primes.c revision 1.2 1 /*
2 * Copyright (c) 1989 The Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Landon Curt Noll.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37 #ifndef lint
38 char copyright[] =
39 "@(#) Copyright (c) 1989 The Regents of the University of California.\n\
40 All rights reserved.\n";
41 #endif /* not lint */
42
43 #ifndef lint
44 /*static char sccsid[] = "from: @(#)primes.c 5.4 (Berkeley) 6/1/90";*/
45 static char rcsid[] = "$Id: primes.c,v 1.2 1993/08/01 18:53:04 mycroft Exp $";
46 #endif /* not lint */
47
48 /*
49 * primes - generate a table of primes between two values
50 *
51 * By: Landon Curt Noll chongo (at) toad.com, ...!{sun,tolsoft}!hoptoad!chongo
52 *
53 * chongo <for a good prime call: 391581 * 2^216193 - 1> /\oo/\
54 *
55 * usage:
56 * primes [start [stop]]
57 *
58 * Print primes >= start and < stop. If stop is omitted,
59 * the value 4294967295 (2^32-1) is assumed. If start is
60 * omitted, start is read from standard input.
61 *
62 * Prints "ouch" if start or stop is bogus.
63 *
64 * validation check: there are 664579 primes between 0 and 10^7
65 */
66
67 #include <stdio.h>
68 #include <math.h>
69 #include <memory.h>
70 #include <ctype.h>
71 #include "primes.h"
72
73 /*
74 * Eratosthenes sieve table
75 *
76 * We only sieve the odd numbers. The base of our sieve windows are always
77 * odd. If the base of table is 1, table[i] represents 2*i-1. After the
78 * sieve, table[i] == 1 if and only iff 2*i-1 is prime.
79 *
80 * We make TABSIZE large to reduce the overhead of inner loop setup.
81 */
82 char table[TABSIZE]; /* Eratosthenes sieve of odd numbers */
83
84 /*
85 * prime[i] is the (i-1)th prime.
86 *
87 * We are able to sieve 2^32-1 because this byte table yields all primes
88 * up to 65537 and 65537^2 > 2^32-1.
89 */
90 extern ubig prime[];
91 extern ubig *pr_limit; /* largest prime in the prime array */
92
93 /*
94 * To avoid excessive sieves for small factors, we use the table below to
95 * setup our sieve blocks. Each element represents a odd number starting
96 * with 1. All non-zero elements are factors of 3, 5, 7, 11 and 13.
97 */
98 extern char pattern[];
99 extern int pattern_size; /* length of pattern array */
100
101 #define MAX_LINE 255 /* max line allowed on stdin */
102
103 char *read_num_buf(); /* read a number buffer */
104 void primes(); /* print the primes in range */
105 char *program; /* our name */
106
107 main(argc, argv)
108 int argc; /* arg count */
109 char *argv[]; /* args */
110 {
111 char buf[MAX_LINE+1]; /* input buffer */
112 char *ret; /* return result */
113 ubig start; /* where to start generating */
114 ubig stop; /* don't generate at or above this value */
115
116 /*
117 * parse args
118 */
119 program = argv[0];
120 start = 0;
121 stop = BIG;
122 if (argc == 3) {
123 /* convert low and high args */
124 if (read_num_buf(NULL, argv[1]) == NULL) {
125 fprintf(stderr, "%s: ouch\n", program);
126 exit(1);
127 }
128 if (read_num_buf(NULL, argv[2]) == NULL) {
129 fprintf(stderr, "%s: ouch\n", program);
130 exit(1);
131 }
132 if (sscanf(argv[1], "%ld", &start) != 1) {
133 fprintf(stderr, "%s: ouch\n", program);
134 exit(1);
135 }
136 if (sscanf(argv[2], "%ld", &stop) != 1) {
137 fprintf(stderr, "%s: ouch\n", program);
138 exit(1);
139 }
140
141 } else if (argc == 2) {
142 /* convert low arg */
143 if (read_num_buf(NULL, argv[1]) == NULL) {
144 fprintf(stderr, "%s: ouch\n", program);
145 exit(1);
146 }
147 if (sscanf(argv[1], "%ld", &start) != 1) {
148 fprintf(stderr, "%s: ouch\n", program);
149 exit(1);
150 }
151
152 } else {
153 /* read input until we get a good line */
154 if (read_num_buf(stdin, buf) != NULL) {
155
156 /* convert the buffer */
157 if (sscanf(buf, "%ld", &start) != 1) {
158 fprintf(stderr, "%s: ouch\n", program);
159 exit(1);
160 }
161 } else {
162 exit(0);
163 }
164 }
165 if (start > stop) {
166 fprintf(stderr, "%s: ouch\n", program);
167 exit(1);
168 }
169 primes(start, stop);
170 exit(0);
171 }
172
173 /*
174 * read_num_buf - read a number buffer from a stream
175 *
176 * Read a number on a line of the form:
177 *
178 * ^[ \t]*\(+?[0-9][0-9]\)*.*$
179 *
180 * where ? is a 1-or-0 operator and the number is within \( \).
