primes.c revision 1.12.22.2 1 1.12.22.2 matt /* primes.c,v 1.12.22.1 2008/01/09 01:30:54 matt Exp */
2 1.4 cgd
3 1.1 cgd /*
4 1.4 cgd * Copyright (c) 1989, 1993
5 1.4 cgd * The Regents of the University of California. All rights reserved.
6 1.1 cgd *
7 1.1 cgd * This code is derived from software contributed to Berkeley by
8 1.1 cgd * Landon Curt Noll.
9 1.1 cgd *
10 1.1 cgd * Redistribution and use in source and binary forms, with or without
11 1.1 cgd * modification, are permitted provided that the following conditions
12 1.1 cgd * are met:
13 1.1 cgd * 1. Redistributions of source code must retain the above copyright
14 1.1 cgd * notice, this list of conditions and the following disclaimer.
15 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 cgd * notice, this list of conditions and the following disclaimer in the
17 1.1 cgd * documentation and/or other materials provided with the distribution.
18 1.11 agc * 3. Neither the name of the University nor the names of its contributors
19 1.1 cgd * may be used to endorse or promote products derived from this software
20 1.1 cgd * without specific prior written permission.
21 1.1 cgd *
22 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 cgd * SUCH DAMAGE.
33 1.1 cgd */
34 1.1 cgd
35 1.7 lukem #include <sys/cdefs.h>
36 1.1 cgd #ifndef lint
37 1.7 lukem __COPYRIGHT("@(#) Copyright (c) 1989, 1993\n\
38 1.7 lukem The Regents of the University of California. All rights reserved.\n");
39 1.1 cgd #endif /* not lint */
40 1.1 cgd
41 1.1 cgd #ifndef lint
42 1.4 cgd #if 0
43 1.6 tls static char sccsid[] = "@(#)primes.c 8.5 (Berkeley) 5/10/95";
44 1.4 cgd #else
45 1.12.22.2 matt __RCSID("primes.c,v 1.12.22.1 2008/01/09 01:30:54 matt Exp");
46 1.4 cgd #endif
47 1.1 cgd #endif /* not lint */
48 1.1 cgd
49 1.1 cgd /*
50 1.1 cgd * primes - generate a table of primes between two values
51 1.1 cgd *
52 1.4 cgd * By: Landon Curt Noll chongo (at) toad.com, ...!{sun,tolsoft}!hoptoad!chongo
53 1.1 cgd *
54 1.4 cgd * chongo <for a good prime call: 391581 * 2^216193 - 1> /\oo/\
55 1.1 cgd *
56 1.1 cgd * usage:
57 1.1 cgd * primes [start [stop]]
58 1.1 cgd *
59 1.1 cgd * Print primes >= start and < stop. If stop is omitted,
60 1.1 cgd * the value 4294967295 (2^32-1) is assumed. If start is
61 1.1 cgd * omitted, start is read from standard input.
62 1.1 cgd *
63 1.1 cgd * validation check: there are 664579 primes between 0 and 10^7
64 1.1 cgd */
65 1.1 cgd
66 1.4 cgd #include <ctype.h>
67 1.4 cgd #include <err.h>
68 1.4 cgd #include <errno.h>
69 1.4 cgd #include <limits.h>
70 1.1 cgd #include <math.h>
71 1.1 cgd #include <memory.h>
72 1.4 cgd #include <stdio.h>
73 1.4 cgd #include <stdlib.h>
74 1.6 tls #include <unistd.h>
75 1.4 cgd
76 1.1 cgd #include "primes.h"
77 1.1 cgd
78 1.1 cgd /*
79 1.1 cgd * Eratosthenes sieve table
80 1.1 cgd *
81 1.1 cgd * We only sieve the odd numbers. The base of our sieve windows are always
82 1.1 cgd * odd. If the base of table is 1, table[i] represents 2*i-1. After the
83 1.1 cgd * sieve, table[i] == 1 if and only iff 2*i-1 is prime.
84 1.1 cgd *
85 1.1 cgd * We make TABSIZE large to reduce the overhead of inner loop setup.
86 1.1 cgd */
87 1.1 cgd char table[TABSIZE]; /* Eratosthenes sieve of odd numbers */
88 1.1 cgd
89 1.1 cgd /*
90 1.1 cgd * prime[i] is the (i-1)th prime.
