primes.c revision 1.1.1.2 1 /*
2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Landon Curt Noll.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37 #ifndef lint
38 static char copyright[] =
39 "@(#) Copyright (c) 1989, 1993\n\
40 The Regents of the University of California. All rights reserved.\n";
41 #endif /* not lint */
42
43 #ifndef lint
44 static char sccsid[] = "@(#)primes.c 8.4 (Berkeley) 3/21/94";
45 #endif /* not lint */
46
47 /*
48 * primes - generate a table of primes between two values
49 *
50 * By: Landon Curt Noll chongo (at) toad.com, ...!{sun,tolsoft}!hoptoad!chongo
51 *
52 * chongo <for a good prime call: 391581 * 2^216193 - 1> /\oo/\
53 *
54 * usage:
55 * primes [start [stop]]
56 *
57 * Print primes >= start and < stop. If stop is omitted,
58 * the value 4294967295 (2^32-1) is assumed. If start is
59 * omitted, start is read from standard input.
60 *
61 * validation check: there are 664579 primes between 0 and 10^7
62 */
63
64 #include <ctype.h>
65 #include <err.h>
66 #include <errno.h>
67 #include <limits.h>
68 #include <math.h>
69 #include <memory.h>
70 #include <stdio.h>
71 #include <stdlib.h>
72
73 #include "primes.h"
74
75 /*
76 * Eratosthenes sieve table
77 *
78 * We only sieve the odd numbers. The base of our sieve windows are always
79 * odd. If the base of table is 1, table[i] represents 2*i-1. After the
80 * sieve, table[i] == 1 if and only iff 2*i-1 is prime.
81 *
82 * We make TABSIZE large to reduce the overhead of inner loop setup.
83 */
84 char table[TABSIZE]; /* Eratosthenes sieve of odd numbers */
85
86 /*
87 * prime[i] is the (i-1)th prime.
88 *
89 * We are able to sieve 2^32-1 because this byte table yields all primes
90 * up to 65537 and 65537^2 > 2^32-1.
91 */
92 extern ubig prime[];
93 extern ubig *pr_limit; /* largest prime in the prime array */
94
95 /*
96 * To avoid excessive sieves for small factors, we use the table below to
97 * setup our sieve blocks. Each element represents a odd number starting
98 * with 1. All non-zero elements are factors of 3, 5, 7, 11 and 13.
99 */
100 extern char pattern[];
101 extern int pattern_size; /* length of pattern array */
102
103 void primes __P((ubig, ubig));
104 ubig read_num_buf __P((void));
105 void usage __P((void));
106
107 int
108 main(argc, argv)
109 int argc;
110 char *argv[];
111 {
112 ubig start; /* where to start generating */
113 ubig stop; /* don't generate at or above this value */
114 int ch;
115 char *p;
116
117 while ((ch = getopt(argc, argv, "")) != EOF)
118 switch (ch) {
119 case '?':
120 default:
121 usage();
122 }
123 argc -= optind;
124 argv += optind;
125
126 start = 0;
127 stop = BIG;
128
129 /*
130 * Convert low and high args. Strtoul(3) sets errno to
131 * ERANGE if the number is too large, but, if there's
132 * a leading minus sign it returns the negation of the
133 * result of the conversion, which we'd rather disallow.
134 */
135 switch (argc) {
136 case 2:
137 /* Start and stop supplied on the command line. */
138 if (argv[0][0] == '-' || argv[1][0] == '-')
139 errx(1, "negative numbers aren't permitted.");
140
141 errno = 0;
142 start = strtoul(argv[0], &p, 10);
143 if (errno)
144 err(1, "%s", argv[0]);
145 if (*p != '\0')
146 errx(1, "%s: illegal numeric format.", argv[0]);
147
148 errno = 0;
149 stop = strtoul(argv[1], &p, 10);
150 if (errno)
151 err(1, "%s", argv[1]);
152 if (*p != '\0')
153 errx(1, "%s: illegal numeric format.", argv[1]);
154 break;
155 case 1:
156 /* Start on the command line. */
157 if (argv[0][0] == '-')
158 errx(1, "negative numbers aren't permitted.");
159
160 errno = 0;
161 start = strtoul(argv[0], &p, 10);
162 if (errno)
163 err(1, "%s", argv[0]);
164 if (*p != '\0')
165 errx(1, "%s: illegal numeric format.", argv[0]);
166 break;
167 case 0:
168 start = read_num_buf();
169 break;
170 default:
171 usage();
172 }
173
174 if (start > stop)
175 errx(1, "start value must be less than stop value.");
176 primes(start, stop);
177 exit(0);
178 }
179
180 /*
181 * read_num_buf --
182 * This routine returns a number n, where 0 <= n && n <= BIG.
