Home | History | Annotate | Line # | Download | only in gomoku
gomoku.h revision 1.8
      1  1.8      agc /*	$NetBSD: gomoku.h,v 1.8 2003/08/07 09:37:17 agc Exp $	*/
      2  1.3      cgd 
      3  1.1      tls /*
      4  1.1      tls  * Copyright (c) 1994
      5  1.1      tls  *	The Regents of the University of California.  All rights reserved.
      6  1.1      tls  *
      7  1.1      tls  * This code is derived from software contributed to Berkeley by
      8  1.1      tls  * Ralph Campbell.
      9  1.1      tls  *
     10  1.1      tls  * Redistribution and use in source and binary forms, with or without
     11  1.1      tls  * modification, are permitted provided that the following conditions
     12  1.1      tls  * are met:
     13  1.1      tls  * 1. Redistributions of source code must retain the above copyright
     14  1.1      tls  *    notice, this list of conditions and the following disclaimer.
     15  1.1      tls  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.1      tls  *    notice, this list of conditions and the following disclaimer in the
     17  1.1      tls  *    documentation and/or other materials provided with the distribution.
     18  1.8      agc  * 3. Neither the name of the University nor the names of its contributors
     19  1.1      tls  *    may be used to endorse or promote products derived from this software
     20  1.1      tls  *    without specific prior written permission.
     21  1.1      tls  *
     22  1.1      tls  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  1.1      tls  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  1.1      tls  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  1.1      tls  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  1.1      tls  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  1.1      tls  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  1.1      tls  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  1.1      tls  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  1.1      tls  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  1.1      tls  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  1.1      tls  * SUCH DAMAGE.
     33  1.1      tls  *
     34  1.1      tls  *	@(#)gomoku.h	8.2 (Berkeley) 5/3/95
     35  1.1      tls  */
     36  1.1      tls 
     37  1.1      tls #include <sys/types.h>
     38  1.4    lukem #include <stdio.h>
     39  1.1      tls 
     40  1.1      tls /* board dimensions */
     41  1.1      tls #define BSZ	19
     42  1.1      tls #define BSZ1	(BSZ+1)
     43  1.1      tls #define BSZ2	(BSZ+2)
     44  1.1      tls #define BAREA	(BSZ2*BSZ1+1)
     45  1.1      tls 
     46  1.1      tls /* frame dimentions (based on 5 in a row) */
     47  1.1      tls #define FSZ1	BSZ
     48  1.1      tls #define FSZ2	(BSZ-4)
     49  1.1      tls #define FAREA	(FSZ1*FSZ2 + FSZ2*FSZ2 + FSZ1*FSZ2 + FSZ2*FSZ2)
     50  1.1      tls 
     51  1.1      tls #define MUP	(BSZ1)
     52  1.1      tls #define MDOWN	(-BSZ1)
     53  1.1      tls #define MLEFT	(-1)
     54  1.1      tls #define MRIGHT	(1)
     55  1.1      tls 
     56  1.1      tls /* values for s_occ */
     57  1.1      tls #define BLACK	0
     58  1.1      tls #define WHITE	1
     59  1.1      tls #define EMPTY	2
     60  1.1      tls #define BORDER	3
     61  1.1      tls 
     62  1.1      tls /* return values for makemove() */
     63  1.1      tls #define MOVEOK	0
     64  1.1      tls #define RESIGN	1
     65  1.1      tls #define ILLEGAL	2
     66  1.1      tls #define WIN	3
     67  1.1      tls #define TIE	4
     68  1.1      tls #define SAVE	5
     69  1.1      tls 
     70  1.1      tls #define A 1
     71  1.1      tls #define B 2
     72  1.1      tls #define C 3
     73  1.1      tls #define D 4
     74  1.1      tls #define E 5
     75  1.1      tls #define F 6
     76  1.1      tls #define G 7
     77  1.1      tls #define H 8
     78  1.1      tls #define J 9
     79  1.1      tls #define K 10
     80  1.1      tls #define L 11
     81  1.1      tls #define M 12
     82  1.1      tls #define N 13
     83  1.1      tls #define O 14
     84  1.1      tls #define P 15
     85  1.1      tls #define Q 16
     86  1.1      tls #define R 17
     87  1.1      tls #define S 18
     88  1.1      tls #define T 19
     89  1.1      tls 
     90  1.1      tls #define PT(x,y)		((x) + BSZ1 * (y))
     91  1.1      tls 
     92  1.1      tls /*
     93  1.1      tls  * A 'frame' is a group of five or six contiguous board locations.
     94  1.1      tls  * An open ended frame is one with spaces on both ends; otherwise, its closed.
