1 1.11 dholland /* $NetBSD: auto.c,v 1.11 2009/07/20 06:39:06 dholland Exp $ */ 2 1.1 christos 3 1.1 christos /*- 4 1.1 christos * Copyright (c) 1999 The NetBSD Foundation, Inc. 5 1.1 christos * All rights reserved. 6 1.1 christos * 7 1.1 christos * This code is derived from software contributed to The NetBSD Foundation 8 1.1 christos * by Christos Zoulas. 9 1.1 christos * 10 1.1 christos * Redistribution and use in source and binary forms, with or without 11 1.1 christos * modification, are permitted provided that the following conditions 12 1.1 christos * are met: 13 1.1 christos * 1. Redistributions of source code must retain the above copyright 14 1.1 christos * notice, this list of conditions and the following disclaimer. 15 1.1 christos * 2. Redistributions in binary form must reproduce the above copyright 16 1.1 christos * notice, this list of conditions and the following disclaimer in the 17 1.1 christos * documentation and/or other materials provided with the distribution. 18 1.1 christos * 19 1.1 christos * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 1.1 christos * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 1.1 christos * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 1.1 christos * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 1.1 christos * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 1.1 christos * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 1.1 christos * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 1.1 christos * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 1.1 christos * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 1.1 christos * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 1.1 christos * POSSIBILITY OF SUCH DAMAGE. 30 1.1 christos */ 31 1.1 christos 32 1.1 christos /* 33 1.1 christos * Automatic move. 34 1.1 christos * intelligent ? 35 1.10 dholland * Algo : 36 1.1 christos * IF scrapheaps don't exist THEN 37 1.10 dholland * IF not in danger THEN 38 1.7 christos * stay at current position 39 1.7 christos * ELSE 40 1.7 christos * move away from the closest robot 41 1.1 christos * FI 42 1.10 dholland * ELSE 43 1.7 christos * find closest heap 44 1.7 christos * find closest robot 45 1.7 christos * IF scrapheap is adjacent THEN 46 1.7 christos * move behind the scrapheap 47 1.1 christos * ELSE 48 1.1 christos * take the move that takes you away from the 49 1.1 christos * robots and closest to the heap 50 1.1 christos * FI 51 1.1 christos * FI 52 1.1 christos */ 53 1.11 dholland #include <curses.h> 54 1.11 dholland #include <string.h> 55 1.1 christos #include "robots.h" 56 1.1 christos 57 1.1 christos #define ABS(a) (((a)>0)?(a):-(a)) 58 1.1 christos #define MIN(a,b) (((a)>(b))?(b):(a)) 59 1.1 christos #define MAX(a,b) (((a)<(b))?(b):(a)) 60 1.1 christos 61 1.1 christos #define CONSDEBUG(a) 62 1.1 christos 63 1.6 jsm static int distance(int, int, int, int); 64 1.6 jsm static int xinc(int); 65 1.6 jsm static int yinc(int); 66 1.6 jsm static const char *find_moves(void); 67 1.6 jsm static COORD *closest_robot(int *); 68 1.6 jsm static COORD *closest_heap(int *); 69 1.6 jsm static char move_towards(int, int); 70 1.6 jsm static char move_away(COORD *); 71 1.6 jsm static char move_between(COORD *, COORD *); 72 1.6 jsm static int between(COORD *, COORD *); 73 1.1 christos 74 1.1 christos /* distance(): 75 1.10 dholland * return "move" number distance