spsp.c revision 1.2 1 1.2 christos /* $NetBSD: spsp.c,v 1.2 2018/02/03 15:40:29 christos Exp $ */
2 1.1 ast
3 1.1 ast /*-
4 1.1 ast * Copyright (c) 2014 Colin Percival
5 1.1 ast * All rights reserved.
6 1.1 ast *
7 1.1 ast * Redistribution and use in source and binary forms, with or without
8 1.1 ast * modification, are permitted provided that the following conditions
9 1.1 ast * are met:
10 1.1 ast * 1. Redistributions of source code must retain the above copyright
11 1.1 ast * notice, this list of conditions and the following disclaimer.
12 1.1 ast * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 ast * notice, this list of conditions and the following disclaimer in the
14 1.1 ast * documentation and/or other materials provided with the distribution.
15 1.1 ast *
16 1.1 ast * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 ast * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 ast * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 ast * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 ast * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 ast * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 ast * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 ast * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 ast * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 ast * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 ast * SUCH DAMAGE.
27 1.1 ast */
28 1.1 ast
29 1.1 ast #include <sys/cdefs.h>
30 1.1 ast #ifndef lint
31 1.1 ast __COPYRIGHT("@(#) Copyright (c) 1989, 1993\
32 1.1 ast The Regents of the University of California. All rights reserved.");
33 1.1 ast #endif /* not lint */
34 1.1 ast
35 1.1 ast #ifndef lint
36 1.1 ast #if 0
37 1.1 ast static char sccsid[] = "@(#)primes.c 8.5 (Berkeley) 5/10/95";
38 1.1 ast #else
39 1.2 christos __RCSID("$NetBSD: spsp.c,v 1.2 2018/02/03 15:40:29 christos Exp $");
40 1.1 ast #endif
41 1.1 ast #endif /* not lint */
42 1.1 ast
43 1.1 ast #include <assert.h>
44 1.1 ast #include <stddef.h>
45 1.1 ast #include <stdint.h>
46 1.1 ast
47 1.1 ast #include "primes.h"
48 1.1 ast
49 1.2 christos /* Return a * b % n, where 0 <= n. */
50 1.1 ast static uint64_t
51 1.1 ast mulmod(uint64_t a, uint64_t b, uint64_t n)
52 1.1 ast {
53 1.1 ast uint64_t x = 0;
54 1.2 christos uint64_t an = a % n;
55 1.1 ast
56 1.1 ast while (b != 0) {
57 1.2 christos if (b & 1) {
58 1.2 christos x += an;
59 1.2 christos if ((x < an) || (x >= n))
60 1.2 christos x -= n;
61 1.2 christos }
62 1.2 christos if (an + an < an)
63 1.2 christos an = an + an - n;
64 1.2 christos else if (an + an >= n)
65 1.2 christos an = an + an - n;
66 1.2 christos else
67 1.2 christos an = an + an;
68 1.2 christos
69 1.1 ast b >>= 1;
70 1.1 ast }
71 1.1 ast
72 1.1 ast return (x);
73 1.1 ast }
74 1.1 ast
75 1.2 christos /* Return a^r % n, where 0 < n. */
76 1.1 ast static uint64_t
77 1.1 ast powmod(uint64_t a, uint64_t r, uint64_t n)
78 1.1 ast {
79 1.1 ast uint64_t x = 1;
80 1.1 ast
81 1.1 ast while (r != 0) {
82 1.1 ast if (r & 1)
83 1.1 ast x = mulmod(a, x, n);
84 1.1 ast a = mulmod(a, a, n);
85 1.1 ast r >>= 1;
86 1.1 ast }
87 1.1 ast
88 1.1 ast return (x);
89 1.1 ast }
90 1.1 ast
91 1.1 ast /* Return non-zero if n is a strong pseudoprime to base p. */
92 1.1 ast static int
93 1.1 ast spsp(uint64_t n, uint64_t p)
94 1.1 ast {
95 1.1 ast uint64_t x;
96 1.1 ast uint64_t r = n - 1;
97 1.1 ast int k = 0;
98 1.1 ast
99 1.1 ast /* Compute n - 1 = 2^k * r. */
100 1.1 ast while ((r & 1) == 0) {
101 1.1 ast k++;
102 1.1 ast r >>= 1;
103 1.1 ast }
104 1.1 ast
105 1.1 ast /* Compute x = p^r mod n. If x = 1, n is a p-spsp. */
106 1.1 ast x = powmod(p, r, n);
107 1.1 ast if (x == 1)
108 1.1 ast return (1);
109 1.1 ast
110 1.1 ast /* Compute x^(2^i) for 0 <= i < n. If any are -1, n is a p-spsp. */
111 1.1 ast while (k > 0) {
112 1.1 ast if (x == n - 1)
113 1.1 ast return (1);
114 1.1 ast x = powmod(x, 2, n);
115 1.1 ast k--;
116 1.1 ast }
117 1.1 ast
118 1.1 ast /* Not a p-spsp. */
119 1.1 ast return (0);
120 1.1 ast }
121 1.1 ast
122 1.1 ast /* Test for primality using strong pseudoprime tests. */
123 1.1 ast int
124 1.1 ast isprime(uint64_t _n)
125 1.1 ast {
126 1.1 ast uint64_t n = _n;
127 1.1 ast
128 1.1 ast /*
129 1.1 ast * Values from:
130 1.1 ast * C. Pomerance, J.L. Selfridge, and S.S. Wagstaff, Jr.,
131 1.1 ast * The pseudoprimes to 25 * 10^9, Math. Comp. 35(151):1003-1026, 1980.
