1 1.6 agc /* $NetBSD: ch.c,v 1.6 2003/10/13 14:34:25 agc Exp $ */ 2 1.2 perry 3 1.1 cjs /* 4 1.6 agc * Copyright (c) 1988 Mark Nudelman 5 1.1 cjs * Copyright (c) 1988, 1993 6 1.1 cjs * The Regents of the University of California. All rights reserved. 7 1.1 cjs * 8 1.1 cjs * Redistribution and use in source and binary forms, with or without 9 1.1 cjs * modification, are permitted provided that the following conditions 10 1.1 cjs * are met: 11 1.1 cjs * 1. Redistributions of source code must retain the above copyright 12 1.1 cjs * notice, this list of conditions and the following disclaimer. 13 1.1 cjs * 2. Redistributions in binary form must reproduce the above copyright 14 1.1 cjs * notice, this list of conditions and the following disclaimer in the 15 1.1 cjs * documentation and/or other materials provided with the distribution. 16 1.5 agc * 3. Neither the name of the University nor the names of its contributors 17 1.5 agc * may be used to endorse or promote products derived from this software 18 1.5 agc * without specific prior written permission. 19 1.5 agc * 20 1.5 agc * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 1.5 agc * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 1.5 agc * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 1.5 agc * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 1.5 agc * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 1.5 agc * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 1.5 agc * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 1.5 agc * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 1.5 agc * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 1.5 agc * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 1.5 agc * SUCH DAMAGE. 31 1.5 agc */ 32 1.5 agc 33 1.3 christos #include <sys/cdefs.h> 34 1.1 cjs #ifndef lint 35 1.3 christos #if 0 36 1.1 cjs static char sccsid[] = "@(#)ch.c 8.1 (Berkeley) 6/6/93"; 37 1.3 christos #else 38 1.6 agc __RCSID("$NetBSD: ch.c,v 1.6 2003/10/13 14:34:25 agc Exp $"); 39 1.3 christos #endif 40 1.1 cjs #endif /* not lint */ 41 1.1 cjs 42 1.1 cjs /* 43 1.1 cjs * Low level character input from the input file. 44 1.1 cjs * We use these special purpose routines which optimize moving 45 1.1 cjs * both forward and backward from the current read pointer. 46 1.1 cjs */ 47 1.1 cjs 48 1.1 cjs #include <sys/types.h> 49 1.1 cjs #include <sys/file.h> 50 1.1 cjs #include <unistd.h> 51 1.3 christos #include <stdlib.h> 52 1.1 cjs #include <stdio.h> 53 1.3 christos #include <err.h> 54 1.3 christos 55 1.3 christos #include "less.h" 56 1.3 christos #include "extern.h" 57 1.1 cjs 58 1.1 cjs int file = -1; /* File descriptor of the input file */ 59 1.1 cjs 60 1.1 cjs /* 61 1.1 cjs * Pool of buffers holding the most recently used blocks of the input file. 62 1.1 cjs */ 63 1.1 cjs struct buf { 64 1.1 cjs struct buf *next, *prev; 65 1.1 cjs long block; 66 1.1 cjs int datasize; 67 1.1 cjs char data[BUFSIZ]; 68 1.1 cjs }; 69 1.1 cjs int nbufs; 70 1.1 cjs 71 1.1 cjs /* 72 1.1 cjs * The buffer pool is kept as a doubly-linked circular list, in order from 73 1.1 cjs * most- to least-recently used. The circular list is anchored by buf_anchor. 