gomoku.h revision 1.26 1 1.26 rillig /* $NetBSD: gomoku.h,v 1.26 2022/05/16 20:57:01 rillig Exp $ */
2 1.3 cgd
3 1.1 tls /*
4 1.1 tls * Copyright (c) 1994
5 1.1 tls * The Regents of the University of California. All rights reserved.
6 1.1 tls *
7 1.1 tls * This code is derived from software contributed to Berkeley by
8 1.1 tls * Ralph Campbell.
9 1.1 tls *
10 1.1 tls * Redistribution and use in source and binary forms, with or without
11 1.1 tls * modification, are permitted provided that the following conditions
12 1.1 tls * are met:
13 1.1 tls * 1. Redistributions of source code must retain the above copyright
14 1.1 tls * notice, this list of conditions and the following disclaimer.
15 1.1 tls * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 tls * notice, this list of conditions and the following disclaimer in the
17 1.1 tls * documentation and/or other materials provided with the distribution.
18 1.8 agc * 3. Neither the name of the University nor the names of its contributors
19 1.1 tls * may be used to endorse or promote products derived from this software
20 1.1 tls * without specific prior written permission.
21 1.1 tls *
22 1.1 tls * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 tls * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 tls * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 tls * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 tls * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 tls * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 tls * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 tls * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 tls * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 tls * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 tls * SUCH DAMAGE.
33 1.1 tls *
34 1.1 tls * @(#)gomoku.h 8.2 (Berkeley) 5/3/95
35 1.1 tls */
36 1.1 tls
37 1.1 tls #include <sys/types.h>
38 1.9 jsm #include <sys/endian.h>
39 1.26 rillig #include <stdbool.h>
40 1.4 lukem #include <stdio.h>
41 1.1 tls
42 1.1 tls /* board dimensions */
43 1.1 tls #define BSZ 19
44 1.25 rillig #define BAREA ((1 + BSZ + 1) * (BSZ + 1) + 1)
45 1.1 tls
46 1.25 rillig #define TRANSCRIPT_COL (2 * (BSZ + 4))
47 1.18 dholland
48 1.18 dholland /* interactive curses stuff */
49 1.22 rillig #define BGOTO(y, x) move(BSZ - (y), 2 * (x) + 3)
50 1.18 dholland
51 1.18 dholland /* frame dimensions (based on 5 in a row) */
52 1.1 tls #define FSZ1 BSZ
53 1.1 tls #define FSZ2 (BSZ-4)
54 1.1 tls #define FAREA (FSZ1*FSZ2 + FSZ2*FSZ2 + FSZ1*FSZ2 + FSZ2*FSZ2)
55 1.1 tls
56 1.25 rillig #define MUP (BSZ + 1)
57 1.25 rillig #define MDOWN (-(BSZ + 1))
58 1.1 tls #define MLEFT (-1)
59 1.1 tls #define MRIGHT (1)
60 1.1 tls
61 1.1 tls /* values for s_occ */
62 1.1 tls #define BLACK 0
63 1.1 tls #define WHITE 1
64 1.1 tls #define EMPTY 2
65 1.1 tls #define BORDER 3
66 1.1 tls
67 1.1 tls /* return values for makemove() */
68 1.1 tls #define MOVEOK 0
69 1.1 tls #define RESIGN 1
70 1.1 tls #define ILLEGAL 2
71 1.1 tls #define WIN 3
72 1.1 tls #define TIE 4
73 1.1 tls #define SAVE 5
74 1.1 tls
75 1.25 rillig #define PT(x, y) ((x) + (BSZ + 1) * (y))
76 1.1 tls
77 1.1 tls /*
78 1.1 tls * A 'frame' is a group of five or six contiguous board locations.
79 1.1 tls * An open ended frame is one with spaces on both ends; otherwise, its closed.
80 1.1 tls * A 'combo' is a group of intersecting frames and consists of two numbers:
81 1.1 tls * 'A' is the number of moves to make the combo non-blockable.
82 1.1 tls * 'B' is the minimum number of moves needed to win once it can't be blocked.
83 1.1 tls * A 'force' is a combo that is one move away from being non-blockable
84 1.1 tls *
85 1.1 tls * Single frame combo values:
86 1.1 tls * <A,B> board values
87 1.1 tls * 5,0 . . . . . O
88 1.1 tls * 4,1 . . . . . .
89 1.1 tls * 4,0 . . . . X O
90 1.1 tls * 3,1 . . . . X .
91 1.1 tls * 3,0 . . . X X O
92 1.1 tls * 2,1 . . . X X .
93 1.1 tls * 2,0 . . X X X O
94 1.1 tls * 1,1 . . X X X .
95 1.1 tls * 1,0 . X X X X O
96 1.1 tls * 0,1 . X X X X .