of the two coordinates 76 1.1 christos */ 77 1.10 dholland static int 78 1.9 dholland distance(int x1, int y1, int x2, int y2) 79 1.1 christos { 80 1.1 christos return MAX(ABS(ABS(x1) - ABS(x2)), ABS(ABS(y1) - ABS(y2))); 81 1.9 dholland } 82 1.1 christos 83 1.1 christos /* xinc(): 84 1.10 dholland * Return x coordinate moves 85 1.1 christos */ 86 1.1 christos static int 87 1.9 dholland xinc(int dir) 88 1.1 christos { 89 1.1 christos switch(dir) { 90 1.1 christos case 'b': 91 1.1 christos case 'h': 92 1.1 christos case 'y': 93 1.1 christos return -1; 94 1.1 christos case 'l': 95 1.1 christos case 'n': 96 1.1 christos case 'u': 97 1.1 christos return 1; 98 1.1 christos case 'j': 99 1.1 christos case 'k': 100 1.1 christos default: 101 1.1 christos return 0; 102 1.1 christos } 103 1.1 christos } 104 1.1 christos 105 1.1 christos /* yinc(): 106 1.10 dholland * Return y coordinate moves 107 1.1 christos */ 108 1.1 christos static int 109 1.9 dholland yinc(int dir) 110 1.1 christos { 111 1.1 christos switch(dir) { 112 1.1 christos case 'k': 113 1.1 christos case 'u': 114 1.1 christos case 'y': 115 1.1 christos return -1; 116 1.1 christos case 'b': 117 1.1 christos case 'j': 118 1.1 christos case 'n': 119 1.1 christos return 1; 120 1.1 christos case 'h': 121 1.1 christos case 'l': 122 1.1 christos default: 123 1.1 christos return 0; 124 1.1 christos } 125 1.1 christos } 126 1.1 christos 127 1.1 christos /* find_moves(): 128 1.10 dholland * Find possible moves 129 1.1 christos */ 130 1.4 jsm static const char * 131 1.9 dholland find_moves(void) 132 1.1 christos { 133 1.1 christos int x, y; 134 1.1 christos COORD test; 135 1.4 jsm const char *m; 136 1.4 jsm char *a; 137 1.4 jsm static const char moves[] = ".hjklyubn"; 138 1.1 christos static char ans[sizeof moves]; 139 1.1 christos a = ans; 140 1.1 christos 141 1.10 dholland for (m = moves; *m; m++) { 142 1.1 christos test.x = My_pos.x + xinc(*m); 143 1.1 christos test.y = My_pos.y + yinc(*m); 144 1.1 christos move(test.y, test.x); 145 1.1 christos switch(winch(stdscr)) { 146 1.1 christos case ' ': 147 1.1 christos case PLAYER: 148 1.10 dholland for (x = test.x - 1; x <= test.x + 1; x++) { 149 1.10 dholland for (y = test.y - 1; y <= test.y + 1; y++) { 150 1.1 christos move(y, x); 151 1.10 dholland if (winch(stdscr) == ROBOT) 152 1.1 christos goto bad; 153 1.1 christos } 154 1.1 christos } 155 1.1 christos *a++ = *m; 156 1.1 christos } 157 1.1 christos bad:; 158 1.1 christos } 159 1.1 christos *a = 0; 160 1.10 dholland if (ans[0]) 161 1.4 jsm return ans; 162 1.1 christos else 163 1.4 jsm return "t"; 164 1.1 christos } 165 1.1 christos 166 1.1 christos /* closest_robot(): 167 1.10 dholland * return the robot closest to us 168 1.10 dholland * and put in dist its distance 169 1.1 christos */ 170 1.1 christos static COORD * 171 1.9 dholland closest_robot(int *dist) 172 1.1 christos { 173 1.3 christos COORD *rob, *end, *minrob = NULL; 174 1.1 christos int tdist, mindist; 175 1.1 christos 176 1.1 christos mindist = 1000000; 177 1.1 christos end = &Robots[MAXROBOTS]; 178 1.1 christos for (rob = Robots; rob < end; rob++) { 179 1.1 christos tdist = distance(My_pos.x, My_pos.y, rob->x, rob->y); 180 1.1 christos if (tdist < mindist) { 181 1.1 christos minrob = rob; 182 1.1 christos mindist = tdist; 183 1.1 christos } 184 1.1 christos } 185 1.1 christos *dist = mindist; 186 1.1 christos return minrob; 187 