pom.c revision 1.3 1 1.1 cgd /*
2 1.1 cgd * Copyright (c) 1989 The Regents of the University of California.
3 1.1 cgd * All rights reserved.
4 1.1 cgd *
5 1.1 cgd * This code is derived from software posted to USENET.
6 1.1 cgd *
7 1.1 cgd * Redistribution and use in source and binary forms, with or without
8 1.1 cgd * modification, are permitted provided that the following conditions
9 1.1 cgd * are met:
10 1.1 cgd * 1. Redistributions of source code must retain the above copyright
11 1.1 cgd * notice, this list of conditions and the following disclaimer.
12 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 cgd * notice, this list of conditions and the following disclaimer in the
14 1.1 cgd * documentation and/or other materials provided with the distribution.
15 1.1 cgd * 3. All advertising materials mentioning features or use of this software
16 1.1 cgd * must display the following acknowledgement:
17 1.1 cgd * This product includes software developed by the University of
18 1.1 cgd * California, Berkeley and its contributors.
19 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
20 1.1 cgd * may be used to endorse or promote products derived from this software
21 1.1 cgd * without specific prior written permission.
22 1.1 cgd *
23 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 cgd * SUCH DAMAGE.
34 1.1 cgd */
35 1.1 cgd
36 1.1 cgd #ifndef lint
37 1.1 cgd char copyright[] =
38 1.1 cgd "@(#) Copyright (c) 1989 The Regents of the University of California.\n\
39 1.1 cgd All rights reserved.\n";
40 1.1 cgd #endif /* not lint */
41 1.1 cgd
42 1.1 cgd #ifndef lint
43 1.2 mycroft /*static char sccsid[] = "from: @(#)pom.c 5.3 (Berkeley) 2/28/91";*/
44 1.3 jtc static char rcsid[] = "$Id: pom.c,v 1.3 1995/02/03 18:15:02 jtc Exp $";
45 1.1 cgd #endif /* not lint */
46 1.1 cgd
47 1.1 cgd /*
48 1.1 cgd * Phase of the Moon. Calculates the current phase of the moon.
49 1.1 cgd * Based on routines from `Practical Astronomy with Your Calculator',
50 1.1 cgd * by Duffett-Smith. Comments give the section from the book that
51 1.1 cgd * particular piece of code was adapted from.
52 1.1 cgd *
53 1.1 cgd * -- Keith E. Brandt VIII 1984
54 1.1 cgd *
55 1.1 cgd */
56 1.1 cgd
57 1.1 cgd #include <sys/time.h>
58 1.1 cgd #include <stdio.h>
59 1.3 jtc #include <string.h>
60 1.1 cgd #include <tzfile.h>
61 1.1 cgd #include <math.h>
62 1.1 cgd
63 1.1 cgd #define PI 3.141592654
64 1.1 cgd #define EPOCH 85
65 1.1 cgd #define EPSILONg 279.611371 /* solar ecliptic long at EPOCH */
66 1.1 cgd #define RHOg 282.680403 /* solar ecliptic long of perigee at EPOCH */
67 1.1 cgd #define ECCEN 0.01671542 /* solar orbit eccentricity */
68 1.1 cgd #define lzero 18.251907 /* lunar mean long at EPOCH */
69 1.1 cgd #define Pzero 192.917585 /* lunar mean long of perigee at EPOCH */
70 1.1 cgd #define Nzero 55.204723 /* lunar mean long of node at EPOCH */
71 1.1 cgd
72 1.1 cgd double dtor(), potm(), adj360();
73 1.1 cgd
74 1.1 cgd main()
75 1.1 cgd {
76 1.1 cgd extern int errno;
77 1.1 cgd struct timeval tp;
78 1.1 cgd struct timezone tzp;
79 1.1 cgd struct tm *GMT, *gmtime();
80 1.1 cgd double days, today, tomorrow;
81 1.1 cgd int cnt;
82 1.1 cgd
83 1.1 cgd if (gettimeofday(&tp,&tzp)) {
84 1.1 cgd (void)fprintf(stderr, "pom: %s\n", strerror(errno));
85 1.1 cgd exit(1);
86 1.1 cgd }
87 1.1 cgd GMT = gmtime(&tp.tv_sec);
88 1.1 cgd days = (GMT->tm_yday + 1) + ((GMT->tm_hour +
89 1.1 cgd (GMT->tm_min / 60.0) + (GMT->tm_sec / 3600.0)) / 24.0);
90 1.1 cgd for (cnt = EPOCH; cnt < GMT->tm_year; ++cnt)
91 1.1 cgd days += isleap(cnt) ? 366 : 365;
92 1.1 cgd today = potm(days) + .5;
93 1.1 cgd (void)printf("The Moon is ");
94 1.1 cgd if ((int)today == 100)
95 1.1 cgd (void)printf("Full\n");
96 1.1 cgd else if (!(int)today)
97 1.1 cgd (void)printf("New\n");
98 1.1 cgd else {
99 1.1 cgd tomorrow = potm(days + 1);
100 1.1 cgd if ((int)today == 50)
101 1.1 cgd (void)printf("%s\n", tomorrow > today ?
