueue_cbq(struct pfctl *pf, struct pf_altq *pa)
389 {
390 struct cbq_opts *opts;
391 u_int ifmtu;
392
393 if (pa->priority >= CBQ_MAXPRI) {
394 warnx("priority out of range: max %d", CBQ_MAXPRI - 1);
395 return (-1);
396 }
397
398 ifmtu = getifmtu(pa->ifname);
399 opts = &pa->pq_u.cbq_opts;
400
401 if (opts->pktsize == 0) { /* use default */
402 opts->pktsize = ifmtu;
403 if (opts->pktsize > MCLBYTES) /* do what TCP does */
404 opts->pktsize &= ~MCLBYTES;
405 } else if (opts->pktsize > ifmtu)
406 opts->pktsize = ifmtu;
407 if (opts->maxpktsize == 0) /* use default */
408 opts->maxpktsize = ifmtu;
409 else if (opts->maxpktsize > ifmtu)
410 opts->pktsize = ifmtu;
411
412 if (opts->pktsize > opts->maxpktsize)
413 opts->pktsize = opts->maxpktsize;
414
415 if (pa->parent[0] == 0)
416 opts->flags |= (CBQCLF_ROOTCLASS | CBQCLF_WRR);
417
418 cbq_compute_idletime(pf, pa);
419 return (0);
420 }
421
422 /*
423 * compute ns_per_byte, maxidle, minidle, and offtime
424 */
425 static int
426 cbq_compute_idletime(struct pfctl *pf, struct pf_altq *pa)
427 {
428 struct cbq_opts *opts;
429 double maxidle_s, maxidle, minidle;
430 double offtime, nsPerByte, ifnsPerByte, ptime, cptime;
431 double z, g, f, gton, gtom;
432 u_int minburst, maxburst;
433
434 opts = &pa->pq_u.cbq_opts;
435 ifnsPerByte = (1.0 / (double)pa->ifbandwidth) * RM_NS_PER_SEC * 8;
436 minburst = opts->minburst;
437 maxburst = opts->maxburst;
438
439 if (pa->bandwidth == 0)
440 f = 0.0001; /* small enough? */
441 else
442 f = ((double) pa->bandwidth / (double) pa->ifbandwidth);
443
444 nsPerByte = ifnsPerByte / f;
445 ptime = (double)opts->pktsize * ifnsPerByte;
446 cptime = ptime * (1.0 - f) / f;
447
448 if (nsPerByte * (double)opts->maxpktsize > (double)INT_MAX) {
449 /*
450 * this causes integer overflow in kernel!
451 * (bandwidth < 6Kbps when max_pkt_size=1500)
452 */
453 if (pa->bandwidth != 0 && (pf->opts & PF_OPT_QUIET) == 0)
454 warnx("queue bandwidth must be larger than %s",
455 rate2str(ifnsPerByte * (double)opts->maxpktsize /
456 (double)INT_MAX * (double)pa->ifbandwidth));
457 fprintf(stderr, "cbq: queue %s is too slow!\n",
458 pa->qname);
459 nsPerByte = (double)(INT_MAX / opts->maxpktsize);
460 }
461
462 if (maxburst == 0) { /* use default */
463 if (cptime > 10.0 * 1000000)
464 maxburst = 4;
465 else
466 maxburst = 16;
467 }
468 if (minburst == 0) /* use default */
469 minburst = 2;
470 if (minburst > maxburst)
471 minburst = maxburst;
472
473 z = (double)(1 << RM_FILTER_GAIN);
474 g = (1.0 - 1.0 / z);
475 gton = pow(g, (double)maxburst);
476 gtom = pow(g, (double)(minburst-1));
477 maxidle = ((1.0 / f - 1.0) * ((1.0 - gton) / gton));
478 maxidle_s = (1.0 - g);
479 if (maxidle > maxidle_s)
480 maxidle = ptime * maxidle;
481 else
482 maxidle = ptime * maxidle_s;
483 offtime = cptime * (1.0 + 1.0/(1.0 - g) * (1.0 - gtom) / gtom);
484 minidle = -((double)opts->maxpktsize * (double)nsPerByte);
485
486 /* scale parameters */