181 *
182 * If does not match the above pattern, it is ignored and a new
183 * line is read. If the number is too large or small, we will
184 * print ouch and read a new line.
185 *
186 * We have to be very careful on how we check the magnitude of the
187 * input. We can not use numeric checks because of the need to
188 * check values against maximum numeric values.
189 *
190 * This routine will return a line containing a ascii number between
191 * 0 and BIG, or it will return NULL.
192 *
193 * If the stream is NULL then buf will be processed as if were
194 * a single line stream.
195 *
196 * returns:
197 * char * pointer to leading digit or +
198 * NULL EOF or error
199 */
200 char *
201 read_num_buf(input, buf)
202 FILE *input; /* input stream or NULL */
203 char *buf; /* input buffer */
204 {
205 static char limit[MAX_LINE+1]; /* ascii value of BIG */
206 static int limit_len; /* digit count of limit */
207 int len; /* digits in input (excluding +/-) */
208 char *s; /* line start marker */
209 char *d; /* first digit, skip +/- */
210 char *p; /* scan pointer */
211 char *z; /* zero scan pointer */
212
213 /* form the ascii value of SEMIBIG if needed */
214 if (!isascii(limit[0]) || !isdigit(limit[0])) {
215 sprintf(limit, "%ld", SEMIBIG);
216 limit_len = strlen(limit);
217 }
218
219 /*
220 * the search for a good line
221 */
222 if (input != NULL && fgets(buf, MAX_LINE, input) == NULL) {
223 /* error or EOF */
224 return NULL;
225 }
226 do {
227
228 /* ignore leading whitespace */
229 for (s=buf; *s && s < buf+MAX_LINE; ++s) {
230 if (!isascii(*s) || !isspace(*s)) {
231 break;
232 }
233 }
234
235 /* object if - */
236 if (*s == '-') {
237 fprintf(stderr, "%s: ouch\n", program);
238 continue;
239 }
240
241 /* skip over any leading + */
242 if (*s == '+') {
243 d = s+1;
244 } else {
245 d = s;
246 }
247
248 /* note leading zeros */
249 for (z=d; *z && z < buf+MAX_LINE; ++z) {
250 if (*z != '0') {
251 break;
252 }
253 }
254
255 /* scan for the first non-digit/non-plus/non-minus */
256 for (p=d; *p && p < buf+MAX_LINE; ++p) {
257 if (!isascii(*p) || !isdigit(*p)) {
258 break;
259 }
260 }
261
262 /* ignore empty lines */
263 if (p == d) {
264 continue;
265 }
266 *p = '\0';
267
268 /* object if too many digits */
269 len = strlen(z);
270 len = (len<=0) ? 1 : len;
271 /* accept if digit count is below limit */
272 if (len < limit_len) {
273 /* we have good input */
274 return s;
275
276 /* reject very large numbers */
277 } else if (len > limit_len) {
278 fprintf(stderr, "%s: ouch\n", program);
279 continue;
280
281 /* carefully check against near limit numbers */
282 } else if (strcmp(z, limit) > 0) {
283 fprintf(stderr, "%s: ouch\n", program);
284 continue;
285 }
286 /* number is near limit, but is under it */
287 return s;
288 } while (input != NULL && fgets(buf, MAX_LINE, input) != NULL);
289
290 /* error or EOF */
291 return NULL;
292 }
293
294 /*
295 * primes - sieve and print primes from start up to and but not including stop
296 */
297 void
298 primes(start, stop)
299 ubig start; /* where to start generating */