74 1.1 cjs */ 75 1.1 cjs #define END_OF_CHAIN ((struct buf *)&buf_anchor) 76 1.1 cjs #define buf_head buf_anchor.next 77 1.1 cjs #define buf_tail buf_anchor.prev 78 1.1 cjs 79 1.1 cjs static struct { 80 1.1 cjs struct buf *next, *prev; 81 1.1 cjs } buf_anchor = { END_OF_CHAIN, END_OF_CHAIN }; 82 1.1 cjs 83 1.1 cjs /* 84 1.1 cjs * Current position in file. 85 1.1 cjs * Stored as a block number and an offset into the block. 86 1.1 cjs */ 87 1.1 cjs static long ch_block; 88 1.1 cjs static int ch_offset; 89 1.1 cjs 90 1.1 cjs /* Length of file, needed if input is a pipe. */ 91 1.1 cjs static off_t ch_fsize; 92 1.1 cjs 93 1.1 cjs /* Number of bytes read, if input is standard input (a pipe). */ 94 1.1 cjs static off_t last_piped_pos; 95 1.1 cjs 96 1.1 cjs /* 97 1.1 cjs * Get the character pointed to by the read pointer. ch_get() is a macro 98 1.1 cjs * which is more efficient to call than fch_get (the function), in the usual 99 1.1 cjs * case that the block desired is at the head of the chain. 100 1.1 cjs */ 101 1.1 cjs #define ch_get() \ 102 1.1 cjs ((buf_head->block == ch_block && \ 103 1.1 cjs ch_offset < buf_head->datasize) ? \ 104 1.1 cjs buf_head->data[ch_offset] : fch_get()) 105 1.1 cjs 106 1.3 christos static int fch_get __P((void)); 107 1.3 christos static int buffered __P((long)); 108 1.3 christos 109 1.3 christos static int 110 1.1 cjs fch_get() 111 1.1 cjs { 112 1.3 christos struct buf *bp; 113 1.3 christos int n, ch; 114 1.3 christos char *p, *t; 115 1.3 christos off_t pos; 116 1.1 cjs 117 1.1 cjs /* look for a buffer holding the desired block. */ 118 1.1 cjs for (bp = buf_head; bp != END_OF_CHAIN; bp = bp->next) 119 1.1 cjs if (bp->block == ch_block) { 120 1.1 cjs if (ch_offset >= bp->datasize) 121 1.1 cjs /* 122 1.1 cjs * Need more data in this buffer. 123 1.1 cjs */ 124 1.1 cjs goto read_more; 125 1.1 cjs /* 126 1.1 cjs * On a pipe, we don't sort the buffers LRU 127 1.1 cjs * because this can cause gaps in the buffers. 128 1.1 cjs * For example, suppose we've got 12 1K buffers, 129 1.1 cjs * and a 15K input stream. If we read the first 12K 130 1.1 cjs * sequentially, then jump to line 1, then jump to 131 1.1 cjs * the end, the buffers have blocks 0,4,5,6,..,14. 132 1.1 cjs * If we then jump to line 1 again and try to 133 1.1 cjs * read sequentially, we're out of luck when we 134 1.1 cjs * get to block 1 (we'd get the "pipe error" below). 135 1.1 cjs * To avoid this, we only sort buffers on a pipe 136 1.1 cjs * when we actually READ the data, not when we 137 1.1 cjs * find it already buffered. 138 1.1 cjs */ 139 1.1 cjs if (ispipe) 140 1.1 cjs return(bp->data[ch_offset]); 141 1.1 cjs goto found; 142 1.1 cjs } 143 1.1 cjs /* 144 1.1 cjs * Block is not in a buffer. Take the least recently used buffer 145 1.1 cjs * and read the desired block into it. If the LRU buffer has data 146 1.1 cjs * in it, and input is a pipe, then try to allocate a new buffer first. 