Home | History | Annotate | Line # | Download | only in pom
pom.c revision 1.1
      1  1.1  cgd /*
      2  1.1  cgd  * Copyright (c) 1989 The Regents of the University of California.
      3  1.1  cgd  * All rights reserved.
      4  1.1  cgd  *
      5  1.1  cgd  * This code is derived from software posted to USENET.
      6  1.1  cgd  *
      7  1.1  cgd  * Redistribution and use in source and binary forms, with or without
      8  1.1  cgd  * modification, are permitted provided that the following conditions
      9  1.1  cgd  * are met:
     10  1.1  cgd  * 1. Redistributions of source code must retain the above copyright
     11  1.1  cgd  *    notice, this list of conditions and the following disclaimer.
     12  1.1  cgd  * 2. Redistributions in binary form must reproduce the above copyright
     13  1.1  cgd  *    notice, this list of conditions and the following disclaimer in the
     14  1.1  cgd  *    documentation and/or other materials provided with the distribution.
     15  1.1  cgd  * 3. All advertising materials mentioning features or use of this software
     16  1.1  cgd  *    must display the following acknowledgement:
     17  1.1  cgd  *	This product includes software developed by the University of
     18  1.1  cgd  *	California, Berkeley and its contributors.
     19  1.1  cgd  * 4. Neither the name of the University nor the names of its contributors
     20  1.1  cgd  *    may be used to endorse or promote products derived from this software
     21  1.1  cgd  *    without specific prior written permission.
     22  1.1  cgd  *
     23  1.1  cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  1.1  cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  1.1  cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  1.1  cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  1.1  cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  1.1  cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  1.1  cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  1.1  cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  1.1  cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  1.1  cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  1.1  cgd  * SUCH DAMAGE.
     34  1.1  cgd  */
     35  1.1  cgd 
     36  1.1  cgd #ifndef lint
     37  1.1  cgd char copyright[] =
     38  1.1  cgd "@(#) Copyright (c) 1989 The Regents of the University of California.\n\
     39  1.1  cgd  All rights reserved.\n";
     40  1.1  cgd #endif /* not lint */
     41  1.1  cgd 
     42  1.1  cgd #ifndef lint
     43  1.1  cgd static char sccsid[] = "@(#)pom.c	5.3 (Berkeley) 2/28/91";
     44  1.1  cgd #endif /* not lint */
     45  1.1  cgd 
     46  1.1  cgd /*
     47  1.1  cgd  * Phase of the Moon.  Calculates the current phase of the moon.
     48  1.1  cgd  * Based on routines from `Practical Astronomy with Your Calculator',
     49  1.1  cgd  * by Duffett-Smith.  Comments give the section from the book that
     50  1.1  cgd  * particular piece of code was adapted from.
     51  1.1  cgd  *
     52  1.1  cgd  * -- Keith E. Brandt  VIII 1984
     53  1.1  cgd  *
     54  1.1  cgd  */
     55  1.1  cgd 
     56  1.1  cgd #include <sys/time.h>
     57  1.1  cgd #include <stdio.h>
     58  1.1  cgd #include <tzfile.h>
     59  1.1  cgd #include <math.h>
     60  1.1  cgd 
     61  1.1  cgd #define	PI	  3.141592654
     62  1.1  cgd #define	EPOCH	  85
     63  1.1  cgd #define	EPSILONg  279.611371	/* solar ecliptic long at EPOCH */
     64  1.1  cgd #define	RHOg	  282.680403	/* solar ecliptic long of perigee at EPOCH */
     65  1.1  cgd #define	ECCEN	  0.01671542	/* solar orbit eccentricity */
     66  1.1  cgd #define	lzero	  18.251907	/* lunar mean long at EPOCH */
     67  1.1  cgd #define	Pzero	  192.917585	/* lunar mean long of perigee at EPOCH */
     68  1.1  cgd #define	Nzero	  55.204723	/* lunar mean long of node at EPOCH */
     69  1.1  cgd 
     70  1.1  cgd double dtor(), potm(), adj360();
     71  1.1  cgd 
     72  1.1  cgd main()
     73  1.1  cgd {
     74  1.1  cgd 	extern int errno;
     75  1.1  cgd 	struct timeval tp;
     76  1.1  cgd 	struct timezone tzp;
     77  1.1  cgd 	struct tm *GMT, *gmtime();
     78  1.1  cgd 	double days, today, tomorrow;
     79  1.1  cgd 	int cnt;
     80  1.1  cgd 	char *strerror();
     81  1.1  cgd 
     82  1.1  cgd 	if (gettimeofday(&tp,&tzp)) {
     83  1.1  cgd 		(void)fprintf(stderr, "pom: %s\n", strerror(errno));
     84  1.1  cgd 		exit(1);
     85  1.1  cgd 	}
     86  1.1  cgd 	GMT = gmtime(&tp.tv_sec);
     87  1.1  cgd 	days = (GMT->tm_yday + 1) + ((GMT->tm_hour +
     88  1.1  cgd 	    (GMT->tm_min / 60.0) + (GMT->tm_sec / 3600.0)) / 24.0);
     89  1.1  cgd 	for (cnt = EPOCH; cnt < GMT->tm_year; ++cnt)
     90  1.1  cgd 		days += isleap(cnt) ? 366 : 365;
     91  1.1  cgd 	today = potm(days) + .5;
     92  1.1  cgd 	(void)printf("The Moon is ");
     93  1.1  cgd 	if ((int)today == 100)
     94  1.1  cgd 		(void)printf("Full\n");
     95  1.1  cgd 	else if (!(int)today)
     96  1.1  cgd 		(void)printf("New\n");
     97  1.1  cgd 	else {
     98  1.1  cgd 		tomorrow = potm(days + 1);
     99  1.1  cgd 		if ((int)today == 50)
    100  1.1  cgd 			(void)printf("%s\n", tomorrow > today ?
