primes.c revision 1.7 1 1.7 lukem /* $NetBSD: primes.c,v 1.7 1997/10/12 01:04:55 lukem Exp $ */
2 1.4 cgd
3 1.1 cgd /*
4 1.4 cgd * Copyright (c) 1989, 1993
5 1.4 cgd * The Regents of the University of California. All rights reserved.
6 1.1 cgd *
7 1.1 cgd * This code is derived from software contributed to Berkeley by
8 1.1 cgd * Landon Curt Noll.
9 1.1 cgd *
10 1.1 cgd * Redistribution and use in source and binary forms, with or without
11 1.1 cgd * modification, are permitted provided that the following conditions
12 1.1 cgd * are met:
13 1.1 cgd * 1. Redistributions of source code must retain the above copyright
14 1.1 cgd * notice, this list of conditions and the following disclaimer.
15 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 cgd * notice, this list of conditions and the following disclaimer in the
17 1.1 cgd * documentation and/or other materials provided with the distribution.
18 1.1 cgd * 3. All advertising materials mentioning features or use of this software
19 1.1 cgd * must display the following acknowledgement:
20 1.1 cgd * This product includes software developed by the University of
21 1.1 cgd * California, Berkeley and its contributors.
22 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
23 1.1 cgd * may be used to endorse or promote products derived from this software
24 1.1 cgd * without specific prior written permission.
25 1.1 cgd *
26 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 1.1 cgd * SUCH DAMAGE.
37 1.1 cgd */
38 1.1 cgd
39 1.7 lukem #include <sys/cdefs.h>
40 1.1 cgd #ifndef lint
41 1.7 lukem __COPYRIGHT("@(#) Copyright (c) 1989, 1993\n\
42 1.7 lukem The Regents of the University of California. All rights reserved.\n");
43 1.1 cgd #endif /* not lint */
44 1.1 cgd
45 1.1 cgd #ifndef lint
46 1.4 cgd #if 0
47 1.6 tls static char sccsid[] = "@(#)primes.c 8.5 (Berkeley) 5/10/95";
48 1.4 cgd #else
49 1.7 lukem __RCSID("$NetBSD: primes.c,v 1.7 1997/10/12 01:04:55 lukem Exp $");
50 1.4 cgd #endif
51 1.1 cgd #endif /* not lint */
52 1.1 cgd
53 1.1 cgd /*
54 1.1 cgd * primes - generate a table of primes between two values
55 1.1 cgd *
56 1.4 cgd * By: Landon Curt Noll chongo (at) toad.com, ...!{sun,tolsoft}!hoptoad!chongo
57 1.1 cgd *
58 1.4 cgd * chongo <for a good prime call: 391581 * 2^216193 - 1> /\oo/\
59 1.1 cgd *
60 1.1 cgd * usage:
61 1.1 cgd * primes [start [stop]]
62 1.1 cgd *
63 1.1 cgd * Print primes >= start and < stop. If stop is omitted,
64 1.1 cgd * the value 4294967295 (2^32-1) is assumed. If start is
65 1.1 cgd * omitted, start is read from standard input.
66 1.1 cgd *
67 1.1 cgd * validation check: there are 664579 primes between 0 and 10^7
68 1.1 cgd */
69 1.1 cgd
70 1.4 cgd #include <ctype.h>
71 1.4 cgd #include <err.h>
72 1.4 cgd #include <errno.h>
73 1.4 cgd #include <limits.h>
74 1.1 cgd #include <math.h>
75 1.1 cgd #include <memory.h>
76 1.4 cgd #include <stdio.h>
77 1.4 cgd #include <stdlib.h>
78 1.6 tls #include <unistd.h>
79 1.4 cgd
80 1.1 cgd #include "primes.h"
81 1.1 cgd
82 1.1 cgd /*
83 1.1 cgd * Eratosthenes sieve table
84 1.1 cgd *
85 1.1 cgd * We only sieve the odd numbers. The base of our sieve windows are always
86 1.1 cgd * odd. If the base of table is 1, table[i] represents 2*i-1. After the
87 1.1 cgd * sieve, table[i] == 1 if and only iff 2*i-1 is prime.
