primes.c revision 1.3 1 1.1 cgd /*
2 1.1 cgd * Copyright (c) 1989 The Regents of the University of California.
3 1.1 cgd * All rights reserved.
4 1.1 cgd *
5 1.1 cgd * This code is derived from software contributed to Berkeley by
6 1.1 cgd * Landon Curt Noll.
7 1.1 cgd *
8 1.1 cgd * Redistribution and use in source and binary forms, with or without
9 1.1 cgd * modification, are permitted provided that the following conditions
10 1.1 cgd * are met:
11 1.1 cgd * 1. Redistributions of source code must retain the above copyright
12 1.1 cgd * notice, this list of conditions and the following disclaimer.
13 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 cgd * notice, this list of conditions and the following disclaimer in the
15 1.1 cgd * documentation and/or other materials provided with the distribution.
16 1.1 cgd * 3. All advertising materials mentioning features or use of this software
17 1.1 cgd * must display the following acknowledgement:
18 1.1 cgd * This product includes software developed by the University of
19 1.1 cgd * California, Berkeley and its contributors.
20 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
21 1.1 cgd * may be used to endorse or promote products derived from this software
22 1.1 cgd * without specific prior written permission.
23 1.1 cgd *
24 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.1 cgd * SUCH DAMAGE.
35 1.1 cgd */
36 1.1 cgd
37 1.1 cgd #ifndef lint
38 1.1 cgd char copyright[] =
39 1.1 cgd "@(#) Copyright (c) 1989 The Regents of the University of California.\n\
40 1.1 cgd All rights reserved.\n";
41 1.1 cgd #endif /* not lint */
42 1.1 cgd
43 1.1 cgd #ifndef lint
44 1.2 mycroft /*static char sccsid[] = "from: @(#)primes.c 5.4 (Berkeley) 6/1/90";*/
45 1.3 cgd static char rcsid[] = "$Id: primes.c,v 1.3 1994/03/01 01:07:48 cgd Exp $";
46 1.1 cgd #endif /* not lint */
47 1.1 cgd
48 1.1 cgd /*
49 1.1 cgd * primes - generate a table of primes between two values
50 1.1 cgd *
51 1.1 cgd * By: Landon Curt Noll chongo (at) toad.com, ...!{sun,tolsoft}!hoptoad!chongo
52 1.1 cgd *
53 1.1 cgd * chongo <for a good prime call: 391581 * 2^216193 - 1> /\oo/\
54 1.1 cgd *
55 1.1 cgd * usage:
56 1.1 cgd * primes [start [stop]]
57 1.1 cgd *
58 1.1 cgd * Print primes >= start and < stop. If stop is omitted,
59 1.1 cgd * the value 4294967295 (2^32-1) is assumed. If start is
60 1.1 cgd * omitted, start is read from standard input.
61 1.1 cgd *
62 1.1 cgd * Prints "ouch" if start or stop is bogus.
63 1.1 cgd *
64 1.1 cgd * validation check: there are 664579 primes between 0 and 10^7
65 1.1 cgd */
66 1.1 cgd
67 1.1 cgd #include <stdio.h>
68 1.1 cgd #include <math.h>
69 1.1 cgd #include <memory.h>
70 1.1 cgd #include <ctype.h>
71 1.3 cgd #include <limits.h>
72 1.1 cgd #include "primes.h"
73 1.1 cgd
74 1.1 cgd /*
75 1.1 cgd * Eratosthenes sieve table
76 1.1 cgd *
77 1.1 cgd * We only sieve the odd numbers. The base of our sieve windows are always
78 1.1 cgd * odd. If the base of table is 1, table[i] represents 2*i-1. After the
79 1.1 cgd * sieve, table[i] == 1 if and only iff 2*i-1 is prime.
80 1.1 cgd *
81 1.1 cgd * We make TABSIZE large to reduce the overhead of inner loop setup.
82 1.1 cgd */
83 1.1 cgd char table[TABSIZE]; /* Eratosthenes sieve of odd numbers */
84 1.1 cgd
85 1.1 cgd /*
86 1.1 cgd * prime[i] is the (i-1)th prime.