    101  1.1  cgd 			    "at the First Quarter" : "at the Last Quarter");
    102  1.1  cgd 		else {
    103  1.1  cgd 			(void)printf("%s ", tomorrow > today ?
    104  1.1  cgd 			    "Waxing" : "Waning");
    105  1.1  cgd 			if (today > 50)
    106  1.1  cgd 				(void)printf("Gibbous (%1.0f%% of Full)\n",
    107  1.1  cgd 				    today);
    108  1.1  cgd 			else if (today < 50)
    109  1.1  cgd 				(void)printf("Crescent (%1.0f%% of Full)\n",
    110  1.1  cgd 				    today);
    111  1.1  cgd 		}
    112  1.1  cgd 	}
    113  1.1  cgd }
    114  1.1  cgd 
    115  1.1  cgd /*
    116  1.1  cgd  * potm --
    117  1.1  cgd  *	return phase of the moon
    118  1.1  cgd  */
    119  1.1  cgd double
    120  1.1  cgd potm(days)
    121  1.1  cgd 	double days;
    122  1.1  cgd {
    123  1.1  cgd 	double N, Msol, Ec, LambdaSol, l, Mm, Ev, Ac, A3, Mmprime;
    124  1.1  cgd 	double A4, lprime, V, ldprime, D, Nm;
    125  1.1  cgd 
    126  1.1  cgd 	N = 360 * days / 365.2422;				/* sec 42 #3 */
    127  1.1  cgd 	adj360(&N);
    128  1.1  cgd 	Msol = N + EPSILONg - RHOg;				/* sec 42 #4 */
    129  1.1  cgd 	adj360(&Msol);
    130  1.1  cgd 	Ec = 360 / PI * ECCEN * sin(dtor(Msol));		/* sec 42 #5 */
    131  1.1  cgd 	LambdaSol = N + Ec + EPSILONg;				/* sec 42 #6 */
    132  1.1  cgd 	adj360(&LambdaSol);
    133  1.1  cgd 	l = 13.1763966 * days + lzero;				/* sec 61 #4 */
    134  1.1  cgd 	adj360(&l);
    135  1.1  cgd 	Mm = l - (0.1114041 * days) - Pzero;			/* sec 61 #5 */
    136  1.1  cgd 	adj360(&Mm);
    137  1.1  cgd 	Nm = Nzero - (0.0529539 * days);			/* sec 61 #6 */
    138  1.1  cgd 	adj360(&Nm);
    139  1.1  cgd 	Ev = 1.2739 * sin(dtor(2*(l - LambdaSol) - Mm));	/* sec 61 #7 */
    140  1.1  cgd 	Ac = 0.1858 * sin(dtor(Msol));				/* sec 61 #8 */
    141  1.1  cgd 	A3 = 0.37 * sin(dtor(Msol));
    142  1.1  cgd 	Mmprime = Mm + Ev - Ac - A3;				/* sec 61 #9 */
    143  1.1  cgd 	Ec = 6.2886 * sin(dtor(Mmprime));			/* sec 61 #10 */
    144  1.1  cgd 	A4 = 0.214 * sin(dtor(2 * Mmprime));			/* sec 61 #11 */
    145  1.1  cgd 	lprime = l + Ev + Ec - Ac + A4;				/* sec 61 #12 */
    146  1.1  cgd 	V = 0.6583 * sin(dtor(2 * (lprime - LambdaSol)));	/* sec 61 #13 */
    147  1.1  cgd 	ldprime = lprime + V;					/* sec 61 #14 */
    148  1.1  cgd 	D = ldprime - LambdaSol;				/* sec 63 #2 */
    149  1.1  cgd 	return(50 * (1 - cos(dtor(D))));			/* sec 63 #3 */
    150  1.1  cgd }
    151  1.1  cgd 
    152  1.1  cgd /*
    153  1.1  cgd  * dtor --
    154  1.1  cgd  *	convert degrees to radians
    155  1.1  cgd  */
    156  1.1  cgd double
    157  1.1  cgd dtor(deg)
    158  1.1  cgd 	double deg;
    159  1.1  cgd {
    160  1.1  cgd 	return(deg * PI / 180);
    161  1.1  cgd }
    162  1.1  cgd 
    163  1.1  cgd /*
    164  1.1  cgd  * adj360 --
    165  1.1  cgd  *	adjust value so 0 <= deg <= 360
    166  1.1  cgd  */
    167  1.1  cgd double
    168  1.1  cgd adj360(deg)
    169  1.1  cgd 	double *deg;
    170  1.1  cgd {
    171  1.1  cgd 	for (;;)
    172  1.1  cgd 		if (*deg < 0)
    173  1.1  cgd 			*deg += 360;
    174  1.1  cgd 		else if (*deg > 360)
    175  1.1  cgd 			*deg -= 360;
    176  1.1  cgd 		else
    177  1.1  cgd 			break;
    178  1.1  cgd }
    179