91 1.1 cgd *
92 1.1 cgd * We are able to sieve 2^32-1 because this byte table yields all primes
93 1.1 cgd * up to 65537 and 65537^2 > 2^32-1.
94 1.1 cgd */
95 1.9 jsm extern const ubig prime[];
96 1.9 jsm extern const ubig *pr_limit; /* largest prime in the prime array */
97 1.1 cgd
98 1.1 cgd /*
99 1.1 cgd * To avoid excessive sieves for small factors, we use the table below to
100 1.1 cgd * setup our sieve blocks. Each element represents a odd number starting
101 1.1 cgd * with 1. All non-zero elements are factors of 3, 5, 7, 11 and 13.
102 1.1 cgd */
103 1.9 jsm extern const char pattern[];
104 1.9 jsm extern const int pattern_size; /* length of pattern array */
105 1.1 cgd
106 1.12.22.2 matt int dflag;
107 1.12.22.2 matt
108 1.12 jsm int main(int, char *[]);
109 1.12 jsm void primes(ubig, ubig);
110 1.12 jsm ubig read_num_buf(void);
111 1.12.22.1 matt void usage(void) __dead;
112 1.1 cgd
113 1.4 cgd int
114 1.12.22.2 matt main(int argc, char *argv[])
115 1.1 cgd {
116 1.4 cgd ubig start; /* where to start generating */
117 1.4 cgd ubig stop; /* don't generate at or above this value */
118 1.4 cgd int ch;
119 1.4 cgd char *p;
120 1.4 cgd
121 1.12.22.2 matt while ((ch = getopt(argc, argv, "d")) != -1)
122 1.4 cgd switch (ch) {
123 1.12.22.2 matt case 'd':
124 1.12.22.2 matt dflag++;
125 1.12.22.2 matt break;
126 1.4 cgd case '?':
127 1.4 cgd default:
128 1.4 cgd usage();
129 1.4 cgd }
130 1.4 cgd argc -= optind;
131 1.4 cgd argv += optind;
132 1.1 cgd
133 1.1 cgd start = 0;
134 1.1 cgd stop = BIG;
135 1.1 cgd
136 1.4 cgd /*
137 1.4 cgd * Convert low and high args. Strtoul(3) sets errno to
138 1.4 cgd * ERANGE if the number is too large, but, if there's
139 1.4 cgd * a leading minus sign it returns the negation of the
140 1.4 cgd * result of the conversion, which we'd rather disallow.
141 1.4 cgd */
142 1.4 cgd switch (argc) {
143 1.4 cgd case 2:
144 1.4 cgd /* Start and stop supplied on the command line. */
145 1.4 cgd if (argv[0][0] == '-' || argv[1][0] == '-')
146 1.4 cgd errx(1, "negative numbers aren't permitted.");
147 1.4 cgd
148 1.4 cgd errno = 0;
149 1.4 cgd start = strtoul(argv[0], &p, 10);
150 1.4 cgd if (errno)
151 1.4 cgd err(1, "%s", argv[0]);
152 1.4 cgd if (*p != '\0')
153 1.4 cgd errx(1, "%s: illegal numeric format.", argv[0]);
154 1.4 cgd
155 1.4 cgd errno = 0;
156 1.4 cgd stop = strtoul(argv[1], &p, 10);
157 1.4 cgd if (errno)
158 1.4 cgd err(1, "%s", argv[1]);
159 1.4 cgd if (*p != '\0')
160 1.4 cgd errx(1, "%s: illegal numeric format.", argv[1]);
161 1.4 cgd break;
162 1.4 cgd case 1:
163 1.4 cgd /* Start on the command line. */
164 1.4 cgd if (argv[0][0] == '-')
165 1.4 cgd errx(1, "negative numbers aren't permitted.");
166 1.4 cgd
167 1.4 cgd errno = 0;
168 1.4 cgd start = strtoul(argv[0], &p, 10);
169 1.4 cgd if (errno)
170 1.4 cgd err(1, "%s", argv[0]);
171 1.4 cgd if (*p != '\0')
172 1.4 cgd errx(1, "%s: illegal numeric format.", argv[0]);
173 1.4 cgd break;
174 1.4 cgd case 0:
175 1.4 cgd start = read_num_buf();
176 1.4 cgd break;
177 1.4 cgd default:
178 1.4 cgd usage();
179 1.4 cgd }
180 1.1 cgd
181 1.4 cgd if (start > stop)
182 1.4 cgd errx(1, "start value must be less than stop value.");
183 1.1 cgd primes(start, stop);
184 1.1 cgd exit(0);
185 1.1 cgd }
186 1.1 cgd
187 1.1 cgd /*
188 1.4 cgd * read_num_buf --
189 1.4 cgd * This routine returns a number n, where 0 <= n && n <= BIG.
