Home | History | Annotate | Line # | Download | only in cribbage
      1  1.14  dholland /*	$NetBSD: support.c,v 1.14 2009/08/12 05:48:04 dholland Exp $	*/
      2   1.3       cgd 
      3   1.3       cgd /*-
      4   1.3       cgd  * Copyright (c) 1980, 1993
      5   1.3       cgd  *	The Regents of the University of California.  All rights reserved.
      6   1.1       cgd  *
      7   1.1       cgd  * Redistribution and use in source and binary forms, with or without
      8   1.1       cgd  * modification, are permitted provided that the following conditions
      9   1.1       cgd  * are met:
     10   1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     11   1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     12   1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     14   1.1       cgd  *    documentation and/or other materials provided with the distribution.
     15   1.7       agc  * 3. Neither the name of the University nor the names of its contributors
     16   1.1       cgd  *    may be used to endorse or promote products derived from this software
     17   1.1       cgd  *    without specific prior written permission.
     18   1.1       cgd  *
     19   1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20   1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21   1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22   1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23   1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24   1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25   1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26   1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27   1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28   1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29   1.1       cgd  * SUCH DAMAGE.
     30   1.1       cgd  */
     31   1.1       cgd 
     32   1.4     lukem #include <sys/cdefs.h>
     33   1.1       cgd #ifndef lint
     34   1.3       cgd #if 0
     35   1.3       cgd static char sccsid[] = "@(#)support.c	8.1 (Berkeley) 5/31/93";
     36   1.3       cgd #else
     37  1.14  dholland __RCSID("$NetBSD: support.c,v 1.14 2009/08/12 05:48:04 dholland Exp $");
     38   1.3       cgd #endif
     39   1.1       cgd #endif /* not lint */
     40   1.1       cgd 
     41   1.3       cgd #include <curses.h>
     42  1.11        he #include <stdlib.h>
     43   1.3       cgd #include <string.h>
     44   1.1       cgd 
     45   1.3       cgd #include "deck.h"
     46   1.3       cgd #include "cribbage.h"
     47   1.3       cgd #include "cribcur.h"
     48   1.1       cgd 
     49   1.3       cgd #define	NTV	10		/* number scores to test */
     50   1.1       cgd 
     51   1.1       cgd /* score to test reachability of, and order to test them in */
     52  1.14  dholland static const int tv[NTV] = {8, 7, 9, 6, 11, 12, 13, 14, 10, 5};
     53  1.14  dholland 
     54  1.14  dholland static int anysumto(const CARD[], int, int, int);
     55  1.14  dholland static void prpeg(int, int, BOOLEAN);
     56  1.14  dholland static int numofval(const CARD[], int, int);
     57   1.1       cgd 
     58   1.1       cgd /*
     59   1.1       cgd  * computer chooses what to play in pegging...
     60   1.1       cgd  * only called if no playable card will score points
     61   1.1       cgd  */
     62   1.3       cgd int
     63   1.8       jmc cchose(const CARD h[], int n, int s)
     64   1.1       cgd {
     65   1.4     lukem 	int i, j, l;
     66   1.1       cgd 
     67   1.3       cgd 	if (n <= 1)
     68   1.3       cgd 		return (0);
     69   1.3       cgd 	if (s < 4) {		/* try for good value */
     70   1.3       cgd 		if ((j = anysumto(h, n, s, 4)) >= 0)
     71   1.3       cgd 			return (j);
     72   1.3       cgd 		if ((j = anysumto(h, n, s, 3)) >= 0 && s == 0)
     73   1.3       cgd 			return (j);
     74   1.3       cgd 	}
     75   1.3       cgd 	if (s > 0 && s < 20) {
     76   1.3       cgd 				/* try for retaliation to 31 */
     77   1.3       cgd 		for (i = 1; i <= 10; i++) {
     78   1.3       cgd 			if ((j = anysumto(h, n, s, 21 - i)) >= 0) {
     79   1.3       cgd 				if ((l = numofval(h, n, i)) > 0) {
     80   1.3       cgd 					if (l > 1 || VAL(h[j].rank) != i)
     81   1.3       cgd 						return (j);
     82   1.3       cgd 				}