     95  1.1      tls  * A 'combo' is a group of intersecting frames and consists of two numbers:
     96  1.1      tls  * 'A' is the number of moves to make the combo non-blockable.
     97  1.1      tls  * 'B' is the minimum number of moves needed to win once it can't be blocked.
     98  1.1      tls  * A 'force' is a combo that is one move away from being non-blockable
     99  1.1      tls  *
    100  1.1      tls  * Single frame combo values:
    101  1.1      tls  *     <A,B>	board values
    102  1.1      tls  *	5,0	. . . . . O
    103  1.1      tls  *	4,1	. . . . . .
    104  1.1      tls  *	4,0	. . . . X O
    105  1.1      tls  *	3,1	. . . . X .
    106  1.1      tls  *	3,0	. . . X X O
    107  1.1      tls  *	2,1	. . . X X .
    108  1.1      tls  *	2,0	. . X X X O
    109  1.1      tls  *	1,1	. . X X X .
    110  1.1      tls  *	1,0	. X X X X O
    111  1.1      tls  *	0,1	. X X X X .
    112  1.1      tls  *	0,0	X X X X X O
    113  1.1      tls  *
    114  1.1      tls  * The rule for combining two combos (<A1,B1> <A2,B2>)
    115  1.1      tls  * with V valid intersection points, is:
    116  1.1      tls  *	A' = A1 + A2 - 2 - V
    117  1.1      tls  *	B' = MIN(A1 + B1 - 1, A2 + B2 - 1)
    118  1.1      tls  * Each time a frame is added to the combo, the number of moves to complete
    119  1.1      tls  * the force is the number of moves needed to 'fill' the frame plus one at
    120  1.1      tls  * the intersection point. The number of moves to win is the number of moves
    121  1.1      tls  * to complete the best frame minus the last move to complete the force.
    122  1.1      tls  * Note that it doesn't make sense to combine a <1,x> with anything since
    123  1.1      tls  * it is already a force. Also, the frames have to be independent so a
    124  1.1      tls  * single move doesn't affect more than one frame making up the combo.
    125  1.1      tls  *
    126  1.1      tls  * Rules for comparing which of two combos (<A1,B1> <A2,B2>) is better:
    127  1.1      tls  * Both the same color:
    128  1.1      tls  *	<A',B'> = (A1 < A2 || A1 == A2 && B1 <= B2) ? <A1,B1> : <A2,B2>
    129  1.1      tls  *	We want to complete the force first, then the combo with the
    130  1.1      tls  *	fewest moves to win.
    131  1.1      tls  * Different colors, <A1,B1> is the combo for the player with the next move:
    132  1.1      tls  *	<A',B'> = A2 <= 1 && (A1 > 1 || A2 + B2 < A1 + B1) ? <A2,B2> : <A1,B1>
    133  1.1      tls  *	We want to block only if we have to (i.e., if they are one move away
    134  1.1      tls  *	from completing a force and we don't have a force that we can
    135  1.1      tls  *	complete which takes fewer or the same number of moves to win).
    136  1.1      tls  */
    137  1.1      tls 
    138  1.1      tls #define MAXA		6
    139  1.1      tls #define MAXB		2
    140  1.1      tls #define MAXCOMBO	0x600
    141  1.1      tls 
    142  1.1      tls union	comboval {
    143  1.1      tls 	struct {
    144  1.1      tls #if BYTE_ORDER == BIG_ENDIAN
    145  1.1      tls 		u_char	a;	/* # moves to complete force */
    146  1.1      tls 		u_char	b;	/* # moves to win */
    147  1.1      tls #endif
    148  1.1      tls #if BYTE_ORDER == LITTLE_ENDIAN
    149  1.1      tls 		u_char	b;	/* # moves to win */
    150  1.1      tls 		u_char	a;	/* # moves to complete force */
    151  1.1      tls #endif
    152  1.1      tls 	} c;
    153  1.1      tls 	u_short	s;
    154  1.1      tls };
    155  1.1      tls 
    156  1.1      tls /*
    157  1.1      tls  * This structure is used to record information about single frames (F) and
    158  1.1      tls  * combinations of two more frames (C).
    159  1.1      tls  * For combinations of two or more frames, there is an additional
    160  1.1      tls  * array of pointers to the frames of the combination which is sorted
    161  1.1      tls  * by the index into the frames[] array. This is used to prevent duplication
    162  1.1      tls  * since frame A combined with B is the same as B with A.
    163  1.1      tls  *	struct combostr *c_sort[size c_nframes];
    164  1.1      tls  * The leaves of the tree (frames) are numbered 0 (bottom, leftmost)
    165  1.1      tls  * to c_nframes - 1 (top, right). This is stored in c_frameindex and
    166  1.1      tls  * c_dir if C_LOOP is set.