487 maxidle = ((maxidle * 8.0) / nsPerByte) *
488 pow(2.0, (double)RM_FILTER_GAIN);
489 offtime = (offtime * 8.0) / nsPerByte *
490 pow(2.0, (double)RM_FILTER_GAIN);
491 minidle = ((minidle * 8.0) / nsPerByte) *
492 pow(2.0, (double)RM_FILTER_GAIN);
493
494 maxidle = maxidle / 1000.0;
495 offtime = offtime / 1000.0;
496 minidle = minidle / 1000.0;
497
498 opts->minburst = minburst;
499 opts->maxburst = maxburst;
500 opts->ns_per_byte = (u_int)nsPerByte;
501 opts->maxidle = (u_int)fabs(maxidle);
502 opts->minidle = (int)minidle;
503 opts->offtime = (u_int)fabs(offtime);
504
505 return (0);
506 }
507
508 static int
509 check_commit_cbq(int dev, int opts, struct pf_altq *pa)
510 {
511 struct pf_altq *altq;
512 int root_class, default_class;
513 int error = 0;
514
515 /*
516 * check if cbq has one root queue and one default queue
517 * for this interface
518 */
519 root_class = default_class = 0;
520 TAILQ_FOREACH(altq, &altqs, entries) {
521 if (strncmp(altq->ifname, pa->ifname, IFNAMSIZ) != 0)
522 continue;
523 if (altq->qname[0] == 0) /* this is for interface */
524 continue;
525 if (altq->pq_u.cbq_opts.flags & CBQCLF_ROOTCLASS)
526 root_class++;
527 if (altq->pq_u.cbq_opts.flags & CBQCLF_DEFCLASS)
528 default_class++;
529 }
530 if (root_class != 1) {
531 warnx("should have one root queue on %s", pa->ifname);
532 error++;
533 }
534 if (default_class != 1) {
535 warnx("should have one default queue on %s", pa->ifname);
536 error++;
537 }
538 return (error);
539 }
540
541 static int
542 print_cbq_opts(const struct pf_altq *a)
543 {
544 const struct cbq_opts *opts;
545
546 opts = &a->pq_u.cbq_opts;
547 if (opts->flags) {
548 printf("cbq(");
549 if (opts->flags & CBQCLF_RED)
550 printf(" red");
551 if (opts->flags & CBQCLF_ECN)
552 printf(" ecn");
553 if (opts->flags & CBQCLF_RIO)
554 printf(" rio");
555 if (opts->flags & CBQCLF_CLEARDSCP)
556 printf(" cleardscp");
557 if (opts->flags & CBQCLF_FLOWVALVE)
558 printf(" flowvalve");
559 #ifdef CBQCLF_BORROW
560 if (opts->flags & CBQCLF_BORROW)
561 printf(" borrow");
562 #endif
563 if (opts->flags & CBQCLF_WRR)
564 printf(" wrr");
565 if (opts->flags & CBQCLF_EFFICIENT)
566 printf(" efficient");
567 if (opts->flags & CBQCLF_ROOTCLASS)
568 printf(" root");
569 if (opts->flags & CBQCLF_DEFCLASS)
570 printf(" default");
571 printf(" ) ");
572
573 return (1);
574 } else
575 return (0);
576 }
577
578 /*
579 * PRIQ support functions
580 */
581 static int
582 eval_pfqueue_priq(struct pfctl *pf, struct pf_altq *pa)
583 {
584 struct pf_altq *altq;
585
586 if (pa->priority >= PRIQ_MAXPRI) {
587 warnx("priority out of range: max %d", PRIQ_MAXPRI - 1);
588 return (-1);
589 }
590 /* the priority should be unique for the interface */
591 TAILQ_FOREACH(altq, &altqs, entries) {
592 if (strncmp(altq->ifname, pa->ifname, IFNAMSIZ) == 0 &&
593 altq->qname[0] != 0 && altq->priority == pa->priority) {
594 warnx("%s and %s have the same priority",
595 altq->qname, pa->qname);