     83   1.3       cgd 			}
     84   1.1       cgd 		}
     85   1.1       cgd 	}
     86   1.3       cgd 	if (s < 15) {
     87   1.3       cgd 				/* for retaliation after 15 */
     88   1.3       cgd 		for (i = 0; i < NTV; i++) {
     89   1.3       cgd 			if ((j = anysumto(h, n, s, tv[i])) >= 0) {
     90   1.3       cgd 				if ((l = numofval(h, n, 15 - tv[i])) > 0) {
     91   1.3       cgd 					if (l > 1 ||
     92   1.3       cgd 					    VAL(h[j].rank) != 15 - tv[i])
     93   1.3       cgd 						return (j);
     94   1.3       cgd 				}
     95   1.3       cgd 			}
     96   1.1       cgd 		}
     97   1.1       cgd 	}
     98   1.1       cgd 	j = -1;
     99   1.3       cgd 				/* remember: h is sorted */
    100   1.3       cgd 	for (i = n - 1; i >= 0; --i) {
    101   1.3       cgd 		l = s + VAL(h[i].rank);
    102   1.3       cgd 		if (l > 31)
    103   1.3       cgd 			continue;
    104   1.3       cgd 		if (l != 5 && l != 10 && l != 21) {
    105   1.3       cgd 			j = i;
    106   1.3       cgd 			break;
    107   1.3       cgd 		}
    108   1.3       cgd 	}
    109   1.3       cgd 	if (j >= 0)
    110   1.3       cgd 		return (j);
    111   1.3       cgd 	for (i = n - 1; i >= 0; --i) {
    112   1.3       cgd 		l = s + VAL(h[i].rank);
    113   1.3       cgd 		if (l > 31)
    114   1.3       cgd 			continue;
    115   1.3       cgd 		if (j < 0)
    116   1.3       cgd 			j = i;
    117   1.3       cgd 		if (l != 5 && l != 21) {
    118   1.3       cgd 			j = i;
    119   1.3       cgd 			break;
    120   1.3       cgd 		}
    121   1.1       cgd 	}
    122   1.9  christos 	if (j < 0) {
    123   1.9  christos 		printf("\ncchose: internal error %d %d\n", j, n);
    124   1.9  christos 		exit(93);
    125   1.9  christos 	}
    126   1.3       cgd 	return (j);
    127   1.1       cgd }
    128   1.1       cgd 
    129   1.1       cgd /*
    130   1.1       cgd  * plyrhand:
    131   1.1       cgd  *	Evaluate and score a player hand or crib
    132   1.1       cgd  */
    133   1.3       cgd int
    134   1.8       jmc plyrhand(const CARD hand[], const char *s)
    135   1.1       cgd {
    136   1.3       cgd 	static char prompt[BUFSIZ];
    137   1.4     lukem 	int i, j;
    138   1.4     lukem 	BOOLEAN win;
    139   1.3       cgd 
    140   1.3       cgd 	prhand(hand, CINHAND, Playwin, FALSE);
    141  1.13  dholland 	(void) snprintf(prompt, sizeof(prompt), "Your %s scores ", s);
    142   1.3       cgd 	i = scorehand(hand, turnover, CINHAND, strcmp(s, "crib") == 0, explain);
    143   1.3       cgd 	if ((j = number(0, 29, prompt)) == 19)
    144   1.3       cgd 		j = 0;
    145   1.3       cgd 	if (i != j) {
    146   1.3       cgd 		if (i < j) {
    147   1.3       cgd 			win = chkscr(&pscore, i);
    148   1.3       cgd 			msg("It's really only %d points; I get %d", i, 2);
    149   1.3       cgd 			if (!win)
    150   1.3       cgd 				win = chkscr(&cscore, 2);
    151   1.3       cgd 		} else {
    152   1.3       cgd 			win = chkscr(&pscore, j);
    153   1.3       cgd 			msg("You should have taken %d, not %d!", i, j);
    154   1.3       cgd 		}
    155   1.3       cgd 		if (explain)
    156   1.6   thorpej 			msg("Explanation: %s", explan);
    157   1.3       cgd 		do_wait();
    158   1.3       cgd 	} else
    159   1.3       cgd 		win = chkscr(&pscore, i);
    160   1.3       cgd 	return (win);
    161   1.1       cgd }
    162   1.1       cgd 
    163   1.1       cgd /*
    164   1.1       cgd  * comphand:
    165   1.1       cgd  *	Handle scoring and displaying the computers hand
    166   1.1       cgd  */
    167   1.3       cgd int
    168   1.8       jmc comphand(const CARD h[], const char *s)
    169   1.1       cgd {
    170   1.4     lukem 	int j;
    171   1.1       cgd 
    172   1.1       cgd 	j = scorehand(h, turnover, CINHAND, strcmp(s, "crib") == 0, FALSE);
    173   1.1       cgd 	prhand(h, CINHAND, Compwin, FALSE);
    174   1.1       cgd 	msg("My %s scores %d", s, (j == 0 ? 19 : j));
    175   1.3       cgd 	return (chkscr(&cscore, j));
    176   1.1       cgd }
    177   1.1       cgd 
    178   1.1       cgd /*
    179   1.1       cgd  * chkscr:
    180   1.1       cgd  *	Add inc to scr and test for > glimit, printing on the scoring
    181   1.1       cgd  *	board while we're at it.