1.9 dholland } 188 1.10 dholland 189 1.1 christos /* closest_heap(): 190 1.10 dholland * return the heap closest to us 191 1.10 dholland * and put in dist its distance 192 1.1 christos */ 193 1.1 christos static COORD * 194 1.9 dholland closest_heap(int *dist) 195 1.1 christos { 196 1.3 christos COORD *hp, *end, *minhp = NULL; 197 1.1 christos int mindist, tdist; 198 1.1 christos 199 1.1 christos mindist = 1000000; 200 1.1 christos end = &Scrap[MAXROBOTS]; 201 1.1 christos for (hp = Scrap; hp < end; hp++) { 202 1.1 christos if (hp->x == 0 && hp->y == 0) 203 1.1 christos break; 204 1.1 christos tdist = distance(My_pos.x, My_pos.y, hp->x, hp->y); 205 1.1 christos if (tdist < mindist) { 206 1.1 christos minhp = hp; 207 1.1 christos mindist = tdist; 208 1.1 christos } 209 1.1 christos } 210 1.1 christos *dist = mindist; 211 1.1 christos return minhp; 212 1.9 dholland } 213 1.1 christos 214 1.1 christos /* move_towards(): 215 1.10 dholland * move as close to the given direction as possible 216 1.1 christos */ 217 1.10 dholland static char 218 1.9 dholland move_towards(int dx, int dy) 219 1.1 christos { 220 1.1 christos char ok_moves[10], best_move; 221 1.1 christos char *ptr; 222 1.1 christos int move_judge, cur_judge, mvx, mvy; 223 1.1 christos 224 1.1 christos (void)strcpy(ok_moves, find_moves()); 225 1.10 dholland best_move = ok_moves[0]; 226 1.5 christos if (best_move != 't') { 227 1.1 christos mvx = xinc(best_move); 228 1.1 christos mvy = yinc(best_move); 229 1.1 christos move_judge = ABS(mvx - dx) + ABS(mvy - dy); 230 1.1 christos for (ptr = &ok_moves[1]; *ptr != '\0'; ptr++) { 231 1.1 christos mvx = xinc(*ptr); 232 1.1 christos mvy = yinc(*ptr); 233 1.1 christos cur_judge = ABS(mvx - dx) + ABS(mvy - dy); 234 1.1 christos if (cur_judge < move_judge) { 235 1.1 christos move_judge = cur_judge; 236 1.1 christos best_move = *ptr; 237 1.1 christos } 238 1.1 christos } 239 1.1 christos } 240 1.1 christos return best_move; 241 1.9 dholland } 242 1.1 christos 243 1.1 christos /* move_away(): 244 1.10 dholland * move away form the robot given 245 1.1 christos */ 246 1.1 christos static char 247 1.9 dholland move_away(COORD *rob) 248 1.1 christos { 249 1.1 christos int dx, dy; 250 1.1 christos 251 1.1 christos dx = sign(My_pos.x - rob->x); 252 1.1 christos dy = sign(My_pos.y - rob->y); 253 1.1 christos return move_towards(dx, dy); 254 1.9 dholland } 255 1.1 christos 256 1.1 christos 257 1.1 christos /* move_between(): 258 1.10 dholland * move the closest heap between us and the closest robot 259 1.1 christos */ 260 1.1 christos static char 261 1.9 dholland move_between(COORD *rob, COORD *hp) 262 1.1 christos { 263 1.2 christos int dx, dy; 264 1.1 christos float slope, cons; 265 1.1 christos 266 1.1 christos /* equation of the line between us and the closest robot */ 267 1.1 christos if (My_pos.x == rob->x) { 268 1.10 dholland /* 269 1.10 dholland * me and the robot are aligned in x 270 1.1 christos * change my x so I get closer to the heap 271 1.1 christos * and my y far from the robot 272 1.1 christos */ 273 1.1 christos dx = - sign(My_pos.x - hp->x); 274 1.1 christos dy = sign(My_pos.y - rob->y); 275 1.1 christos CONSDEBUG(("aligned in x")); 276 1.1 christos } 277 1.1 christos else if (My_pos.y == rob->y) { 278 1.1 christos /* 279 1.10 dholland * me and the robot are aligned in y 280 1.1 christos * change my y so I get closer to the heap 