gomoku.h revision 1.22 1 1.22 rillig /* $NetBSD: gomoku.h,v 1.22 2022/05/15 22:00:11 rillig Exp $ */
2 1.3 cgd
3 1.1 tls /*
4 1.1 tls * Copyright (c) 1994
5 1.1 tls * The Regents of the University of California. All rights reserved.
6 1.1 tls *
7 1.1 tls * This code is derived from software contributed to Berkeley by
8 1.1 tls * Ralph Campbell.
9 1.1 tls *
10 1.1 tls * Redistribution and use in source and binary forms, with or without
11 1.1 tls * modification, are permitted provided that the following conditions
12 1.1 tls * are met:
13 1.1 tls * 1. Redistributions of source code must retain the above copyright
14 1.1 tls * notice, this list of conditions and the following disclaimer.
15 1.1 tls * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 tls * notice, this list of conditions and the following disclaimer in the
17 1.1 tls * documentation and/or other materials provided with the distribution.
18 1.8 agc * 3. Neither the name of the University nor the names of its contributors
19 1.1 tls * may be used to endorse or promote products derived from this software
20 1.1 tls * without specific prior written permission.
21 1.1 tls *
22 1.1 tls * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 tls * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 tls * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 tls * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 tls * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 tls * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 tls * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 tls * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 tls * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 tls * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 tls * SUCH DAMAGE.
33 1.1 tls *
34 1.1 tls * @(#)gomoku.h 8.2 (Berkeley) 5/3/95
35 1.1 tls */
36 1.1 tls
37 1.1 tls #include <sys/types.h>
38 1.9 jsm #include <sys/endian.h>
39 1.4 lukem #include <stdio.h>
40 1.1 tls
41 1.1 tls /* board dimensions */
42 1.1 tls #define BSZ 19
43 1.22 rillig #define BSZ1 (BSZ + 1)
44 1.22 rillig #define BSZ2 (BSZ + 2)
45 1.22 rillig #define BSZ3 (BSZ + 3)
46 1.22 rillig #define BSZ4 (BSZ + 4)
47 1.22 rillig #define BAREA (BSZ2 * BSZ1 + 1)
48 1.1 tls
49 1.22 rillig #define TRANSCRIPT_COL (2 * BSZ4)
50 1.18 dholland
51 1.18 dholland /* interactive curses stuff */
52 1.22 rillig #define BGOTO(y, x) move(BSZ - (y), 2 * (x) + 3)
53 1.18 dholland
54 1.18 dholland /* frame dimensions (based on 5 in a row) */
55 1.1 tls #define FSZ1 BSZ
56 1.1 tls #define FSZ2 (BSZ-4)
57 1.1 tls #define FAREA (FSZ1*FSZ2 + FSZ2*FSZ2 + FSZ1*FSZ2 + FSZ2*FSZ2)
58 1.1 tls
59 1.1 tls #define MUP (BSZ1)
60 1.1 tls #define MDOWN (-BSZ1)
61 1.1 tls #define MLEFT (-1)
62 1.1 tls #define MRIGHT (1)
63 1.1 tls
64 1.1 tls /* values for s_occ */
65 1.1 tls #define BLACK 0
66 1.1 tls #define WHITE 1
67 1.1 tls #define EMPTY 2
68 1.1 tls #define BORDER 3
69 1.1 tls
70 1.1 tls /* return values for makemove() */
71 1.1 tls #define MOVEOK 0
72 1.1 tls #define RESIGN 1
73 1.1 tls #define ILLEGAL 2
74 1.1 tls #define WIN 3
75 1.1 tls #define TIE 4
76 1.1 tls #define SAVE 5
77 1.1 tls
78 1.1 tls #define A 1
79 1.1 tls #define B 2
80 1.1 tls #define C 3
81 1.1 tls #define D 4
82 1.1 tls #define E 5
83 1.1 tls #define F 6
84 1.1 tls #define G 7
85 1.1 tls #define H 8
86 1.1 tls #define J 9
87 1.1 tls #define K 10
88 1.1 tls #define L 11
89 1.1 tls #define M 12
90 1.1 tls #define N 13
91 1.1 tls #define O 14
92 1.1 tls #define P 15
93 1.1 tls #define Q 16
94 1.1 tls #define R 17
95 1.1 tls #define S 18
96 1.1 tls #define T 19
97 1.1 tls
98 1.22 rillig #define PT(x, y) ((x) + BSZ1 * (y))
99 1.1 tls
100 1.1 tls /*
101 1.1 tls * A 'frame' is a group of five or six contiguous board locations.