87 1.1 cgd *
88 1.1 cgd * We are able to sieve 2^32-1 because this byte table yields all primes
89 1.1 cgd * up to 65537 and 65537^2 > 2^32-1.
90 1.1 cgd */
91 1.1 cgd extern ubig prime[];
92 1.1 cgd extern ubig *pr_limit; /* largest prime in the prime array */
93 1.1 cgd
94 1.1 cgd /*
95 1.1 cgd * To avoid excessive sieves for small factors, we use the table below to
96 1.1 cgd * setup our sieve blocks. Each element represents a odd number starting
97 1.1 cgd * with 1. All non-zero elements are factors of 3, 5, 7, 11 and 13.
98 1.1 cgd */
99 1.1 cgd extern char pattern[];
100 1.1 cgd extern int pattern_size; /* length of pattern array */
101 1.1 cgd
102 1.1 cgd #define MAX_LINE 255 /* max line allowed on stdin */
103 1.1 cgd
104 1.1 cgd char *read_num_buf(); /* read a number buffer */
105 1.1 cgd void primes(); /* print the primes in range */
106 1.1 cgd char *program; /* our name */
107 1.1 cgd
108 1.1 cgd main(argc, argv)
109 1.1 cgd int argc; /* arg count */
110 1.1 cgd char *argv[]; /* args */
111 1.1 cgd {
112 1.1 cgd char buf[MAX_LINE+1]; /* input buffer */
113 1.1 cgd char *ret; /* return result */
114 1.1 cgd ubig start; /* where to start generating */
115 1.1 cgd ubig stop; /* don't generate at or above this value */
116 1.1 cgd
117 1.1 cgd /*
118 1.1 cgd * parse args
119 1.1 cgd */
120 1.1 cgd program = argv[0];
121 1.1 cgd start = 0;
122 1.1 cgd stop = BIG;
123 1.1 cgd if (argc == 3) {
124 1.1 cgd /* convert low and high args */
125 1.1 cgd if (read_num_buf(NULL, argv[1]) == NULL) {
126 1.1 cgd fprintf(stderr, "%s: ouch\n", program);
127 1.1 cgd exit(1);
128 1.1 cgd }
129 1.1 cgd if (read_num_buf(NULL, argv[2]) == NULL) {
130 1.1 cgd fprintf(stderr, "%s: ouch\n", program);
131 1.1 cgd exit(1);
132 1.1 cgd }
133 1.3 cgd if (sscanf(argv[1], "%lu", &start) != 1) {
134 1.1 cgd fprintf(stderr, "%s: ouch\n", program);
135 1.1 cgd exit(1);
136 1.1 cgd }
137 1.3 cgd if (sscanf(argv[2], "%lu", &stop) != 1) {
138 1.1 cgd fprintf(stderr, "%s: ouch\n", program);
139 1.1 cgd exit(1);
140 1.1 cgd }
141 1.1 cgd
142 1.1 cgd } else if (argc == 2) {
143 1.1 cgd /* convert low arg */
144 1.1 cgd if (read_num_buf(NULL, argv[1]) == NULL) {
145 1.1 cgd fprintf(stderr, "%s: ouch\n", program);
146 1.1 cgd exit(1);
147 1.1 cgd }
148 1.3 cgd if (sscanf(argv[1], "%lu", &start) != 1) {
149 1.1 cgd fprintf(stderr, "%s: ouch\n", program);
150 1.1 cgd exit(1);
151 1.1 cgd }
152 1.1 cgd
153 1.1 cgd } else {
154 1.1 cgd /* read input until we get a good line */
155 1.1 cgd if (read_num_buf(stdin, buf) != NULL) {
156 1.1 cgd
157 1.1 cgd /* convert the buffer */
158 1.3 cgd if (sscanf(buf, "%lu", &start) != 1) {
159 1.1 cgd fprintf(stderr, "%s: ouch\n", program);
160 1.1 cgd exit(1);
161 1.1 cgd }
162 1.1 cgd } else {
163 1.1 cgd exit(0);
164 1.1 cgd }
165 1.1 cgd }
166 1.1 cgd if (start > stop) {
167 1.1 cgd fprintf(stderr, "%s: ouch\n", program);
168 1.1 cgd exit(1);
169 1.1 cgd }
170 1.1 cgd primes(start, stop);
171 1.1 cgd exit(0);
172 1.1 cgd }
173 1.1 cgd
174 1.1 cgd /*
175 1.1 cgd * read_num_buf - read a number buffer from a stream
176 1.1 cgd *
177 1.1 cgd * Read a number on a line of the form:
178 1.1 cgd *
179 1.1 cgd * ^[ \t]*\(+?[0-9][0-9]\)*.*$
180 1.1 cgd *
181 1.1 cgd * where ? is a 1-or-0 operator and the number is within \( \).