596 return (-1);
597 }
598 }
599
600 return (0);
601 }
602
603 static int
604 check_commit_priq(int dev, int opts, struct pf_altq *pa)
605 {
606 struct pf_altq *altq;
607 int default_class;
608 int error = 0;
609
610 /*
611 * check if priq has one default class for this interface
612 */
613 default_class = 0;
614 TAILQ_FOREACH(altq, &altqs, entries) {
615 if (strncmp(altq->ifname, pa->ifname, IFNAMSIZ) != 0)
616 continue;
617 if (altq->qname[0] == 0) /* this is for interface */
618 continue;
619 if (altq->pq_u.priq_opts.flags & PRCF_DEFAULTCLASS)
620 default_class++;
621 }
622 if (default_class != 1) {
623 warnx("should have one default queue on %s", pa->ifname);
624 error++;
625 }
626 return (error);
627 }
628
629 static int
630 print_priq_opts(const struct pf_altq *a)
631 {
632 const struct priq_opts *opts;
633
634 opts = &a->pq_u.priq_opts;
635
636 if (opts->flags) {
637 printf("priq(");
638 if (opts->flags & PRCF_RED)
639 printf(" red");
640 if (opts->flags & PRCF_ECN)
641 printf(" ecn");
642 if (opts->flags & PRCF_RIO)
643 printf(" rio");
644 if (opts->flags & PRCF_CLEARDSCP)
645 printf(" cleardscp");
646 if (opts->flags & PRCF_DEFAULTCLASS)
647 printf(" default");
648 printf(" ) ");
649
650 return (1);
651 } else
652 return (0);
653 }
654
655 /*
656 * HFSC support functions
657 */
658 static int
659 eval_pfqueue_hfsc(struct pfctl *pf, struct pf_altq *pa)
660 {
661 struct pf_altq *altq, *parent;
662 struct hfsc_opts *opts;
663 struct service_curve sc;
664
665 opts = &pa->pq_u.hfsc_opts;
666
667 if (pa->parent[0] == 0) {
668 /* root queue */
669 opts->lssc_m1 = pa->ifbandwidth;
670 opts->lssc_m2 = pa->ifbandwidth;
671 opts->lssc_d = 0;
672 return (0);
673 }
674
675 LIST_INIT(&rtsc);
676 LIST_INIT(&lssc);
677
678 /* if link_share is not specified, use bandwidth */
679 if (opts->lssc_m2 == 0)
680 opts->lssc_m2 = pa->bandwidth;
681
682 if ((opts->rtsc_m1 > 0 && opts->rtsc_m2 == 0) ||
683 (opts->lssc_m1 > 0 && opts->lssc_m2 == 0) ||
684 (opts->ulsc_m1 > 0 && opts->ulsc_m2 == 0)) {
685 warnx("m2 is zero for %s", pa->qname);
686 return (-1);
687 }
688
689 if ((opts->rtsc_m1 < opts->rtsc_m2 && opts->rtsc_m1 != 0) ||
690 (opts->lssc_m1 < opts->lssc_m2 && opts->lssc_m1 != 0) ||
691 (opts->ulsc_m1 < opts->ulsc_m2 && opts->ulsc_m1 != 0)) {
692 warnx("m1 must be zero for convex curve: %s", pa->qname);
693 return (-1);
694 }
695
696 /*
697 * admission control:
698 * for the real-time service curve, the sum of the service curves
699 * should not exceed 80% of the interface bandwidth. 20% is reserved
700 * not to over-commit the actual interface bandwidth.
701 * for the linkshare service curve, the sum of the child service
702 * curve should not exceed the parent service curve.
703 * for the upper-limit service curve, the assigned bandwidth should
704 * be smaller than the interface bandwidth, and the upper-limit should
705 * be larger than the real-time service curve when both are defined.