147 1.1 cjs */ 148 1.1 cjs if (ispipe && buf_tail->block != (long)(-1)) 149 1.1 cjs (void)ch_addbuf(1); 150 1.1 cjs bp = buf_tail; 151 1.1 cjs bp->block = ch_block; 152 1.1 cjs bp->datasize = 0; 153 1.1 cjs 154 1.1 cjs read_more: 155 1.1 cjs pos = (ch_block * BUFSIZ) + bp->datasize; 156 1.1 cjs if (ispipe) { 157 1.1 cjs /* 158 1.1 cjs * The data requested should be immediately after 159 1.1 cjs * the last data read from the pipe. 160 1.1 cjs */ 161 1.1 cjs if (pos != last_piped_pos) { 162 1.1 cjs error("pipe error"); 163 1.1 cjs quit(); 164 1.1 cjs } 165 1.1 cjs } else 166 1.1 cjs (void)lseek(file, pos, L_SET); 167 1.1 cjs 168 1.1 cjs /* 169 1.1 cjs * Read the block. 170 1.1 cjs * If we read less than a full block, we just return the 171 1.1 cjs * partial block and pick up the rest next time. 172 1.1 cjs */ 173 1.1 cjs n = iread(file, &bp->data[bp->datasize], BUFSIZ - bp->datasize); 174 1.1 cjs if (n == READ_INTR) 175 1.1 cjs return (EOI); 176 1.1 cjs if (n < 0) { 177 1.1 cjs error("read error"); 178 1.1 cjs quit(); 179 1.1 cjs } 180 1.1 cjs if (ispipe) 181 1.1 cjs last_piped_pos += n; 182 1.1 cjs 183 1.1 cjs p = &bp->data[bp->datasize]; 184 1.1 cjs bp->datasize += n; 185 1.1 cjs 186 1.1 cjs /* 187 1.1 cjs * Set an EOI marker in the buffered data itself. Then ensure the 188 1.1 cjs * data is "clean": there are no extra EOI chars in the data and 189 1.1 cjs * that the "meta" bit (the 0200 bit) is reset in each char; 190 1.1 cjs * also translate \r\n sequences to \n if -u flag not set. 191 1.1 cjs */ 192 1.1 cjs if (n == 0) { 193 1.1 cjs ch_fsize = pos; 194 1.1 cjs bp->data[bp->datasize++] = EOI; 195 1.1 cjs } 196 1.1 cjs 197 1.1 cjs if (bs_mode) { 198 1.1 cjs for (p = &bp->data[bp->datasize]; --n >= 0;) { 199 1.1 cjs *--p &= 0177; 200 1.1 cjs if (*p == EOI) 201 1.1 cjs *p = 0200; 202 1.1 cjs } 203 1.1 cjs } 204 1.1 cjs else { 205 1.1 cjs for (t = p; --n >= 0; ++p) { 206 1.1 cjs ch = *p & 0177; 207 1.1 cjs if (ch == '\r' && n && (p[1] & 0177) == '\n') { 208 1.1 cjs ++p; 209 1.1 cjs *t++ = '\n'; 210 1.1 cjs } 211 1.1 cjs else 212 1.1 cjs *t++ = (ch == EOI) ? 0200 : ch; 213 1.1 cjs } 214 1.1 cjs if (p != t) { 215 1.1 cjs bp->datasize -= p - t; 216 1.1 cjs if (ispipe) 217 1.1 cjs last_piped_pos -= p - t; 218 1.1 cjs } 219 1.1 cjs } 220 1.1 cjs 221 1.1 cjs found: 222 1.1 cjs if (buf_head != bp) { 223 1.1 cjs /* 224 1.1 cjs * Move the buffer to the head of the buffer chain. 225 1.1 cjs * This orders the buffer chain, most- to least-recently used. 226 1.1 cjs */ 227 1.1 cjs bp->next->prev = bp->prev; 228 1.1 cjs bp->prev->next = bp->next; 229 1.1 cjs 230 1.1 cjs bp->next = buf_head; 231 1.1 cjs bp->prev = END_OF_CHAIN; 232 1.1 cjs buf_head->prev = bp; 233 1.1 cjs buf_head = bp; 234 1.1 cjs } 235 1.1 cjs 236 1.1 cjs if (ch_offset >= bp->datasize) 237 1.1 cjs /* 238 1.1 cjs * After all that, we still don't have enough data. 239 1.1 cjs * Go back and try again. 240 1.1 cjs */ 241 1.1 cjs goto read_more; 242 1.1 cjs 243 1.1 cjs return(bp->data[ch_offset]); 244 1.1 cjs } 245 1.1 cjs 246 1.1 cjs /* 247 1.1 cjs * Determine if a specific block is currently in one of the buffers. 