182 1.1 cgd *
183 1.1 cgd * If does not match the above pattern, it is ignored and a new
184 1.1 cgd * line is read. If the number is too large or small, we will
185 1.1 cgd * print ouch and read a new line.
186 1.1 cgd *
187 1.1 cgd * We have to be very careful on how we check the magnitude of the
188 1.1 cgd * input. We can not use numeric checks because of the need to
189 1.1 cgd * check values against maximum numeric values.
190 1.1 cgd *
191 1.1 cgd * This routine will return a line containing a ascii number between
192 1.1 cgd * 0 and BIG, or it will return NULL.
193 1.1 cgd *
194 1.1 cgd * If the stream is NULL then buf will be processed as if were
195 1.1 cgd * a single line stream.
196 1.1 cgd *
197 1.1 cgd * returns:
198 1.1 cgd * char * pointer to leading digit or +
199 1.1 cgd * NULL EOF or error
200 1.1 cgd */
201 1.1 cgd char *
202 1.1 cgd read_num_buf(input, buf)
203 1.1 cgd FILE *input; /* input stream or NULL */
204 1.1 cgd char *buf; /* input buffer */
205 1.1 cgd {
206 1.1 cgd static char limit[MAX_LINE+1]; /* ascii value of BIG */
207 1.1 cgd static int limit_len; /* digit count of limit */
208 1.1 cgd int len; /* digits in input (excluding +/-) */
209 1.1 cgd char *s; /* line start marker */
210 1.1 cgd char *d; /* first digit, skip +/- */
211 1.1 cgd char *p; /* scan pointer */
212 1.1 cgd char *z; /* zero scan pointer */
213 1.1 cgd
214 1.3 cgd /* form the ascii value of BIG if needed */
215 1.1 cgd if (!isascii(limit[0]) || !isdigit(limit[0])) {
216 1.3 cgd sprintf(limit, "%lu", BIG);
217 1.1 cgd limit_len = strlen(limit);
218 1.1 cgd }
219 1.1 cgd
220 1.1 cgd /*
221 1.1 cgd * the search for a good line
222 1.1 cgd */
223 1.1 cgd if (input != NULL && fgets(buf, MAX_LINE, input) == NULL) {
224 1.1 cgd /* error or EOF */
225 1.1 cgd return NULL;
226 1.1 cgd }
227 1.1 cgd do {
228 1.1 cgd
229 1.1 cgd /* ignore leading whitespace */
230 1.1 cgd for (s=buf; *s && s < buf+MAX_LINE; ++s) {
231 1.1 cgd if (!isascii(*s) || !isspace(*s)) {
232 1.1 cgd break;
233 1.1 cgd }
234 1.1 cgd }
235 1.1 cgd
236 1.1 cgd /* object if - */
237 1.1 cgd if (*s == '-') {
238 1.3 cgd fprintf(stderr, "%s: ouch for minuses\n", program);
239 1.1 cgd continue;
240 1.1 cgd }
241 1.1 cgd
242 1.1 cgd /* skip over any leading + */
243 1.1 cgd if (*s == '+') {
244 1.1 cgd d = s+1;