281 1.1 christos * and my x far from the robot 282 1.1 christos */ 283 1.1 christos dx = sign(My_pos.x - rob->x); 284 1.1 christos dy = -sign(My_pos.y - hp->y); 285 1.1 christos CONSDEBUG(("aligned in y")); 286 1.1 christos } 287 1.1 christos else { 288 1.1 christos CONSDEBUG(("no aligned")); 289 1.1 christos slope = (My_pos.y - rob->y) / (My_pos.x - rob->x); 290 1.1 christos cons = slope * rob->y; 291 1.1 christos if (ABS(My_pos.x - rob->x) > ABS(My_pos.y - rob->y)) { 292 1.1 christos /* 293 1.10 dholland * we are closest to the robot in x 294 1.1 christos * move away from the robot in x and 295 1.1 christos * close to the scrap in y 296 1.1 christos */ 297 1.1 christos dx = sign(My_pos.x - rob->x); 298 1.1 christos dy = sign(((slope * ((float) hp->x)) + cons) - 299 1.1 christos ((float) hp->y)); 300 1.1 christos } 301 1.1 christos else { 302 1.1 christos dx = sign(((slope * ((float) hp->x)) + cons) - 303 1.1 christos ((float) hp->y)); 304 1.1 christos dy = sign(My_pos.y - rob->y); 305 1.1 christos } 306 1.1 christos } 307 1.1 christos CONSDEBUG(("me (%d,%d) robot(%d,%d) heap(%d,%d) delta(%d,%d)", 308 1.1 christos My_pos.x, My_pos.y, rob->x, rob->y, hp->x, hp->y, dx, dy)); 309 1.1 christos return move_towards(dx, dy); 310 1.9 dholland } 311 1.10 dholland 312 1.1 christos /* between(): 313 1.10 dholland * Return true if the heap is between us and the robot 314 1.1 christos */ 315 1.1 christos int 316 1.9 dholland between(COORD *rob, COORD *hp) 317 1.1 christos { 318 1.1 christos /* I = @ */ 319 1.1 christos if (hp->x > rob->x && My_pos.x < rob->x) 320 1.1 christos return 0; 321 1.1 christos /* @ = I */ 322 1.1 christos if (hp->x < rob->x && My_pos.x > rob->x) 323 1.1 christos return 0; 324 1.1 christos /* @ */ 325 1.1 christos /* = */ 326 1.1 christos /* I */ 327 1.1 christos if (hp->y < rob->y && My_pos.y > rob->y) 328 1.1 christos return 0; 329 1.1 christos /* I */ 330 1.1 christos /* = */ 331 1.1 christos /* @ */ 332 1.1 christos if (hp->y > rob->y && My_pos.y < rob->y) 333 1.1 christos return 0; 334 1.1 christos return 1; 335 1.9 dholland } 336 1.1 christos 337 1.1 christos /* automove(): 338 1.10 dholland * find and do the best move if flag 339 1.10 dholland * else get the first move; 340 1.1 christos */ 341 1.1 christos char 342 1.10 dholland automove(void) 343 1.1 christos { 344 1.1 christos #if 0 345 1.1 christos return find_moves()[0]; 346 1.1 christos #else 347 1.1 christos COORD *robot_close; 348 1.1 christos COORD *heap_close; 349 1.1 christos int robot_dist, robot_heap, heap_dist; 350 1.1 christos 351 1.1 christos robot_close = closest_robot(&robot_dist); 352 1.1 christos if (robot_dist > 1) 353 1.1 christos return('.'); 354 1.10 dholland if (!Num_scrap) 355 1.1 christos /* no scrap heaps just run away */ 356 1.1 christos return move_away(robot_close); 357 1.1 christos 358 1.1 christos heap_close = closest_heap(&heap_dist); 359 1.10 dholland robot_heap = distance(robot_close->x, robot_close->y, 360 1.10 dholland heap_close->x, heap_close->y); 361 1.1 christos if (robot_heap <= heap_dist && !between(robot_close, heap_close)) { 362 1.10 dholland /* 363 1.1 christos * robot is closest to us from the heap. Run away! 364 1.1 christos */ 365 1.1 christos return move_away(robot_close); 366 1.1 christos } 367 1.10 dholland 368 1.1 christos return move_between(robot_close, heap_close); 369 1.1 christos #endif 370 1.9 dholland } 371