Home | History | Annotate | Line # | Download | only in gomoku
gomoku.h revision 1.13
      1  1.13  dholland /*	$NetBSD: gomoku.h,v 1.13 2009/06/04 06:27:47 dholland Exp $	*/
      2   1.3       cgd 
      3   1.1       tls /*
      4   1.1       tls  * Copyright (c) 1994
      5   1.1       tls  *	The Regents of the University of California.  All rights reserved.
      6   1.1       tls  *
      7   1.1       tls  * This code is derived from software contributed to Berkeley by
      8   1.1       tls  * Ralph Campbell.
      9   1.1       tls  *
     10   1.1       tls  * Redistribution and use in source and binary forms, with or without
     11   1.1       tls  * modification, are permitted provided that the following conditions
     12   1.1       tls  * are met:
     13   1.1       tls  * 1. Redistributions of source code must retain the above copyright
     14   1.1       tls  *    notice, this list of conditions and the following disclaimer.
     15   1.1       tls  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1       tls  *    notice, this list of conditions and the following disclaimer in the
     17   1.1       tls  *    documentation and/or other materials provided with the distribution.
     18   1.8       agc  * 3. Neither the name of the University nor the names of its contributors
     19   1.1       tls  *    may be used to endorse or promote products derived from this software
     20   1.1       tls  *    without specific prior written permission.
     21   1.1       tls  *
     22   1.1       tls  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23   1.1       tls  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24   1.1       tls  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25   1.1       tls  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26   1.1       tls  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27   1.1       tls  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28   1.1       tls  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29   1.1       tls  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30   1.1       tls  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31   1.1       tls  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32   1.1       tls  * SUCH DAMAGE.
     33   1.1       tls  *
     34   1.1       tls  *	@(#)gomoku.h	8.2 (Berkeley) 5/3/95
     35   1.1       tls  */
     36   1.1       tls 
     37   1.1       tls #include <sys/types.h>
     38   1.9       jsm #include <sys/endian.h>
     39   1.4     lukem #include <stdio.h>
     40   1.1       tls 
     41   1.1       tls /* board dimensions */
     42   1.1       tls #define BSZ	19
     43   1.1       tls #define BSZ1	(BSZ+1)
     44   1.1       tls #define BSZ2	(BSZ+2)
     45   1.1       tls #define BAREA	(BSZ2*BSZ1+1)
     46   1.1       tls 
     47   1.1       tls /* frame dimentions (based on 5 in a row) */
     48   1.1       tls #define FSZ1	BSZ
     49   1.1       tls #define FSZ2	(BSZ-4)
     50   1.1       tls #define FAREA	(FSZ1*FSZ2 + FSZ2*FSZ2 + FSZ1*FSZ2 + FSZ2*FSZ2)
     51   1.1       tls 
     52   1.1       tls #define MUP	(BSZ1)
     53   1.1       tls #define MDOWN	(-BSZ1)
     54   1.1       tls #define MLEFT	(-1)
     55   1.1       tls #define MRIGHT	(1)
     56   1.1       tls 
     57   1.1       tls /* values for s_occ */
     58   1.1       tls #define BLACK	0
     59   1.1       tls #define WHITE	1
     60   1.1       tls #define EMPTY	2
     61   1.1       tls #define BORDER	3
     62   1.1       tls 
     63   1.1       tls /* return values for makemove() */
     64   1.1       tls #define MOVEOK	0
     65   1.1       tls #define RESIGN	1
     66   1.1       tls #define ILLEGAL	2
     67   1.1       tls #define WIN	3
     68   1.1       tls #define TIE	4
     69   1.1       tls #define SAVE	5
     70   1.1       tls 
     71   1.1       tls #define A 1
     72   1.1       tls #define B 2
     73   1.1       tls #define C 3
     74   1.1       tls #define D 4
     75   1.1       tls #define E 5
     76   1.1       tls #define F 6
     77   1.1       tls #define G 7
     78   1.1       tls #define H 8
     79   1.1       tls #define J 9
     80   1.1       tls #define K 10
     81   1.1       tls #define L 11
     82   1.1       tls #define M 12
     83   1.1       tls #define N 13
     84   1.1       tls #define O 14
     85   1.1       tls #define P 15
     86   1.1       tls #define Q 16
     87   1.1       tls #define R 17
     88   1.1       tls #define S 18
     89   1.1       tls #define T 19
     90   1.1       tls 
     91   1.1       tls #define PT(x,y)		((x) + BSZ1 * (y))
     92   1.1       tls 
     93   1.1       tls /*
     94   1.1       tls  * A 'frame' is a group of five or six contiguous board locations.
     95   1.1       tls  * An open ended frame is one with spaces on both ends; otherwise, its closed.