102 1.1 cgd "at the First Quarter" : "at the Last Quarter");
103 1.1 cgd else {
104 1.1 cgd (void)printf("%s ", tomorrow > today ?
105 1.1 cgd "Waxing" : "Waning");
106 1.1 cgd if (today > 50)
107 1.1 cgd (void)printf("Gibbous (%1.0f%% of Full)\n",
108 1.1 cgd today);
109 1.1 cgd else if (today < 50)
110 1.1 cgd (void)printf("Crescent (%1.0f%% of Full)\n",
111 1.1 cgd today);
112 1.1 cgd }
113 1.1 cgd }
114 1.3 jtc exit(0);
115 1.1 cgd }
116 1.1 cgd
117 1.1 cgd /*
118 1.1 cgd * potm --
119 1.1 cgd * return phase of the moon
120 1.1 cgd */
121 1.1 cgd double
122 1.1 cgd potm(days)
123 1.1 cgd double days;
124 1.1 cgd {
125 1.1 cgd double N, Msol, Ec, LambdaSol, l, Mm, Ev, Ac, A3, Mmprime;
126 1.1 cgd double A4, lprime, V, ldprime, D, Nm;
127 1.1 cgd
128 1.1 cgd N = 360 * days / 365.2422; /* sec 42 #3 */
129 1.1 cgd adj360(&N);
130 1.1 cgd Msol = N + EPSILONg - RHOg; /* sec 42 #4 */
131 1.1 cgd adj360(&Msol);
132 1.1 cgd Ec = 360 / PI * ECCEN * sin(dtor(Msol)); /* sec 42 #5 */
133 1.1 cgd LambdaSol = N + Ec + EPSILONg; /* sec 42 #6 */
134 1.1 cgd adj360(&LambdaSol);
135 1.1 cgd l = 13.1763966 * days + lzero; /* sec 61 #4 */
136 1.1 cgd adj360(&l);
137 1.1 cgd Mm = l - (0.1114041 * days) - Pzero; /* sec 61 #5 */
138 1.1 cgd adj360(&Mm);
139 1.1 cgd Nm = Nzero - (0.0529539 * days); /* sec 61 #6 */
140 1.1 cgd adj360(&Nm);
141 1.1 cgd Ev = 1.2739 * sin(dtor(2*(l - LambdaSol) - Mm)); /* sec 61 #7 */
142 1.1 cgd Ac = 0.1858 * sin(dtor(Msol)); /* sec 61 #8 */
143 1.1 cgd A3 = 0.37 * sin(dtor(Msol));
144 1.1 cgd Mmprime = Mm + Ev - Ac - A3; /* sec 61 #9 */
145 1.1 cgd Ec = 6.2886 * sin(dtor(Mmprime)); /* sec 61 #10 */
146 1.1 cgd A4 = 0.214 * sin(dtor(2 * Mmprime)); /* sec 61 #11 */
147 1.1 cgd lprime = l + Ev + Ec - Ac + A4; /* sec 61 #12 */
148 1.1 cgd V = 0.6583 * sin(dtor(2 * (lprime - LambdaSol))); /* sec 61 #13 */
149 1.1 cgd ldprime = lprime + V; /* sec 61 #14 */
150 1.1 cgd D = ldprime - LambdaSol; /* sec 63 #2 */
151 1.1 cgd return(50 * (1 - cos(dtor(D)))); /* sec 63 #3 */
152 1.1 cgd }
153 1.1 cgd
154 1.1 cgd /*
155 1.1 cgd * dtor --
156 1.1 cgd * convert degrees to radians
157 1.1 cgd */
158 1.1 cgd double
159 1.1 cgd dtor(deg)
160 1.1 cgd double deg;
161 1.1 cgd {
162 1.1 cgd return(deg * PI / 180);
163 1.1 cgd }
164 1.1 cgd
165 1.1 cgd /*
166 1.1 cgd * adj360 --
167 1.1 cgd * adjust value so 0 <= deg <= 360
168 1.1 cgd */
169 1.1 cgd double
170 1.1 cgd adj360(deg)
171 1.1 cgd double *deg;
172 1.1 cgd {
173 1.1 cgd for (;;)
174 1.1 cgd if (*deg < 0)
175 1.1 cgd *deg += 360;
176 1.1 cgd else if (*deg > 360)
177 1.1 cgd *deg -= 360;
178 1.1 cgd else
179 1.1 cgd break;
180 1.1 cgd }
181