97 1.1 tls * 0,0 X X X X X O
98 1.1 tls *
99 1.1 tls * The rule for combining two combos (<A1,B1> <A2,B2>)
100 1.1 tls * with V valid intersection points, is:
101 1.1 tls * A' = A1 + A2 - 2 - V
102 1.1 tls * B' = MIN(A1 + B1 - 1, A2 + B2 - 1)
103 1.1 tls * Each time a frame is added to the combo, the number of moves to complete
104 1.1 tls * the force is the number of moves needed to 'fill' the frame plus one at
105 1.1 tls * the intersection point. The number of moves to win is the number of moves
106 1.1 tls * to complete the best frame minus the last move to complete the force.
107 1.1 tls * Note that it doesn't make sense to combine a <1,x> with anything since
108 1.1 tls * it is already a force. Also, the frames have to be independent so a
109 1.1 tls * single move doesn't affect more than one frame making up the combo.
110 1.1 tls *
111 1.1 tls * Rules for comparing which of two combos (<A1,B1> <A2,B2>) is better:
112 1.1 tls * Both the same color:
113 1.1 tls * <A',B'> = (A1 < A2 || A1 == A2 && B1 <= B2) ? <A1,B1> : <A2,B2>
114 1.1 tls * We want to complete the force first, then the combo with the
115 1.1 tls * fewest moves to win.
116 1.1 tls * Different colors, <A1,B1> is the combo for the player with the next move:
117 1.1 tls * <A',B'> = A2 <= 1 && (A1 > 1 || A2 + B2 < A1 + B1) ? <A2,B2> : <A1,B1>
118 1.1 tls * We want to block only if we have to (i.e., if they are one move away
119 1.1 tls * from completing a force and we don't have a force that we can
120 1.1 tls * complete which takes fewer or the same number of moves to win).
121 1.1 tls */
122 1.1 tls
123 1.1 tls #define MAXA 6
124 1.1 tls #define MAXB 2
125 1.1 tls #define MAXCOMBO 0x600
126 1.1 tls
127 1.22 rillig union comboval {
128 1.1 tls struct {
129 1.1 tls #if BYTE_ORDER == BIG_ENDIAN
130 1.1 tls u_char a; /* # moves to complete force */
131 1.1 tls u_char b; /* # moves to win */
132 1.1 tls #endif
133 1.1 tls #if BYTE_ORDER == LITTLE_ENDIAN
134 1.1 tls u_char b; /* # moves to win */
135 1.1 tls u_char a; /* # moves to complete force */
136 1.1 tls #endif
137 1.1 tls } c;
138 1.1 tls u_short s;
139 1.1 tls };
140 1.1 tls
141 1.1 tls /*
142 1.1 tls * This structure is used to record information about single frames (F) and
143 1.1 tls * combinations of two more frames (C).
144 1.1 tls * For combinations of two or more frames, there is an additional
145 1.1 tls * array of pointers to the frames of the combination which is sorted
146 1.1 tls * by the index into the frames[] array. This is used to prevent duplication
147 1.1 tls * since frame A combined with B is the same as B with A.
148 1.1 tls * struct combostr *c_sort[size c_nframes];
149 1.1 tls * The leaves of the tree (frames) are numbered 0 (bottom, leftmost)
150 1.1 tls * to c_nframes - 1 (top, right). This is stored in c_frameindex and
151 1.1 tls * c_dir if C_LOOP is set.
152 1.1 tls */
153 1.1 tls struct combostr {
154 1.1 tls struct combostr *c_next; /* list of combos at the same level */
155 1.1 tls struct combostr *c_prev; /* list of combos at the same level */
156 1.1 tls struct combostr *c_link[2]; /* C:previous level or F:NULL */
157 1.1 tls union comboval c_linkv[2]; /* C:combo value for link[0,1] */
158 1.1 tls union comboval c_combo; /* C:combo value for this level */
159 1.1 tls u_short c_vertex; /* C:intersection or F:frame head */
160 1.1 tls u_char c_nframes; /* number of frames in the combo */
161 1.1 tls u_char c_dir; /* C:loop frame or F:frame direction */
162 1.11 dholland u_char c_flags; /* C:combo flags */
163 1.1 tls u_char c_frameindex; /* C:intersection frame index */
164 1.1 tls u_char c_framecnt[2]; /* number of frames left to attach */
165 1.1 tls u_char c_emask[2]; /* C:bit mask of completion spots for
166 1.1 tls * link[0] and link[1] */
167 1.1 tls u_char c_voff[2]; /* C:vertex offset within frame */
168 1.1 tls };
169 1.1 tls
170 1.11 dholland /* flag values for c_flags */
171 1.1 tls #define C_OPEN_0 0x01 /* link[0] is an open ended frame */
172 1.1 tls #define C_OPEN_1 0x02 /* link[1] is an open ended frame */
173 1.1 tls #define C_LOOP 0x04 /* link[1] intersects previous frame */
174 1.1 tls
175 1.1 tls /*
176 1.1 tls * This structure is used for recording the completion points of
177 1.1 tls * multi frame combos.