88 1.1 cgd *
89 1.1 cgd * We make TABSIZE large to reduce the overhead of inner loop setup.
90 1.1 cgd */
91 1.1 cgd char table[TABSIZE]; /* Eratosthenes sieve of odd numbers */
92 1.1 cgd
93 1.1 cgd /*
94 1.1 cgd * prime[i] is the (i-1)th prime.
95 1.1 cgd *
96 1.1 cgd * We are able to sieve 2^32-1 because this byte table yields all primes
97 1.1 cgd * up to 65537 and 65537^2 > 2^32-1.
98 1.1 cgd */
99 1.1 cgd extern ubig prime[];
100 1.1 cgd extern ubig *pr_limit; /* largest prime in the prime array */
101 1.1 cgd
102 1.1 cgd /*
103 1.1 cgd * To avoid excessive sieves for small factors, we use the table below to
104 1.1 cgd * setup our sieve blocks. Each element represents a odd number starting
105 1.1 cgd * with 1. All non-zero elements are factors of 3, 5, 7, 11 and 13.
106 1.1 cgd */
107 1.1 cgd extern char pattern[];
108 1.1 cgd extern int pattern_size; /* length of pattern array */
109 1.1 cgd
110 1.7 lukem int main __P((int, char *[]));
111 1.4 cgd void primes __P((ubig, ubig));
112 1.4 cgd ubig read_num_buf __P((void));
113 1.4 cgd void usage __P((void));
114 1.1 cgd
115 1.4 cgd int
116 1.1 cgd main(argc, argv)
117 1.4 cgd int argc;
118 1.4 cgd char *argv[];
119 1.1 cgd {
120 1.4 cgd ubig start; /* where to start generating */
121 1.4 cgd ubig stop; /* don't generate at or above this value */
122 1.4 cgd int ch;
123 1.4 cgd char *p;
124 1.4 cgd
125 1.7 lukem while ((ch = getopt(argc, argv, "")) != -1)
126 1.4 cgd switch (ch) {
127 1.4 cgd case '?':
128 1.4 cgd default:
129 1.4 cgd usage();
130 1.4 cgd }
131 1.4 cgd argc -= optind;
132 1.4 cgd argv += optind;
133 1.1 cgd
134 1.1 cgd start = 0;
135 1.1 cgd stop = BIG;
136 1.1 cgd
137 1.4 cgd /*
138 1.4 cgd * Convert low and high args. Strtoul(3) sets errno to
139 1.4 cgd * ERANGE if the number is too large, but, if there's
140 1.4 cgd * a leading minus sign it returns the negation of the
141 1.4 cgd * result of the conversion, which we'd rather disallow.
142 1.4 cgd */
143 1.4 cgd switch (argc) {
144 1.4 cgd case 2:
145 1.4 cgd /* Start and stop supplied on the command line. */
146 1.4 cgd if (argv[0][0] == '-' || argv[1][0] == '-')
147 1.4 cgd errx(1, "negative numbers aren't permitted.");
148 1.4 cgd
149 1.4 cgd errno = 0;
150 1.4 cgd start = strtoul(argv[0], &p, 10);
151 1.4 cgd if (errno)
152 1.4 cgd err(1, "%s", argv[0]);
153 1.4 cgd if (*p != '\0')
154 1.4 cgd errx(1, "%s: illegal numeric format.", argv[0]);
155 1.4 cgd
156 1.4 cgd errno = 0;
157 1.4 cgd stop = strtoul(argv[1], &p, 10);
158 1.4 cgd if (errno)
159 1.4 cgd err(1, "%s", argv[1]);
160 1.4 cgd if (*p != '\0')
161 1.4 cgd errx(1, "%s: illegal numeric format.", argv[1]);
162 1.4 cgd break;
163 1.4 cgd case 1:
164 1.4 cgd /* Start on the command line. */
165 1.4 cgd if (argv[0][0] == '-')
166 1.4 cgd errx(1, "negative numbers aren't permitted.");
167 1.4 cgd
168 1.4 cgd errno = 0;
169 1.4 cgd start = strtoul(argv[0], &p, 10);
170 1.4 cgd if (errno)
171 1.4 cgd err(1, "%s", argv[0]);
172 1.4 cgd if (*p != '\0')
173 1.4 cgd errx(1, "%s: illegal numeric format.", argv[0]);
174 1.4 cgd break;
175 1.4 cgd case 0:
176 1.4 cgd start = read_num_buf();
177 1.4 cgd break;
178 1.4 cgd default:
179 1.4 cgd usage();
180 1.4 cgd }
181 1.1 cgd
182 1.4 cgd if (start > stop)
183 1.4 cgd errx(1, "start value must be less than stop value.");
184 1.1 cgd primes(start, stop);
185 1.1 cgd exit(0);
186 1.1 cgd }
187 1.1 cgd
188 1.1 cgd /*
189 1.4 cgd * read_num_buf --
190 1.4 cgd * This routine returns a number n, where 0 <= n && n <= BIG.