706 */
707 parent = qname_to_pfaltq(pa->parent, pa->ifname);
708 if (parent == NULL)
709 errx(1, "parent %s not found for %s", pa->parent, pa->qname);
710
711 TAILQ_FOREACH(altq, &altqs, entries) {
712 if (strncmp(altq->ifname, pa->ifname, IFNAMSIZ) != 0)
713 continue;
714 if (altq->qname[0] == 0) /* this is for interface */
715 continue;
716
717 /* if the class has a real-time service curve, add it. */
718 if (opts->rtsc_m2 != 0 && altq->pq_u.hfsc_opts.rtsc_m2 != 0) {
719 sc.m1 = altq->pq_u.hfsc_opts.rtsc_m1;
720 sc.d = altq->pq_u.hfsc_opts.rtsc_d;
721 sc.m2 = altq->pq_u.hfsc_opts.rtsc_m2;
722 gsc_add_sc(&rtsc, &sc);
723 }
724
725 if (strncmp(altq->parent, pa->parent, PF_QNAME_SIZE) != 0)
726 continue;
727
728 /* if the class has a linkshare service curve, add it. */
729 if (opts->lssc_m2 != 0 && altq->pq_u.hfsc_opts.lssc_m2 != 0) {
730 sc.m1 = altq->pq_u.hfsc_opts.lssc_m1;
731 sc.d = altq->pq_u.hfsc_opts.lssc_d;
732 sc.m2 = altq->pq_u.hfsc_opts.lssc_m2;
733 gsc_add_sc(&lssc, &sc);
734 }
735 }
736
737 /* check the real-time service curve. reserve 20% of interface bw */
738 if (opts->rtsc_m2 != 0) {
739 /* add this queue to the sum */
740 sc.m1 = opts->rtsc_m1;
741 sc.d = opts->rtsc_d;
742 sc.m2 = opts->rtsc_m2;
743 gsc_add_sc(&rtsc, &sc);
744 /* compare the sum with 80% of the interface */
745 sc.m1 = 0;
746 sc.d = 0;
747 sc.m2 = pa->ifbandwidth / 100 * 80;
748 if (!is_gsc_under_sc(&rtsc, &sc)) {
749 warnx("real-time sc exceeds 80%% of the interface "
750 "bandwidth (%s)", rate2str((double)sc.m2));
751 goto err_ret;
752 }
753 }
754
755 /* check the linkshare service curve. */
756 if (opts->lssc_m2 != 0) {
757 /* add this queue to the child sum */
758 sc.m1 = opts->lssc_m1;
759 sc.d = opts->lssc_d;
760 sc.m2 = opts->lssc_m2;
761 gsc_add_sc(&lssc, &sc);
762 /* compare the sum of the children with parent's sc */
763 sc.m1 = parent->pq_u.hfsc_opts.lssc_m1;
764 sc.d = parent->pq_u.hfsc_opts.lssc_d;
765 sc.m2 = parent->pq_u.hfsc_opts.lssc_m2;
766 if (!is_gsc_under_sc(&lssc, &sc)) {
767 warnx("linkshare sc exceeds parent's sc");
768 goto err_ret;
769 }
770 }
771
772 /* check the upper-limit service curve. */
773 if (opts->ulsc_m2 != 0) {
774 if (opts->ulsc_m1 > pa->ifbandwidth ||
775 opts->ulsc_m2 > pa->ifbandwidth) {
776 warnx("upper-limit larger than interface bandwidth");
777 goto err_ret;
778 }
779 if (opts->rtsc_m2 != 0 && opts->rtsc_m2 > opts->ulsc_m2) {
780 warnx("upper-limit sc smaller than real-time sc");
781 goto err_ret;
782 }
783 }
784
785 gsc_destroy(&rtsc);
786 gsc_destroy(&lssc);
787
788 return (0);
789
790 err_ret:
791 gsc_destroy(&rtsc);
792 gsc_destroy(&lssc);
793 return (-1);
794 }
795
796 static int
797 check_commit_hfsc(int dev, int opts, struct pf_altq *pa)
798 {
799 struct pf_altq *altq, *def = NULL;
800 int default_class;
801 int error = 0;
802
803 /* check if hfsc has one default queue for this interface */
804 default_class = 0;