248 1.1 cjs */ 249 1.3 christos static int 250 1.1 cjs buffered(block) 251 1.1 cjs long block; 252 1.1 cjs { 253 1.3 christos struct buf *bp; 254 1.1 cjs 255 1.1 cjs for (bp = buf_head; bp != END_OF_CHAIN; bp = bp->next) 256 1.1 cjs if (bp->block == block) 257 1.1 cjs return(1); 258 1.1 cjs return(0); 259 1.1 cjs } 260 1.1 cjs 261 1.1 cjs /* 262 1.1 cjs * Seek to a specified position in the file. 263 1.1 cjs * Return 0 if successful, non-zero if can't seek there. 264 1.1 cjs */ 265 1.3 christos int 266 1.1 cjs ch_seek(pos) 267 1.3 christos off_t pos; 268 1.1 cjs { 269 1.1 cjs long new_block; 270 1.1 cjs 271 1.1 cjs new_block = pos / BUFSIZ; 272 1.1 cjs if (!ispipe || pos == last_piped_pos || buffered(new_block)) { 273 1.1 cjs /* 274 1.1 cjs * Set read pointer. 275 1.1 cjs */ 276 1.1 cjs ch_block = new_block; 277 1.1 cjs ch_offset = pos % BUFSIZ; 278 1.1 cjs return(0); 279 1.1 cjs } 280 1.1 cjs return(1); 281 1.1 cjs } 282 1.1 cjs 283 1.1 cjs /* 284 1.1 cjs * Seek to the end of the file. 285 1.1 cjs */ 286 1.3 christos int 287 1.1 cjs ch_end_seek() 288 1.1 cjs { 289 1.1 cjs if (!ispipe) 290 1.1 cjs return(ch_seek(ch_length())); 291 1.1 cjs 292 1.1 cjs /* 293 1.1 cjs * Do it the slow way: read till end of data. 294 1.1 cjs */ 295 1.1 cjs while (ch_forw_get() != EOI) 296 1.1 cjs if (sigs) 297 1.1 cjs return(1); 298 1.1 cjs return(0); 299 1.1 cjs } 300 1.1 cjs 301 1.1 cjs /* 302 1.1 cjs * Seek to the beginning of the file, or as close to it as we can get. 303 1.1 cjs * We may not be able to seek there if input is a pipe and the 304 1.1 cjs * beginning of the pipe is no longer buffered. 305 1.1 cjs */ 306 1.3 christos int 307 1.1 cjs ch_beg_seek() 308 1.1 cjs { 309 1.3 christos struct buf *bp, *firstbp; 310 1.1 cjs 311 1.1 cjs /* 312 1.1 cjs * Try a plain ch_seek first. 313 1.1 cjs */ 314 1.1 cjs if (ch_seek((off_t)0) == 0) 315 1.1 cjs return(0); 316 1.1 cjs 317 1.1 cjs /* 318 1.1 cjs * Can't get to position 0. 319 1.1 cjs * Look thru the buffers for the one closest to position 0. 320 1.1 cjs */ 321 1.1 cjs firstbp = bp = buf_head; 322 1.1 cjs if (bp == END_OF_CHAIN) 323 1.1 cjs return(1); 324 1.1 cjs while ((bp = bp->next) != END_OF_CHAIN) 325 1.1 cjs if (bp->block < firstbp->block) 326 1.1 cjs firstbp = bp; 327 1.1 cjs ch_block = firstbp->block; 328 1.1 cjs ch_offset = 0; 329 1.1 cjs return(0); 330 1.1 cjs } 331 1.1 cjs 332 1.1 cjs /* 333 1.1 cjs * Return the length of the file, if known. 334 1.1 cjs */ 335 1.1 cjs off_t 336 1.1 cjs ch_length() 337 1.1 cjs { 338 1.1 cjs if (ispipe) 339 1.1 cjs return(ch_fsize); 340 1.1 cjs return((off_t)(lseek(file, (off_t)0, L_XTND))); 341 1.1 cjs } 342 1.1 cjs 343 1.1 cjs /* 344 1.1 cjs * Return the current position in the file. 345 1.1 cjs */ 346 1.1 cjs off_t 347 1.1 cjs ch_tell() 348 1.1 cjs { 349 1.1 cjs return(ch_block * BUFSIZ + ch_offset); 350 1.1 cjs } 351 1.1 cjs 352 1.1 cjs /* 353 1.1 cjs * Get the current char and post-increment the read pointer. 