190 1.1 cgd */
191 1.4 cgd ubig
192 1.12.22.2 matt read_num_buf(void)
193 1.1 cgd {
194 1.4 cgd ubig val;
195 1.4 cgd char *p, buf[100]; /* > max number of digits. */
196 1.1 cgd
197 1.4 cgd for (;;) {
198 1.4 cgd if (fgets(buf, sizeof(buf), stdin) == NULL) {
199 1.4 cgd if (ferror(stdin))
200 1.4 cgd err(1, "stdin");
201 1.4 cgd exit(0);
202 1.1 cgd }
203 1.4 cgd for (p = buf; isblank(*p); ++p);
204 1.4 cgd if (*p == '\n' || *p == '\0')
205 1.1 cgd continue;
206 1.4 cgd if (*p == '-')
207 1.4 cgd errx(1, "negative numbers aren't permitted.");
208 1.4 cgd errno = 0;
209 1.4 cgd val = strtoul(buf, &p, 10);
210 1.4 cgd if (errno)
211 1.4 cgd err(1, "%s", buf);
212 1.4 cgd if (*p != '\n')
213 1.4 cgd errx(1, "%s: illegal numeric format.", buf);
214 1.4 cgd return (val);
215 1.4 cgd }
216 1.1 cgd }
217 1.1 cgd
218 1.1 cgd /*
219 1.1 cgd * primes - sieve and print primes from start up to and but not including stop
220 1.12.22.2 matt *
221 1.12.22.2 matt * start where to start generating
222 1.12.22.2 matt * stop don't generate at or above this value
223 1.1 cgd */
224 1.1 cgd void
225 1.12.22.2 matt primes(ubig start, ubig stop)
226 1.1 cgd {
227 1.7 lukem char *q; /* sieve spot */
228 1.7 lukem ubig factor; /* index and factor */
229 1.7 lukem char *tab_lim; /* the limit to sieve on the table */
230 1.9 jsm const ubig *p; /* prime table pointer */
231 1.7 lukem ubig fact_lim; /* highest prime for current block */
232 1.10 itojun ubig mod; /* temp storage for mod */
233 1.12.22.2 matt ubig prev = 0;
234 1.1 cgd
235 1.1 cgd /*
236 1.4 cgd * A number of systems can not convert double values into unsigned
237 1.4 cgd * longs when the values are larger than the largest signed value.
238 1.4 cgd * We don't have this problem, so we can go all the way to BIG.
239 1.1 cgd */
240 1.1 cgd if (start < 3) {
241 1.1 cgd start = (ubig)2;
242 1.1 cgd }
243 1.1 cgd if (stop < 3) {
244 1.1 cgd stop = (ubig)2;
245 1.1 cgd }
246 1.1 cgd if (stop <= start) {
247 1.1 cgd return;
248 1.1 cgd }
249 1.1 cgd
250 1.1 cgd /*
251 1.1 cgd * be sure that the values are odd, or 2
252 1.1 cgd */
253 1.1 cgd if (start != 2 && (start&0x1) == 0) {
254 1.1 cgd ++start;
255 1.1 cgd }
256 1.1 cgd if (stop != 2 && (stop&0x1) == 0) {
257 1.1 cgd ++stop;
258 1.1 cgd }
259 1.1 cgd
260 1.1 cgd /*
261 1.1 cgd * quick list of primes <= pr_limit
262 1.1 cgd */
263 1.1 cgd if (start <= *pr_limit) {
264 1.1 cgd /* skip primes up to the start value */
265 1.1 cgd for (p = &prime[0], factor = prime[0];
266 1.4 cgd factor < stop && p <= pr_limit; factor = *(++p)) {
267 1.1 cgd if (factor >= start) {
268 1.12.22.2 matt printf("%lu", (unsigned long) factor);
269 1.12.22.2 matt if (dflag) {
270 1.12.22.2 matt printf(" (%lu)",
271 1.12.22.2 matt (unsigned long) factor - prev);
272 1.12.22.2 matt }
273 1.12.22.2 matt putchar('\n');
274 1.1 cgd }
