arithmetic.c revision 1.6 1 1.6 jtc /* $NetBSD: arithmetic.c,v 1.6 1996/03/21 18:30:19 jtc Exp $ */
2 1.5 cgd
3 1.1 cgd /*
4 1.5 cgd * Copyright (c) 1989, 1993
5 1.5 cgd * The Regents of the University of California. All rights reserved.
6 1.1 cgd *
7 1.1 cgd * This code is derived from software contributed to Berkeley by
8 1.1 cgd * Eamonn McManus of Trinity College Dublin.
9 1.1 cgd *
10 1.1 cgd * Redistribution and use in source and binary forms, with or without
11 1.1 cgd * modification, are permitted provided that the following conditions
12 1.1 cgd * are met:
13 1.1 cgd * 1. Redistributions of source code must retain the above copyright
14 1.1 cgd * notice, this list of conditions and the following disclaimer.
15 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 cgd * notice, this list of conditions and the following disclaimer in the
17 1.1 cgd * documentation and/or other materials provided with the distribution.
18 1.1 cgd * 3. All advertising materials mentioning features or use of this software
19 1.1 cgd * must display the following acknowledgement:
20 1.1 cgd * This product includes software developed by the University of
21 1.1 cgd * California, Berkeley and its contributors.
22 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
23 1.1 cgd * may be used to endorse or promote products derived from this software
24 1.1 cgd * without specific prior written permission.
25 1.1 cgd *
26 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 1.1 cgd * SUCH DAMAGE.
37 1.1 cgd */
38 1.1 cgd
39 1.1 cgd #ifndef lint
40 1.5 cgd static char copyright[] =
41 1.5 cgd "@(#) Copyright (c) 1989, 1993\n\
42 1.5 cgd The Regents of the University of California. All rights reserved.\n";
43 1.1 cgd #endif /* not lint */
44 1.1 cgd
45 1.1 cgd #ifndef lint
46 1.5 cgd #if 0
47 1.5 cgd static char sccsid[] = "@(#)arithmetic.c 8.1 (Berkeley) 5/31/93";
48 1.5 cgd #else
49 1.6 jtc static char rcsid[] = "$NetBSD: arithmetic.c,v 1.6 1996/03/21 18:30:19 jtc Exp $";
50 1.5 cgd #endif
51 1.1 cgd #endif /* not lint */
52 1.1 cgd
53 1.1 cgd /*
54 1.1 cgd * By Eamonn McManus, Trinity College Dublin <emcmanus (at) cs.tcd.ie>.
55 1.1 cgd *
56 1.1 cgd * The operation of this program mimics that of the standard Unix game
57 1.1 cgd * `arithmetic'. I've made it as close as I could manage without examining
58 1.1 cgd * the source code. The principal differences are:
59 1.1 cgd *
60 1.1 cgd * The method of biasing towards numbers that had wrong answers in the past
61 1.1 cgd * is different; original `arithmetic' seems to retain the bias forever,
62 1.1 cgd * whereas this program lets the bias gradually decay as it is used.
63 1.1 cgd *
64 1.1 cgd * Original `arithmetic' delays for some period (3 seconds?) after printing
65 1.1 cgd * the score. I saw no reason for this delay, so I scrapped it.
66 1.1 cgd *
67 1.1 cgd * There is no longer a limitation on the maximum range that can be supplied
68 1.1 cgd * to the program. The original program required it to be less than 100.
69 1.1 cgd * Anomalous results may occur with this program if ranges big enough to
70 1.1 cgd * allow overflow are given.
71 1.1 cgd *
72 1.1 cgd * I have obviously not attempted to duplicate bugs in the original. It
73 1.1 cgd * would go into an infinite loop if invoked as `arithmetic / 0'. It also
74 1.1 cgd * did not recognise an EOF in its input, and would continue trying to read
75 1.1 cgd * after it. It did not check that the input was a valid number, treating any
76 1.1 cgd * garbage as 0. Finally, it did not flush stdout after printing its prompt,
77 1.1 cgd * so in the unlikely event that stdout was not a terminal, it would not work
78 1.1 cgd * properly.
79 1.1 cgd */
80 1.1 cgd
81 1.1 cgd #include <sys/types.h>
82 1.4 jtc #include <signal.h>
83 1.1 cgd #include <ctype.h>
84 1.1 cgd #include <stdio.h>
85 1.1 cgd #include <string.h>
86 1.2 mycroft #include <time.h>
87 1.1 cgd
88 1.1 cgd char keylist[] = "+-x/";
89 1.1 cgd char defaultkeys[] = "+-";
90 1.1 cgd char *keys = defaultkeys;
91 1.1 cgd int nkeys = sizeof(defaultkeys) - 1;
92 1.1 cgd int rangemax = 10;
93 1.1 cgd int nright, nwrong;
94 1.1 cgd time_t qtime;
95 1.1 cgd #define NQUESTS 20
96 1.1 cgd
97 1.1 cgd /*
98 1.1 cgd * Select keys from +-x/ to be asked addition, subtraction, multiplication,
99 1.1 cgd * and division problems. More than one key may be given. The default is
100 1.1 cgd * +-. Specify a range to confine the operands to 0 - range. Default upper
101 1.1 cgd * bound is 10. After every NQUESTS questions, statistics on the performance
102 1.1 cgd * so far are printed.
