primes.c revision 1.17 1 1.17 dholland /* $NetBSD: primes.c,v 1.17 2009/08/12 08:25:27 dholland Exp $ */
2 1.4 cgd
3 1.1 cgd /*
4 1.4 cgd * Copyright (c) 1989, 1993
5 1.4 cgd * The Regents of the University of California. All rights reserved.
6 1.1 cgd *
7 1.1 cgd * This code is derived from software contributed to Berkeley by
8 1.1 cgd * Landon Curt Noll.
9 1.1 cgd *
10 1.1 cgd * Redistribution and use in source and binary forms, with or without
11 1.1 cgd * modification, are permitted provided that the following conditions
12 1.1 cgd * are met:
13 1.1 cgd * 1. Redistributions of source code must retain the above copyright
14 1.1 cgd * notice, this list of conditions and the following disclaimer.
15 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 cgd * notice, this list of conditions and the following disclaimer in the
17 1.1 cgd * documentation and/or other materials provided with the distribution.
18 1.11 agc * 3. Neither the name of the University nor the names of its contributors
19 1.1 cgd * may be used to endorse or promote products derived from this software
20 1.1 cgd * without specific prior written permission.
21 1.1 cgd *
22 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 cgd * SUCH DAMAGE.
33 1.1 cgd */
34 1.1 cgd
35 1.7 lukem #include <sys/cdefs.h>
36 1.1 cgd #ifndef lint
37 1.16 lukem __COPYRIGHT("@(#) Copyright (c) 1989, 1993\
38 1.16 lukem The Regents of the University of California. All rights reserved.");
39 1.1 cgd #endif /* not lint */
40 1.1 cgd
41 1.1 cgd #ifndef lint
42 1.4 cgd #if 0
43 1.6 tls static char sccsid[] = "@(#)primes.c 8.5 (Berkeley) 5/10/95";
44 1.4 cgd #else
45 1.17 dholland __RCSID("$NetBSD: primes.c,v 1.17 2009/08/12 08:25:27 dholland Exp $");
46 1.4 cgd #endif
47 1.1 cgd #endif /* not lint */
48 1.1 cgd
49 1.1 cgd /*
50 1.1 cgd * primes - generate a table of primes between two values
51 1.1 cgd *
52 1.4 cgd * By: Landon Curt Noll chongo (at) toad.com, ...!{sun,tolsoft}!hoptoad!chongo
53 1.1 cgd *
54 1.4 cgd * chongo <for a good prime call: 391581 * 2^216193 - 1> /\oo/\
55 1.1 cgd *
56 1.1 cgd * usage:
57 1.1 cgd * primes [start [stop]]
58 1.1 cgd *
59 1.1 cgd * Print primes >= start and < stop. If stop is omitted,
60 1.1 cgd * the value 4294967295 (2^32-1) is assumed. If start is
61 1.1 cgd * omitted, start is read from standard input.
62 1.1 cgd *
63 1.1 cgd * validation check: there are 664579 primes between 0 and 10^7
64 1.1 cgd */
65 1.1 cgd
66 1.4 cgd #include <ctype.h>
67 1.4 cgd #include <err.h>
68 1.4 cgd #include <errno.h>
69 1.4 cgd #include <limits.h>
70 1.1 cgd #include <math.h>
71 1.1 cgd #include <memory.h>
72 1.4 cgd #include <stdio.h>
73 1.4 cgd #include <stdlib.h>
74 1.6 tls #include <unistd.h>
75 1.4 cgd
76 1.1 cgd #include "primes.h"
77 1.1 cgd
78 1.1 cgd /*
79 1.1 cgd * Eratosthenes sieve table
80 1.1 cgd *
81 1.1 cgd * We only sieve the odd numbers. The base of our sieve windows are always
82 1.1 cgd * odd. If the base of table is 1, table[i] represents 2*i-1. After the
83 1.1 cgd * sieve, table[i] == 1 if and only iff 2*i-1 is prime.
84 1.1 cgd *
85 1.1 cgd * We make TABSIZE large to reduce the overhead of inner loop setup.
86 1.1 cgd */
87 1.17 dholland static char table[TABSIZE]; /* Eratosthenes sieve of odd numbers */
88 1.1 cgd
89 1.1 cgd /*
90 1.1 cgd * prime[i] is the (i-1)th prime.
