spsp.c revision 1.1 1 1.1 ast /* $NetBSD: spsp.c,v 1.1 2014/10/02 21:36:37 ast Exp $ */
2 1.1 ast
3 1.1 ast /*-
4 1.1 ast * Copyright (c) 2014 Colin Percival
5 1.1 ast * All rights reserved.
6 1.1 ast *
7 1.1 ast * Redistribution and use in source and binary forms, with or without
8 1.1 ast * modification, are permitted provided that the following conditions
9 1.1 ast * are met:
10 1.1 ast * 1. Redistributions of source code must retain the above copyright
11 1.1 ast * notice, this list of conditions and the following disclaimer.
12 1.1 ast * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 ast * notice, this list of conditions and the following disclaimer in the
14 1.1 ast * documentation and/or other materials provided with the distribution.
15 1.1 ast *
16 1.1 ast * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 ast * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 ast * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 ast * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 ast * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 ast * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 ast * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 ast * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 ast * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 ast * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 ast * SUCH DAMAGE.
27 1.1 ast */
28 1.1 ast
29 1.1 ast #include <sys/cdefs.h>
30 1.1 ast #ifndef lint
31 1.1 ast __COPYRIGHT("@(#) Copyright (c) 1989, 1993\
32 1.1 ast The Regents of the University of California. All rights reserved.");
33 1.1 ast #endif /* not lint */
34 1.1 ast
35 1.1 ast #ifndef lint
36 1.1 ast #if 0
37 1.1 ast static char sccsid[] = "@(#)primes.c 8.5 (Berkeley) 5/10/95";
38 1.1 ast #else
39 1.1 ast __RCSID("$NetBSD: spsp.c,v 1.1 2014/10/02 21:36:37 ast Exp $");
40 1.1 ast #endif
41 1.1 ast #endif /* not lint */
42 1.1 ast
43 1.1 ast #include <assert.h>
44 1.1 ast #include <stddef.h>
45 1.1 ast #include <stdint.h>
46 1.1 ast
47 1.1 ast #include "primes.h"
48 1.1 ast
49 1.1 ast /* Return a * b % n, where 0 <= a, b < 2^63, 0 < n < 2^63. */
50 1.1 ast static uint64_t
51 1.1 ast mulmod(uint64_t a, uint64_t b, uint64_t n)
52 1.1 ast {
53 1.1 ast uint64_t x = 0;
54 1.1 ast
55 1.1 ast while (b != 0) {
56 1.1 ast if (b & 1)
57 1.1 ast x = (x + a) % n;
58 1.1 ast a = (a + a) % n;
59 1.1 ast b >>= 1;
60 1.1 ast }
61 1.1 ast
62 1.1 ast return (x);
63 1.1 ast }
64 1.1 ast
65 1.1 ast /* Return a^r % n, where 0 <= a < 2^63, 0 < n < 2^63. */
66 1.1 ast static uint64_t
67 1.1 ast powmod(uint64_t a, uint64_t r, uint64_t n)
68 1.1 ast {
69 1.1 ast uint64_t x = 1;
70 1.1 ast
71 1.1 ast while (r != 0) {
72 1.1 ast if (r & 1)
73 1.1 ast x = mulmod(a, x, n);
74 1.1 ast a = mulmod(a, a, n);
75 1.1 ast r >>= 1;
76 1.1 ast }
77 1.1 ast
78 1.1 ast return (x);
79 1.1 ast }
80 1.1 ast
81 1.1 ast /* Return non-zero if n is a strong pseudoprime to base p. */
82 1.1 ast static int
83 1.1 ast spsp(uint64_t n, uint64_t p)
84 1.1 ast {
85 1.1 ast uint64_t x;
86 1.1 ast uint64_t r = n - 1;
87 1.1 ast int k = 0;
88 1.1 ast
89 1.1 ast /* Compute n - 1 = 2^k * r. */
90 1.1 ast while ((r & 1) == 0) {
91 1.1 ast k++;
92 1.1 ast r >>= 1;
93 1.1 ast }
94 1.1 ast
95 1.1 ast /* Compute x = p^r mod n. If x = 1, n is a p-spsp. */
96 1.1 ast x = powmod(p, r, n);
97 1.1 ast if (x == 1)
98 1.1 ast return (1);
99 1.1 ast
100 1.1 ast /* Compute x^(2^i) for 0 <= i < n. If any are -1, n is a p-spsp. */
101 1.1 ast while (k > 0) {
102 1.1 ast if (x == n - 1)
103 1.1 ast return (1);
104 1.1 ast x = powmod(x, 2, n);
105 1.1 ast k--;
106 1.1 ast }
107 1.1 ast
108 1.1 ast /* Not a p-spsp. */
109 1.1 ast return (0);
110 1.1 ast }
111 1.1 ast
112 1.1 ast /* Test for primality using strong pseudoprime tests. */
113 1.1 ast int
114 1.1 ast isprime(uint64_t _n)
115 1.1 ast {
116 1.1 ast uint64_t n = _n;
117 1.1 ast
118 1.1 ast /*
119 1.1 ast * Values from:
120 1.1 ast * C. Pomerance, J.L. Selfridge, and S.S. Wagstaff, Jr.,
121 1.1 ast * The pseudoprimes to 25 * 10^9, Math. Comp. 35(151):1003-1026, 1980.