191 1.1 cgd */
192 1.4 cgd ubig
193 1.4 cgd read_num_buf()
194 1.1 cgd {
195 1.4 cgd ubig val;
196 1.4 cgd char *p, buf[100]; /* > max number of digits. */
197 1.1 cgd
198 1.4 cgd for (;;) {
199 1.4 cgd if (fgets(buf, sizeof(buf), stdin) == NULL) {
200 1.4 cgd if (ferror(stdin))
201 1.4 cgd err(1, "stdin");
202 1.4 cgd exit(0);
203 1.1 cgd }
204 1.4 cgd for (p = buf; isblank(*p); ++p);
205 1.4 cgd if (*p == '\n' || *p == '\0')
206 1.1 cgd continue;
207 1.4 cgd if (*p == '-')
208 1.4 cgd errx(1, "negative numbers aren't permitted.");
209 1.4 cgd errno = 0;
210 1.4 cgd val = strtoul(buf, &p, 10);
211 1.4 cgd if (errno)
212 1.4 cgd err(1, "%s", buf);
213 1.4 cgd if (*p != '\n')
214 1.4 cgd errx(1, "%s: illegal numeric format.", buf);
215 1.4 cgd return (val);
216 1.4 cgd }
217 1.1 cgd }
218 1.1 cgd
219 1.1 cgd /*
220 1.1 cgd * primes - sieve and print primes from start up to and but not including stop
221 1.1 cgd */
222 1.1 cgd void
223 1.1 cgd primes(start, stop)
224 1.1 cgd ubig start; /* where to start generating */
225 1.1 cgd ubig stop; /* don't generate at or above this value */
226 1.1 cgd {
227 1.7 lukem char *q; /* sieve spot */
228 1.7 lukem ubig factor; /* index and factor */
229 1.7 lukem char *tab_lim; /* the limit to sieve on the table */
230 1.7 lukem ubig *p; /* prime table pointer */
231 1.7 lukem ubig fact_lim; /* highest prime for current block */
232 1.1 cgd
233 1.1 cgd /*
234 1.4 cgd * A number of systems can not convert double values into unsigned
235 1.4 cgd * longs when the values are larger than the largest signed value.
236 1.4 cgd * We don't have this problem, so we can go all the way to BIG.