91 1.1 cgd *
92 1.1 cgd * We are able to sieve 2^32-1 because this byte table yields all primes
93 1.1 cgd * up to 65537 and 65537^2 > 2^32-1.
94 1.1 cgd */
95 1.9 jsm extern const ubig prime[];
96 1.9 jsm extern const ubig *pr_limit; /* largest prime in the prime array */
97 1.1 cgd
98 1.1 cgd /*
99 1.1 cgd * To avoid excessive sieves for small factors, we use the table below to
100 1.1 cgd * setup our sieve blocks. Each element represents a odd number starting
101 1.1 cgd * with 1. All non-zero elements are factors of 3, 5, 7, 11 and 13.
102 1.1 cgd */
103 1.9 jsm extern const char pattern[];
104 1.9 jsm extern const int pattern_size; /* length of pattern array */
105 1.1 cgd
106 1.17 dholland static int dflag;
107 1.15 matt
108 1.17 dholland static void primes(ubig, ubig);
109 1.17 dholland static ubig read_num_buf(void);
110 1.17 dholland static void usage(void) __dead;
111 1.1 cgd
112 1.4 cgd int
113 1.15 matt main(int argc, char *argv[])
114 1.1 cgd {
115 1.4 cgd ubig start; /* where to start generating */
116 1.4 cgd ubig stop; /* don't generate at or above this value */
117 1.4 cgd int ch;
118 1.4 cgd char *p;
119 1.4 cgd
120 1.15 matt while ((ch = getopt(argc, argv, "d")) != -1)
121 1.4 cgd switch (ch) {
122 1.15 matt case 'd':
123 1.15 matt dflag++;
124 1.15 matt break;
125 1.4 cgd case '?':
126 1.4 cgd default:
127 1.4 cgd usage();
128 1.4 cgd }
129 1.4 cgd argc -= optind;
130 1.4 cgd argv += optind;
131 1.1 cgd
132 1.1 cgd start = 0;
133 1.1 cgd stop = BIG;
134 1.1 cgd
135 1.4 cgd /*
136 1.4 cgd * Convert low and high args. Strtoul(3) sets errno to
137 1.4 cgd * ERANGE if the number is too large, but, if there's
138 1.4 cgd * a leading minus sign it returns the negation of the
139 1.4 cgd * result of the conversion, which we'd rather disallow.
140 1.4 cgd */
141 1.4 cgd switch (argc) {
142 1.4 cgd case 2:
143 1.4 cgd /* Start and stop supplied on the command line. */
144 1.4 cgd if (argv[0][0] == '-' || argv[1][0] == '-')
145 1.4 cgd errx(1, "negative numbers aren't permitted.");
146 1.4 cgd
147 1.4 cgd errno = 0;
148 1.4 cgd start = strtoul(argv[0], &p, 10);
149 1.4 cgd if (errno)
150 1.4 cgd err(1, "%s", argv[0]);
151 1.4 cgd if (*p != '\0')
152 1.4 cgd errx(1, "%s: illegal numeric format.", argv[0]);
153 1.4 cgd
154 1.4 cgd errno = 0;
155 1.4 cgd stop = strtoul(argv[1], &p, 10);
156 1.4 cgd if (errno)
157 1.4 cgd err(1, "%s", argv[1]);
158 1.4 cgd if (*p != '\0')
159 1.4 cgd errx(1, "%s: illegal numeric format.", argv[1]);
160 1.4 cgd break;
161 1.4 cgd case 1:
162 1.4 cgd /* Start on the command line. */
163 1.4 cgd if (argv[0][0] == '-')
164 1.4 cgd errx(1, "negative numbers aren't permitted.");
165 1.4 cgd
166 1.4 cgd errno = 0;
167 1.4 cgd start = strtoul(argv[0], &p, 10);
168 1.4 cgd if (errno)
169 1.4 cgd err(1, "%s", argv[0]);
170 1.4 cgd if (*p != '\0')
171 1.4 cgd errx(1, "%s: illegal numeric format.", argv[0]);
172 1.4 cgd break;
173 1.4 cgd case 0:
174 1.4 cgd start = read_num_buf();
175 1.4 cgd break;
176 1.4 cgd default:
177 1.4 cgd usage();
178 1.4 cgd }
179 1.1 cgd
180 1.4 cgd if (start > stop)
181 1.4 cgd errx(1, "start value must be less than stop value.");
182 1.1 cgd primes(start, stop);
183 1.1 cgd exit(0);
184 1.1 cgd }
185 1.1 cgd
186 1.1 cgd /*
187 1.4 cgd * read_num_buf --
188 1.4 cgd * This routine returns a number n, where 0 <= n && n <= BIG.