805 TAILQ_FOREACH(altq, &altqs, entries) {
806 if (strncmp(altq->ifname, pa->ifname, IFNAMSIZ) != 0)
807 continue;
808 if (altq->qname[0] == 0) /* this is for interface */
809 continue;
810 if (altq->parent[0] == 0) /* dummy root */
811 continue;
812 if (altq->pq_u.hfsc_opts.flags & HFCF_DEFAULTCLASS) {
813 default_class++;
814 def = altq;
815 }
816 }
817 if (default_class != 1) {
818 warnx("should have one default queue on %s", pa->ifname);
819 return (1);
820 }
821 /* make sure the default queue is a leaf */
822 TAILQ_FOREACH(altq, &altqs, entries) {
823 if (strncmp(altq->ifname, pa->ifname, IFNAMSIZ) != 0)
824 continue;
825 if (altq->qname[0] == 0) /* this is for interface */
826 continue;
827 if (strncmp(altq->parent, def->qname, PF_QNAME_SIZE) == 0) {
828 warnx("default queue is not a leaf");
829 error++;
830 }
831 }
832 return (error);
833 }
834
835 static int
836 print_hfsc_opts(const struct pf_altq *a, const struct node_queue_opt *qopts)
837 {
838 const struct hfsc_opts *opts;
839 const struct node_hfsc_sc *rtsc, *lssc, *ulsc;
840
841 opts = &a->pq_u.hfsc_opts;
842 if (qopts == NULL)
843 rtsc = lssc = ulsc = NULL;
844 else {
845 rtsc = &qopts->data.hfsc_opts.realtime;
846 lssc = &qopts->data.hfsc_opts.linkshare;
847 ulsc = &qopts->data.hfsc_opts.upperlimit;
848 }
849
850 if (opts->flags || opts->rtsc_m2 != 0 || opts->ulsc_m2 != 0 ||
851 (opts->lssc_m2 != 0 && (opts->lssc_m2 != a->bandwidth ||
852 opts->lssc_d != 0))) {
853 printf("hfsc(");
854 if (opts->flags & HFCF_RED)
855 printf(" red");
856 if (opts->flags & HFCF_ECN)
857 printf(" ecn");
858 if (opts->flags & HFCF_RIO)
859 printf(" rio");
860 if (opts->flags & HFCF_CLEARDSCP)
861 printf(" cleardscp");
862 if (opts->flags & HFCF_DEFAULTCLASS)
863 printf(" default");
864 if (opts->rtsc_m2 != 0)
865 print_hfsc_sc("realtime", opts->rtsc_m1, opts->rtsc_d,
866 opts->rtsc_m2, rtsc);
867 if (opts->lssc_m2 != 0 && (opts->lssc_m2 != a->bandwidth ||
868 opts->lssc_d != 0))
869 print_hfsc_sc("linkshare", opts->lssc_m1, opts->lssc_d,
870 opts->lssc_m2, lssc);
871 if (opts->ulsc_m2 != 0)
872 print_hfsc_sc("upperlimit", opts->ulsc_m1, opts->ulsc_d,
873 opts->ulsc_m2, ulsc);
874 printf(" ) ");
875
876 return (1);
877 } else
878 return (0);
879 }
880
881 /*
882 * admission control using generalized service curve
883 */
884 #ifndef __NetBSD__
885 #define INFINITY HUGE_VAL /* positive infinity defined in <math.h> */
886 #endif /* !__NetBSD__ */
887
888 /* add a new service curve to a generalized service curve */
889 static void
890 gsc_add_sc(struct gen_sc *gsc, struct service_curve *sc)
891 {
892 if (is_sc_null(sc))
893 return;
894 if (sc->d != 0)
895 gsc_add_seg(gsc, 0.0, 0.0, (double)sc->d, (double)sc->m1);
896 gsc_add_seg(gsc, (double)sc->d, 0.0, INFINITY, (double)sc->m2);
897 }
898
899 /*
900 * check whether all points of a generalized service curve have
901 * their y-coordinates no larger than a given two-piece linear
902 * service curve.