245 1.1 cgd } else {
246 1.1 cgd d = s;
247 1.1 cgd }
248 1.1 cgd
249 1.1 cgd /* note leading zeros */
250 1.1 cgd for (z=d; *z && z < buf+MAX_LINE; ++z) {
251 1.1 cgd if (*z != '0') {
252 1.1 cgd break;
253 1.1 cgd }
254 1.1 cgd }
255 1.1 cgd
256 1.1 cgd /* scan for the first non-digit/non-plus/non-minus */
257 1.1 cgd for (p=d; *p && p < buf+MAX_LINE; ++p) {
258 1.1 cgd if (!isascii(*p) || !isdigit(*p)) {
259 1.1 cgd break;
260 1.1 cgd }
261 1.1 cgd }
262 1.1 cgd
263 1.1 cgd /* ignore empty lines */
264 1.1 cgd if (p == d) {
265 1.1 cgd continue;
266 1.1 cgd }
267 1.1 cgd *p = '\0';
268 1.1 cgd
269 1.1 cgd /* object if too many digits */
270 1.1 cgd len = strlen(z);
271 1.1 cgd len = (len<=0) ? 1 : len;
272 1.1 cgd /* accept if digit count is below limit */
273 1.1 cgd if (len < limit_len) {
274 1.1 cgd /* we have good input */
275 1.1 cgd return s;
276 1.1 cgd
277 1.1 cgd /* reject very large numbers */
278 1.1 cgd } else if (len > limit_len) {
279 1.3 cgd fprintf(stderr, "%s: %s too big\n", program, z);
280 1.1 cgd continue;
281 1.1 cgd
282 1.1 cgd /* carefully check against near limit numbers */
283 1.1 cgd } else if (strcmp(z, limit) > 0) {
284 1.3 cgd fprintf(stderr, "%s: %s a bit too big\n", program, z);
285 1.1 cgd continue;
286 1.1 cgd }
287 1.1 cgd /* number is near limit, but is under it */
288 1.1 cgd return s;
289 1.1 cgd } while (input != NULL && fgets(buf, MAX_LINE, input) != NULL);
290 1.1 cgd
291 1.1 cgd /* error or EOF */
292 1.1 cgd return NULL;
293 1.1 cgd }
294 1.1 cgd
295 1.1 cgd /*
296 1.1 cgd * primes - sieve and print primes from start up to and but not including stop
297 1.1 cgd */
298 1.1 cgd void
299 1.1 cgd primes(start, stop)
300 1.1 cgd ubig start; /* where to start generating */
301 1.1 cgd ubig stop; /* don't generate at or above this value */
302 1.1 cgd {
303 1.1 cgd register char *q; /* sieve spot */
304 1.1 cgd register ubig factor; /* index and factor */
305 1.1 cgd register char *tab_lim; /* the limit to sieve on the table */
306 1.1 cgd register ubig *p; /* prime table pointer */
307 1.1 cgd register ubig fact_lim; /* highest prime for current block */
308 1.1 cgd
309 1.1 cgd /*
310 1.3 cgd * NetBSD has no problems with handling conversion
311 1.3 cgd * between doubles and unsigned long, so we can go
312 1.3 cgd * all the way to BIG.