132 1.1 ast */
133 1.1 ast
134 1.1 ast /* No SPSPs to base 2 less than 2047. */
135 1.1 ast if (!spsp(n, 2))
136 1.1 ast return (0);
137 1.1 ast if (n < 2047ULL)
138 1.1 ast return (1);
139 1.1 ast
140 1.1 ast /* No SPSPs to bases 2,3 less than 1373653. */
141 1.1 ast if (!spsp(n, 3))
142 1.1 ast return (0);
143 1.1 ast if (n < 1373653ULL)
144 1.1 ast return (1);
145 1.1 ast
146 1.1 ast /* No SPSPs to bases 2,3,5 less than 25326001. */
147 1.1 ast if (!spsp(n, 5))
148 1.1 ast return (0);
149 1.1 ast if (n < 25326001ULL)
150 1.1 ast return (1);
151 1.1 ast
152 1.1 ast /* No SPSPs to bases 2,3,5,7 less than 3215031751. */
153 1.1 ast if (!spsp(n, 7))
154 1.1 ast return (0);
155 1.1 ast if (n < 3215031751ULL)
156 1.1 ast return (1);
157 1.1 ast
158 1.1 ast /*
159 1.1 ast * Values from:
160 1.1 ast * G. Jaeschke, On strong pseudoprimes to several bases,
161 1.1 ast * Math. Comp. 61(204):915-926, 1993.
162 1.1 ast */
163 1.1 ast
164 1.1 ast /* No SPSPs to bases 2,3,5,7,11 less than 2152302898747. */
165 1.1 ast if (!spsp(n, 11))
166 1.1 ast return (0);
167 1.1 ast if (n < 2152302898747ULL)
168 1.1 ast return (1);
169 1.1 ast
170 1.1 ast /* No SPSPs to bases 2,3,5,7,11,13 less than 3474749660383. */
171 1.1 ast if (!spsp(n, 13))
172 1.1 ast return (0);
173 1.1 ast if (n < 3474749660383ULL)
174 1.1 ast return (1);
175 1.1 ast
176 1.1 ast /* No SPSPs to bases 2,3,5,7,11,13,17 less than 341550071728321. */
177 1.1 ast if (!spsp(n, 17))
178 1.1 ast return (0);
179 1.1 ast if (n < 341550071728321ULL)
180 1.1 ast return (1);
181 1.1 ast
182 1.1 ast /* No SPSPs to bases 2,3,5,7,11,13,17,19 less than 341550071728321. */
183 1.1 ast if (!spsp(n, 19))
184 1.1 ast return (0);
185 1.1 ast if (n < 341550071728321ULL)
186 1.1 ast return (1);
187 1.1 ast
188 1.1 ast /*
189 1.1 ast * Value from:
190 1.1 ast * Y. Jiang and Y. Deng, Strong pseudoprimes to the first eight prime
191 1.1 ast * bases, Math. Comp. 83(290):2915-2924, 2014.
192 1.1 ast */
193 1.1 ast
194 1.1 ast /* No SPSPs to bases 2..23 less than 3825123056546413051. */
195 1.1 ast if (!spsp(n, 23))
196 1.1 ast return (0);
197 1.1 ast if (n < 3825123056546413051)
198 1.1 ast return (1);
199 1.2 christos /*
200 1.2 christos * Value from:
201 1.2 christos * J. Sorenson and J. Webster, Strong pseudoprimes to twelve prime
202 1.2 christos * bases, Math. Comp. 86(304):985-1003, 2017.
203 1.2 christos */
204 1.1 ast
205 1.2 christos /* No SPSPs to bases 2..37 less than 318665857834031151167461. */
206 1.2 christos if (!spsp(n, 29))
207 1.2 christos return (0);
208 1.2 christos if (!spsp(n, 31))
209 1.2 christos return (0);
210 1.2 christos if (!spsp(n, 37))
211 1.2 christos return (0);
212 1.1 ast
213 1.2 christos /* All 64-bit values are less than 318665857834031151167461. */
214 1.2 christos return (1);
215 1.1 ast }
216