102 1.1 tls * An open ended frame is one with spaces on both ends; otherwise, its closed.
103 1.1 tls * A 'combo' is a group of intersecting frames and consists of two numbers:
104 1.1 tls * 'A' is the number of moves to make the combo non-blockable.
105 1.1 tls * 'B' is the minimum number of moves needed to win once it can't be blocked.
106 1.1 tls * A 'force' is a combo that is one move away from being non-blockable
107 1.1 tls *
108 1.1 tls * Single frame combo values:
109 1.1 tls * <A,B> board values
110 1.1 tls * 5,0 . . . . . O
111 1.1 tls * 4,1 . . . . . .
112 1.1 tls * 4,0 . . . . X O
113 1.1 tls * 3,1 . . . . X .
114 1.1 tls * 3,0 . . . X X O
115 1.1 tls * 2,1 . . . X X .
116 1.1 tls * 2,0 . . X X X O
117 1.1 tls * 1,1 . . X X X .
118 1.1 tls * 1,0 . X X X X O
119 1.1 tls * 0,1 . X X X X .
120 1.1 tls * 0,0 X X X X X O
121 1.1 tls *
122 1.1 tls * The rule for combining two combos (<A1,B1> <A2,B2>)
123 1.1 tls * with V valid intersection points, is:
124 1.1 tls * A' = A1 + A2 - 2 - V
125 1.1 tls * B' = MIN(A1 + B1 - 1, A2 + B2 - 1)
126 1.1 tls * Each time a frame is added to the combo, the number of moves to complete
127 1.1 tls * the force is the number of moves needed to 'fill' the frame plus one at
128 1.1 tls * the intersection point. The number of moves to win is the number of moves
129 1.1 tls * to complete the best frame minus the last move to complete the force.
130 1.1 tls * Note that it doesn't make sense to combine a <1,x> with anything since
131 1.1 tls * it is already a force. Also, the frames have to be independent so a
132 1.1 tls * single move doesn't affect more than one frame making up the combo.
133 1.1 tls *
134 1.1 tls * Rules for comparing which of two combos (<A1,B1> <A2,B2>) is better:
135 1.1 tls * Both the same color:
136 1.1 tls * <A',B'> = (A1 < A2 || A1 == A2 && B1 <= B2) ? <A1,B1> : <A2,B2>
137 1.1 tls * We want to complete the force first, then the combo with the
138 1.1 tls * fewest moves to win.
139 1.1 tls * Different colors, <A1,B1> is the combo for the player with the next move:
140 1.1 tls * <A',B'> = A2 <= 1 && (A1 > 1 || A2 + B2 < A1 + B1) ? <A2,B2> : <A1,B1>
141 1.1 tls * We want to block only if we have to (i.e., if they are one move away
142 1.1 tls * from completing a force and we don't have a force that we can
143 1.1 tls * complete which takes fewer or the same number of moves to win).
144 1.1 tls */
145 1.1 tls
146 1.1 tls #define MAXA 6
147 1.1 tls #define MAXB 2
148 1.1 tls #define MAXCOMBO 0x600
149 1.1 tls
150 1.22 rillig union comboval {
151 1.1 tls struct {
152 1.1 tls #if BYTE_ORDER == BIG_ENDIAN
153 1.1 tls u_char a; /* # moves to complete force */
154 1.1 tls u_char b; /* # moves to win */
155 1.1 tls #endif
156 1.1 tls #if BYTE_ORDER == LITTLE_ENDIAN
157 1.1 tls u_char b; /* # moves to win */
158 1.1 tls u_char a; /* # moves to complete force */
159 1.1 tls #endif
160 1.1 tls } c;
161 1.1 tls u_short s;
162 1.1 tls };
163 1.1 tls
164 1.1 tls /*
165 1.1 tls * This structure is used to record information about single frames (F) and
166 1.1 tls * combinations of two more frames (C).
