Home | History | Annotate | Line # | Download | only in primes
primes.c revision 1.12.22.2
      1 /*	primes.c,v 1.12.22.1 2008/01/09 01:30:54 matt Exp	*/
      2 
      3 /*
      4  * Copyright (c) 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * Landon Curt Noll.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 #ifndef lint
     37 __COPYRIGHT("@(#) Copyright (c) 1989, 1993\n\
     38 	The Regents of the University of California.  All rights reserved.\n");
     39 #endif /* not lint */
     40 
     41 #ifndef lint
     42 #if 0
     43 static char sccsid[] = "@(#)primes.c	8.5 (Berkeley) 5/10/95";
     44 #else
     45 __RCSID("primes.c,v 1.12.22.1 2008/01/09 01:30:54 matt Exp");
     46 #endif
     47 #endif /* not lint */
     48 
     49 /*
     50  * primes - generate a table of primes between two values
     51  *
     52  * By: Landon Curt Noll chongo (at) toad.com, ...!{sun,tolsoft}!hoptoad!chongo
     53  *
     54  * chongo <for a good prime call: 391581 * 2^216193 - 1> /\oo/\
     55  *
     56  * usage:
     57  *	primes [start [stop]]
     58  *
     59  *	Print primes >= start and < stop.  If stop is omitted,
     60  *	the value 4294967295 (2^32-1) is assumed.  If start is
     61  *	omitted, start is read from standard input.
     62  *
     63  * validation check: there are 664579 primes between 0 and 10^7
     64  */
     65 
     66 #include <ctype.h>
     67 #include <err.h>
     68 #include <errno.h>
     69 #include <limits.h>
     70 #include <math.h>
     71 #include <memory.h>
     72 #include <stdio.h>
     73 #include <stdlib.h>
     74 #include <unistd.h>
     75 
     76 #include "primes.h"
     77 
     78 /*
     79  * Eratosthenes sieve table
     80  *
     81  * We only sieve the odd numbers.  The base of our sieve windows are always
     82  * odd.  If the base of table is 1, table[i] represents 2*i-1.  After the
     83  * sieve, table[i] == 1 if and only iff 2*i-1 is prime.
     84  *
     85  * We make TABSIZE large to reduce the overhead of inner loop setup.
     86  */
     87 char table[TABSIZE];	 /* Eratosthenes sieve of odd numbers */
     88 
     89 /*
     90  * prime[i] is the (i-1)th prime.
     91  *
     92  * We are able to sieve 2^32-1 because this byte table yields all primes
     93  * up to 65537 and 65537^2 > 2^32-1.
     94  */
     95 extern const ubig prime[];
     96 extern const ubig *pr_limit;		/* largest prime in the prime array */
     97 
     98 /*
     99  * To avoid excessive sieves for small factors, we use the table below to
    100  * setup our sieve blocks.  Each element represents a odd number starting
    101  * with 1.  All non-zero elements are factors of 3, 5, 7, 11 and 13.
    102  */
    103 extern const char pattern[];
    104 extern const int pattern_size;	/* length of pattern array */
    105 
    106 int	dflag;
    107 
    108 int	main(int, char *[]);
    109 void	primes(ubig, ubig);
    110 ubig	read_num_buf(void);
    111 void	usage(void) __dead;
    112 
    113 int
    114 main(int argc, char *argv[])
    115 {
    116 	ubig start;		/* where to start generating */
    117 	ubig stop;		/* don't generate at or above this value */
    118 	int ch;
    119 	char *p;
    120 
    121 	while ((ch = getopt(argc, argv, "d")) != -1)
    122 		switch (ch) {
    123 		case 'd':
    124 			dflag++;
    125 			break;
    126 		case '?':
    127 		default:
    128 			usage();
    129 		}
    130 	argc -= optind;
    131 	argv += optind;
    132 
    133 	start = 0;
    134 	stop = BIG;
    135 
    136 	/*
    137 	 * Convert low and high args.  Strtoul(3) sets errno to
    138 	 * ERANGE if the number is too large, but, if there's
    139 	 * a leading minus sign it returns the negation of the
    140 	 * result of the conversion, which we'd rather disallow.