     96   1.1       tls  * A 'combo' is a group of intersecting frames and consists of two numbers:
     97   1.1       tls  * 'A' is the number of moves to make the combo non-blockable.
     98   1.1       tls  * 'B' is the minimum number of moves needed to win once it can't be blocked.
     99   1.1       tls  * A 'force' is a combo that is one move away from being non-blockable
    100   1.1       tls  *
    101   1.1       tls  * Single frame combo values:
    102   1.1       tls  *     <A,B>	board values
    103   1.1       tls  *	5,0	. . . . . O
    104   1.1       tls  *	4,1	. . . . . .
    105   1.1       tls  *	4,0	. . . . X O
    106   1.1       tls  *	3,1	. . . . X .
    107   1.1       tls  *	3,0	. . . X X O
    108   1.1       tls  *	2,1	. . . X X .
    109   1.1       tls  *	2,0	. . X X X O
    110   1.1       tls  *	1,1	. . X X X .
    111   1.1       tls  *	1,0	. X X X X O
    112   1.1       tls  *	0,1	. X X X X .
    113   1.1       tls  *	0,0	X X X X X O
    114   1.1       tls  *
    115   1.1       tls  * The rule for combining two combos (<A1,B1> <A2,B2>)
    116   1.1       tls  * with V valid intersection points, is:
    117   1.1       tls  *	A' = A1 + A2 - 2 - V
    118   1.1       tls  *	B' = MIN(A1 + B1 - 1, A2 + B2 - 1)
    119   1.1       tls  * Each time a frame is added to the combo, the number of moves to complete
    120   1.1       tls  * the force is the number of moves needed to 'fill' the frame plus one at
    121   1.1       tls  * the intersection point. The number of moves to win is the number of moves
    122   1.1       tls  * to complete the best frame minus the last move to complete the force.
    123   1.1       tls  * Note that it doesn't make sense to combine a <1,x> with anything since
    124   1.1       tls  * it is already a force. Also, the frames have to be independent so a
    125   1.1       tls  * single move doesn't affect more than one frame making up the combo.
    126   1.1       tls  *
    127   1.1       tls  * Rules for comparing which of two combos (<A1,B1> <A2,B2>) is better:
    128   1.1       tls  * Both the same color:
    129   1.1       tls  *	<A',B'> = (A1 < A2 || A1 == A2 && B1 <= B2) ? <A1,B1> : <A2,B2>
    130   1.1       tls  *	We want to complete the force first, then the combo with the
    131   1.1       tls  *	fewest moves to win.
    132   1.1       tls  * Different colors, <A1,B1> is the combo for the player with the next move:
    133   1.1       tls  *	<A',B'> = A2 <= 1 && (A1 > 1 || A2 + B2 < A1 + B1) ? <A2,B2> : <A1,B1>
    134   1.1       tls  *	We want to block only if we have to (i.e., if they are one move away
    135   1.1       tls  *	from completing a force and we don't have a force that we can
    136   1.1       tls  *	complete which takes fewer or the same number of moves to win).
    137   1.1       tls  */
    138   1.1       tls 
    139   1.1       tls #define MAXA		6
    140   1.1       tls #define MAXB		2
    141   1.1       tls #define MAXCOMBO	0x600
    142   1.1       tls 
    143   1.1       tls union	comboval {
    144   1.1       tls 	struct {
    145   1.1       tls #if BYTE_ORDER == BIG_ENDIAN
    146   1.1       tls 		u_char	a;	/* # moves to complete force */
    147   1.1       tls 		u_char	b;	/* # moves to win */
    148   1.1       tls #endif
    149   1.1       tls #if BYTE_ORDER == LITTLE_ENDIAN
    150   1.1       tls 		u_char	b;	/* # moves to win */
    151   1.1       tls 		u_char	a;	/* # moves to complete force */
    152   1.1       tls #endif
    153   1.1       tls 	} c;
    154   1.1       tls 	u_short	s;
    155   1.1       tls };
    156   1.1       tls 
    157   1.1       tls /*
    158   1.1       tls  * This structure is used to record information about single frames (F) and
    159   1.1       tls  * combinations of two more frames (C).
    160   1.1       tls  * For combinations of two or more frames, there is an additional
    161   1.1       tls  * array of pointers to the frames of the combination which is sorted
    162   1.1       tls  * by the index into the frames[] array. This is used to prevent duplication
    163   1.1       tls  * since frame A combined with B is the same as B with A.
    164   1.1       tls  *	struct combostr *c_sort[size c_nframes];
    165   1.1       tls  * The leaves of the tree (frames) are numbered 0 (bottom, leftmost)
    166   1.1       tls  * to c_nframes - 1 (top, right). This is stored in c_frameindex and
    167   1.1       tls  * c_dir if C_LOOP is set.
