Home | History | Annotate | Line # | Download | only in primes
primes.c revision 1.14
      1 /*	$NetBSD: primes.c,v 1.14 2008/02/02 17:45:05 matt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * Landon Curt Noll.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 #ifndef lint
     37 __COPYRIGHT("@(#) Copyright (c) 1989, 1993\n\
     38 	The Regents of the University of California.  All rights reserved.\n");
     39 #endif /* not lint */
     40 
     41 #ifndef lint
     42 #if 0
     43 static char sccsid[] = "@(#)primes.c	8.5 (Berkeley) 5/10/95";
     44 #else
     45 __RCSID("$NetBSD: primes.c,v 1.14 2008/02/02 17:45:05 matt Exp $");
     46 #endif
     47 #endif /* not lint */
     48 
     49 /*
     50  * primes - generate a table of primes between two values
     51  *
     52  * By: Landon Curt Noll chongo (at) toad.com, ...!{sun,tolsoft}!hoptoad!chongo
     53  *
     54  * chongo <for a good prime call: 391581 * 2^216193 - 1> /\oo/\
     55  *
     56  * usage:
     57  *	primes [start [stop]]
     58  *
     59  *	Print primes >= start and < stop.  If stop is omitted,
     60  *	the value 4294967295 (2^32-1) is assumed.  If start is
     61  *	omitted, start is read from standard input.
     62  *
     63  * validation check: there are 664579 primes between 0 and 10^7
     64  */
     65 
     66 #include <ctype.h>
     67 #include <err.h>
     68 #include <errno.h>
     69 #include <limits.h>
     70 #include <math.h>
     71 #include <memory.h>
     72 #include <stdio.h>
     73 #include <stdlib.h>
     74 #include <unistd.h>
     75 
     76 #include "primes.h"
     77 
     78 /*
     79  * Eratosthenes sieve table
     80  *
     81  * We only sieve the odd numbers.  The base of our sieve windows are always
     82  * odd.  If the base of table is 1, table[i] represents 2*i-1.  After the
     83  * sieve, table[i] == 1 if and only iff 2*i-1 is prime.
     84  *
     85  * We make TABSIZE large to reduce the overhead of inner loop setup.
     86  */
     87 char table[TABSIZE];	 /* Eratosthenes sieve of odd numbers */
     88 
     89 /*
     90  * prime[i] is the (i-1)th prime.
     91  *
     92  * We are able to sieve 2^32-1 because this byte table yields all primes
     93  * up to 65537 and 65537^2 > 2^32-1.
     94  */
     95 extern const ubig prime[];
     96 extern const ubig *pr_limit;		/* largest prime in the prime array */
     97 
     98 /*
     99  * To avoid excessive sieves for small factors, we use the table below to
    100  * setup our sieve blocks.  Each element represents a odd number starting
    101  * with 1.  All non-zero elements are factors of 3, 5, 7, 11 and 13.
    102  */
    103 extern const char pattern[];
    104 extern const int pattern_size;	/* length of pattern array */
    105 
    106 int	main(int, char *[]);
    107 void	primes(ubig, ubig);
    108 ubig	read_num_buf(void);
    109 void	usage(void) __dead;
    110 
    111 int
    112 main(argc, argv)
    113 	int argc;
    114 	char *argv[];
    115 {
    116 	ubig start;		/* where to start generating */
    117 	ubig stop;		/* don't generate at or above this value */
    118 	int ch;
    119 	char *p;
    120 
    121 	while ((ch = getopt(argc, argv, "")) != -1)
    122 		switch (ch) {
    123 		case '?':
    124 		default:
    125 			usage();
    126 		}
    127 	argc -= optind;
    128 	argv += optind;
    129 
    130 	start = 0;
    131 	stop = BIG;
    132 
    133 	/*
    134 	 * Convert low and high args.  Strtoul(3) sets errno to
    135 	 * ERANGE if the number is too large, but, if there's
    136 	 * a leading minus sign it returns the negation of the
    137 	 * result of the conversion, which we'd rather disallow.
    138 	 */
    139 	switch (argc) {
    140 	case 2:
    141 		/* Start and stop supplied on the command line. */
    142 		if (argv[0][0] == '-' || argv[1][0] == '-')
    143 			errx(1, "negative numbers aren't permitted.");
    144 
    145 		errno = 0;
    146 		start = strtoul(argv[0], &p, 10);
    147 		if (errno)
    148 			err(1, "%s", argv[0]);
    149 		if (*p != '\0')
    150 			errx(1, "%s: illegal numeric format.", argv[0]);
    151 
    152 		errno = 0;
    153 		stop = strtoul(argv[1], &p, 10);
    154 		if (errno)
    155 			err(1, "%s", argv[1]);
    156 		if (*p != '\0')
    157 			errx(1, "%s: illegal numeric format.", argv[1]);
    158 		break;
    159 	case 1:
    160 		/* Start on the command line. */
    161 		if (argv[0][0] == '-')
    162 			errx(1, "negative numbers aren't permitted.");
    163 
    164 		errno = 0;
    165 		start = strtoul(argv[0], &p, 10);
    166 		if (errno)
    167 			err(1, "%s", argv[0]);
    168 		if (*p != '\0')
    169 			errx(1, "%s: illegal numeric format.", argv[0]);
    170 		break;
    171 	case 0:
    172 		start = read_num_buf();
    173 		break;
    174 	default:
    175 		usage();
    176 	}
    177 
    178 	if (start > stop)
    179 		errx(1, "start value must be less than stop value.");
    180 	primes(start, stop);
    181 	exit(0);
    182 }
    183 
    184 /*
    185  * read_num_buf --
    186  *	This routine returns a number n, where 0 <= n && n <= BIG.