903 */
904 static int
905 is_gsc_under_sc(struct gen_sc *gsc, struct service_curve *sc)
906 {
907 struct segment *s, *last, *end;
908 double y;
909
910 if (is_sc_null(sc)) {
911 if (LIST_EMPTY(gsc))
912 return (1);
913 LIST_FOREACH(s, gsc, _next) {
914 if (s->m != 0)
915 return (0);
916 }
917 return (1);
918 }
919 /*
920 * gsc has a dummy entry at the end with x = INFINITY.
921 * loop through up to this dummy entry.
922 */
923 end = gsc_getentry(gsc, INFINITY);
924 if (end == NULL)
925 return (1);
926 last = NULL;
927 for (s = LIST_FIRST(gsc); s != end; s = LIST_NEXT(s, _next)) {
928 if (s->y > sc_x2y(sc, s->x))
929 return (0);
930 last = s;
931 }
932 /* last now holds the real last segment */
933 if (last == NULL)
934 return (1);
935 if (last->m > sc->m2)
936 return (0);
937 if (last->x < sc->d && last->m > sc->m1) {
938 y = last->y + (sc->d - last->x) * last->m;
939 if (y > sc_x2y(sc, sc->d))
940 return (0);
941 }
942 return (1);
943 }
944
945 static void
946 gsc_destroy(struct gen_sc *gsc)
947 {
948 struct segment *s;
949
950 while ((s = LIST_FIRST(gsc)) != NULL) {
951 LIST_REMOVE(s, _next);
952 free(s);
953 }
954 }
955
956 /*
957 * return a segment entry starting at x.
958 * if gsc has no entry starting at x, a new entry is created at x.
959 */
960 static struct segment *
961 gsc_getentry(struct gen_sc *gsc, double x)
962 {
963 struct segment *new, *prev, *s;
964
965 prev = NULL;
966 LIST_FOREACH(s, gsc, _next) {
967 if (s->x == x)
968 return (s); /* matching entry found */
969 else if (s->x < x)
970 prev = s;
971 else
972 break;
973 }
974
975 /* we have to create a new entry */
976 if ((new = calloc(1, sizeof(struct segment))) == NULL)
977 return (NULL);
978
979 new->x = x;
980 if (x == INFINITY || s == NULL)
981 new->d = 0;
982 else if (s->x == INFINITY)
983 new->d = INFINITY;
984 else
985 new->d = s->x - x;
986 if (prev == NULL) {
987 /* insert the new entry at the head of the list */
988 new->y = 0;
989 new->m = 0;
990 LIST_INSERT_HEAD(gsc, new, _next);
991 } else {
992 /*
993 * the start point intersects with the segment pointed by
994 * prev. divide prev into 2 segments
995 */
996 if (x == INFINITY) {
997 prev->d = INFINITY;
998 if (prev->m == 0)
999 new->y = prev->y;
1000 else
1001 new->y = INFINITY;
1002 } else {
1003 prev->d = x - prev->x;
1004 new->y = prev->d * prev->m + prev->y;
1005 }
1006 new->m = prev->m;
1007 LIST_INSERT_AFTER(prev, new, _next);
1008 }
1009 return (new);
1010 }
1011
1012 /* add a segment to a generalized service curve */
1013 static int
1014 gsc_add_seg(struct gen_sc *gsc, double x, double y, double d, double m)
1015 {
1016 struct segment *start, *end, *s;
1017 double x2;
1018
1019 if (d == INFINITY)
1020 x2 = INFINITY;
1021 else
1022 x2 = x + d;
1023 start = gsc_getentry(gsc, x);
1024 end = gsc_getentry(gsc, x2);