    168   1.1       tls  */
    169   1.1       tls struct combostr {
    170   1.1       tls 	struct combostr	*c_next;	/* list of combos at the same level */
    171   1.1       tls 	struct combostr	*c_prev;	/* list of combos at the same level */
    172   1.1       tls 	struct combostr	*c_link[2];	/* C:previous level or F:NULL */
    173   1.1       tls 	union comboval	c_linkv[2];	/* C:combo value for link[0,1] */
    174   1.1       tls 	union comboval	c_combo;	/* C:combo value for this level */
    175   1.1       tls 	u_short		c_vertex;	/* C:intersection or F:frame head */
    176   1.1       tls 	u_char		c_nframes;	/* number of frames in the combo */
    177   1.1       tls 	u_char		c_dir;		/* C:loop frame or F:frame direction */
    178  1.11  dholland 	u_char		c_flags;	/* C:combo flags */
    179   1.1       tls 	u_char		c_frameindex;	/* C:intersection frame index */
    180   1.1       tls 	u_char		c_framecnt[2];	/* number of frames left to attach */
    181   1.1       tls 	u_char		c_emask[2];	/* C:bit mask of completion spots for
    182   1.1       tls 					 * link[0] and link[1] */
    183   1.1       tls 	u_char		c_voff[2];	/* C:vertex offset within frame */
    184   1.1       tls };
    185   1.1       tls 
    186  1.11  dholland /* flag values for c_flags */
    187   1.1       tls #define C_OPEN_0	0x01		/* link[0] is an open ended frame */
    188   1.1       tls #define C_OPEN_1	0x02		/* link[1] is an open ended frame */
    189   1.1       tls #define C_LOOP		0x04		/* link[1] intersects previous frame */
    190   1.1       tls #define C_MARK		0x08		/* indicates combo processed */
    191   1.1       tls 
    192   1.1       tls /*
    193   1.1       tls  * This structure is used for recording the completion points of
    194   1.1       tls  * multi frame combos.
    195   1.1       tls  */
    196   1.1       tls struct	elist {
    197   1.1       tls 	struct elist	*e_next;	/* list of completion points */
    198   1.1       tls 	struct combostr	*e_combo;	/* the whole combo */
    199   1.1       tls 	u_char		e_off;		/* offset in frame of this empty spot */
    200   1.1       tls 	u_char		e_frameindex;	/* intersection frame index */
    201   1.1       tls 	u_char		e_framecnt;	/* number of frames left to attach */
    202   1.1       tls 	u_char		e_emask;	/* real value of the frame's emask */
    203   1.1       tls 	union comboval	e_fval;		/* frame combo value */
    204   1.1       tls };
    205   1.1       tls 
    206   1.1       tls /*
    207   1.1       tls  * One spot structure for each location on the board.
    208   1.1       tls  * A frame consists of the combination for the current spot plus the five spots
    209   1.1       tls  * 0: right, 1: right & down, 2: down, 3: down & left.
    210   1.1       tls  */
    211   1.1       tls struct	spotstr {
    212   1.1       tls 	short		s_occ;		/* color of occupant */
    213   1.1       tls 	short		s_wval;		/* weighted value */
    214  1.11  dholland 	int		s_flags;	/* flags for graph walks */
    215   1.1       tls 	struct combostr	*s_frame[4];	/* level 1 combo for frame[dir] */
    216   1.1       tls 	union comboval	s_fval[2][4];	/* combo value for [color][frame] */
    217   1.1       tls 	union comboval	s_combo[2];	/* minimum combo value for BLK & WHT */
    218   1.1       tls 	u_char		s_level[2];	/* number of frames in the min combo */
    219   1.1       tls 	u_char		s_nforce[2];	/* number of <1,x> combos */
    220   1.1       tls 	struct elist	*s_empty;	/* level n combo completion spots */
    221   1.1       tls 	struct elist	*s_nempty;	/* level n+1 combo completion spots */
    222   1.1       tls 	int		dummy[2];	/* XXX */
    223   1.1       tls };
    224   1.1       tls 
    225  1.11  dholland /* flag values for s_flags */
    226   1.1       tls #define CFLAG		0x000001	/* frame is part of a combo */
    227   1.1       tls #define CFLAGALL	0x00000F	/* all frame directions marked */
    228   1.1       tls #define IFLAG		0x000010	/* legal intersection point */
    229   1.1       tls #define IFLAGALL	0x0000F0	/* any intersection points? */
    230   1.1       tls #define FFLAG		0x000100	/* frame is part of a <1,x> combo */
    231   1.1       tls #define FFLAGALL	0x000F00	/* all force frames */
    232   1.1       tls #define MFLAG		0x001000	/* frame has already been seen */
    233   1.1       tls #define MFLAGALL	0x00F000	/* all frames seen */
    234   1.1       tls #define BFLAG		0x010000	/* frame intersects border or dead */
    235   1.1       tls #define BFLAGALL	0x0F0000	/* all frames dead */
    236   1.1       tls 
    237   1.1       tls /*
    238   1.1       tls  * This structure is used to store overlap information between frames.