167 1.1 tls * For combinations of two or more frames, there is an additional
168 1.1 tls * array of pointers to the frames of the combination which is sorted
169 1.1 tls * by the index into the frames[] array. This is used to prevent duplication
170 1.1 tls * since frame A combined with B is the same as B with A.
171 1.1 tls * struct combostr *c_sort[size c_nframes];
172 1.1 tls * The leaves of the tree (frames) are numbered 0 (bottom, leftmost)
173 1.1 tls * to c_nframes - 1 (top, right). This is stored in c_frameindex and
174 1.1 tls * c_dir if C_LOOP is set.
175 1.1 tls */
176 1.1 tls struct combostr {
177 1.1 tls struct combostr *c_next; /* list of combos at the same level */
178 1.1 tls struct combostr *c_prev; /* list of combos at the same level */
179 1.1 tls struct combostr *c_link[2]; /* C:previous level or F:NULL */
180 1.1 tls union comboval c_linkv[2]; /* C:combo value for link[0,1] */
181 1.1 tls union comboval c_combo; /* C:combo value for this level */
182 1.1 tls u_short c_vertex; /* C:intersection or F:frame head */
183 1.1 tls u_char c_nframes; /* number of frames in the combo */
184 1.1 tls u_char c_dir; /* C:loop frame or F:frame direction */
185 1.11 dholland u_char c_flags; /* C:combo flags */
186 1.1 tls u_char c_frameindex; /* C:intersection frame index */
187 1.1 tls u_char c_framecnt[2]; /* number of frames left to attach */
188 1.1 tls u_char c_emask[2]; /* C:bit mask of completion spots for
189 1.1 tls * link[0] and link[1] */
190 1.1 tls u_char c_voff[2]; /* C:vertex offset within frame */
191 1.1 tls };
192 1.1 tls
193 1.11 dholland /* flag values for c_flags */
194 1.1 tls #define C_OPEN_0 0x01 /* link[0] is an open ended frame */
195 1.1 tls #define C_OPEN_1 0x02 /* link[1] is an open ended frame */
196 1.1 tls #define C_LOOP 0x04 /* link[1] intersects previous frame */
197 1.1 tls #define C_MARK 0x08 /* indicates combo processed */
198 1.1 tls
199 1.1 tls /*
200 1.1 tls * This structure is used for recording the completion points of
201 1.1 tls * multi frame combos.
202 1.1 tls */
203 1.1 tls struct elist {
204 1.1 tls struct elist *e_next; /* list of completion points */
205 1.1 tls struct combostr *e_combo; /* the whole combo */
206 1.1 tls u_char e_off; /* offset in frame of this empty spot */
207 1.1 tls u_char e_frameindex; /* intersection frame index */
208 1.1 tls u_char e_framecnt; /* number of frames left to attach */
209 1.1 tls u_char e_emask; /* real value of the frame's emask */
210 1.1 tls union comboval e_fval; /* frame combo value */
211 1.1 tls };
212 1.1 tls
213 1.1 tls /*
214 1.1 tls * One spot structure for each location on the board.
215 1.1 tls * A frame consists of the combination for the current spot plus the five spots
216 1.1 tls * 0: right, 1: right & down, 2: down, 3: down & left.