    167  1.1      tls  */
    168  1.1      tls struct combostr {
    169  1.1      tls 	struct combostr	*c_next;	/* list of combos at the same level */
    170  1.1      tls 	struct combostr	*c_prev;	/* list of combos at the same level */
    171  1.1      tls 	struct combostr	*c_link[2];	/* C:previous level or F:NULL */
    172  1.1      tls 	union comboval	c_linkv[2];	/* C:combo value for link[0,1] */
    173  1.1      tls 	union comboval	c_combo;	/* C:combo value for this level */
    174  1.1      tls 	u_short		c_vertex;	/* C:intersection or F:frame head */
    175  1.1      tls 	u_char		c_nframes;	/* number of frames in the combo */
    176  1.1      tls 	u_char		c_dir;		/* C:loop frame or F:frame direction */
    177  1.1      tls 	u_char		c_flg;		/* C:combo flags */
    178  1.1      tls 	u_char		c_frameindex;	/* C:intersection frame index */
    179  1.1      tls 	u_char		c_framecnt[2];	/* number of frames left to attach */
    180  1.1      tls 	u_char		c_emask[2];	/* C:bit mask of completion spots for
    181  1.1      tls 					 * link[0] and link[1] */
    182  1.1      tls 	u_char		c_voff[2];	/* C:vertex offset within frame */
    183  1.1      tls };
    184  1.1      tls 
    185  1.1      tls /* flag values for c_flg */
    186  1.1      tls #define C_OPEN_0	0x01		/* link[0] is an open ended frame */
    187  1.1      tls #define C_OPEN_1	0x02		/* link[1] is an open ended frame */
    188  1.1      tls #define C_LOOP		0x04		/* link[1] intersects previous frame */
    189  1.1      tls #define C_MARK		0x08		/* indicates combo processed */
    190  1.1      tls 
    191  1.1      tls /*
    192  1.1      tls  * This structure is used for recording the completion points of
    193  1.1      tls  * multi frame combos.
    194  1.1      tls  */
    195  1.1      tls struct	elist {
    196  1.1      tls 	struct elist	*e_next;	/* list of completion points */
    197  1.1      tls 	struct combostr	*e_combo;	/* the whole combo */
    198  1.1      tls 	u_char		e_off;		/* offset in frame of this empty spot */
    199  1.1      tls 	u_char		e_frameindex;	/* intersection frame index */
    200  1.1      tls 	u_char		e_framecnt;	/* number of frames left to attach */
    201  1.1      tls 	u_char		e_emask;	/* real value of the frame's emask */
    202  1.1      tls 	union comboval	e_fval;		/* frame combo value */
    203  1.1      tls };
    204  1.1      tls 
    205  1.1      tls /*
    206  1.1      tls  * One spot structure for each location on the board.
    207  1.1      tls  * A frame consists of the combination for the current spot plus the five spots
    208  1.1      tls  * 0: right, 1: right & down, 2: down, 3: down & left.
    209  1.1      tls  */
    210  1.1      tls struct	spotstr {
    211  1.1      tls 	short		s_occ;		/* color of occupant */
    212  1.1      tls 	short		s_wval;		/* weighted value */
    213  1.1      tls 	int		s_flg;		/* flags for graph walks */
    214  1.1      tls 	struct combostr	*s_frame[4];	/* level 1 combo for frame[dir] */
    215  1.1      tls 	union comboval	s_fval[2][4];	/* combo value for [color][frame] */
    216  1.1      tls 	union comboval	s_combo[2];	/* minimum combo value for BLK & WHT */
    217  1.1      tls 	u_char		s_level[2];	/* number of frames in the min combo */
    218  1.1      tls 	u_char		s_nforce[2];	/* number of <1,x> combos */
    219  1.1      tls 	struct elist	*s_empty;	/* level n combo completion spots */
    220  1.1      tls 	struct elist	*s_nempty;	/* level n+1 combo completion spots */
    221  1.1      tls 	int		dummy[2];	/* XXX */
    222  1.1      tls };
    223  1.1      tls 
    224  1.1      tls /* flag values for s_flg */
    225  1.1      tls #define CFLAG		0x000001	/* frame is part of a combo */
    226  1.1      tls #define CFLAGALL	0x00000F	/* all frame directions marked */
    227  1.1      tls #define IFLAG		0x000010	/* legal intersection point */
    228  1.1      tls #define IFLAGALL	0x0000F0	/* any intersection points? */
    229  1.1      tls #define FFLAG		0x000100	/* frame is part of a <1,x> combo */
    230  1.1      tls #define FFLAGALL	0x000F00	/* all force frames */
    231  1.1      tls #define MFLAG		0x001000	/* frame has already been seen */
    232  1.1      tls #define MFLAGALL	0x00F000	/* all frames seen */
    233  1.1      tls #define BFLAG		0x010000	/* frame intersects border or dead */
    234  1.1      tls #define BFLAGALL	0x0F0000	/* all frames dead */
    235  1.1      tls 
    236  1.1      tls /*
    237  1.1      tls  * This structure is used to store overlap information between frames.