313 1.1 cgd */
314 1.1 cgd if (start < 3) {
315 1.1 cgd start = (ubig)2;
316 1.1 cgd }
317 1.1 cgd if (stop < 3) {
318 1.1 cgd stop = (ubig)2;
319 1.1 cgd }
320 1.1 cgd if (stop <= start) {
321 1.1 cgd return;
322 1.1 cgd }
323 1.1 cgd
324 1.1 cgd /*
325 1.1 cgd * be sure that the values are odd, or 2
326 1.1 cgd */
327 1.1 cgd if (start != 2 && (start&0x1) == 0) {
328 1.1 cgd ++start;
329 1.1 cgd }
330 1.1 cgd if (stop != 2 && (stop&0x1) == 0) {
331 1.1 cgd ++stop;
332 1.1 cgd }
333 1.1 cgd
334 1.1 cgd /*
335 1.1 cgd * quick list of primes <= pr_limit
336 1.1 cgd */
337 1.1 cgd if (start <= *pr_limit) {
338 1.1 cgd /* skip primes up to the start value */
339 1.1 cgd for (p = &prime[0], factor = prime[0];
340 1.1 cgd factor < stop && p <= pr_limit;
341 1.1 cgd factor = *(++p)) {
342 1.1 cgd if (factor >= start) {
343 1.1 cgd printf("%u\n", factor);
344 1.1 cgd }
345 1.1 cgd }
346 1.1 cgd /* return early if we are done */
347 1.1 cgd if (p <= pr_limit) {
348 1.1 cgd return;
349 1.1 cgd }
350 1.1 cgd start = *pr_limit+2;
351 1.1 cgd }
352 1.1 cgd
353 1.1 cgd /*
354 1.1 cgd * we shall sieve a bytemap window, note primes and move the window
355 1.1 cgd * upward until we pass the stop point
356 1.1 cgd */
357 1.1 cgd while (start < stop) {
358 1.1 cgd /*
359 1.1 cgd * factor out 3, 5, 7, 11 and 13
360 1.1 cgd */
361 1.1 cgd /* initial pattern copy */
362 1.1 cgd factor = (start%(2*3*5*7*11*13))/2; /* starting copy spot */
363 1.1 cgd memcpy(table, &pattern[factor], pattern_size-factor);
364 1.1 cgd /* main block pattern copies */
365 1.1 cgd for (fact_lim=pattern_size-factor;
366 1.1 cgd fact_lim+pattern_size<=TABSIZE;
367 1.1 cgd fact_lim+=pattern_size) {
368 1.1 cgd memcpy(&table[fact_lim], pattern, pattern_size);
369 1.1 cgd }
370 1.1 cgd /* final block pattern copy */
371 1.1 cgd memcpy(&table[fact_lim], pattern, TABSIZE-fact_lim);
372 1.1 cgd
373 1.1 cgd /*
374 1.1 cgd * sieve for primes 17 and higher
375 1.1 cgd */
376 1.1 cgd /* note highest useful factor and sieve spot */
377 1.1 cgd if (stop-start > TABSIZE+TABSIZE) {
378 1.1 cgd tab_lim = &table[TABSIZE]; /* sieve it all */
379 1.1 cgd fact_lim = (int)sqrt(
380 1.1 cgd (double)(start)+TABSIZE+TABSIZE+1.0);
381 1.1 cgd } else {
382 1.1 cgd tab_lim = &table[(stop-start)/2]; /* partial sieve */
383 1.1 cgd fact_lim = (int)sqrt((double)(stop)+1.0);
384 1.1 cgd }
385 1.1 cgd /* sieve for factors >= 17 */
386 1.1 cgd factor = 17; /* 17 is first prime to use */
387 1.1 cgd p = &prime[7]; /* 19 is next prime, pi(19)=7 */
388 1.1 cgd do {
389 1.1 cgd /* determine the factor's initial sieve point */
390 1.1 cgd q = (char *)(start%factor); /* temp storage for mod */
391 1.1 cgd if ((int)q & 0x1) {
392 1.1 cgd q = &table[(factor-(int)q)/2];
393 1.1 cgd } else {
394 1.1 cgd q = &table[q ? factor-((int)q/2) : 0];
395 1.1 cgd }
396 1.1 cgd /* sive for our current factor */
397 1.1 cgd for ( ; q < tab_lim; q += factor) {
398 1.1 cgd *q = '\0'; /* sieve out a spot */
399 1.1 cgd }
400 1.1 cgd } while ((factor=(ubig)(*(p++))) <= fact_lim);
401 1.1 cgd
402 1.1 cgd /*
403 1.1 cgd * print generated primes
404 1.1 cgd */
405 1.1 cgd for (q = table; q < tab_lim; ++q, start+=2) {
406 1.1 cgd if (*q) {
407 1.1 cgd printf("%u\n", start);
408 1.1 cgd }
409 1.1 cgd }
410 1.1 cgd }
411 1.1 cgd }
412