103 1.1 cgd */
104 1.6 jtc int
105 1.1 cgd main(argc, argv)
106 1.1 cgd int argc;
107 1.1 cgd char **argv;
108 1.1 cgd {
109 1.1 cgd extern char *optarg;
110 1.1 cgd extern int optind;
111 1.1 cgd int ch, cnt;
112 1.1 cgd void intr();
113 1.1 cgd
114 1.1 cgd while ((ch = getopt(argc, argv, "r:o:")) != EOF)
115 1.1 cgd switch(ch) {
116 1.1 cgd case 'o': {
117 1.1 cgd register char *p;
118 1.1 cgd
119 1.1 cgd for (p = keys = optarg; *p; ++p)
120 1.1 cgd if (!index(keylist, *p)) {
121 1.1 cgd (void)fprintf(stderr,
122 1.1 cgd "arithmetic: unknown key.\n");
123 1.1 cgd exit(1);
124 1.1 cgd }
125 1.1 cgd nkeys = p - optarg;
126 1.1 cgd break;
127 1.1 cgd }
128 1.1 cgd case 'r':
129 1.1 cgd if ((rangemax = atoi(optarg)) <= 0) {
130 1.1 cgd (void)fprintf(stderr,
131 1.1 cgd "arithmetic: invalid range.\n");
132 1.1 cgd exit(1);
133 1.1 cgd }
134 1.1 cgd break;
135 1.1 cgd case '?':
136 1.1 cgd default:
137 1.1 cgd usage();
138 1.1 cgd }
139 1.1 cgd if (argc -= optind)
140 1.1 cgd usage();
141 1.1 cgd
142 1.1 cgd /* Seed the random-number generator. */
143 1.1 cgd srandom((int)time((time_t *)NULL));
144 1.1 cgd
145 1.1 cgd (void)signal(SIGINT, intr);
146 1.1 cgd
147 1.1 cgd /* Now ask the questions. */
148 1.1 cgd for (;;) {
149 1.1 cgd for (cnt = NQUESTS; cnt--;)
150 1.1 cgd if (problem() == EOF)
151 1.1 cgd exit(0);
152 1.1 cgd showstats();
153 1.1 cgd }
154 1.1 cgd /* NOTREACHED */
155 1.1 cgd }
156 1.1 cgd
157 1.1 cgd /* Handle interrupt character. Print score and exit. */
158 1.1 cgd void
159 1.1 cgd intr()
160 1.1 cgd {
161 1.1 cgd showstats();
162 1.1 cgd exit(0);
163 1.1 cgd }
164 1.1 cgd
165 1.1 cgd /* Print score. Original `arithmetic' had a delay after printing it. */
166 1.1 cgd showstats()
167 1.1 cgd {
168 1.1 cgd if (nright + nwrong > 0) {
169 1.1 cgd (void)printf("\n\nRights %d; Wrongs %d; Score %d%%",
170 1.1 cgd nright, nwrong, (int)(100L * nright / (nright + nwrong)));
171 1.1 cgd if (nright > 0)
172 1.1 cgd (void)printf("\nTotal time %ld seconds; %.1f seconds per problem\n\n",
173 1.1 cgd (long)qtime, (float)qtime / nright);
174 1.1 cgd }
175 1.1 cgd (void)printf("\n");
176 1.1 cgd }
177 1.1 cgd
178 1.1 cgd /*
179 1.1 cgd * Pick a problem and ask it. Keeps asking the same problem until supplied
180 1.1 cgd * with the correct answer, or until EOF or interrupt is typed. Problems are
181 1.1 cgd * selected such that the right operand and either the left operand (for +, x)
182 1.1 cgd * or the correct result (for -, /) are in the range 0 to rangemax. Each wrong
183 1.1 cgd * answer causes the numbers in the problem to be penalised, so that they are
184 1.1 cgd * more likely to appear in subsequent problems.