217 1.1 tls */
218 1.1 tls struct spotstr {
219 1.1 tls short s_occ; /* color of occupant */
220 1.1 tls short s_wval; /* weighted value */
221 1.11 dholland int s_flags; /* flags for graph walks */
222 1.1 tls struct combostr *s_frame[4]; /* level 1 combo for frame[dir] */
223 1.1 tls union comboval s_fval[2][4]; /* combo value for [color][frame] */
224 1.1 tls union comboval s_combo[2]; /* minimum combo value for BLK & WHT */
225 1.1 tls u_char s_level[2]; /* number of frames in the min combo */
226 1.1 tls u_char s_nforce[2]; /* number of <1,x> combos */
227 1.1 tls struct elist *s_empty; /* level n combo completion spots */
228 1.1 tls struct elist *s_nempty; /* level n+1 combo completion spots */
229 1.1 tls int dummy[2]; /* XXX */
230 1.1 tls };
231 1.1 tls
232 1.11 dholland /* flag values for s_flags */
233 1.1 tls #define CFLAG 0x000001 /* frame is part of a combo */
234 1.1 tls #define CFLAGALL 0x00000F /* all frame directions marked */
235 1.1 tls #define IFLAG 0x000010 /* legal intersection point */
236 1.1 tls #define IFLAGALL 0x0000F0 /* any intersection points? */
237 1.1 tls #define FFLAG 0x000100 /* frame is part of a <1,x> combo */
238 1.1 tls #define FFLAGALL 0x000F00 /* all force frames */
239 1.1 tls #define MFLAG 0x001000 /* frame has already been seen */
240 1.1 tls #define MFLAGALL 0x00F000 /* all frames seen */
241 1.1 tls #define BFLAG 0x010000 /* frame intersects border or dead */
242 1.1 tls #define BFLAGALL 0x0F0000 /* all frames dead */
243 1.1 tls
244 1.1 tls /*
245 1.1 tls * This structure is used to store overlap information between frames.
246 1.1 tls */
247 1.11 dholland struct overlap_info {
248 1.1 tls int o_intersect; /* intersection spot */
249 1.1 tls struct combostr *o_fcombo; /* the connecting combo */
250 1.1 tls u_char o_link; /* which link to update (0 or 1) */
251 1.1 tls u_char o_off; /* offset in frame of intersection */
252 1.1 tls u_char o_frameindex; /* intersection frame index */
253 1.1 tls };
254 1.1 tls
255 1.6 jsm extern const char *letters;
256 1.6 jsm extern const char pdir[];
257 1.1 tls
258 1.6 jsm extern const int dd[4];
259 1.1 tls extern struct spotstr board[BAREA]; /* info for board */
260 1.1 tls extern struct combostr frames[FAREA]; /* storage for single frames */
261 1.1 tls extern struct combostr *sortframes[2]; /* sorted, non-empty frames */
262 1.1 tls extern u_char overlap[FAREA * FAREA]; /* frame [a][b] overlap */
263 1.1 tls extern short intersect[FAREA * FAREA]; /* frame [a][b] intersection */
264 1.1 tls extern int movelog[BSZ * BSZ]; /* history of moves */
265 1.1 tls extern int movenum;
266 1.1 tls extern int debug;
267 1.1 tls
268 1.20 dholland extern int interactive;
269 1.20 dholland extern const char *plyr[];
270 1.20 dholland
271 1.10 jsm void bdinit(struct spotstr *);
272 1.18 dholland int get_coord(void);
273 1.19 dholland int get_key(const char *allowedkeys);
274 1.16 roy int get_line(char *, int);
275 1.10 jsm void ask(const char *);
276 1.10 jsm void dislog(const char *);
277 1.10 jsm void bdump(FILE *);
278 1.10 jsm void bdisp(void);
279 1.10 jsm void bdisp_init(void);
280 1.10 jsm void cursfini(void);
281 1.10 jsm void cursinit(void);
282 1.10 jsm void bdwho(int);
283 1.13 dholland void panic(const char *, ...) __printflike(1, 2) __dead;
284 1.13 dholland void debuglog(const char *, ...) __printflike(1, 2);
285 1.10 jsm void whatsup(int);
286 1.10 jsm const char *stoc(int);
287 1.10 jsm int ctos(const char *);
288 1.10 jsm int makemove(int, int);
289 1.10 jsm int list_eq(struct combostr **, struct combostr **, int);
290 1.10 jsm void clearcombo(struct combostr *, int);
291 1.10 jsm void markcombo(struct combostr *);
292 1.10 jsm int pickmove(int);
293