122 1.1 ast */
123 1.1 ast
124 1.1 ast /* No SPSPs to base 2 less than 2047. */
125 1.1 ast if (!spsp(n, 2))
126 1.1 ast return (0);
127 1.1 ast if (n < 2047ULL)
128 1.1 ast return (1);
129 1.1 ast
130 1.1 ast /* No SPSPs to bases 2,3 less than 1373653. */
131 1.1 ast if (!spsp(n, 3))
132 1.1 ast return (0);
133 1.1 ast if (n < 1373653ULL)
134 1.1 ast return (1);
135 1.1 ast
136 1.1 ast /* No SPSPs to bases 2,3,5 less than 25326001. */
137 1.1 ast if (!spsp(n, 5))
138 1.1 ast return (0);
139 1.1 ast if (n < 25326001ULL)
140 1.1 ast return (1);
141 1.1 ast
142 1.1 ast /* No SPSPs to bases 2,3,5,7 less than 3215031751. */
143 1.1 ast if (!spsp(n, 7))
144 1.1 ast return (0);
145 1.1 ast if (n < 3215031751ULL)
146 1.1 ast return (1);
147 1.1 ast
148 1.1 ast /*
149 1.1 ast * Values from:
150 1.1 ast * G. Jaeschke, On strong pseudoprimes to several bases,
151 1.1 ast * Math. Comp. 61(204):915-926, 1993.
152 1.1 ast */
153 1.1 ast
154 1.1 ast /* No SPSPs to bases 2,3,5,7,11 less than 2152302898747. */
155 1.1 ast if (!spsp(n, 11))
156 1.1 ast return (0);
157 1.1 ast if (n < 2152302898747ULL)
158 1.1 ast return (1);
159 1.1 ast
160 1.1 ast /* No SPSPs to bases 2,3,5,7,11,13 less than 3474749660383. */
161 1.1 ast if (!spsp(n, 13))
162 1.1 ast return (0);
163 1.1 ast if (n < 3474749660383ULL)
164 1.1 ast return (1);
165 1.1 ast
166 1.1 ast /* No SPSPs to bases 2,3,5,7,11,13,17 less than 341550071728321. */
167 1.1 ast if (!spsp(n, 17))
168 1.1 ast return (0);
169 1.1 ast if (n < 341550071728321ULL)
170 1.1 ast return (1);
171 1.1 ast
172 1.1 ast /* No SPSPs to bases 2,3,5,7,11,13,17,19 less than 341550071728321. */
173 1.1 ast if (!spsp(n, 19))
174 1.1 ast return (0);
175 1.1 ast if (n < 341550071728321ULL)
176 1.1 ast return (1);
177 1.1 ast
178 1.1 ast /*
179 1.1 ast * Value from:
180 1.1 ast * Y. Jiang and Y. Deng, Strong pseudoprimes to the first eight prime
181 1.1 ast * bases, Math. Comp. 83(290):2915-2924, 2014.
182 1.1 ast */
183 1.1 ast
184 1.1 ast /* No SPSPs to bases 2..23 less than 3825123056546413051. */
185 1.1 ast if (!spsp(n, 23))
186 1.1 ast return (0);
187 1.1 ast if (n < 3825123056546413051)
188 1.1 ast return (1);
189 1.1 ast
190 1.1 ast /* We can't handle values larger than this. */
191 1.1 ast assert(n <= SPSPMAX);
192 1.1 ast
193 1.1 ast /* UNREACHABLE */
194 1.1 ast return (0);
195 1.1 ast }
196