237 1.1 cgd */
238 1.1 cgd if (start < 3) {
239 1.1 cgd start = (ubig)2;
240 1.1 cgd }
241 1.1 cgd if (stop < 3) {
242 1.1 cgd stop = (ubig)2;
243 1.1 cgd }
244 1.1 cgd if (stop <= start) {
245 1.1 cgd return;
246 1.1 cgd }
247 1.1 cgd
248 1.1 cgd /*
249 1.1 cgd * be sure that the values are odd, or 2
250 1.1 cgd */
251 1.1 cgd if (start != 2 && (start&0x1) == 0) {
252 1.1 cgd ++start;
253 1.1 cgd }
254 1.1 cgd if (stop != 2 && (stop&0x1) == 0) {
255 1.1 cgd ++stop;
256 1.1 cgd }
257 1.1 cgd
258 1.1 cgd /*
259 1.1 cgd * quick list of primes <= pr_limit
260 1.1 cgd */
261 1.1 cgd if (start <= *pr_limit) {
262 1.1 cgd /* skip primes up to the start value */
263 1.1 cgd for (p = &prime[0], factor = prime[0];
264 1.4 cgd factor < stop && p <= pr_limit; factor = *(++p)) {
265 1.1 cgd if (factor >= start) {
266 1.7 lukem printf("%lu\n", (unsigned long) factor);
267 1.1 cgd }
268 1.1 cgd }
269 1.1 cgd /* return early if we are done */
270 1.1 cgd if (p <= pr_limit) {
271 1.1 cgd return;
272 1.1 cgd }
273 1.1 cgd start = *pr_limit+2;
274 1.1 cgd }
275 1.1 cgd
276 1.1 cgd /*
277 1.1 cgd * we shall sieve a bytemap window, note primes and move the window
278 1.1 cgd * upward until we pass the stop point
279 1.1 cgd */
280 1.1 cgd while (start < stop) {
281 1.1 cgd /*
282 1.1 cgd * factor out 3, 5, 7, 11 and 13
283 1.1 cgd */
284 1.1 cgd /* initial pattern copy */
285 1.1 cgd factor = (start%(2*3*5*7*11*13))/2; /* starting copy spot */
286 1.1 cgd memcpy(table, &pattern[factor], pattern_size-factor);
287 1.1 cgd /* main block pattern copies */
288 1.1 cgd for (fact_lim=pattern_size-factor;
289 1.4 cgd fact_lim+pattern_size<=TABSIZE; fact_lim+=pattern_size) {
290 1.1 cgd memcpy(&table[fact_lim], pattern, pattern_size);
291 1.1 cgd }
292 1.1 cgd /* final block pattern copy */
293 1.1 cgd memcpy(&table[fact_lim], pattern, TABSIZE-fact_lim);
294 1.1 cgd
295 1.1 cgd /*
296 1.1 cgd * sieve for primes 17 and higher
297 1.1 cgd */
298 1.1 cgd /* note highest useful factor and sieve spot */
299 1.1 cgd if (stop-start > TABSIZE+TABSIZE) {
300 1.1 cgd tab_lim = &table[TABSIZE]; /* sieve it all */
301 1.1 cgd fact_lim = (int)sqrt(
302 1.1 cgd (double)(start)+TABSIZE+TABSIZE+1.0);
303 1.1 cgd } else {
304 1.1 cgd tab_lim = &table[(stop-start)/2]; /* partial sieve */
305 1.1 cgd fact_lim = (int)sqrt((double)(stop)+1.0);
306 1.1 cgd }
307 1.1 cgd /* sieve for factors >= 17 */
308 1.1 cgd factor = 17; /* 17 is first prime to use */
309 1.1 cgd p = &prime[7]; /* 19 is next prime, pi(19)=7 */
310 1.1 cgd do {
311 1.1 cgd /* determine the factor's initial sieve point */
312 1.1 cgd q = (char *)(start%factor); /* temp storage for mod */
313 1.5 cgd if ((long)q & 0x1) {
314 1.5 cgd q = &table[(factor-(long)q)/2];
315 1.1 cgd } else {
316 1.5 cgd q = &table[q ? factor-((long)q/2) : 0];
317 1.1 cgd }
318 1.1 cgd /* sive for our current factor */
319 1.1 cgd for ( ; q < tab_lim; q += factor) {
320 1.1 cgd *q = '\0'; /* sieve out a spot */
321 1.1 cgd }
322 1.1 cgd } while ((factor=(ubig)(*(p++))) <= fact_lim);
323 1.1 cgd
324 1.1 cgd /*
325 1.1 cgd * print generated primes
326 1.1 cgd */
327 1.1 cgd for (q = table; q < tab_lim; ++q, start+=2) {
328 1.1 cgd if (*q) {
329 1.7 lukem printf("%lu\n", (unsigned long) start);
330 1.1 cgd }
331 1.1 cgd }
332 1.1 cgd }
333 1.4 cgd }
334 1.4 cgd
335 1.4 cgd void
336 1.4 cgd usage()
337 1.4 cgd {
338 1.4 cgd (void)fprintf(stderr, "usage: primes [start [stop]]\n");
339 1.4 cgd exit(1);
340 1.1 cgd }
341