354 1.1 cjs */ 355 1.3 christos int 356 1.1 cjs ch_forw_get() 357 1.1 cjs { 358 1.3 christos int c; 359 1.1 cjs 360 1.1 cjs c = ch_get(); 361 1.1 cjs if (c != EOI && ++ch_offset >= BUFSIZ) { 362 1.1 cjs ch_offset = 0; 363 1.1 cjs ++ch_block; 364 1.1 cjs } 365 1.1 cjs return(c); 366 1.1 cjs } 367 1.1 cjs 368 1.1 cjs /* 369 1.1 cjs * Pre-decrement the read pointer and get the new current char. 370 1.1 cjs */ 371 1.3 christos int 372 1.1 cjs ch_back_get() 373 1.1 cjs { 374 1.1 cjs if (--ch_offset < 0) { 375 1.1 cjs if (ch_block <= 0 || (ispipe && !buffered(ch_block-1))) { 376 1.1 cjs ch_offset = 0; 377 1.1 cjs return(EOI); 378 1.1 cjs } 379 1.1 cjs ch_offset = BUFSIZ - 1; 380 1.1 cjs ch_block--; 381 1.1 cjs } 382 1.1 cjs return(ch_get()); 383 1.1 cjs } 384 1.1 cjs 385 1.1 cjs /* 386 1.1 cjs * Allocate buffers. 387 1.1 cjs * Caller wants us to have a total of at least want_nbufs buffers. 388 1.1 cjs * keep==1 means keep the data in the current buffers; 389 1.1 cjs * otherwise discard the old data. 390 1.1 cjs */ 391 1.3 christos void 392 1.1 cjs ch_init(want_nbufs, keep) 393 1.1 cjs int want_nbufs; 394 1.1 cjs int keep; 395 1.1 cjs { 396 1.3 christos struct buf *bp; 397 1.1 cjs char message[80]; 398 1.1 cjs 399 1.1 cjs cbufs = nbufs; 400 1.1 cjs if (nbufs < want_nbufs && ch_addbuf(want_nbufs - nbufs)) { 401 1.1 cjs /* 402 1.1 cjs * Cannot allocate enough buffers. 403 1.1 cjs * If we don't have ANY, then quit. 404 1.1 cjs * Otherwise, just report the error and return. 405 1.1 cjs */ 406 1.4 itojun (void)snprintf(message, sizeof(message), 407 1.4 itojun "cannot allocate %d buffers", want_nbufs - nbufs); 408 1.1 cjs error(message); 409 1.1 cjs if (nbufs == 0) 410 1.1 cjs quit(); 411 1.1 cjs return; 412 1.1 cjs } 413 1.1 cjs 414 1.1 cjs if (keep) 415 1.1 cjs return; 416 1.1 cjs 417 1.1 cjs /* 418 1.1 cjs * We don't want to keep the old data, 419 1.1 cjs * so initialize all the buffers now. 420 1.1 cjs */ 421 1.1 cjs for (bp = buf_head; bp != END_OF_CHAIN; bp = bp->next) 422 1.1 cjs bp->block = (long)(-1); 423 1.1 cjs last_piped_pos = (off_t)0; 424 1.1 cjs ch_fsize = NULL_POSITION; 425 1.1 cjs (void)ch_seek((off_t)0); 426 1.1 cjs } 427 1.1 cjs 428 1.1 cjs /* 429 1.1 cjs * Allocate some new buffers. 430 1.1 cjs * The buffers are added to the tail of the buffer chain. 431 1.1 cjs */ 432 1.3 christos int 433 1.1 cjs ch_addbuf(nnew) 434 1.1 cjs int nnew; 435 1.1 cjs { 436 1.3 christos struct buf *bp; 437 1.3 christos struct buf *newbufs; 438 1.1 cjs 439 1.1 cjs /* 440 1.1 cjs * We don't have enough buffers. 441 1.1 cjs * Allocate some new ones. 442 1.1 cjs */ 443 1.1 cjs newbufs = (struct buf *)calloc((u_int)nnew, sizeof(struct buf)); 444 1.1 cjs if (newbufs == NULL) 445 1.1 cjs return(1); 446 1.1 cjs 447 1.1 cjs /* 448 1.1 cjs * Initialize the new buffers and link them together. 449 1.1 cjs * Link them all onto the tail of the buffer list. 450 1.1 cjs */ 451 1.1 cjs nbufs += nnew; 452 1.1 cjs cbufs = nbufs; 453 1.1 cjs for (bp = &newbufs[0]; bp < &newbufs[nnew]; bp++) { 454 1.1 cjs bp->next = bp + 1; 455 1.1 cjs bp->prev = bp - 1; 456 1.1 cjs bp->block = (long)(-1); 457 1.1 cjs } 458 1.1 cjs newbufs[nnew-1].next = END_OF_CHAIN; 459 1.1 cjs newbufs[0].prev = buf_tail; 460 1.1 cjs buf_tail->next = &newbufs[0]; 461 1.1 cjs buf_tail = &newbufs[nnew-1]; 462 1.1 cjs return(0); 463 1.1 cjs } 464