    182   1.1       cgd  */
    183   1.3       cgd int Lastscore[2] = {-1, -1};
    184   1.1       cgd 
    185   1.3       cgd int
    186   1.8       jmc chkscr(int *scr, int inc)
    187   1.1       cgd {
    188   1.3       cgd 	BOOLEAN myturn;
    189   1.1       cgd 
    190   1.1       cgd 	myturn = (scr == &cscore);
    191   1.1       cgd 	if (inc != 0) {
    192   1.4     lukem 		prpeg(Lastscore[(int)myturn], '.', myturn);
    193   1.4     lukem 		Lastscore[(int)myturn] = *scr;
    194   1.1       cgd 		*scr += inc;
    195   1.1       cgd 		prpeg(*scr, PEG, myturn);
    196   1.1       cgd 		refresh();
    197   1.1       cgd 	}
    198   1.1       cgd 	return (*scr >= glimit);
    199   1.1       cgd }
    200   1.1       cgd 
    201   1.1       cgd /*
    202   1.1       cgd  * prpeg:
    203   1.1       cgd  *	Put out the peg character on the score board and put the
    204   1.1       cgd  *	score up on the board.
    205   1.1       cgd  */
    206  1.14  dholland static void
    207   1.8       jmc prpeg(int curscore, int pegc, BOOLEAN myturn)
    208   1.1       cgd {
    209   1.4     lukem 	int y, x;
    210   1.1       cgd 
    211   1.1       cgd 	if (!myturn)
    212   1.1       cgd 		y = SCORE_Y + 2;
    213   1.1       cgd 	else
    214   1.1       cgd 		y = SCORE_Y + 5;
    215   1.1       cgd 
    216   1.8       jmc 	if (curscore <= 0 || curscore >= glimit) {
    217   1.8       jmc 		if (pegc == '.')
    218   1.8       jmc 			pegc = ' ';
    219   1.8       jmc 		if (curscore == 0)
    220   1.1       cgd 			x = SCORE_X + 2;
    221   1.1       cgd 		else {
    222   1.1       cgd 			x = SCORE_X + 2;
    223   1.1       cgd 			y++;
    224   1.1       cgd 		}
    225   1.3       cgd 	} else {
    226   1.8       jmc 		x = (curscore - 1) % 30;
    227   1.8       jmc 		if (curscore > 90 || (curscore > 30 && curscore <= 60)) {
    228   1.1       cgd 			y++;
    229   1.1       cgd 			x = 29 - x;
    230   1.1       cgd 		}
    231   1.1       cgd 		x += x / 5;
    232   1.1       cgd 		x += SCORE_X + 3;
    233   1.1       cgd 	}
    234   1.8       jmc 	mvaddch(y, x, pegc);
    235   1.8       jmc 	mvprintw(SCORE_Y + (myturn ? 7 : 1), SCORE_X + 10, "%3d", curscore);
    236   1.1       cgd }
    237   1.1       cgd 
    238   1.1       cgd /*
    239   1.1       cgd  * cdiscard -- the computer figures out what is the best discard for
    240   1.1       cgd  * the crib and puts the best two cards at the end
    241   1.1       cgd  */
    242   1.3       cgd void
    243   1.8       jmc cdiscard(BOOLEAN mycrib)
    244   1.1       cgd {
    245   1.3       cgd 	CARD    d[CARDS], h[FULLHAND], cb[2];
    246   1.4     lukem 	int i, j, k;
    247   1.3       cgd 	int     nc, ns;
    248   1.3       cgd 	long    sums[15];
    249   1.3       cgd 	static int undo1[15] = {0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4};
    250   1.3       cgd 	static int undo2[15] = {1, 2, 3, 4, 5, 2, 3, 4, 5, 3, 4, 5, 4, 5, 5};
    251   1.1       cgd 
    252   1.3       cgd 	makedeck(d);
    253   1.1       cgd 	nc = CARDS;
    254   1.3       cgd 	for (i = 0; i < knownum; i++) {	/* get all other cards */
    255   1.3       cgd 		cremove(known[i], d, nc--);
    256   1.1       cgd 	}
    257   1.3       cgd 	for (i = 0; i < 15; i++)
    258   1.3       cgd 		sums[i] = 0L;
    259   1.1       cgd 	ns = 0;
    260   1.3       cgd 	for (i = 0; i < (FULLHAND - 1); i++) {
    261   1.3       cgd 		cb[0] = chand[i];
    262   1.3       cgd 		for (j = i + 1; j < FULLHAND; j++) {
    263   1.3       cgd 			cb[1] = chand[j];
    264   1.3       cgd 			for (k = 0; k < FULLHAND; k++)