300 ubig stop; /* don't generate at or above this value */
301 {
302 register char *q; /* sieve spot */
303 register ubig factor; /* index and factor */
304 register char *tab_lim; /* the limit to sieve on the table */
305 register ubig *p; /* prime table pointer */
306 register ubig fact_lim; /* highest prime for current block */
307
308 /*
309 * A number of systems can not convert double values
310 * into unsigned longs when the values are larger than
311 * the largest signed value. Thus we take case when
312 * the double is larger than the value SEMIBIG. *sigh*
313 */
314 if (start < 3) {
315 start = (ubig)2;
316 }
317 if (stop < 3) {
318 stop = (ubig)2;
319 }
320 if (stop <= start) {
321 return;
322 }
323
324 /*
325 * be sure that the values are odd, or 2
326 */
327 if (start != 2 && (start&0x1) == 0) {
328 ++start;
329 }
330 if (stop != 2 && (stop&0x1) == 0) {
331 ++stop;
332 }
333
334 /*
335 * quick list of primes <= pr_limit
336 */
337 if (start <= *pr_limit) {
338 /* skip primes up to the start value */
339 for (p = &prime[0], factor = prime[0];
340 factor < stop && p <= pr_limit;
341 factor = *(++p)) {
342 if (factor >= start) {
343 printf("%u\n", factor);
344 }
345 }
346 /* return early if we are done */
347 if (p <= pr_limit) {
348 return;
349 }
350 start = *pr_limit+2;
351 }
352
353 /*
354 * we shall sieve a bytemap window, note primes and move the window
355 * upward until we pass the stop point
356 */
357 while (start < stop) {
358 /*
359 * factor out 3, 5, 7, 11 and 13
360 */
361 /* initial pattern copy */
362 factor = (start%(2*3*5*7*11*13))/2; /* starting copy spot */
363 memcpy(table, &pattern[factor], pattern_size-factor);
364 /* main block pattern copies */
365 for (fact_lim=pattern_size-factor;
366 fact_lim+pattern_size<=TABSIZE;
367 fact_lim+=pattern_size) {
368 memcpy(&table[fact_lim], pattern, pattern_size);
369 }
370 /* final block pattern copy */
371 memcpy(&table[fact_lim], pattern, TABSIZE-fact_lim);
372
373 /*
374 * sieve for primes 17 and higher
375 */
376 /* note highest useful factor and sieve spot */
377 if (stop-start > TABSIZE+TABSIZE) {
378 tab_lim = &table[TABSIZE]; /* sieve it all */
379 fact_lim = (int)sqrt(
380 (double)(start)+TABSIZE+TABSIZE+1.0);
381 } else {
382 tab_lim = &table[(stop-start)/2]; /* partial sieve */
383 fact_lim = (int)sqrt((double)(stop)+1.0);
384 }
385 /* sieve for factors >= 17 */
386 factor = 17; /* 17 is first prime to use */
387 p = &prime[7]; /* 19 is next prime, pi(19)=7 */
388 do {
389 /* determine the factor's initial sieve point */
390 q = (char *)(start%factor); /* temp storage for mod */
391 if ((int)q & 0x1) {
392 q = &table[(factor-(int)q)/2];
393 } else {
394 q = &table[q ? factor-((int)q/2) : 0];
395 }
396 /* sive for our current factor */
397 for ( ; q < tab_lim; q += factor) {
398 *q = '\0'; /* sieve out a spot */
399 }
400 } while ((factor=(ubig)(*(p++))) <= fact_lim);
401
402 /*
403 * print generated primes
404 */
405 for (q = table; q < tab_lim; ++q, start+=2) {
406 if (*q) {
407 printf("%u\n", start);
408 }
409 }
410 }
411 }
412