    238  1.1      tls  */
    239  1.1      tls struct	ovlp_info {
    240  1.1      tls 	int		o_intersect;	/* intersection spot */
    241  1.1      tls 	struct combostr	*o_fcombo;	/* the connecting combo */
    242  1.1      tls 	u_char		o_link;		/* which link to update (0 or 1) */
    243  1.1      tls 	u_char		o_off;		/* offset in frame of intersection */
    244  1.1      tls 	u_char		o_frameindex;	/* intersection frame index */
    245  1.1      tls };
    246  1.1      tls 
    247  1.6      jsm extern	const char	*letters;
    248  1.1      tls extern	char	fmtbuf[];
    249  1.6      jsm extern	const char	pdir[];
    250  1.1      tls 
    251  1.6      jsm extern	const int     dd[4];
    252  1.1      tls extern	struct	spotstr	board[BAREA];		/* info for board */
    253  1.1      tls extern	struct	combostr frames[FAREA];		/* storage for single frames */
    254  1.1      tls extern	struct	combostr *sortframes[2];	/* sorted, non-empty frames */
    255  1.1      tls extern	u_char	overlap[FAREA * FAREA];		/* frame [a][b] overlap */
    256  1.1      tls extern	short	intersect[FAREA * FAREA];	/* frame [a][b] intersection */
    257  1.1      tls extern	int	movelog[BSZ * BSZ];		/* history of moves */
    258  1.1      tls extern	int	movenum;
    259  1.1      tls extern	int	debug;
    260  1.1      tls 
    261  1.4    lukem #define ASSERT(x)
    262  1.1      tls 
    263  1.4    lukem void	bdinit __P((struct spotstr *));
    264  1.4    lukem void	init_overlap __P((void));
    265  1.4    lukem int	getline __P((char *, int));
    266  1.6      jsm void	ask __P((const char *));
    267  1.6      jsm void	dislog __P((const char *));
    268  1.4    lukem void	bdump __P((FILE *));
    269  1.4    lukem void	bdisp __P((void));
    270  1.4    lukem void	bdisp_init __P((void));
    271  1.4    lukem void	cursfini __P((void));
    272  1.4    lukem void	cursinit __P((void));
    273  1.4    lukem void	bdwho __P((int));
    274  1.6      jsm void	panic __P((const char *)) __attribute__((__noreturn__));
    275  1.7      jsm void	glog __P((const char *));
    276  1.6      jsm void	dlog __P((const char *));
    277  1.5  hubertf void	quit __P((void)) __attribute__((__noreturn__));
    278  1.5  hubertf void	quitsig __P((int)) __attribute__((__noreturn__));
    279  1.4    lukem void	whatsup __P((int));
    280  1.4    lukem int	readinput __P((FILE *));
    281  1.6      jsm const char   *stoc __P((int));
    282  1.4    lukem int	lton __P((int));
    283  1.6      jsm int	ctos __P((const char *));
    284  1.4    lukem void	update_overlap __P((struct spotstr *));
    285  1.4    lukem int	makemove __P((int, int));
    286  1.4    lukem int	list_eq __P((struct combostr **, struct combostr **, int));
    287  1.4    lukem void	clearcombo __P((struct combostr *, int));
    288  1.4    lukem void	makeempty __P((struct combostr *));
    289  1.4    lukem void	appendcombo __P((struct combostr *, int));
    290  1.4    lukem void	updatecombo __P((struct combostr *, int));
    291  1.4    lukem void	markcombo __P((struct combostr *));
    292  1.4    lukem void	printcombo __P((struct combostr *, char *));
    293  1.4    lukem void	makecombo __P((struct combostr *, struct spotstr *, int, int));
    294  1.4    lukem void	makecombo2 __P((struct combostr *, struct spotstr *, int, int));
    295  1.4    lukem int	sortcombo __P((struct combostr **, struct combostr **, struct combostr *));
    296  1.4    lukem int	checkframes __P((struct combostr *, struct combostr *, struct spotstr *,
    297  1.4    lukem int, struct ovlp_info *));
    298  1.4    lukem void	addframes __P((int));
    299  1.4    lukem void	scanframes __P((int));
    300  1.6      jsm int	better __P((const struct spotstr *, const struct spotstr *, int));
    301  1.4    lukem int	pickmove __P((int));
    302