189 1.1 cgd */
190 1.4 cgd ubig
191 1.15 matt read_num_buf(void)
192 1.1 cgd {
193 1.4 cgd ubig val;
194 1.4 cgd char *p, buf[100]; /* > max number of digits. */
195 1.1 cgd
196 1.4 cgd for (;;) {
197 1.4 cgd if (fgets(buf, sizeof(buf), stdin) == NULL) {
198 1.4 cgd if (ferror(stdin))
199 1.4 cgd err(1, "stdin");
200 1.4 cgd exit(0);
201 1.1 cgd }
202 1.4 cgd for (p = buf; isblank(*p); ++p);
203 1.4 cgd if (*p == '\n' || *p == '\0')
204 1.1 cgd continue;
205 1.4 cgd if (*p == '-')
206 1.4 cgd errx(1, "negative numbers aren't permitted.");
207 1.4 cgd errno = 0;
208 1.4 cgd val = strtoul(buf, &p, 10);
209 1.4 cgd if (errno)
210 1.4 cgd err(1, "%s", buf);
211 1.4 cgd if (*p != '\n')
212 1.4 cgd errx(1, "%s: illegal numeric format.", buf);
213 1.4 cgd return (val);
214 1.4 cgd }
215 1.1 cgd }
216 1.1 cgd
217 1.1 cgd /*
218 1.1 cgd * primes - sieve and print primes from start up to and but not including stop
219 1.15 matt *
220 1.15 matt * start where to start generating
221 1.15 matt * stop don't generate at or above this value
222 1.1 cgd */
223 1.1 cgd void
224 1.15 matt primes(ubig start, ubig stop)
225 1.1 cgd {
226 1.7 lukem char *q; /* sieve spot */
227 1.7 lukem ubig factor; /* index and factor */
228 1.7 lukem char *tab_lim; /* the limit to sieve on the table */
229 1.9 jsm const ubig *p; /* prime table pointer */
230 1.7 lukem ubig fact_lim; /* highest prime for current block */
231 1.10 itojun ubig mod; /* temp storage for mod */
232 1.15 matt ubig prev = 0;
233 1.1 cgd
234 1.1 cgd /*
235 1.4 cgd * A number of systems can not convert double values into unsigned
236 1.4 cgd * longs when the values are larger than the largest signed value.
237 1.4 cgd * We don't have this problem, so we can go all the way to BIG.
238 1.1 cgd */
239 1.1 cgd if (start < 3) {
240 1.1 cgd start = (ubig)2;
241 1.1 cgd }
242 1.1 cgd if (stop < 3) {
243 1.1 cgd stop = (ubig)2;
244 1.1 cgd }
245 1.1 cgd if (stop <= start) {
246 1.1 cgd return;
247 1.1 cgd }
248 1.1 cgd
249 1.1 cgd /*
250 1.1 cgd * be sure that the values are odd, or 2
251 1.1 cgd */
252 1.1 cgd if (start != 2 && (start&0x1) == 0) {
253 1.1 cgd ++start;
254 1.1 cgd }
255 1.1 cgd if (stop != 2 && (stop&0x1) == 0) {
256 1.1 cgd ++stop;
257 1.1 cgd }
258 1.1 cgd
259 1.1 cgd /*
260 1.1 cgd * quick list of primes <= pr_limit
261 1.1 cgd */
262 1.1 cgd if (start <= *pr_limit) {
263 1.1 cgd /* skip primes up to the start value */
264 1.1 cgd for (p = &prime[0], factor = prime[0];
265 1.4 cgd factor < stop && p <= pr_limit; factor = *(++p)) {
266 1.1 cgd if (factor >= start) {
267 1.15 matt printf("%lu", (unsigned long) factor);
268 1.15 matt if (dflag) {
269 1.15 matt printf(" (%lu)",
270 1.15 matt (unsigned long) factor - prev);
271 1.15 matt }
272 1.15 matt putchar('\n');
273 1.1 cgd }