183 */
184 ubig
185 read_num_buf()
186 {
187 ubig val;
188 char *p, buf[100]; /* > max number of digits. */
189
190 for (;;) {
191 if (fgets(buf, sizeof(buf), stdin) == NULL) {
192 if (ferror(stdin))
193 err(1, "stdin");
194 exit(0);
195 }
196 for (p = buf; isblank(*p); ++p);
197 if (*p == '\n' || *p == '\0')
198 continue;
199 if (*p == '-')
200 errx(1, "negative numbers aren't permitted.");
201 errno = 0;
202 val = strtoul(buf, &p, 10);
203 if (errno)
204 err(1, "%s", buf);
205 if (*p != '\n')
206 errx(1, "%s: illegal numeric format.", buf);
207 return (val);
208 }
209 }
210
211 /*
212 * primes - sieve and print primes from start up to and but not including stop
213 */
214 void
215 primes(start, stop)
216 ubig start; /* where to start generating */
217 ubig stop; /* don't generate at or above this value */
218 {
219 register char *q; /* sieve spot */
220 register ubig factor; /* index and factor */
221 register char *tab_lim; /* the limit to sieve on the table */
222 register ubig *p; /* prime table pointer */
223 register ubig fact_lim; /* highest prime for current block */
224
225 /*
226 * A number of systems can not convert double values into unsigned
227 * longs when the values are larger than the largest signed value.
228 * We don't have this problem, so we can go all the way to BIG.
229 */
230 if (start < 3) {
231 start = (ubig)2;
232 }
233 if (stop < 3) {
234 stop = (ubig)2;
235 }
236 if (stop <= start) {
237 return;
238 }
239
240 /*
241 * be sure that the values are odd, or 2
242 */
243 if (start != 2 && (start&0x1) == 0) {
244 ++start;
245 }
246 if (stop != 2 && (stop&0x1) == 0) {
247 ++stop;
248 }
249
250 /*
251 * quick list of primes <= pr_limit
252 */
253 if (start <= *pr_limit) {
254 /* skip primes up to the start value */
255 for (p = &prime[0], factor = prime[0];
256 factor < stop && p <= pr_limit; factor = *(++p)) {
257 if (factor >= start) {
258 printf("%u\n", factor);
259 }
260 }
261 /* return early if we are done */
262 if (p <= pr_limit) {
263 return;
264 }
265 start = *pr_limit+2;
266 }
267
268 /*
269 * we shall sieve a bytemap window, note primes and move the window
270 * upward until we pass the stop point
271 */
272 while (start < stop) {
273 /*
274 * factor out 3, 5, 7, 11 and 13
275 */
276 /* initial pattern copy */
277 factor = (start%(2*3*5*7*11*13))/2; /* starting copy spot */
278 memcpy(table, &pattern[factor], pattern_size-factor);
279 /* main block pattern copies */
280 for (fact_lim=pattern_size-factor;
281 fact_lim+pattern_size<=TABSIZE; fact_lim+=pattern_size) {
282 memcpy(&table[fact_lim], pattern, pattern_size);
283 }
284 /* final block pattern copy */
285 memcpy(&table[fact_lim], pattern, TABSIZE-fact_lim);
286
287 /*
288 * sieve for primes 17 and higher
289 */
290 /* note highest useful factor and sieve spot */
291 if (stop-start > TABSIZE+TABSIZE) {
292 tab_lim = &table[TABSIZE]; /* sieve it all */
293 fact_lim = (int)sqrt(
294 (double)(start)+TABSIZE+TABSIZE+1.0);
295 } else {
296 tab_lim = &table[(stop-start)/2]; /* partial sieve */
297 fact_lim = (int)sqrt((double)(stop)+1.0);
298 }
299 /* sieve for factors >= 17 */
300 factor = 17; /* 17 is first prime to use */
301 p = &prime[7]; /* 19 is next prime, pi(19)=7 */
302 do {
303 /* determine the factor's initial sieve point */
304 q = (char *)(start%factor); /* temp storage for mod */
305 if ((int)q & 0x1) {
306 q = &table[(factor-(int)q)/2];
307 } else {
308 q = &table[q ? factor-((int)q/2) : 0];
309 }
310 /* sive for our current factor */
311 for ( ; q < tab_lim; q += factor) {
312 *q = '\0'; /* sieve out a spot */
313 }
314 } while ((factor=(ubig)(*(p++))) <= fact_lim);
315
316 /*
317 * print generated primes
318 */
319 for (q = table; q < tab_lim; ++q, start+=2) {
320 if (*q) {
321 printf("%u\n", start);
322 }
323 }
324 }
325 }
326
327 void
328 usage()
329 {
330 (void)fprintf(stderr, "usage: primes [start [stop]]\n");
331 exit(1);
332 }
333