185 1.1 cgd */
186 1.1 cgd problem()
187 1.1 cgd {
188 1.1 cgd register char *p;
189 1.1 cgd time_t start, finish;
190 1.1 cgd int left, op, right, result;
191 1.1 cgd char line[80];
192 1.1 cgd
193 1.1 cgd op = keys[random() % nkeys];
194 1.1 cgd if (op != '/')
195 1.1 cgd right = getrandom(rangemax + 1, op, 1);
196 1.1 cgd retry:
197 1.1 cgd /* Get the operands. */
198 1.1 cgd switch (op) {
199 1.1 cgd case '+':
200 1.1 cgd left = getrandom(rangemax + 1, op, 0);
201 1.1 cgd result = left + right;
202 1.1 cgd break;
203 1.1 cgd case '-':
204 1.1 cgd result = getrandom(rangemax + 1, op, 0);
205 1.1 cgd left = right + result;
206 1.1 cgd break;
207 1.1 cgd case 'x':
208 1.1 cgd left = getrandom(rangemax + 1, op, 0);
209 1.1 cgd result = left * right;
210 1.1 cgd break;
211 1.1 cgd case '/':
212 1.1 cgd right = getrandom(rangemax, op, 1) + 1;
213 1.1 cgd result = getrandom(rangemax + 1, op, 0);
214 1.1 cgd left = right * result + random() % right;
215 1.1 cgd break;
216 1.1 cgd }
217 1.1 cgd
218 1.1 cgd /*
219 1.1 cgd * A very big maxrange could cause negative values to pop
220 1.1 cgd * up, owing to overflow.
221 1.1 cgd */
222 1.1 cgd if (result < 0 || left < 0)
223 1.1 cgd goto retry;
224 1.1 cgd
225 1.1 cgd (void)printf("%d %c %d = ", left, op, right);
226 1.1 cgd (void)fflush(stdout);
227 1.1 cgd (void)time(&start);
228 1.1 cgd
229 1.1 cgd /*
230 1.1 cgd * Keep looping until the correct answer is given, or until EOF or
231 1.1 cgd * interrupt is typed.
232 1.1 cgd */
233 1.1 cgd for (;;) {
234 1.1 cgd if (!fgets(line, sizeof(line), stdin)) {
235 1.1 cgd (void)printf("\n");
236 1.1 cgd return(EOF);
237 1.1 cgd }
238 1.1 cgd for (p = line; *p && isspace(*p); ++p);
239 1.1 cgd if (!isdigit(*p)) {
240 1.1 cgd (void)printf("Please type a number.\n");
241 1.1 cgd continue;
242 1.1 cgd }
243 1.1 cgd if (atoi(p) == result) {
244 1.1 cgd (void)printf("Right!\n");
245 1.1 cgd ++nright;
246 1.1 cgd break;
247 1.1 cgd }
248 1.1 cgd /* Wrong answer; penalise and ask again. */
249 1.1 cgd (void)printf("What?\n");
250 1.1 cgd ++nwrong;
251 1.1 cgd penalise(right, op, 1);
252 1.1 cgd if (op == 'x' || op == '+')
253 1.1 cgd penalise(left, op, 0);
254 1.1 cgd else
255 1.1 cgd penalise(result, op, 0);
256 1.1 cgd }
257 1.1 cgd
258 1.1 cgd /*
259 1.1 cgd * Accumulate the time taken. Obviously rounding errors happen here;
260 1.1 cgd * however they should cancel out, because some of the time you are
261 1.1 cgd * charged for a partially elapsed second at the start, and some of
262 1.1 cgd * the time you are not charged for a partially elapsed second at the
263 1.1 cgd * end.
264 1.1 cgd */
265 1.1 cgd (void)time(&finish);
266 1.1 cgd qtime += finish - start;
267 1.1 cgd return(0);
268 1.1 cgd }
269 1.1 cgd
270 1.1 cgd /*
271 1.1 cgd * Here is the code for accumulating penalties against the numbers for which
272 1.1 cgd * a wrong answer was given. The right operand and either the left operand
273 1.1 cgd * (for +, x) or the result (for -, /) are stored in a list for the particular
274 1.1 cgd * operation, and each becomes more likely to appear again in that operation.
275 1.1 cgd * Initially, each number is charged a penalty of WRONGPENALTY, giving it that
276 1.1 cgd * many extra chances of appearing. Each time it is selected because of this,
277 1.1 cgd * its penalty is decreased by one; it is removed when it reaches 0.
278 1.1 cgd *
279 1.1 cgd * The penalty[] array gives the sum of all penalties in the list for
280 1.1 cgd * each operation and each operand. The penlist[] array has the lists of
281 1.1 cgd * penalties themselves.