1025 if (start == NULL || end == NULL)
1026 return (-1);
1027
1028 for (s = start; s != end; s = LIST_NEXT(s, _next)) {
1029 s->m += m;
1030 s->y += y + (s->x - x) * m;
1031 }
1032
1033 end = gsc_getentry(gsc, INFINITY);
1034 for (; s != end; s = LIST_NEXT(s, _next)) {
1035 s->y += m * d;
1036 }
1037
1038 return (0);
1039 }
1040
1041 /* get y-projection of a service curve */
1042 static double
1043 sc_x2y(struct service_curve *sc, double x)
1044 {
1045 double y;
1046
1047 if (x <= (double)sc->d)
1048 /* y belongs to the 1st segment */
1049 y = x * (double)sc->m1;
1050 else
1051 /* y belongs to the 2nd segment */
1052 y = (double)sc->d * (double)sc->m1
1053 + (x - (double)sc->d) * (double)sc->m2;
1054 return (y);
1055 }
1056
1057 /*
1058 * misc utilities
1059 */
1060 #define R2S_BUFS 8
1061 #define RATESTR_MAX 16
1062
1063 char *
1064 rate2str(double rate)
1065 {
1066 char *buf;
1067 static char r2sbuf[R2S_BUFS][RATESTR_MAX]; /* ring bufer */
1068 static int idx = 0;
1069 int i;
1070 static const char unit[] = " KMG";
1071
1072 buf = r2sbuf[idx++];
1073 if (idx == R2S_BUFS)
1074 idx = 0;
1075
1076 for (i = 0; rate >= 1000 && i <= 3; i++)
1077 rate /= 1000;
1078
1079 if ((int)(rate * 100) % 100)
1080 snprintf(buf, RATESTR_MAX, "%.2f%cb", rate, unit[i]);
1081 else
1082 snprintf(buf, RATESTR_MAX, "%d%cb", (int)rate, unit[i]);
1083
1084 return (buf);
1085 }
1086
1087 u_int32_t
1088 getifspeed(char *ifname)
1089 {
1090 #ifdef __NetBSD__
1091 int s;
1092 struct ifdatareq ifdr;
1093 struct if_data *ifrdat;
1094
1095 if ((s = socket(AF_INET, SOCK_DGRAM, 0)) < 0)
1096 err(1, "getifspeed: socket");
1097 memset(&ifdr, 0, sizeof(ifdr));
1098 if (strlcpy(ifdr.ifdr_name, ifname, sizeof(ifdr.ifdr_name)) >=
1099 sizeof(ifdr.ifdr_name))
1100 errx(1, "getifspeed: strlcpy");
1101 if (ioctl(s, SIOCGIFDATA, &ifdr) == -1)
1102 err(1, "getifspeed: SIOCGIFDATA");
1103 ifrdat = &ifdr.ifdr_data;
1104 if (close(s) == -1)
1105 err(1, "getifspeed: close");
1106 return ((u_int32_t)ifrdat->ifi_baudrate);
1107 #else
1108 int s;
1109 struct ifreq ifr;
1110 struct if_data ifrdat;
1111
1112 if ((s = socket(AF_INET, SOCK_DGRAM, 0)) < 0)
1113 err(1, "socket");
1114 bzero(&ifr, sizeof(ifr));
1115 if (strlcpy(ifr.ifr_name, ifname, sizeof(ifr.ifr_name)) >=
1116 sizeof(ifr.ifr_name))
1117 errx(1, "getifspeed: strlcpy");
1118 ifr.ifr_data = (caddr_t)&ifrdat;
1119 if (ioctl(s, SIOCGIFDATA, (caddr_t)&ifr) == -1)
1120 err(1, "SIOCGIFDATA");
1121 if (close(s))
1122 err(1, "close");
1123 return ((u_int32_t)ifrdat.ifi_baudrate);
1124 #endif /* !__NetBSD__ */
1125 }
1126
1127 u_long
1128 getifmtu(char *ifname)
1129 {
1130 int s;
1131 struct ifreq ifr;
1132
1133 if ((s = socket(AF_INET, SOCK_DGRAM, 0)) < 0)
1134 err(1, "socket");
1135 bzero(&ifr, sizeof(ifr));