    141 	 */
    142 	switch (argc) {
    143 	case 2:
    144 		/* Start and stop supplied on the command line. */
    145 		if (argv[0][0] == '-' || argv[1][0] == '-')
    146 			errx(1, "negative numbers aren't permitted.");
    147 
    148 		errno = 0;
    149 		start = strtoul(argv[0], &p, 10);
    150 		if (errno)
    151 			err(1, "%s", argv[0]);
    152 		if (*p != '\0')
    153 			errx(1, "%s: illegal numeric format.", argv[0]);
    154 
    155 		errno = 0;
    156 		stop = strtoul(argv[1], &p, 10);
    157 		if (errno)
    158 			err(1, "%s", argv[1]);
    159 		if (*p != '\0')
    160 			errx(1, "%s: illegal numeric format.", argv[1]);
    161 		break;
    162 	case 1:
    163 		/* Start on the command line. */
    164 		if (argv[0][0] == '-')
    165 			errx(1, "negative numbers aren't permitted.");
    166 
    167 		errno = 0;
    168 		start = strtoul(argv[0], &p, 10);
    169 		if (errno)
    170 			err(1, "%s", argv[0]);
    171 		if (*p != '\0')
    172 			errx(1, "%s: illegal numeric format.", argv[0]);
    173 		break;
    174 	case 0:
    175 		start = read_num_buf();
    176 		break;
    177 	default:
    178 		usage();
    179 	}
    180 
    181 	if (start > stop)
    182 		errx(1, "start value must be less than stop value.");
    183 	primes(start, stop);
    184 	exit(0);
    185 }
    186 
    187 /*
    188  * read_num_buf --
    189  *	This routine returns a number n, where 0 <= n && n <= BIG.
    190  */
    191 ubig
    192 read_num_buf(void)
    193 {
    194 	ubig val;
    195 	char *p, buf[100];		/* > max number of digits. */
    196 
    197 	for (;;) {
    198 		if (fgets(buf, sizeof(buf), stdin) == NULL) {
    199 			if (ferror(stdin))
    200 				err(1, "stdin");
    201 			exit(0);
    202 		}
    203 		for (p = buf; isblank(*p); ++p);
    204 		if (*p == '\n' || *p == '\0')
    205 			continue;
    206 		if (*p == '-')
    207 			errx(1, "negative numbers aren't permitted.");
    208 		errno = 0;
    209 		val = strtoul(buf, &p, 10);
    210 		if (errno)
    211 			err(1, "%s", buf);
    212 		if (*p != '\n')
    213 			errx(1, "%s: illegal numeric format.", buf);
    214 		return (val);
    215 	}
    216 }
    217 
    218 /*
    219  * primes - sieve and print primes from start up to and but not including stop
    220  *
    221  *	start	where to start generating
    222  *	stop	don't generate at or above this value
    223  */
    224 void
    225 primes(ubig start, ubig stop)
    226 {
    227 	char *q;		/* sieve spot */
    228 	ubig factor;		/* index and factor */
    229 	char *tab_lim;		/* the limit to sieve on the table */
    230 	const ubig *p;		/* prime table pointer */
    231 	ubig fact_lim;		/* highest prime for current block */
    232 	ubig mod;		/* temp storage for mod */
    233 	ubig prev = 0;
    234 
    235 	/*
    236 	 * A number of systems can not convert double values into unsigned
    237 	 * longs when the values are larger than the largest signed value.
    238 	 * We don't have this problem, so we can go all the way to BIG.