282 1.1 cgd */
283 1.1 cgd
284 1.1 cgd int penalty[sizeof(keylist) - 1][2];
285 1.1 cgd struct penalty {
286 1.1 cgd int value, penalty; /* Penalised value and its penalty. */
287 1.1 cgd struct penalty *next;
288 1.1 cgd } *penlist[sizeof(keylist) - 1][2];
289 1.1 cgd
290 1.1 cgd #define WRONGPENALTY 5 /* Perhaps this should depend on maxrange. */
291 1.1 cgd
292 1.1 cgd /*
293 1.1 cgd * Add a penalty for the number `value' to the list for operation `op',
294 1.1 cgd * operand number `operand' (0 or 1). If we run out of memory, we just
295 1.1 cgd * forget about the penalty (how likely is this, anyway?).
296 1.1 cgd */
297 1.1 cgd penalise(value, op, operand)
298 1.1 cgd int value, op, operand;
299 1.1 cgd {
300 1.1 cgd struct penalty *p;
301 1.1 cgd char *malloc();
302 1.1 cgd
303 1.1 cgd op = opnum(op);
304 1.1 cgd if ((p = (struct penalty *)malloc((u_int)sizeof(*p))) == NULL)
305 1.1 cgd return;
306 1.1 cgd p->next = penlist[op][operand];
307 1.1 cgd penlist[op][operand] = p;
308 1.1 cgd penalty[op][operand] += p->penalty = WRONGPENALTY;
309 1.1 cgd p->value = value;
310 1.1 cgd }
311 1.1 cgd
312 1.1 cgd /*
313 1.1 cgd * Select a random value from 0 to maxval - 1 for operand `operand' (0 or 1)
314 1.1 cgd * of operation `op'. The random number we generate is either used directly
315 1.1 cgd * as a value, or represents a position in the penalty list. If the latter,
316 1.1 cgd * we find the corresponding value and return that, decreasing its penalty.
317 1.1 cgd */
318 1.1 cgd getrandom(maxval, op, operand)
319 1.1 cgd int maxval, op, operand;
320 1.1 cgd {
321 1.1 cgd int value;
322 1.1 cgd register struct penalty **pp, *p;
323 1.1 cgd
324 1.1 cgd op = opnum(op);
325 1.1 cgd value = random() % (maxval + penalty[op][operand]);
326 1.1 cgd
327 1.1 cgd /*
328 1.1 cgd * 0 to maxval - 1 is a number to be used directly; bigger values
329 1.1 cgd * are positions to be located in the penalty list.
330 1.1 cgd */
331 1.1 cgd if (value < maxval)
332 1.1 cgd return(value);
333 1.1 cgd value -= maxval;
334 1.1 cgd
335 1.1 cgd /*
336 1.1 cgd * Find the penalty at position `value'; decrement its penalty and
337 1.1 cgd * delete it if it reaches 0; return the corresponding value.
338 1.1 cgd */
339 1.1 cgd for (pp = &penlist[op][operand]; (p = *pp) != NULL; pp = &p->next) {
340 1.1 cgd if (p->penalty > value) {
341 1.1 cgd value = p->value;
342 1.1 cgd penalty[op][operand]--;
343 1.1 cgd if (--(p->penalty) <= 0) {
344 1.1 cgd p = p->next;
345 1.1 cgd (void)free((char *)*pp);
346 1.1 cgd *pp = p;
347 1.1 cgd }
348 1.1 cgd return(value);
349 1.1 cgd }
350 1.1 cgd value -= p->penalty;
351 1.1 cgd }
352 1.1 cgd /*
353 1.1 cgd * We can only get here if the value from the penalty[] array doesn't
354 1.1 cgd * correspond to the actual sum of penalties in the list. Provide an
355 1.1 cgd * obscure message.
356 1.1 cgd */
357 1.1 cgd (void)fprintf(stderr, "arithmetic: bug: inconsistent penalties\n");
358 1.1 cgd exit(1);
359 1.1 cgd /* NOTREACHED */
360 1.1 cgd }
361 1.1 cgd
362 1.1 cgd /* Return an index for the character op, which is one of [+-x/]. */
363 1.1 cgd opnum(op)
364 1.1 cgd int op;
365 1.1 cgd {
366 1.1 cgd char *p;
367 1.1 cgd
368 1.1 cgd if (op == 0 || (p = index(keylist, op)) == NULL) {
369 1.1 cgd (void)fprintf(stderr,
370 1.1 cgd "arithmetic: bug: op %c not in keylist %s\n", op, keylist);
371 1.1 cgd exit(1);
372 1.1 cgd }
373 1.1 cgd return(p - keylist);
374 1.1 cgd }
375 1.1 cgd
376 1.1 cgd /* Print usage message and quit. */
377 1.1 cgd usage()
378 1.1 cgd {
379 1.1 cgd (void)fprintf(stderr, "usage: arithmetic [-o +-x/] [-r range]\n");
380 1.1 cgd exit(1);
381 1.1 cgd }
382