274 1.15 matt prev = factor;
275 1.1 cgd }
276 1.1 cgd /* return early if we are done */
277 1.1 cgd if (p <= pr_limit) {
278 1.1 cgd return;
279 1.1 cgd }
280 1.1 cgd start = *pr_limit+2;
281 1.1 cgd }
282 1.1 cgd
283 1.1 cgd /*
284 1.1 cgd * we shall sieve a bytemap window, note primes and move the window
285 1.1 cgd * upward until we pass the stop point
286 1.1 cgd */
287 1.1 cgd while (start < stop) {
288 1.1 cgd /*
289 1.1 cgd * factor out 3, 5, 7, 11 and 13
290 1.1 cgd */
291 1.1 cgd /* initial pattern copy */
292 1.1 cgd factor = (start%(2*3*5*7*11*13))/2; /* starting copy spot */
293 1.1 cgd memcpy(table, &pattern[factor], pattern_size-factor);
294 1.1 cgd /* main block pattern copies */
295 1.1 cgd for (fact_lim=pattern_size-factor;
296 1.4 cgd fact_lim+pattern_size<=TABSIZE; fact_lim+=pattern_size) {
297 1.1 cgd memcpy(&table[fact_lim], pattern, pattern_size);
298 1.1 cgd }
299 1.1 cgd /* final block pattern copy */
300 1.1 cgd memcpy(&table[fact_lim], pattern, TABSIZE-fact_lim);
301 1.1 cgd
302 1.1 cgd /*
303 1.1 cgd * sieve for primes 17 and higher
304 1.1 cgd */
305 1.1 cgd /* note highest useful factor and sieve spot */
306 1.1 cgd if (stop-start > TABSIZE+TABSIZE) {
307 1.1 cgd tab_lim = &table[TABSIZE]; /* sieve it all */
308 1.1 cgd fact_lim = (int)sqrt(
309 1.1 cgd (double)(start)+TABSIZE+TABSIZE+1.0);
310 1.1 cgd } else {
311 1.1 cgd tab_lim = &table[(stop-start)/2]; /* partial sieve */
312 1.1 cgd fact_lim = (int)sqrt((double)(stop)+1.0);
313 1.1 cgd }
314 1.1 cgd /* sieve for factors >= 17 */
315 1.1 cgd factor = 17; /* 17 is first prime to use */
316 1.1 cgd p = &prime[7]; /* 19 is next prime, pi(19)=7 */
317 1.1 cgd do {
318 1.1 cgd /* determine the factor's initial sieve point */
319 1.10 itojun mod = start%factor;
320 1.10 itojun if (mod & 0x1) {
321 1.10 itojun q = &table[(factor-mod)/2];
322 1.1 cgd } else {
323 1.10 itojun q = &table[mod ? factor-(mod/2) : 0];
324 1.1 cgd }
325 1.14 matt /* sieve for our current factor */
326 1.1 cgd for ( ; q < tab_lim; q += factor) {
327 1.1 cgd *q = '\0'; /* sieve out a spot */
328 1.1 cgd }
329 1.1 cgd } while ((factor=(ubig)(*(p++))) <= fact_lim);
330 1.1 cgd
331 1.1 cgd /*
332 1.1 cgd * print generated primes
333 1.1 cgd */
334 1.1 cgd for (q = table; q < tab_lim; ++q, start+=2) {
335 1.1 cgd if (*q) {
336 1.15 matt printf("%lu", (unsigned long) start);
337 1.15 matt if (dflag) {
338 1.15 matt printf(" (%lu)",
339 1.15 matt (unsigned long) start - prev);
340 1.15 matt prev = start;
341 1.15 matt }
342 1.15 matt putchar('\n');
343 1.1 cgd }
344 1.1 cgd }
345 1.1 cgd }
346 1.4 cgd }
347 1.4 cgd
348 1.4 cgd void
349 1.15 matt usage(void)
350 1.4 cgd {
351 1.15 matt (void)fprintf(stderr, "usage: primes [-d] [start [stop]]\n");
352 1.4 cgd exit(1);
353 1.1 cgd }
354