    265   1.3       cgd 				h[k] = chand[k];
    266   1.3       cgd 			cremove(chand[i], h, FULLHAND);
    267   1.3       cgd 			cremove(chand[j], h, FULLHAND - 1);
    268   1.3       cgd 			for (k = 0; k < nc; k++) {
    269   1.3       cgd 				sums[ns] +=
    270   1.3       cgd 				    scorehand(h, d[k], CINHAND, TRUE, FALSE);
    271   1.3       cgd 				if (mycrib)
    272   1.3       cgd 					sums[ns] += adjust(cb, d[k]);
    273   1.3       cgd 				else
    274   1.3       cgd 					sums[ns] -= adjust(cb, d[k]);
    275   1.3       cgd 			}
    276   1.3       cgd 			++ns;
    277   1.1       cgd 		}
    278   1.1       cgd 	}
    279   1.1       cgd 	j = 0;
    280   1.3       cgd 	for (i = 1; i < 15; i++)
    281   1.3       cgd 		if (sums[i] > sums[j])
    282   1.3       cgd 			j = i;
    283   1.3       cgd 	for (k = 0; k < FULLHAND; k++)
    284   1.3       cgd 		h[k] = chand[k];
    285   1.3       cgd 	cremove(h[undo1[j]], chand, FULLHAND);
    286   1.3       cgd 	cremove(h[undo2[j]], chand, FULLHAND - 1);
    287   1.3       cgd 	chand[4] = h[undo1[j]];
    288   1.3       cgd 	chand[5] = h[undo2[j]];
    289   1.1       cgd }
    290   1.1       cgd 
    291   1.1       cgd /*
    292   1.1       cgd  * returns true if some card in hand can be played without exceeding 31
    293   1.1       cgd  */
    294   1.3       cgd int
    295   1.8       jmc anymove(const CARD hand[], int n, int sum)
    296   1.1       cgd {
    297   1.4     lukem 	int i, j;
    298   1.1       cgd 
    299   1.3       cgd 	if (n < 1)
    300   1.3       cgd 		return (FALSE);
    301   1.1       cgd 	j = hand[0].rank;
    302   1.3       cgd 	for (i = 1; i < n; i++) {
    303   1.3       cgd 		if (hand[i].rank < j)
    304   1.3       cgd 			j = hand[i].rank;
    305   1.1       cgd 	}
    306   1.3       cgd 	return (sum + VAL(j) <= 31);
    307   1.1       cgd }
    308   1.1       cgd 
    309   1.1       cgd /*
    310   1.1       cgd  * anysumto returns the index (0 <= i < n) of the card in hand that brings
    311   1.1       cgd  * the s up to t, or -1 if there is none
    312   1.1       cgd  */
    313  1.14  dholland static int
    314   1.8       jmc anysumto(const CARD hand[], int n, int s, int t)
    315   1.1       cgd {
    316   1.4     lukem 	int i;
    317   1.1       cgd 
    318   1.3       cgd 	for (i = 0; i < n; i++) {
    319   1.3       cgd 		if (s + VAL(hand[i].rank) == t)
    320   1.3       cgd 			return (i);
    321   1.1       cgd 	}
    322   1.3       cgd 	return (-1);
    323   1.1       cgd }
    324   1.1       cgd 
    325   1.1       cgd /*
    326   1.1       cgd  * return the number of cards in h having the given rank value
    327   1.1       cgd  */
    328  1.14  dholland static int
    329   1.8       jmc numofval(const CARD h[], int n, int v)
    330   1.1       cgd {
    331   1.4     lukem 	int i, j;
    332   1.1       cgd 
    333   1.1       cgd 	j = 0;
    334   1.3       cgd 	for (i = 0; i < n; i++) {
    335   1.3       cgd 		if (VAL(h[i].rank) == v)
    336   1.3       cgd 			++j;
    337   1.1       cgd 	}
    338   1.3       cgd 	return (j);
    339   1.1       cgd }
    340   1.1       cgd 
    341   1.1       cgd /*
    342   1.1       cgd  * makeknown remembers all n cards in h for future recall
    343   1.1       cgd  */
    344   1.3       cgd void
    345   1.8       jmc makeknown(const CARD h[], int n)
    346   1.1       cgd {
    347   1.4     lukem 	int i;
    348   1.1       cgd 
    349   1.3       cgd 	for (i = 0; i < n; i++)
    350   1.3       cgd 		known[knownum++] = h[i];
    351   1.1       cgd }
    352