    187  */
    188 ubig
    189 read_num_buf()
    190 {
    191 	ubig val;
    192 	char *p, buf[100];		/* > max number of digits. */
    193 
    194 	for (;;) {
    195 		if (fgets(buf, sizeof(buf), stdin) == NULL) {
    196 			if (ferror(stdin))
    197 				err(1, "stdin");
    198 			exit(0);
    199 		}
    200 		for (p = buf; isblank(*p); ++p);
    201 		if (*p == '\n' || *p == '\0')
    202 			continue;
    203 		if (*p == '-')
    204 			errx(1, "negative numbers aren't permitted.");
    205 		errno = 0;
    206 		val = strtoul(buf, &p, 10);
    207 		if (errno)
    208 			err(1, "%s", buf);
    209 		if (*p != '\n')
    210 			errx(1, "%s: illegal numeric format.", buf);
    211 		return (val);
    212 	}
    213 }
    214 
    215 /*
    216  * primes - sieve and print primes from start up to and but not including stop
    217  */
    218 void
    219 primes(start, stop)
    220 	ubig start;	/* where to start generating */
    221 	ubig stop;	/* don't generate at or above this value */
    222 {
    223 	char *q;		/* sieve spot */
    224 	ubig factor;		/* index and factor */
    225 	char *tab_lim;		/* the limit to sieve on the table */
    226 	const ubig *p;		/* prime table pointer */
    227 	ubig fact_lim;		/* highest prime for current block */
    228 	ubig mod;		/* temp storage for mod */
    229 
    230 	/*
    231 	 * A number of systems can not convert double values into unsigned
    232 	 * longs when the values are larger than the largest signed value.
    233 	 * We don't have this problem, so we can go all the way to BIG.
    234 	 */
    235 	if (start < 3) {
    236 		start = (ubig)2;
    237 	}
    238 	if (stop < 3) {
    239 		stop = (ubig)2;
    240 	}
    241 	if (stop <= start) {
    242 		return;
    243 	}
    244 
    245 	/*
    246 	 * be sure that the values are odd, or 2
    247 	 */
    248 	if (start != 2 && (start&0x1) == 0) {
    249 		++start;
    250 	}
    251 	if (stop != 2 && (stop&0x1) == 0) {
    252 		++stop;
    253 	}
    254 
    255 	/*
    256 	 * quick list of primes <= pr_limit
    257 	 */
    258 	if (start <= *pr_limit) {
    259 		/* skip primes up to the start value */
    260 		for (p = &prime[0], factor = prime[0];
    261 		    factor < stop && p <= pr_limit; factor = *(++p)) {
    262 			if (factor >= start) {
    263 				printf("%lu\n", (unsigned long) factor);
    264 			}
    265 		}
    266 		/* return early if we are done */
    267 		if (p <= pr_limit) {
    268 			return;
    269 		}
    270 		start = *pr_limit+2;
    271 	}
    272 
    273 	/*
    274 	 * we shall sieve a bytemap window, note primes and move the window
    275 	 * upward until we pass the stop point
    276 	 */
    277 	while (start < stop) {
    278 		/*
    279 		 * factor out 3, 5, 7, 11 and 13
    280 		 */
    281 		/* initial pattern copy */
    282 		factor = (start%(2*3*5*7*11*13))/2; /* starting copy spot */
    283 		memcpy(table, &pattern[factor], pattern_size-factor);
    284 		/* main block pattern copies */
    285 		for (fact_lim=pattern_size-factor;
    286 		    fact_lim+pattern_size<=TABSIZE; fact_lim+=pattern_size) {
    287 			memcpy(&table[fact_lim], pattern, pattern_size);
    288 		}
    289 		/* final block pattern copy */
    290 		memcpy(&table[fact_lim], pattern, TABSIZE-fact_lim);
    291 
    292 		/*
    293 		 * sieve for primes 17 and higher
    294 		 */
    295 		/* note highest useful factor and sieve spot */
    296 		if (stop-start > TABSIZE+TABSIZE) {
    297 			tab_lim = &table[TABSIZE]; /* sieve it all */
    298 			fact_lim = (int)sqrt(
    299 					(double)(start)+TABSIZE+TABSIZE+1.0);
    300 		} else {
    301 			tab_lim = &table[(stop-start)/2]; /* partial sieve */
    302 			fact_lim = (int)sqrt((double)(stop)+1.0);
    303 		}
    304 		/* sieve for factors >= 17 */
    305 		factor = 17;	/* 17 is first prime to use */
    306 		p = &prime[7];	/* 19 is next prime, pi(19)=7 */
    307 		do {
    308 			/* determine the factor's initial sieve point */
    309 			mod = start%factor;
    310 			if (mod & 0x1) {
    311 				q = &table[(factor-mod)/2];
    312 			} else {
    313 				q = &table[mod ? factor-(mod/2) : 0];
    314 			}
    315 			/* sieve for our current factor */
    316 			for ( ; q < tab_lim; q += factor) {
    317 				*q = '\0'; /* sieve out a spot */
    318 			}
    319 		} while ((factor=(ubig)(*(p++))) <= fact_lim);
    320 
    321 		/*
    322 		 * print generated primes
    323 		 */
    324 		for (q = table; q < tab_lim; ++q, start+=2) {
    325 			if (*q) {
    326 				printf("%lu\n", (unsigned long) start);
    327 			}
    328 		}
    329 	}
    330 }
    331 
    332 void
    333 usage()
    334 {
    335 	(void)fprintf(stderr, "usage: primes [start [stop]]\n");
    336 	exit(1);
    337 }
    338