    239   1.1       tls  */
    240  1.11  dholland struct overlap_info {
    241   1.1       tls 	int		o_intersect;	/* intersection spot */
    242   1.1       tls 	struct combostr	*o_fcombo;	/* the connecting combo */
    243   1.1       tls 	u_char		o_link;		/* which link to update (0 or 1) */
    244   1.1       tls 	u_char		o_off;		/* offset in frame of intersection */
    245   1.1       tls 	u_char		o_frameindex;	/* intersection frame index */
    246   1.1       tls };
    247   1.1       tls 
    248   1.6       jsm extern	const char	*letters;
    249   1.1       tls extern	char	fmtbuf[];
    250   1.6       jsm extern	const char	pdir[];
    251   1.1       tls 
    252   1.6       jsm extern	const int     dd[4];
    253   1.1       tls extern	struct	spotstr	board[BAREA];		/* info for board */
    254   1.1       tls extern	struct	combostr frames[FAREA];		/* storage for single frames */
    255   1.1       tls extern	struct	combostr *sortframes[2];	/* sorted, non-empty frames */
    256   1.1       tls extern	u_char	overlap[FAREA * FAREA];		/* frame [a][b] overlap */
    257   1.1       tls extern	short	intersect[FAREA * FAREA];	/* frame [a][b] intersection */
    258   1.1       tls extern	int	movelog[BSZ * BSZ];		/* history of moves */
    259   1.1       tls extern	int	movenum;
    260   1.1       tls extern	int	debug;
    261   1.1       tls 
    262   1.4     lukem #define ASSERT(x)
    263   1.1       tls 
    264  1.10       jsm void	bdinit(struct spotstr *);
    265  1.10       jsm void	init_overlap(void);
    266  1.10       jsm int	getline(char *, int);
    267  1.10       jsm void	ask(const char *);
    268  1.10       jsm void	dislog(const char *);
    269  1.10       jsm void	bdump(FILE *);
    270  1.10       jsm void	bdisp(void);
    271  1.10       jsm void	bdisp_init(void);
    272  1.10       jsm void	cursfini(void);
    273  1.10       jsm void	cursinit(void);
    274  1.10       jsm void	bdwho(int);
    275  1.13  dholland void	panic(const char *, ...) __printflike(1, 2) __dead;
    276  1.13  dholland void	misclog(const char *, ...) __printflike(1, 2);
    277  1.13  dholland void	debuglog(const char *, ...) __printflike(1, 2);
    278  1.12  dholland void	quit(void) __dead;
    279  1.12  dholland void	quitsig(int) __dead;
    280  1.10       jsm void	whatsup(int);
    281  1.10       jsm int	readinput(FILE *);
    282  1.10       jsm const char   *stoc(int);
    283  1.10       jsm int	lton(int);
    284  1.10       jsm int	ctos(const char *);
    285  1.10       jsm void	update_overlap(struct spotstr *);
    286  1.10       jsm int	makemove(int, int);
    287  1.10       jsm int	list_eq(struct combostr **, struct combostr **, int);
    288  1.10       jsm void	clearcombo(struct combostr *, int);
    289  1.10       jsm void	makeempty(struct combostr *);
    290  1.10       jsm void	appendcombo(struct combostr *, int);
    291  1.10       jsm void	updatecombo(struct combostr *, int);
    292  1.10       jsm void	markcombo(struct combostr *);
    293  1.10       jsm void	printcombo(struct combostr *, char *);
    294  1.10       jsm void	makecombo(struct combostr *, struct spotstr *, int, int);
    295  1.10       jsm void	makecombo2(struct combostr *, struct spotstr *, int, int);
    296  1.10       jsm int	sortcombo(struct combostr **, struct combostr **, struct combostr *);
    297  1.10       jsm int	checkframes(struct combostr *, struct combostr *, struct spotstr *,
    298  1.11  dholland 		    int, struct overlap_info *);
    299  1.10       jsm void	addframes(int);
    300  1.10       jsm void	scanframes(int);
    301  1.10       jsm int	better(const struct spotstr *, const struct spotstr *, int);
    302  1.10       jsm int	pickmove(int);
    303