178 1.1 tls */
179 1.1 tls struct elist {
180 1.1 tls struct elist *e_next; /* list of completion points */
181 1.1 tls struct combostr *e_combo; /* the whole combo */
182 1.1 tls u_char e_off; /* offset in frame of this empty spot */
183 1.1 tls u_char e_frameindex; /* intersection frame index */
184 1.1 tls u_char e_framecnt; /* number of frames left to attach */
185 1.1 tls u_char e_emask; /* real value of the frame's emask */
186 1.1 tls union comboval e_fval; /* frame combo value */
187 1.1 tls };
188 1.1 tls
189 1.1 tls /*
190 1.1 tls * One spot structure for each location on the board.
191 1.1 tls * A frame consists of the combination for the current spot plus the five spots
192 1.1 tls * 0: right, 1: right & down, 2: down, 3: down & left.
193 1.1 tls */
194 1.1 tls struct spotstr {
195 1.1 tls short s_occ; /* color of occupant */
196 1.1 tls short s_wval; /* weighted value */
197 1.11 dholland int s_flags; /* flags for graph walks */
198 1.1 tls struct combostr *s_frame[4]; /* level 1 combo for frame[dir] */
199 1.1 tls union comboval s_fval[2][4]; /* combo value for [color][frame] */
200 1.1 tls union comboval s_combo[2]; /* minimum combo value for BLK & WHT */
201 1.1 tls u_char s_level[2]; /* number of frames in the min combo */
202 1.1 tls u_char s_nforce[2]; /* number of <1,x> combos */
203 1.1 tls struct elist *s_empty; /* level n combo completion spots */
204 1.1 tls struct elist *s_nempty; /* level n+1 combo completion spots */
205 1.1 tls int dummy[2]; /* XXX */
206 1.1 tls };
207 1.1 tls
208 1.11 dholland /* flag values for s_flags */
209 1.1 tls #define CFLAG 0x000001 /* frame is part of a combo */
210 1.1 tls #define CFLAGALL 0x00000F /* all frame directions marked */
211 1.1 tls #define IFLAG 0x000010 /* legal intersection point */
212 1.1 tls #define IFLAGALL 0x0000F0 /* any intersection points? */
213 1.1 tls #define FFLAG 0x000100 /* frame is part of a <1,x> combo */
214 1.1 tls #define FFLAGALL 0x000F00 /* all force frames */
215 1.1 tls #define MFLAG 0x001000 /* frame has already been seen */
216 1.1 tls #define MFLAGALL 0x00F000 /* all frames seen */
217 1.1 tls #define BFLAG 0x010000 /* frame intersects border or dead */
218 1.1 tls #define BFLAGALL 0x0F0000 /* all frames dead */
219 1.1 tls
220 1.6 jsm extern const char *letters;
221 1.6 jsm extern const char pdir[];
222 1.1 tls
223 1.6 jsm extern const int dd[4];
224 1.1 tls extern struct spotstr board[BAREA]; /* info for board */
225 1.1 tls extern struct combostr frames[FAREA]; /* storage for single frames */
226 1.1 tls extern struct combostr *sortframes[2]; /* sorted, non-empty frames */
227 1.1 tls extern u_char overlap[FAREA * FAREA]; /* frame [a][b] overlap */
228 1.1 tls extern short intersect[FAREA * FAREA]; /* frame [a][b] intersection */
229 1.1 tls extern int movelog[BSZ * BSZ]; /* history of moves */
230 1.1 tls extern int movenum;
231 1.1 tls extern int debug;
232 1.1 tls
233 1.20 dholland extern int interactive;
234 1.20 dholland extern const char *plyr[];
235 1.20 dholland
236 1.10 jsm void bdinit(struct spotstr *);
237 1.18 dholland int get_coord(void);
238 1.19 dholland int get_key(const char *allowedkeys);
239 1.16 roy int get_line(char *, int);
240 1.10 jsm void ask(const char *);
241 1.10 jsm void dislog(const char *);
242 1.10 jsm void bdump(FILE *);
243 1.10 jsm void bdisp(void);
244 1.10 jsm void bdisp_init(void);
245 1.10 jsm void cursfini(void);
246 1.10 jsm void cursinit(void);
247 1.10 jsm void bdwho(int);
248 1.13 dholland void panic(const char *, ...) __printflike(1, 2) __dead;
249 1.13 dholland void debuglog(const char *, ...) __printflike(1, 2);
250 1.10 jsm void whatsup(int);
251 1.10 jsm const char *stoc(int);
252 1.10 jsm int ctos(const char *);
253 1.10 jsm int makemove(int, int);
254 1.10 jsm int list_eq(struct combostr **, struct combostr **, int);
255 1.10 jsm void clearcombo(struct combostr *, int);
256 1.10 jsm void markcombo(struct combostr *);
257 1.10 jsm int pickmove(int);
258