    239 	 */
    240 	if (start < 3) {
    241 		start = (ubig)2;
    242 	}
    243 	if (stop < 3) {
    244 		stop = (ubig)2;
    245 	}
    246 	if (stop <= start) {
    247 		return;
    248 	}
    249 
    250 	/*
    251 	 * be sure that the values are odd, or 2
    252 	 */
    253 	if (start != 2 && (start&0x1) == 0) {
    254 		++start;
    255 	}
    256 	if (stop != 2 && (stop&0x1) == 0) {
    257 		++stop;
    258 	}
    259 
    260 	/*
    261 	 * quick list of primes <= pr_limit
    262 	 */
    263 	if (start <= *pr_limit) {
    264 		/* skip primes up to the start value */
    265 		for (p = &prime[0], factor = prime[0];
    266 		    factor < stop && p <= pr_limit; factor = *(++p)) {
    267 			if (factor >= start) {
    268 				printf("%lu", (unsigned long) factor);
    269 				if (dflag) {
    270 					printf(" (%lu)",
    271 					    (unsigned long) factor - prev);
    272 				}
    273 				putchar('\n');
    274 			}
    275 			prev = factor;
    276 		}
    277 		/* return early if we are done */
    278 		if (p <= pr_limit) {
    279 			return;
    280 		}
    281 		start = *pr_limit+2;
    282 	}
    283 
    284 	/*
    285 	 * we shall sieve a bytemap window, note primes and move the window
    286 	 * upward until we pass the stop point
    287 	 */
    288 	while (start < stop) {
    289 		/*
    290 		 * factor out 3, 5, 7, 11 and 13
    291 		 */
    292 		/* initial pattern copy */
    293 		factor = (start%(2*3*5*7*11*13))/2; /* starting copy spot */
    294 		memcpy(table, &pattern[factor], pattern_size-factor);
    295 		/* main block pattern copies */
    296 		for (fact_lim=pattern_size-factor;
    297 		    fact_lim+pattern_size<=TABSIZE; fact_lim+=pattern_size) {
    298 			memcpy(&table[fact_lim], pattern, pattern_size);
    299 		}
    300 		/* final block pattern copy */
    301 		memcpy(&table[fact_lim], pattern, TABSIZE-fact_lim);
    302 
    303 		/*
    304 		 * sieve for primes 17 and higher
    305 		 */
    306 		/* note highest useful factor and sieve spot */
    307 		if (stop-start > TABSIZE+TABSIZE) {
    308 			tab_lim = &table[TABSIZE]; /* sieve it all */
    309 			fact_lim = (int)sqrt(
    310 					(double)(start)+TABSIZE+TABSIZE+1.0);
    311 		} else {
    312 			tab_lim = &table[(stop-start)/2]; /* partial sieve */
    313 			fact_lim = (int)sqrt((double)(stop)+1.0);
    314 		}
    315 		/* sieve for factors >= 17 */
    316 		factor = 17;	/* 17 is first prime to use */
    317 		p = &prime[7];	/* 19 is next prime, pi(19)=7 */
    318 		do {
    319 			/* determine the factor's initial sieve point */
    320 			mod = start%factor;
    321 			if (mod & 0x1) {
    322 				q = &table[(factor-mod)/2];
    323 			} else {
    324 				q = &table[mod ? factor-(mod/2) : 0];
    325 			}
    326 			/* sieve for our current factor */
    327 			for ( ; q < tab_lim; q += factor) {
    328 				*q = '\0'; /* sieve out a spot */
    329 			}
    330 		} while ((factor=(ubig)(*(p++))) <= fact_lim);
    331 
    332 		/*
    333 		 * print generated primes
    334 		 */
    335 		for (q = table; q < tab_lim; ++q, start+=2) {
    336 			if (*q) {
    337 				printf("%lu", (unsigned long) start);
    338 				if (dflag) {
    339 					printf(" (%lu)",
    340 					    (unsigned long) start - prev);
    341 					prev = start;
    342 				}
    343 				putchar('\n');
    344 			}
    345 		}
    346 	}
    347 }
    348 
    349 void
    350 usage(void)
    351 {
    352 	(void)fprintf(stderr, "usage: primes [-d] [start [stop]]\n");
    353 	exit(1);
    354 }
    355