275 1.12.22.2 matt prev = factor;
276 1.1 cgd }
277 1.1 cgd /* return early if we are done */
278 1.1 cgd if (p <= pr_limit) {
279 1.1 cgd return;
280 1.1 cgd }
281 1.1 cgd start = *pr_limit+2;
282 1.1 cgd }
283 1.1 cgd
284 1.1 cgd /*
285 1.1 cgd * we shall sieve a bytemap window, note primes and move the window
286 1.1 cgd * upward until we pass the stop point
287 1.1 cgd */
288 1.1 cgd while (start < stop) {
289 1.1 cgd /*
290 1.1 cgd * factor out 3, 5, 7, 11 and 13
291 1.1 cgd */
292 1.1 cgd /* initial pattern copy */
293 1.1 cgd factor = (start%(2*3*5*7*11*13))/2; /* starting copy spot */
294 1.1 cgd memcpy(table, &pattern[factor], pattern_size-factor);
295 1.1 cgd /* main block pattern copies */
296 1.1 cgd for (fact_lim=pattern_size-factor;
297 1.4 cgd fact_lim+pattern_size<=TABSIZE; fact_lim+=pattern_size) {
298 1.1 cgd memcpy(&table[fact_lim], pattern, pattern_size);
299 1.1 cgd }
300 1.1 cgd /* final block pattern copy */
301 1.1 cgd memcpy(&table[fact_lim], pattern, TABSIZE-fact_lim);
302 1.1 cgd
303 1.1 cgd /*
304 1.1 cgd * sieve for primes 17 and higher
305 1.1 cgd */
306 1.1 cgd /* note highest useful factor and sieve spot */
307 1.1 cgd if (stop-start > TABSIZE+TABSIZE) {
308 1.1 cgd tab_lim = &table[TABSIZE]; /* sieve it all */
309 1.1 cgd fact_lim = (int)sqrt(
310 1.1 cgd (double)(start)+TABSIZE+TABSIZE+1.0);
311 1.1 cgd } else {
312 1.1 cgd tab_lim = &table[(stop-start)/2]; /* partial sieve */
313 1.1 cgd fact_lim = (int)sqrt((double)(stop)+1.0);
314 1.1 cgd }
315 1.1 cgd /* sieve for factors >= 17 */
316 1.1 cgd factor = 17; /* 17 is first prime to use */
317 1.1 cgd p = &prime[7]; /* 19 is next prime, pi(19)=7 */
318 1.1 cgd do {
319 1.1 cgd /* determine the factor's initial sieve point */
320 1.10 itojun mod = start%factor;
321 1.10 itojun if (mod & 0x1) {
322 1.10 itojun q = &table[(factor-mod)/2];
323 1.1 cgd } else {
324 1.10 itojun q = &table[mod ? factor-(mod/2) : 0];
325 1.1 cgd }
326 1.12.22.2 matt /* sieve for our current factor */
327 1.1 cgd for ( ; q < tab_lim; q += factor) {
328 1.1 cgd *q = '\0'; /* sieve out a spot */
329 1.1 cgd }
330 1.1 cgd } while ((factor=(ubig)(*(p++))) <= fact_lim);
331 1.1 cgd
332 1.1 cgd /*
333 1.1 cgd * print generated primes
334 1.1 cgd */
335 1.1 cgd for (q = table; q < tab_lim; ++q, start+=2) {
336 1.1 cgd if (*q) {
337 1.12.22.2 matt printf("%lu", (unsigned long) start);
338 1.12.22.2 matt if (dflag) {
339 1.12.22.2 matt printf(" (%lu)",
340 1.12.22.2 matt (unsigned long) start - prev);
341 1.12.22.2 matt prev = start;
342 1.12.22.2 matt }
343 1.12.22.2 matt putchar('\n');
344 1.1 cgd }
345 1.1 cgd }
346 1.1 cgd }
347 1.4 cgd }
348 1.4 cgd
349 1.4 cgd void
350 1.12.22.2 matt usage(void)
351 1.4 cgd {
352 1.12.22.2 matt (void)fprintf(stderr, "usage: primes [-d] [start [stop]]\n");
353 1.4 cgd exit(1);
354 1.1 cgd }
355