1136 if (strlcpy(ifr.ifr_name, ifname, sizeof(ifr.ifr_name)) >=
1137 sizeof(ifr.ifr_name))
1138 errx(1, "getifmtu: strlcpy");
1139 if (ioctl(s, SIOCGIFMTU, (caddr_t)&ifr) == -1)
1140 err(1, "SIOCGIFMTU");
1141 if (close(s) == -1)
1142 err(1, "close");
1143 if (ifr.ifr_mtu > 0)
1144 return (ifr.ifr_mtu);
1145 else {
1146 warnx("could not get mtu for %s, assuming 1500", ifname);
1147 return (1500);
1148 }
1149 }
1150
1151 int
1152 eval_queue_opts(struct pf_altq *pa, struct node_queue_opt *opts,
1153 u_int32_t ref_bw)
1154 {
1155 int errors = 0;
1156
1157 switch (pa->scheduler) {
1158 case ALTQT_CBQ:
1159 pa->pq_u.cbq_opts = opts->data.cbq_opts;
1160 break;
1161 case ALTQT_PRIQ:
1162 pa->pq_u.priq_opts = opts->data.priq_opts;
1163 break;
1164 case ALTQT_HFSC:
1165 pa->pq_u.hfsc_opts.flags = opts->data.hfsc_opts.flags;
1166 if (opts->data.hfsc_opts.linkshare.used) {
1167 pa->pq_u.hfsc_opts.lssc_m1 =
1168 eval_bwspec(&opts->data.hfsc_opts.linkshare.m1,
1169 ref_bw);
1170 pa->pq_u.hfsc_opts.lssc_m2 =
1171 eval_bwspec(&opts->data.hfsc_opts.linkshare.m2,
1172 ref_bw);
1173 pa->pq_u.hfsc_opts.lssc_d =
1174 opts->data.hfsc_opts.linkshare.d;
1175 }
1176 if (opts->data.hfsc_opts.realtime.used) {
1177 pa->pq_u.hfsc_opts.rtsc_m1 =
1178 eval_bwspec(&opts->data.hfsc_opts.realtime.m1,
1179 ref_bw);
1180 pa->pq_u.hfsc_opts.rtsc_m2 =
1181 eval_bwspec(&opts->data.hfsc_opts.realtime.m2,
1182 ref_bw);
1183 pa->pq_u.hfsc_opts.rtsc_d =
1184 opts->data.hfsc_opts.realtime.d;
1185 }
1186 if (opts->data.hfsc_opts.upperlimit.used) {
1187 pa->pq_u.hfsc_opts.ulsc_m1 =
1188 eval_bwspec(&opts->data.hfsc_opts.upperlimit.m1,
1189 ref_bw);
1190 pa->pq_u.hfsc_opts.ulsc_m2 =
1191 eval_bwspec(&opts->data.hfsc_opts.upperlimit.m2,
1192 ref_bw);
1193 pa->pq_u.hfsc_opts.ulsc_d =
1194 opts->data.hfsc_opts.upperlimit.d;
1195 }
1196 break;
1197 default:
1198 warnx("eval_queue_opts: unknown scheduler type %u",
1199 opts->qtype);
1200 errors++;
1201 break;
1202 }
1203
1204 return (errors);
1205 }
1206
1207 u_int32_t
1208 eval_bwspec(struct node_queue_bw *bw, u_int32_t ref_bw)
1209 {
1210 if (bw->bw_absolute > 0)
1211 return (bw->bw_absolute);
1212
1213 if (bw->bw_percent > 0)
1214 return (ref_bw / 100 * bw->bw_percent);
1215
1216 return (0);
1217 }
1218
1219 void
1220 print_hfsc_sc(const char *scname, u_int m1, u_int d, u_int m2,
1221 const struct node_hfsc_sc *sc)
1222 {
1223 printf(" %s", scname);
1224
1225 if (d != 0) {
1226 printf("(");
1227 if (sc != NULL && sc->m1.bw_percent > 0)
1228 printf("%u%%", sc->m1.bw_percent);
1229 else
1230 printf("%s", rate2str((double)m1));
1231 printf(" %u", d);
1232 }
1233
1234 if (sc != NULL && sc->m2.bw_percent > 0)
1235 printf(" %u%%", sc->m2.bw_percent);
1236 else
1237 printf(" %s", rate2str((double)m2));
1238
1239 if (d != 0)
1240 printf(")");
1241 }
1242